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Quantitative causality analysis with coarsely sampled time series

X. San Liang
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Abstract
The information flow-based quantitative causality analysis has been widely applied in different

disciplines because of its origin from first principles, its concise form, and its computational effi-

ciency. So far the algorithm for its estimation is based on differential dynamical systems, which,

however, may make an issue for coarsely sampled time series. Here, we show that for linear systems,

this is fine at least qualitatively; but for highly nonlinear systems, the bias increases significantly as

the sampling frequency is reduced. This paper provides a partial solution to this problem, showing

how causality analysis is assured faithful with coarsely sampled series when, of course, the statis-

tics is sufficient. An explict and concise formula has been obtained, with only sample covariances

involved. It has been successfully applied to a system comprising of a pair of coupled Rössler

oscillators. Particularly remarkable is the success when the two oscillators are nearly synchronized.

PACS numbers:

Keywords: quantitative causality; information flow; coarsely sampled time series; synchronization; Rössler

system; Lie group
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I. INTRODUCTION

Causality analysis is an important problem in scientific research. Though traditionally
formulated as a statistical problem in data science, computer science, among other disci-
plines, recently it has been found to be, within the framework of information flow/transfer,
“a real notion in physics that can be derived ab initio”[1]. A comprehensive study with
generic systems has been fulfilled recently, with explicit formulas attained in closed form;
see [2] and [1]. These formulas have been validated with benchmark systems such as baker
transformation, Hénon map, etc., and have been applied successfully to real world problems
in the diverse disciplines such as global climate change (e.g., [3], [4], [5]), dynamic meteo-
rology (e.g.,[6]), land-atmosphere interaction (e.g.,[7]), data-driven prediction (e.g., [8], [9]),
near-wall turbulence (e.g., [10]), neuroscience (e.g., [11], [12]), financial analysis (e.g., [13],
[14]), quantum information (e.g, [15]), to name several.

For the purpose of this study, we first give a brief introduction of the theory within the
framework of a differential dynamical system. (Also available for discrete-time mappings,
refer to Liang (2016).) Let

dx

dt
= F(x, t) +B(x, t)ẇ, (1)

be a d-dimensional continuous-time stochastic system for x = (x1, ..., xd) (we do not dis-
tinguish notations for random and deterministic variables), where F = (F1, ..., Fd) may be
arbitrary nonlinear differentiable functions of x and t, w is a vector of white noises, and
B = (bij) is the matrix of perturbation amplitudes which may also be any differentiable
functions of x and t. Liang (2016)[1] proves that the rate of information flowing from xj to
xi (in nats per unit time) is

Tj→i = −E

[

1

ρi

∫

Rd−2

∂(Fiρ\j)

∂xi

dx\i\j

]

+
1

2
E

[

1

ρi

∫

Rd−2

∂2(giiρ\j)

∂x2
i

dx\i\j

]

,

= −

∫

Rd

ρj|i(xj |xi)
∂(Fiρ\j)

∂xi

dx+
1

2

∫

Rd

ρj|i(xj |xi)
∂2(giiρ\j)

∂x2
i

dx, (2)

where dx\i\j signifies dx1...dxi−1dxi+1...dxj−1dxj+1...dxn, E stands for mathematical expec-
tation, gii =

∑n

k=1
bikbik, ρi = ρi(xi) is the marginal probability density function (pdf) of

xi, ρj|i is the pdf of xj conditioned on xi, and ρ\j =
∫

R
ρ(x)dxj . The algorithm for the

information flow-based causal inference is as follows: If Tj→i = 0, then xj is not causal to
xi; otherwise it is causal, and the absolute value measures the magnitude of the causality
from xj to xi. This is guaranteed by a property called “principle of nil causality.” An-
other property regards the invariance upon coordinate transformation, indicating that the
obtained information flow (IF) is an intrinsic property in nature[16]. Also established by
Liang (2016)[1] is that, for a linear model, i.e., for F(x, t) = Ax, A = (aij) and B = (bij)
are constant matrices in (1), then

Tj→i = aij
σij

σii

where σij is the population covariance of xi and xj . By this, in the linear sense, causation
implies correlation, but not vice versa. In an explicit expression, this corollary fixes the
debate on causation vs. correlation ever since George Berkeley (1710)[17].
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In the case with only d time series x1, x2, ..., xd, the quantitative causality, i.e., the IF,
between them can be estimated using maximum likelihood estimation (see [18] and [19]).
Under the assumption of a linear system with additive noises, the maximum likelihood
estimator (mle) of (2) for Tj→i is[19]

