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Abstract

Complex or hostile environments can sometimes inhibit the movement capabilities of diffusive

particles or active swimmers, who may thus become stuck in fixed positions. This occurs, for

example, in the adhesion of bacteria to surfaces at the initial stage of biofilm formation. Here

we analyze the dynamics of active particles in the presence of trapping regions, where irreversible

particle immobilization occurs at a fixed rate. By solving the kinetic equations for run-and-tumble

motion in one space dimension, we give expressions for probability distribution functions, focusing

on stationary distributions of blocked particles, and mean trapping times in terms of physical and

geometrical parameters. Different extensions of the trapping region are considered, from infinite

to cases of semi-infinite and finite intervals. The mean trapping time turns out to be simply the

inverse of the trapping rate for infinitely extended trapping zones, while it has a nontrivial form

in the semi-infinite case and is undefined for finite domains, due to the appearance of long tails

in the trapping time distribution. Finally, to account for the subdiffusive behavior observed in

the adhesion processes of bacteria to surfaces, we extend the model to include anomalous diffusive

motion in the trapping region, reporting the exact expression of the mean-square displacement.
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I. INTRODUCTION

Trapping processes are quite ubiquitous in nature. Molecules can be adsorbed when they

diffuse onto reactive substrates, cells can die when they move through harmful environments,

living organisms can be captured by predators while foraging in hostile areas. More recently

interesting studies focused on trapping of photokinetic bacteria in structured light fields

[1]. Modeling stochastic motion in trapping environments is then of great interest [2–5]. In

particular, the study of active systems, composed by self-propelled particles, can give us a

very general view of the process, which applies to many interesting physical and biological

phenomena [6, 7], allowing diffusive motion to be obtained as a limiting case. Understating

the evolution of particles density or trapping time properties and their dependence on the

physical and geometrical parameters, can give us better insights into trapping processes.

In this regard, it could be very useful to determine exact expressions of these quantities in

simplified models that allow analytical treatment.

In this paper we analyze the behavior of active particles, performing run-and-tumble motion

[8–17], in the presence of trapping regions in one space dimension. In recent years, many

studies have focused on the analysis of trapping processes consisting of the confinement of

active particles due to various causes: presence of obstacles in crowded environments [18–21],

external fields or effective confining potentials induced by space-dependent motility param-

eters [22–26], confining boundaries [27], porous environments [28, 29]. In all these cases

the term trapping indicates that the particle experiences confinement due to the presence of

some kind of external cause that prevents, hinders or reduces its free motion. This trapping

is also usually non-permanent: the particle can escape from local entrapment and continue

its motion. In this work, instead, we want to treat a different kind of trapping, and by this

term we mean that the particle can undergo a sudden irreversible stopping of its motion

when it passes through a certain region (irreversible immobilization or irreversible trapping

in a slow dynamic phase). This is, for example, the case of bacterial adhesion to surfaces,

occurring in the early stage of biofilms formation [30–33]. Biofilms are complex aggregates

of microorganisms that often form on surfaces and are held together by an extracellular

polymeric matrix. The complex emergent properties of this ubiquitous microbial commu-

nity are of great interest from a theoretical and practical point of view. Understanding

the functional mechanisms of this ensemble of cooperating cells, involving mechanical and
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physicochemical processes, is not only a fascinating topic for physicists and biologists, but

also an urgent task for physicians, as biofilms are often the cause of persistent infections in

living organisms [34]. The first step of biofilm formation is the adhesion of cells to surfaces.

This process, after an initial reversible phase, is essentially irreversible and the bacteria be-

come stuck in quasi-fixed positions on surfaces. As a first approximation, we can therefore

describe this phenomenon as an irreversible trapping process, occurring at a given fixed

rate, during the random active motion of the cell on the surface. We describe here such an

irreversible adhesion process using a simplified one-dimensional model, which encodes the

main ingredients of bacteria motion (run-and-tumble dynamics mimic E.coli motion [7]) and

trapping process (irreversible arrest). Despite its simplicity, the run-an-tumble model has

been shown to capture many new and interesting phenomena of active matter, often allow-

ing exact analytical expressions of many quantities of interest. In this work we use such a

model to study irreversible trapping processes considering different extensions of trapping

zones, from the simple infinite case, where the trapping region extends all over the space,

to the more interesting case of semi-infinite and finite trapping zones. By solving the ki-

netic equations governing the evolution of probability distribution functions, we are able to

obtain analytical expressions of various quantities, such as particles distributions, survival

probabilities, mean-square displacements, trapping time distributions and mean-trapping

times. At the end, to account for the behaviors observed in some experiments with bacteria,

we relax the assumption of particle immobilization in the trapping phase and include the

possibility of subdiffusive motion, described by fractional-type diffusion equations.

