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Abstract

The study of topologically ordered states have given rise to a growing interest in symmetry

protected states in quantum matter. Recently, this theory has been extended to quantum many

body systems which demonstrate ordered states at low temperature. An example of this is the

discrete time crystal (DTC) which has been demonstrated in a real quantum computer and in

driven systems. These states are periodic in time and are protected to disorder to a certain extent.

In general, DTC can be classified into two phases, the stable many body localization (MBL) state,

and the disordered thermal state. This work demonstrates by generalizing DTC to 2 dimensions,

there is an decrease in thermal noise and an increase in the operating range of the MBL range in

the presence of disorder.

I. INTRODUCTION

An emerging topic in condensed matter physics is the engineering of new states of matter

via floquet driving of systems . Floquet driving can create new hybrid topological states and

ordered phases in matter which do not exist in normal systems [1–4]. Crystalline structures

are examples of many body systems which can give rise to spatially ordered systems under

periodic driving. In recent years, the study of discrete time crystals has gained considerable

interest as a variation on floquet systems[5].

Discrete time crystals (DTC) are periodically driven quantum many body systems which

break time translation symmetry under certain driving conditions. These systems have

been predicted theoretically and have been observed in periodically driven crystal systems

[6–12]. DTC can be realized into two phases, the strongly disordered thermal phase which

occured when there is low long range disorder and the many body-localization phase where

eigenstates are observable over a long time period and have no dissipation with discrete

spectra. Discrete time crystals have been realized experimentally in cold atom systems and

in condensed matter systems with a periodic laser pulse[13–16]. Building on previous work,

these many body systems have been realized on real quantum computers and in quantum

simulations [17, 18]. Furthermore, there has been a rising theoretical interest in studying

DTC with longer periodic phases and systems which map to higher dimensions (≥2)[19]. The
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study of time crystals which exist in higher dimensional lattice provides additional degrees

of freedom in order to study time translational symmetry with multiple different phases in

the same system. Recently, there has been an observation of a 2D discrete time crystal

which was observed in a 1T-TaS2 crystal system with periodic driving[20–22]. In addition,

there has been theoretical modeling of a magnetically ordered discrete time crystal which

show that DTCs in two dimensions have a larger protection against thermal disorder in the

one dimensional system [23]. When this model is further extended to N ≥ 2 dimensions

there is a further protection against thermal disorder with diminishing returns with higher

dimensions [24, 25].

This works presents an extension of 1D discrete time crystals realized with quantum al-

gorithms. With quantum simulation, it is demonstrated that 2D time crystals are more pro-

tected to disorder then 1D time crystals. In addition, this theoretical work can be extended

into higher dimensional time crystals which can also be realized in quantum hardware.

II. DISCRETE TIME CRYSTALS

1D DTC can be described as a many-body Bloch-Floquet hamiltonian with phase flip

and disorder terms [26–30].

H =H1 +H2 +H3

H1 =g(1− ε)
∑
i

σyi

H2 =
∑
i

Ji,jσ
x
i σ

x
j

H3 =
∑
i

Diσ
x
i

(1)

Where Ji,j is the Ising coupling, Ω is the Rabi frequency, ωR = ~∆k2/(2M) is the recoil

frequency, bi,m is the normal-mode matrix, and ωm are the traverse mode frequencies [31–36].

The Ising Hamiltonian H is a theoretical model in order to define time crystals in 2D.

This model can be easily expanded into N -dimensions by generalizing the hopping Hamilto-

nians for their next nearest neighbor. When modeling a discrete time crystal in a quantum

computing, this can be achieved by applying the gates which define the hopping terms to

the next-nearest gates in the modeled system [37–43].

When simulated and realized on quantum computing architecture, it is possible to see
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FIG. 1. Autocorrelation: The autocorrelation measurement averaged over all qubits 〈Z(0)Zi(t)〉

with g = 0.9 red denotes the low disorder system (D = 1) and blue denotes the high disorder system

(D = 3.14) (A) 1D DTC system (B) the Fourier transform of the autocorrelation for the 1D system

F 〈Z(0)Zi(t)〉 (C) the 2D DTC system with the same parameters as the 1D system (D) the Fourier

transform of the autocorrelation for the 2D system F 〈Z(0)Zi(t)〉

the DTC phase by analyzing the autocorrelation between the first time step in a qubit and

its state after n time steps. 〈Zi(0)Zi(t)〉. In the thermal regime of the DTC these states are

expected to decay rapidly. However, in the MBL phase of the DTC these states are expected

to remain at the same magnitude and oscillate between the two states. With modern day

NISQ quantum computers, thermal noise is expected to depolarize the qubits over time in

the quantum computer and cause a gradual decay of the states in the MBL phase of the

DTC. For all simulations reported, the initial polarization is set to be fully polarized, which

has been determined to have the most stable qubit states over time.
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III. 1D VS. 2D DTC