T̂j→i =
1

detC
·

d
∑

ν=1

∆jνCν,di ·
Cij

Cii

, (3)

where Cij is the sample covariance between xi and xj , ∆ij the cofactors of the matrix
C = (Cij), and Ci,dj the sample covariance between xi and a series derived from xj using
the Euler forward differencing scheme: ẋj,n = (xj,n+k − xj,n)/(k∆t), with k ≥ 1 some
integer. Eq. (3) is rather concise in form, involving only the common statistics, i.e., sample
covariances. The transparent formula makes causality analysis, which otherwise would be
complicated, very easy and computationally efficient. Note, however, that Eq. (3) cannot
replace (2); it is just the maximum likelihood estimator (mle) of the latter. Statistical
significance tests can be performed for the estimators. This is done with the aid of a Fisher
information matrix. See Liang (2014)[18] and Liang (2021)[19] for details.

Originally the formalism is established in the light of a differential system; in other
words, it is with infinitesimal time increments. (The formalism with discrete mappings has
also been established by Liang (2016)[1], but still there has no estimation with it.) One
would naturally ask a question about the applicability in the case of coarsely sampled time
series. Indeed, it is not unusual that the given series may be coarsely sampled because of the
limited observations. As will be seen in the following section this may make a problem for
nonlinear systems if the sample interval is large. This paper henceforth attempts to address
this issue in the original linear framework. In the following we first check the applicability of
(3) for series from a linear system and a highly nonlinear system (section II), with a variety
of sampling intervals. A new approach is presented in section III, which is then utilized to
redo the causal inferences in section II. Some remaining issues are discussed in section V.

II. THE ISSUE WITH COARSELY SAMPLED SERIES

A. Time series from linear systems

We first test the applicability of (3), as the sampling interval increases, with a well-
studied linear system whose IF rates have been found half-analytically. This is the validation
example in [18]:

dx1

dt
= −x1 + 0.5x2 + 0.1ẇ1 (4a)

dx2

dt
= −x2 + 0.1ẇ2 (4b)

where ẇi, i = 1, 2 are independent white noises. It has been shown that, the rates of
information flow per unit time, T2→1 → 0.11 as t → ∞, and T1→2 = 0 for all t, reflecting
accurately the one-way causality from x2 to x1. Now, using the same sample path as that in
Liang (2014),[21] we re-sample the series with low frequencies to obtain new series. Shown
in Figure 1 is part of the sample path, with triangles marking the sampling points.

The computed IFs for different sampling intervals are listed below:
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FIG. 1: A segment of the sample path generated by Eq. (4), with a time step ∆t = 0.001. The

time spans from 0 through 100. As we are only interested in the limit IF as t → ∞, the first 5000

steps, i.e., those for t ≤ 5, are discarded.

S.I. (# of pts) 1 10 50 100 300 500

T̂2→1 0.110±0.051 0.113±0.051 0.099±0.050 0.090±0.048 0.055±0.036 0.055±0.034

T̂1→2 -0.002±0.056 -0.001±0.055 -0.015±0.054 -0.011±0.053 -0.008±0.038 -0.015±0.034

Also computed are the confidence intervals at a level of 90% (at a significance level of 0.1).

First, the estimators T̂2→1 for all the SIs here are significantly distinct from zero, while
those the other way around, T̂1→2, are not significant at a level of 90%. So the causality in a
qualitative sense has been faithfully recovered even with very low sampling frequencies (large
SI). (In fact, even with SI=1000 the result is still correct; we do not consider cases beyond
SI=500 since the sample size is too small for SI¿500, resulting in insufficient statistics.)

Since this example actually has a half-analytical solution (T2→1 ≈ 0.11, T1→2 = 0), we

have more to say about the computed results. Generally, the result of T̂1→2 looks satisfactory.
For T̂2→1, it is rather accurate for SI ≤ 100. Beyond 100, it is not accurate any more.