The paper is organized as follow. In Sec. II we define and introduce the model. In Sec.

III we analyze the case of an infinitely extended trapping region. The semi-infinite case

is treated in Sec. IV and the case of finite trapping interval is discussed in Sec. V. In

Sec. VI we extend the model to describe subdiffusion in the trapping phase, considering

fractional-type equations. Conclusions are drawn in Sec. VII.

II. RUN-AND-TUMBLE MODEL IN TRAPPING REGIONS

We consider a run-and-tumble particle moving at constant speed v and reorienting its

direction of motion with rate α. We are interested in describing the particle motion when im-

mersed in absorbing environments which cause the irreversible trapping of the particle with
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a given rate γ(x), which, in general, is a space-dependent quantity. We denote with P
R
(x, t)

and P
L
(x, t) the probability density functions (PDF) of right-oriented and left-oriented active

(moving) particles and with P
B
(x, t) the PDF of blocked (trapped, immobilized) particles.

The general equations describing the time evolution of the PDFs are

∂P
R

∂t
(x, t) = − v

∂P
R

∂x
(x, t)− α

2
P

R
(x, t) +

α

2
P

L
(x, t)− γ(x)P

R
(x, t), (1)

∂P
L

∂t
(x, t) = v

∂P
L

∂x
(x, t)− α

2
P

L
(x, t) +

α

2
P

R
(x, t)− γ(x)P

L
(x, t), (2)

∂P
B

∂t
(x, t) = γ(x)[P

R
(x, t) + P

L
(x, t)]. (3)

For γ = 0 the first two equations reduce to the standard equations describing run-and-tumble

particles [8–17]. In the following we analyze different cases, from the homogeneous one in

which a particle moves in a infinitely extended trapping region (γ is constant throughout the

whole space) to more complex heterogeneous situations in which the trapping zones have

finite or semi-infinite extension (γ is space dependent step function). In all the investigated

cases we will consider a particle that symmetrically starts its motion at the origin, P
R
(x, 0) =

P
L
(x, 0) = δ(x)/2, and it is immersed in a symmetric environment, i.e., γ(−x) = γ(x).

III. INFINITELY EXTENDED TRAPPING REGION

We first consider the case of a run-and-tumble particle moving in a infinitely extend

trapping region (see Fig.1). The model is described by the following equations with non-

vanishing and constant γ(x) = γ (for the sake of simplicity we do not indicate the dependence

on space and time variables)

∂P
R

∂t
= − v

∂P
R

∂x
− α

2
P

R
+

α

2
P

L
− γP

R
, (4)

∂P
L

∂t
= v

∂P
L

∂x
− α

2
P

L
+

α

2
P

R
− γP

L
, (5)

∂P
B

∂t
= γ(P

R
+ P

L
). (6)
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FIG. 1: Sketch of the trapping zones in the three cases analyzed in this study, corresponding to

infinite, semi-infinite and finite extensions of the intervals where an irreversible immobilization of

particles occurs at rate γ.

By defining the PDF of active particles P = P
R
+ P

L
and the current J = v(P

R
− P

L
) we

have

∂P

∂t
= −∂J

∂x
− γP, (7)

∂J

∂t
= −v2

∂P

∂x
− (α + γ)J, (8)

∂P
B

∂t
= γP, (9)

with the normalization
∫
dx(P + P

B
) = 1. By using the Laplace transform

P̃ (s) ≡ L[P (t)](s) =

∫ ∞

0

dt e−st P (t), (10)

and considering initial conditions P (x, 0) = δ(x), J(x, 0) = 0, P
B
(x, 0) = 0, we have

∂J̃

∂x
= δ(x)− (s+ γ)P̃ , (11)

v2
∂P̃

∂x
= −(s+ α + γ)J̃ , (12)