⠀䄀⤀ ⠀䈀⤀

⠀䌀⤀ ⠀䐀⤀

FIG. 2. Polarization measurement: The polarization measurement A = 〈Zi(0)Zi(t)〉 of each

qubit for each time step t in the DTC state with spin interaction strength g = 0.9 (A) 1D DTC

with weak long range interaction strength D = 1 (B) 1D DTC with strong long range interaction

strength D = π (C) 2D DTC with weak long range interaction strength D = 1 (D) 2D DTC with

strong long range interaction strength D = π

The 1D DTC is modeled with the Cirq quantum simulator for 50 floquet time steps with

16 qubits and g = 0.9. In order to add noise into this simulation, a disorder parameter D is

added. When D = 1, [Fig 1(A)] the autocorrelation 〈Z(0)Z(t)〉 shows that since there is less

disorder in the system and there is less loss of magnitude (red lines) and there is minimal

depolarization in the system. Since g = 0.9, the system is in the strong MBL phase. Fourier

transform analysis shows that there is strong order in the system [Fig 1(B)]. This can be

further explored by analyzing the polarization of the qubits for the 1D DTC system with

D = 1 [Fig 2(A)] where it can be seen that there is strong time crystal order in all qubits

with correlated phases. When D is increased to π the disorder begins to take a larger

effect on the total coherence of the system. The autocorrelation shows that [Fig 1(A)] the

system begins with a strong phase that decreases in average amplitude from fully polarized

〈Z(0)Z(1)〉 = 1 to disordered 〈Z(0)Z(50)〉 = 0.25. Fourier analysis shows a decrease in

amplitude by ∼ 1
2

from 0.6 to 0.3 for the normalized amplitude [Fig 1(B)]. The disordered

evolution of the 1D DTC can be examined with a polarization measurement which shows
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a an ordered state until t = 10 then a transition to a disordered state with increasing time

steps [Fig 2(B)].

The 2D discrete time crystal is an expanded form of the 1D discrete time crystal.

There are now an increased amount of spin interaction terms (RZZ gates) between nearest-

neighbors when the qubits are arranged in a “virtual” 2D crystal which corresponds to the

2D grid layout of the quantum computer. For comparison, the same disorder parameter is

used for the 2D case as the 1D DTC simulation.

WIP In the event of minimal disorder, the 2D DTC [Fig 2(C,D), red] has similar perfor-

mance to the 1D DTC [Fig 2(A,B), red]. However, when D = π the 2D DTC [Fig 2(C,D),

blue] has far less loss ≈ 4.3 than the 1D DTC system ≈ 2.6 this shows that there is minimal

loss of polarization in the 2D DTC when compared to a lower order system. This demon-

strates that there is an increased protection against disorder as the order of the discrete time

crystal system is increased. Additionally, When D = 1, [Fig 2(C),red], there is a minimal

loss of polarization after t time steps and there is a recovery of the polarization of the states

as the 2D time crystal develops in time (time steps t = 25−50, whereas the 1D time crystal

has a steadily decaying polarization state in the low disorder state.

IV. DISCUSSION

The increase protection from disorder can be explained by a stronger interaction between

qubits because there are more nearest neighbor qubits interacting with each other. The Ising

interaction Ji,j scales as J0/|i − j|α. This means that the nearest neighbor bits contribute

the most to the protection against disorder, and the corner or edge states are the most prone

to disorder. By reformulating the qubits from a 1D chain to a 2D lattice, it is possible to

have more interaction terms with nearest neighbors. For the first nearest neighbor term,

this goes from 2 for the 1D case to 4 for the 2D case with a square lattice. This effect can

be scaled to N dimensions with an increase in nearest neighbor protections to the qubits.
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t time steps

|x0〉 Ry(π) XZ(D)

|x1〉 Ry(π) RZZ(θ) XZ(D)

|x2〉 Ry(π) RZZ(θ) RZZ(θ) XZ(D)

|x3〉 Ry(π) RZZ(θ) RZZ(θ) RZZ(θ) XZ(D)

FIG. 3. 2D DTC circuit: An example of a 2D DTC crystal algorithm with 4 qubits implemented,

this results in a 2×2 square with interacting qubits. This algorithm is repeated for t Bloch-Floquet

time steps and then measured at the end. ~x corresponds to the initial state, which can be of Néel,

polarized, or random order.

V. METHODS

A. Simulation

All calculations were performed in python v 3.9.1 with the Google quantum AI Cirq

package v1.0.0. GPU acceleration is enabled with the Nvidia cuQuantum 22.07.1 SDK.