B. Time series from synchronized chaotic oscillators

The following example is from the synchronization problem as examined by Palus et
al. (2018). The system is composed of two Rössler oscillators, x = (x1, x2, x3) and y =
(y1, y2, y3), where

dx1

dt
= −ω1x2 − x3, (5a)

dx2

dt
= ω1x1 + 0.15x2, (5b)

dx3

dt
= 0.2 + x3(x1 − 10), (5c)

4



is the master system, and

dy1
dt

= −ω2y2 − y3 + ε(x1 − y1), (6a)

dy2
dt

= ω2y1 + 0.15y2, (6b)

dy3
dt

= 0.2 + y3(y1 − 10), (6c)

is the driven one. Following Palus et al. (2018)[20], choose ω1 = 1.015 and ω2 = 0.985. Using
the Runge-Kutta scheme and choosing a time step ∆t = 0.001, the coupled 6-dimensional
system can be solved rather accurately with different ε. Figure 2 plots the solutions of x1

and y1 when the coupling strength ε = 0.11 (upper panel) and ε = 0.15 (lower panel). As
shown in the latter case, the two subsystems become synchronized if ε ≥ 0.15. Again, we
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FIG. 2: Part of the time series of x1 and y1 of the coupled Rössler systems for ε = 0.11 (top) and

ε = 0.15 (bottom). The circles indicate the sampling points (every 300 steps here, corresponding

to 18 points in each period). The two oscillators become synchronized as ε ≥ 0.15.

choose to study the problem for t ∈ [0, 100] (105 time steps in total).
For each ε we generate six time series of 105 steps, and evaluate the IFs according to

Eq. (3) (k = 1 is chosen). The IFs as functions of ε are then obtained, and plotted in
Fig. 3a, which accurately tells that the master is x, and y is the slave. An appealing
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observation is that this causality inference even works when the two oscillators are nearly
synchronized as ε > 0.15, demonstrating the power of this rigorously formulated causality
analysis.
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FIG. 3: Absolute information flow rates
∣

∣
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T̂x→y
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∣
and

∣

∣

∣
T̂y→x

∣

∣

∣
(dashed) between the two Rössler

oscillators as functions of the coupling coefficient ε with different sampling intervals. Units are in

nats per unit time. By the preset causality, the dashed line should coincide with the abscissa.

We subsample the series every SI steps, SI=10, 50, 100, 300, 500, and redo the com-
putation using the same scheme. The resulting IF rates are shown in Figs. 3b, c, d, e, f,
respectively. By the preset causality, the dashed line should be the zero-line. Clearly, the
causal inference works well for SI≤ 10. The computed IF becomes biased for SI≥ 50, and the
bias grows significantly as SI increases. If we focus on ε <= 0.15, i.e., when the systems are
not synchronized (see Palus et al., 2018), the causal inference still functions fine for SI≤50.
If the synchronized cases are taken into account (ε > 0.15), then the inferences in the cases
for 50 ≤ SI ≤ 100 are much biased, and those for SI exceeding 300, a case corresponding to
an approximate sampling frequency of 20 per period, are not correct any more.

III. APPROACHING TO A PARTIAL SOLUTION

As shown above, if the sampling frequency of the time series is low, the resulting linear
IF for nonlinear series may be biased. Indeed, in the case with high nonlinearity, the linear
assumption is always easy to be blamed. While theoretically it is not a problem (causality
is guaranteed as proved in a theorem), we agree that, before a fully nonlinear algorithm is
developed, this will be a continuing issue. What we want to show here is, how much room
there is for improvement. So far, the algorithm documented in [18], and later in [19], is
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based on the Bernstein-Euler differencing scheme, which is, of course, very rudimentary due
to the first order differencing. If a time series is coarsely sampled, the error could be large.

A theorem as established by Liang (2008)[2] reads that, if the noise is additive in Eq. (1),
i.e., if B is a constant matrix, then the noise itself does not appear in the formula of Tj→i.
So under the additive noise assumption, we can estimate the IF within the framework of a
deterministic system. In this case, note that the linear equation set actually can be solved
for an interval [t, t+∆t], no matter how large ∆t is. This gives a hint to the solution of the
low sampling frequency problem.

Consider

dx

dt
= f +Ax, (7)

where A = (aij) is a d×d matrix. Let us assume that f = 0, since the time series can always
be pre-treated by removing the linear trend, and it has been proved that this removal does
not alter the IF rates. In this case, on the interval [t, t + ∆t], we actually have a mapping
Φ : Rd → R

d that takes the state x(t) to the state x(t+∆t) at t+∆t, with the propagating
operator:

Φ = eA∆t = e











a11 . . . a1d
...