P̃
B

=
γ

s
P̃ . (13)
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By combining the first two equations we obtain the second order differential equation for P̃

v2
∂2P̃

∂x2
− (s+ γ)(s+ α + γ)P̃ = −(s+ α + γ) δ(x), (14)

whose solution is

P̃ (x, s) =
1

2v

√
s+ α + γ

s+ γ
exp (−c|x|), (15)

where c(s) is

v2c2 = (s+ γ)(s+ α + γ). (16)

We note that the active particle PDF (15) is the Laplace-shifted solution of the classical

one-dimensional PDF of a run-and-tumble particle in free space P0, P̃ (x, s) = P̃0(x, s+γ), as

it is also evident by noting that Eq.s (11,12) and (14) are identical to those of standard run-

and-tumble particles in free (non-trapping) space with the substitution s → s+ γ (see Eq.s

(15,16) of Ref.[14]). Therefore, in the time domain, we have that P (x, t) = exp (−γt)P0(x, t).

The free solution P0(x, t) is well known in the literature (see, for example, [9, 12]) and then

we can write the explicit expression of P (x, t) as

P (x, t) =
e−(γ+α/2)t

2

{
δ(x− vt) + δ(x+ vt)

+

[
α

2v
I0

(
α∆(x, t)

2v

)
+

αt

2∆(x, t)
I1

(
α∆(x, t)

2v

)]
θ(vt− |x|)

}
, (17)

where I0, I1 are modified Bessel functions and ∆ =
√
v2t2 − x2. The PDF of blocked

particles is obtained as time-integral of P , being their Laplace transforms related through

Eq.(13):

P
B
(x, t) = γ

∫ t

0

dt′ P (x, t′). (18)

After some algebra we finally obtain

P
B
(x, t) =

γ

2v

[
e−(γ+α/2)tI0

(
α∆(x, t)

2v

)
+ (γ + α)

∫ t

|x|/v
dt′ e−(γ+α/2)t′I0

(
α∆(x, t′)

2v

)]
θ(vt− |x|). (19)

The stationary distribution of blocked particles is given by P (st.)
B

(x) = limt→∞ P
B
(x, t) =

lims→0 sP̃B
(x, s), leading to

P (st.)
B

(x) =
1

2λ
exp

(
−|x|

λ

)
, (20)
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FIG. 2: Stationary probability distributions P (st.)
B

(x) of blocked particles in trapping regions

(where γ > 0, highlighted red zones along the x axis). a) The trapping zone extends all over the

space, Eq.(20). b) The case of semi-infinite trapping regions, |x| > a, with a/λ = 1, Eq.(50). c)

The case of finite trapping intervals, a < |x| < b, with a/λ = 1 and b/λ = 4, Eq.(70). We set

α = 1, v = 1 and γ = 1.

where we have introduced the characteristic length λ

λ =
v√

γ(α + γ)
. (21)

Fig.2 shows the stationary distribution (20), along with those for semi-infinite and finite

trapping zones (see following sections). We note that, in the diffusive limit, α, v → ∞ with

finite diffusion constant D = v2/α, the characteristic length reads λDiff. =
√

D/γ and the

stationary distribution (20) reduces to that obtained in [35]:

P (st.)
B,Diff.

(x) =
1

2

√
γ

D
exp

(
−
√

γ

D
|x|
)
. (22)
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We now study the probability distribution φ(t) of the trapping time, which is related to the

survival probability P(t) , i.e., the probability that the active particle has not been trapped

until time t

φ(t) = −∂P
∂t

(t). (23)

The survival probability is obtained as an integration over space of the active particles PDF

P(t) =
∫ ∞

−∞
dx P (x, t). (24)

By using (15), the Laplace transform is given by

P̃(s) =
1

s+ γ
, (25)

corresponding, in the time domain, to

P(t) = exp (−γt). (26)

The trapping times are then exponentially distributed

φ(t) = γ exp (−γt), (27)

and the mean trapping time

τ =

∫ ∞

0

dt t φ(t), (28)

is simply the inverse of the trapping rate

τ =
1

γ
. (29)

Another interesting quantity to calculate is the mean-square displacement (MSD) of parti-

cles, i.e. the second moment of the total particle distribution function P + P
B

r2(t) =

∫ ∞

−∞
dx x2 [P (x, t) + P

B
(x, t)]. (30)

Working in the Laplace domain, using (15) and (13), we have

r̃2(s) =
2v2

s(s+ γ)(s+ γ + α)
. (31)

Inverting the Laplace transform we finally obtain the expression of the MSD

r2(t) =
2v2

αγ(α + γ)

[
α(1− e−γt)− γe−γt(1− e−αt)

]
. (32)
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FIG. 3: Mean-square displacement r2(t) in the case of infinitely extended trapping region for

different values of the trapping rate: γ = 0 (absence of trapping), γ = 10−3, γ = 1 and γ = 10. One

observes ballistic behavior r2 ∼ t2 at short times (t ≪ min (α−1, γ−1)), possibly diffusive one r2 ∼ t

at intermediate times (α−1 < t < γ−1) and saturation r2 → r2∞ at long times (t ≫ max (α−1, γ−1)).