Within the Cirq library the FSIM gates are used with constant perimeters θ = π, φ = π,

α = π, β = π. Qubits were simulated with a grid layout similar to Google quantum

machines. All qubits are typically measured in the Ẑ basis in a quantum machine. However,

for this simulation, qubits are measured using CIRQ’s vector state simulator, the polarization

measurement is then done in the Ẑ basis in order to get the qubit rotation with respect to

the Ẑ axis.

B. Edge State

When computing the average of the qubit states, all qubits are taken into consideration.

Edge qubits and their effects are considered to be part of the system and are integral to the

results.
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C. Circuits

The time crystal algorithm can be split into 3 main stages, the rotations, the mixing

parameters and finally the long range interactions, these stages correspond to H1, H2, H3

of equation- 1. The bloch floquet time step can be translated into a quantum algorithm

by 3 simple gates. The first stage of gates are Ry single gate rotations, for this work, all

gates are rotated by π since this is the most stable, and optimal rotation for a real quantum

algorithm. Next is the “spin” interactions, which can be modeled ideally with an 2 qubit

RZZ gate. This gate belongs to the more generalized FSIM gates which has been used in

previous works to fine tune the circuit, however, the RZZ variation is used in this work. In

order for form a 2D state the RZZ gates are applied to the nearest neighbors (NN) with

corresponding qubits theortically arranged in a square. Since Google quantum computers

are arranged in a square pattern, this algorithm can be realized with an NN algorithm.

Finally is the phased XZ gate with the exponent α = 0 resulting in a rotation about the X

axis with a phase determined by Z(D).

VI. CONCLUSION

In conclusion, a method is developed to create two dimensional time crystals utilizing

quantum computing architecture & quantum algorithms. It is found that 2D time crystals

are more robust then 1D time crystals and are more impervious to disorder in their respective

system. The method of adding additional dimensions how a diminishing return in reducing

noise in the system for a compounding increase in the number of qubits to define a system

with the same edge lengths. In addition, N ≥ 3 dimensional time crystals require qubits to

have adjacent qubits for fast, low noise swaps, this is unlikely to exist for quantum hardware

which is confined to 2D or 3D in future architecture. Nevertheless, there is an interest to

show how higher dimensional time crystals behave on real quantum hardware.

VII. CODE AVAILABILITY

Code will be made publicly available upon full publication.
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[30] P. Bordia, H. Lüschen, U. Schneider, M. Knap, and I. Bloch, Nature Physics 13, 460 (2017).

[31] R. E. Throckmorton and S. D. Sarma, Physical Review B 103, 165431 (2021).

[32] F. Alet and N. Laflorencie, Comptes Rendus Physique 19, 498 (2018).

[33] C. Chen, Y. Chen, and X. Wang, npj Quantum Information 8 (2022), 10.1038/s41534-022-

00654-9.

[34] T. Hu, K. Xue, X. Li, Y. Zhang, and H. Ren, Scientific Reports 7 (2017), 10.1038/s41598-

017-00660-4.

[35] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Physical Review Letters 113, 107204 (2014).

[36] P. Hauke and M. Heyl, Physical Review B 92, 134204 (2015).

[37] D. Dai and M.-H. Whangbo, The Journal of Chemical Physics 118, 29 (2003).

[38] T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, Nature Photonics

10, 415 (2016).

[39] J. M. J. van Leeuwen, Physical Review Letters 34, 1056 (1975).

[40] S. G. BRUSH, Reviews of Modern Physics 39, 883 (1967).

[41] E. W. Montroll, R. B. Potts, and J. C. Ward, Journal of Mathematical Physics 4, 308 (1963).

[42] L. Onsager, Physical Review 65, 117 (1944).

[43] C. N. Yang, Physical Review 85, 808 (1952).

11

https://doi.org/10.1103/physrevlett.115.030402
https://doi.org/10.1038/nphys4020
https://doi.org/10.1103/physrevb.103.165431
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1038/s41534-022-00654-9
https://doi.org/10.1038/s41534-022-00654-9
https://doi.org/10.1038/s41598-017-00660-4
https://doi.org/10.1038/s41598-017-00660-4
https://doi.org/10.1103/physrevlett.113.107204
https://doi.org/10.1103/physrevb.92.134204
https://doi.org/10.1063/1.1525809
https://doi.org/10.1038/nphoton.2016.68
https://doi.org/10.1038/nphoton.2016.68
https://doi.org/10.1103/physrevlett.34.1056
https://doi.org/10.1103/revmodphys.39.883
https://doi.org/10.1063/1.1703955
https://doi.org/10.1103/physrev.65.117
https://doi.org/10.1103/physrev.85.808

	Simulation of Higher Dimensional Discrete Time Crystals on a Quantum Computer
	Abstract
	I Introduction
	II Discrete Time Crystals
	III 1D vs. 2D DTC
	IV Discussion
	V Methods
	A Simulation
	B Edge State
	C Circuits

	VI Conclusion
	VII Code availability
	 Acknowledgments
	 References