We set α = 1 and v = 1.

We note that, for γ = 0, the above expression reduces to the usual one for run-and-tumble

free particles [9]

r2(t) =
2v2

α2

[
αt− 1 + e−αt

]
, γ → 0. (33)

The asymptotic limit of (32) is finite

r2∞ =
2v2

γ(α + γ)
, t → ∞, (34)

which is, indeed, the second moment of the blocked particles distribution in the stationary

regime (20). We finally observe that, in the diffusive limit, the MSD reads

r2Diff.(t) =
2D

γ

(
1− e−γt

)
, v, α → ∞ with D = v2/α, (35)

which, for γ → 0, reduces to the standard form in the free space

r2Diff.(t) = 2Dt, γ → 0. (36)

In Fig.3 the MSD (32) is shown for four different values of the trapping parameter γ.
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IV. SEMI-INFINITE TRAPPING REGION

We now consider the case in which the trapping region is |x| > a (see Fig.1). We have to

solve two sets of Eq.s(1-3). In the free region (I) |x| < a we have γ = 0:

∂P
(I)

R

∂t
= − v

∂P
(I)

R

∂x
− α

2
P

(I)

R
+

α

2
P

(I)

L
, (37)

∂P
(I)

L

∂t
= v

∂P
(I)

L

∂x
− α

2
P

(I)

L
+

α

2
P

(I)

R
. (38)

In the trapping region (II) |x| > a we have γ > 0:

∂P
(II)

R

∂t
= − v

∂P
(II)

R

∂x
− α

2
P

(II)

R
+

α

2
P

(II)

L
− γP

(II)

R
, (39)

∂P
(II)

L

∂t
= v

∂P
(II)

L

∂x
− α

2
P

(II)

L
+

α

2
P

(II)

R
− γP

(II)

L
, (40)

∂P
B

∂t
= γ(P

(II)

R
+ P

(II)

L
). (41)

We note that blocked particles are present only in the trapping region (II). The corresponding

differential equations for the probability density P = P
R
+P

L
in the two zones are then given

by (14) with γ = 0 in the free zone (I) and with γ > 0 in the trapping zone (II). By imposing

continuity condition for P and discontinuity for ∂xP in |x| = a (continuity of the current J)

we finally obtain, in the Laplace domain

P̃
(I)

(x, s) = A
(I)

+ exp (c0|x|) + A
(I)

− exp (−c0|x|), for |x| < a, (42)

P̃
(II)

(x, s) = A
(II)

− exp (−c|x|), for |x| > a, (43)

P̃
B
(x, s) =

γ

s
P̃

(II)

(x, s), for |x| > a, (44)

where

v2c2 = (s+ γ)(s+ α + γ), (45)

v2c2
0
= s(s+ α), (46)

and

A
(I)

± = ∓ c0
4s

c∓ c0q

c cosh (c0a) + c0q sinh (c0a)
exp (∓c0a), (47)

A
(II)

− =
c2
0
q

2s

1

c cosh (c0a) + c0q sinh (c0a)
, exp (ca) (48)
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FIG. 4: Trapping time distributions φ(t) for the cases of infinite, semi-infinite and finite extension

of trapping regions. The curve for the infinite case is the exponential (27), while the curves for the

semi-infinite and finite cases are calculated numerically inverting the Laplace transform expressions

(52) and (72). The distributions of semi-infinite and finite cases are different from zero only for

times longer that the minimum time ta = a/v required for the particle to reach the border x = a

of the trapping zone, while the small discontinuous drop present in the finite case corresponds to

the first exit at tb = b/v from the outer border x = b of the trapping domain. We set α = 1, v = 1,

γ = 1, a/λ = 1 and b/λ = 4 (λ = 1/
√

2).

with

q =
s+ α + γ

s+ α
. (49)

The stationary distribution of blocked particles is obtained as P (st.)
B

(x) = lims→0 sP̃B
(x, s) =

lims→0 γP̃
(II)

((x, s), giving rise to (see Fig.2)

P (st.)
B

(x) =
1

2λ
exp

(
−|x| − a

λ

)
, for |x| > a, (50)

with λ given by (21). For a = 0 the above expression reduces to (20), valid in the case of

infinite trapping region.

Also in this case we can calculate the mean trapping time. Let us first study the trapping
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time distribution. The survival probability (24) is given by

P(t) = 2

[∫ a

0

dx P
(I)

(x, t) +

∫ ∞

a

dx P
(II)

(x, t)

]
= 1− 2

∫ ∞

a

dx P
B
(x, t), (51)

where we have used normalization condition and the symmetry of the problem. In the

Laplace domain, using the relation φ̃(s) = 1 − sP̃(s) and (44), we obtain the following

expression of the trapping time distribution

φ̃(s) = 2γ

∫ ∞

a

dx P̃
(II)

(x, s) =
γ

s+ γ

c

c cosh (c0a) + c0q sinh (c0a)
. (52)

Some examples of trapping time distributions φ(t) are reported in Fig.4.

The mean trapping time is obtained from τ = −∂sφ̃(s)|s=0:

τ =
1

γ
+

αa2

2v2
+

a

v

√
α + γ

γ
. (53)

This expression is valid for generic particle’s properties (α, v) and environmental parameters

(γ, a). We now discuss some interesting limits.

First of all, we note that, for a = 0, we recover the previous result of infinite trapping regions,

τ = 1/γ. Instead, for a → ∞ or γ → 0, the problem reduces to that of a free particles in an

unbounded domain without trapping, resulting, trivially, in an infinite trapping time.

We now analyze the two interesting limiting cases of non-tumbling particles and diffusive

particles. The former is obtained in the limit α → 0 (wave limit) giving rise to

τ
W

=
1

γ
+

a

v
, (54)

which is, precisely, the sum of the time it takes for the non-tumbling particle to arrive at

the a boundary of the trapping zone and the average trapping time 1/γ inside it.

The diffusive limit is obtained for α, v → ∞ with finite diffusion constant D = v2/α. In

such a case the (Laplace transformed) trapping time distribution reads

φ̃
Diff.

(s) =
γ√
s+ γ

1
√
s+ γ cosh

(
a
√

s/D
)
+
√
s sinh

(
a
√
s/D

) , (55)

and the mean trapping time is

τ
Diff.

=
1

γ
+

a2

2D
+

a√
γD

. (56)
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A. First-passage problem as a limiting case γ → ∞

Here we show how it is possible to obtain the solution of the free run-and-tumble motion

in a finite domain [−a, a] with perfectly absorbing boundaries taking the limit γ → ∞ of

the previous results. Indeed, in this limit, the particle is instantaneously absorbed when

arriving at the edge x = ±a of the trapping zone and we then get a first-passage problem.

The firs-passage time distribution is then obtained from (52)

φ̃(s) =
1

cosh (c0a) +
√

s
s+α

sinh (c0a)
, γ → ∞, (57)

retrieving previous results in the literature (see Eq.(64) of Ref.[14] with ϵ = 1). The mean

first-passage time is obtained from (53) and we have [14, 24]

τ =
αa2

2v2
+

a

v
, γ → ∞. (58)

Similarly, we obtain the first-passage time distribution of a diffusive particle in a finite

domain [−a, a] with perfectly absorbing boundaries by taking the limit of (55)

φ̃
Diff.

(s) =
1

cosh
(
a
√
s/D

) , γ → ∞, (59)

and the mean first-passage time now reads

τ
Diff.

=
a2

2D
, γ → ∞. (60)

V. FINITE TRAPPING REGION

The last case we analyze is that of a finite trapping interval a < |x| < b (see Fig.1). We

have now to solve three sets of equations, two in the free regions (I) |x| < a and (III) |x| > b

with γ = 0, like Eq.s (37-38), and one in the trapping region (II) a < |x| < b with γ > 0,

like Eq.s (39-41). Following similar arguments as in the previous sections, we can write the

solutions, in the Laplace domain, as

P̃
(I)

(x, s) = A
(I)

+ exp (c0|x|) + A
(I)

− exp (−c0 |x|), for |x| < a, (61)

P̃
(II)

(x, s) = A
(II)

+ exp (c|x|) + A
(II)

− exp (−c|x|), for a < |x| < b, (62)

P̃
(III)

(x, s) = A
(III)

− exp (−c0|x|), for |x| > b, (63)

P̃
B
(x, s) =

γ

s
P̃

(II)

(x, s), for a < |x| < b, (64)
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where c(s) and c0(s) are given by (45-46), and

A
(I)

± = ∓ c0
4s

ck− ± c0qk+
ck− cosh (c0a)− c0qk+ sinh (c0a)

exp (∓c0a), (65)

A
(II)

+ = −
c2
0
q

2s

1

ck− cosh (c0a)− c0qk+ sinh (c0a)
exp (−ca), (66)

A
(II)

− =
c2
0
q

2s

1− k+
ck− cosh (c0a)− c0qk+ sinh (c0a)

exp (ca), (67)

A
(III)

− = −
c2
0
cq

s(c− c0q)

1

ck− cosh (c0a)− c0qk+ sinh (c0a)
exp [c0b+ c(b− a)], (68)

with q(s) given by (49) and

k± = 1± c+ c0q

c− c0q
. exp [2c(b− a)] (69)

As before, we can obtain an exact expression for the stationary distribution of blocked

particles in the trapping region a < |x| < b, obtaining (see Fig.2)

P (st.)
B

(x) =
1

2λ

cosh [(b− |x|)/λ]
sinh [(b− a)/λ]

, for a < |x| < b, (70)

where λ is the characteristic length (21). We note that for b → ∞ we recover the previous

semi-infinite case (50).

We now study the distribution of trapping time. The survival probability is given by

P(t) = 1− 2

∫ b

a

dx P
B
(x, t). (71)

By using the expressions (64) and (62) and the relation φ̃(s) = 1− sP̃(s), we have that the

trapping time distribution in the Laplace domain reads

φ̃(s) =
γ

s+ γ

c (1− e−c(b−a)) (1− k+ − ec(b−a))

ck− cosh (c0a)− c0qk+ sinh (c0a)
, (72)

where L = b− a. For small s we have that

φ̃(s) ∼ 1− A
√
s−Bs, (73)

with prefactors A and B depending on the system and geometrical parameters. We have:

A =

√
α + γ

αγ

1

sinh (L/λ)
, (74)

and

B =
1

γ
+

αa2

2v2
+

cosh (L/λ)

sinh (L/λ)

(
a

v

√
α + γ

γ
− α + γ

αγ

1

sinh (L/λ)

)
. (75)
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At small s the survival probability diverges as P̃(s) ∼ s−1/2. From the Tauberian theoremes

we have that, in time domain, P(t) ∼ t−1/2 for large t [36]. This implies that the trapping

time distribution, given by φ(t) = −∂tP(t), behaves asymptotically as

φ(t) ∼ A

2Γ(1/2)
t−3/2, t → ∞, (76)

where Γ(x) is the Gamma function (see Fig.4). We then conclude that the mean trapping

time (28) diverges, as a consequence of the infinite extension of the free zone, resulting in

a slower trapping of particles. It is worth noting that, in the limit of semi-infinite trapping

region (b → ∞) the prefactor A in (73) vanishes (see (74) for L → ∞) and Eq.(72) reduces

to (52). The mean trapping time is then finite and it is given by the term B in (75) for

L → ∞, that coincides with the expression (53). Finally, we note that the case of a particle

starting its motion at the center of a finite trapping zone [−b, b] is simply obtained by taking

the limit a → 0 of the previous results.

VI. MODELING ANOMALOUS DIFFUSION IN THE TRAPPING REGION

Bacterial adhesion to surfaces often occurs through complex and nontrivial mechanisms.

For example in [31] it was shown that the cell adhesion to glass surfaces involves multiple

reversibly-binding tethers that detach and successively re-attach, resulting in a slowing down

of the dynamics of attached bacteria. The mean-square displacement of several bacterial

strains was found to have a subdiffusive trend at long times, r2 ∼ tν with ν < 1 [31]. In this

last section we extend our model to take into account in an effective way such a subdiffusive

character of the bacterial dynamics in the trapping regions. To this end, we make use

of fractional diffusion models, which are known to generate subdiffusive dynamics at long

times [36–41]. For the sake of simplicity, here we analyze only the case of infinitely extended

trapping zone (see section III). The model describes a run-and-tumble particle that, at fixed

rate, irreversibly switches to a phase characterized by anomalous diffusion. By introducing

the time-fractional derivative of order ν ∈ (0, 1),

∂νf

∂tν
(x, t) = I1−ν ∂f

∂t
(x, t), (77)

where Iµ is the Riemann-Liouville fractional intergral

Iµf(x, t) =
1

Γ(µ)

∫ t

0

dτ(t− τ)µ−1f(x, τ), µ > 0, (78)
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we can generalize the equation (9) for the PDF of particles in the trapping regions including

fractional diffusion in the following manner

I1−ν

(
∂PB

∂t
− γP

)
= D

∂2PB

∂x2
. (79)

The equations for P and J are the same as (7) and (8). We note that in the case of null

diffusion, D = 0, we recover the original case of immobilized particles, eq. (9), as I1−νf = 0

implies f = 0. Instead, in the limit ν → 1, we have that I1−νf → f , and we obtain the case

of normal diffusion
∂PB

∂t
= D

∂2PB

∂x2
+ γP, ν → 1. (80)

Proceeding as in section III, we can write the eq. (79) in the Laplace domain as

sνP̃
B
= D

∂2P̃
B

∂x2
+ γsν−1P̃ , (81)

having used the fact that

L[I1−νf(t)](s) =
f̃(s)

s1−ν
. (82)

Performing now the Fourier transform

f̂(k) ≡ F [f(x)](k) =

∫ +∞

−∞
dx eikxf(x), (83)

the equation (81) becomes

(sν +Dk2) ˆ̃P
B
= γsν−1 ˆ̃P . (84)

The PDF in the RHS can be obtained from eq. (14) (we remind that the equation for P is

the same as in section III) leading to

ˆ̃P =
s+ γ + α

(s+ γ)(s+ γ + α) + v2k2
. (85)

We have then obtained the exact expressions of P , eq. (85) and PB, from eq. (84), in

the Laplace-Fourier domain, thus allowing us to compute the mean-square displacement

thorough

r̃2(s) = − ∂2

∂k2
( ˆ̃P + ˆ̃P

B
)

∣∣∣∣
k=0

. (86)

After some algebra we finally obtain

r̃2(s) =
2v2

s(s+ γ)(s+ γ + α)
+

2γD

sν+1(s+ γ)
≡ r̃2

A
(s) + r̃2

B
(s), (87)
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which generalizes eq. (31) to the present case of fractional diffusion. With respect to the

original expression, we note here the presence of a second term, which takes into account

the anomalous diffusion of trapped particles. The mean-square displacement in the time

domain is obtained by performing the inverse-Laplace transform of the previous expression

r2(t) = r2
A
(t) + r2

B
(t), (88)

with the first term that is the same obtained in section III, eq. (32),

r2
A
(t) =

2v2

αγ(α + γ)

[
α(1− e−γt)− γe−γt(1− e−αt)

]
, (89)

and the second term that can be expressed as

r2
B
(t) =

2γD

Γ(2 + ν)
t1+ν e−γt Φ(ν + 1, ν + 2; γt)

=
2γD

Γ(2 + ν)
t1+ν Φ(1, ν + 2;−γt), (90)

where we have introduced the degenerate (confluent) hypergeometric function [42]

Φ(β, µ; z) =
Γ(µ)

Γ(β)Γ(µ− β)
z1−µ

∫ z

0

dt et tβ−1 (z − t)µ−β−1 ≡ 1F1(β;µ; z), (91)

with Γ(z) =
∫∞
0

tz−1 e−t dt the Euler Gamma function, and we have used the property

Φ(β, µ; z) = ez Φ(µ− β, µ;−z). (92)

Let us analyze the asymptotic behaviors. In the long time regime the dominant terms in eq.

(87) are obtained for small s,

r̃2(s) ∼ 2D

sν+1
+

2v2

γ(γ + s)

1

s
, s → 0, (93)

corresponding in the time domain to

r2(t) ∼ 2D

Γ(ν + 1)
tν +

2v2

γ(γ + α)
∼ 2D

Γ(ν + 1)
tν , t → ∞. (94)

We then obtain, asymptotically, anomalous diffusion with exponent ν. We note that, for

immobilized particles, D = 0, the dominant term is the constant one, and the MSD develops

a plateau (34). The same asymptotic trend can be inferred directly from the expression (90).

Indeed, by manipulating the integral in the hypergeometric function, we can write (90) in

the form

r2B(t) =
2γD

Γ(ν + 1)
tν
∫ t

0

dτ e−γτ (1− τ/t)ν ∼ 2D

Γ(ν + 1)
tν , t → ∞, (95)
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FIG. 5: Mean-square displacement r2(t) for the fractional diffusion model in the case of infinite

extension of the trapping region. We consider fractional derivative exponent ν = 0.2. Black and

red continuous lines correspond, respectively, to trapping rates γ = 1 and γ = 0.1. Dashed lines

are the corresponding curves in the case of complete blocking of particles, i.e., D = 0 (see section

III). We set α = 1, v = 1, D = 1.

as the integral converges to 1/γ in the asymptotic limit.

At short times the dominant terms are obtained for large s,

r̃2(s) ∼ 2γD

sν+2
+

2v2

s3
, s → ∞, (96)

corresponding to

r2(t) ∼ 2γD

Γ(ν + 2)
tν+1 + v2 t2 ∼ 2γD

Γ(ν + 2)
tν+1, t → 0. (97)

In figure 5 we report the mean-square displacement (88) for the case of exponent ν = 0.2

(close to typical values obtained in experiments [31]). The curves (full lines) correspond to

two different values of the trapping rate, γ = 1 and γ = 0.1. For comparison we report also

the corresponding cases of immobilized particles in the trapping zone, D = 0 (dashed lines),

studied in section III. It is evident an anomalous subdiffusive behavior tν at long time,

a superdiffusive behavior tν+1 at short time and possible intermediate regimes (ballistic,

diffusive or plateau-like) depending on the parameters values.
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VII. CONCLUSIONS

In this work we studied the problem of active particles in trapping environments, de-

scribing the irreversible adhesion processes that take place, for example, in the early stage

of biofilms formation. In particular, we considered 1D run-and-tumble particles in the pres-

ence of trapping regions where particles absorption takes place at rate γ. Different extension

of the trapping regions are investigated: infinite, semi-infinite and finite. By solving the ki-

netic equations for the probability density functions we are able to provide exact expressions

of several interesting quantities. The case of infinite trapping interval is fully solvable in the

time domain. We report expressions of PDFs of moving and blocked particles, mean-square

displacement, trapping time distribution and mean trapping time, which turns out to be

simply the inverse of the trapping rate 1/γ. In the case of semi-infinite trapping region we

are able to solve the problem in the Laplace domain, allowing us to give exact expressions of

stationary distribution of blocked particles (50) and mean trapping time (53). Several lim-

iting cases are also analyzed, such as diffusive motions and first-passage problems in a finite

domain. Finally, we analyze the case of a finite trapping region, reporting again the spatial

distribution of blocked particles in the stationary regime (70) and discussing the behavior of

the trapping time distribution, whose long tail at large t leads to divergent mean trapping

time. A last section is devoted to extend the model to the case of anomalous diffusion of

trapped particles, in accordance with some experimental observations on bacterial adhesion

to glass surfaces [31]. By resorting to fractional diffusion models we are able to derive exact

expressions of the MSD, resulting in subdiffusive behaviors r2 ∼ tν with ν < 1 in the long

time regime and non-trivial trends in the intermediate regimes.

It would be of interest to extend the present analysis in different directions. A first imple-

mentation might be to consider reversible trapping, that is, the possibility for the particle to

reactivate itself after trapping [43]. Other possible extensions could be the analysis of planar

motions [12, 44–47] or considering more complex environments, such as those described by

a continuously variable trapping rate, by a periodic sequence of trapping intervals [4, 5]

or by the presence of generic boundaries [48]. A final possible direction of investigation

might be to consider different combinations of particle motion in the two phases, before

and after trapping. In the present study we investigated the case of active motion before

trapping and arrested phase or anomalous diffusive phase after it. It would be interesting
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to consider also, for the initial active phase, fractional processes [40, 41, 49] or generalized

g-fractional motions [50, 51], extending, for example, the recent investigation on subdiffu-

sive processes with particles immobilization [35]. A final remark concerns the modeling of

the entire biofilm formation process. It could be of great importance to implement the de-

scribed run-and-tumble models in more realistic contexts (also using numerical simulations),

considering both irreversible adhesion and cellular replication [52].
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