. . .
...

ad1 . . . add











∆t

≡





α11 . . . α1d

...
. . .

...
αd1 . . . αdd



 . (8)

It is not easy to estimate aij, but it is easy to estimate αij instead, by observing the relation





α11 . . . α1d

...
. . .

...
αd1 . . . αdd



x(n) = x(n+ 1), n = 0, 1, 2, ..., N. (9)

This written in a matrix form is




x1(0) . . . xd(0)
...

. . .
...

x1(N − 1) . . . xd(N − 1)









αi1

...
αid



 =





xi(1)
...

xi(N)





for i = 1, .., d. Averaging all the rows of the algebraic equation set, and subtracting the
mean from each row, we get





x1(0)− x̄1 . . . xd(0)− x̄d

...
. . .

...
x1(N − 1)− x̄1 . . . xd(N − 1)− x̄d









αi1

...
αid



 =





xi(1)− x̄i+

...
xi(N)− x̄i+



 ,

where x̄i =
1

N

∑N−1

n=0
xi(n), x̄i+ = 1

N

∑N

n=1
xi(n), i.e., the series {xi+(n)} is the series {xi(n)}

advanced by one step. Let i run through {1, 2, ..., d}. We have the following d overdetermined
equation sets:





x1(0)− x̄1 . . . xd(0)− x̄d

...
. . .

...
x1(N − 1)− x̄1 . . . xd(N − 1)− x̄d











α11 . . . αd1

...
. . .

...

α1d

... αdd






=









x1(1)− x̄1+

... xd(1)− x̄d+

...
. . .

...

x1(N)− x̄1+

... xd(N)− x̄d+









.(10)
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Denote by Λ the matrix (αij), then the matrix of unknowns in the above equation sets is
ΛT . Left multiplication by





x1(0)− x̄1 . . . xd(0)− x̄d

...
. . .

...
x1(N − 1)− x̄1 . . . xd(N − 1)− x̄d





T

on both sides yields d d× d equation sets:

CΛT = C̃, (11)

where C = (Cij) is the sample covariance matrix of x, and C̃ = (Ci,j+), and Ci,j+ is the
sample covariance between xi and xj+, i.e., xj advanced by one time step. The least square
solutions of the overdetermined sets (10) are the solutions of (11):

ΛT = C−1C̃,

and hence

Λ = (C−1C̃)T = C̃TC−1.

The estimator of A is, therefore,

Â =
1

∆t
log

(

C̃TC−1

)

. (12)

(Caution should be used in case of singularity. The irrelevant imaginary part also should be
discarded.)

Once getting A, hence the coefficients (aij), we substitute aij for the whole part

1

detC

d
∑

k=1

∆jkCk,di

in Eq. (3), i.e., multiply aij by Cij/Cii to arrive at the desideratum, T̂j→i. If we denote by
[A]ij the extraction of the (i, j)th entry of the matrix A, this is

T̂j→i =
1

∆t

[

log(C̃TC−1)
]

ij
·
Cij

Cii

. (13)

(Note here log is the matrix logarithm. In matlab, the function is logm.)

IV. THE COARSELY SAMPLED SERIES PROBLEMS REVISITED

As demonstrated above, for the series generated from linear systems, the estimation of
the IF is fine qualitatively. We here, nevertheless, want to see how the new scheme may have
the results improved. Shown below is a recalculation of the estimates. Since this case has
a rather accurate result (≈ 0.11 nats per unit time), we can see that the result is accurate
enough for all the SIs here.
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Sampling Interval 1 10 50 100 300 500

T̂2→1 0.114 0.118 0.109 0.106 0.082 0.098

T̂1→2 0.007 0.008 −0.007 −0.002 −0.002 −0.015

The new scheme for the estimation is particularly for the nonlinear case. For the pair
of Rössler oscillators, the computed results are plotted in Fig. 4. Compared to Fig. 3, now
the performance has been much improved. For the cases with SI≤ 100 (Figs. 4a-d), the
results are rather accurate for all the coupling strengths ε considered (both synchronized
and non-synchronized). For the case SI=300, which corresponds to a sampling frequency of
20 points per period, the one-way causality is accurately recovered for the nonsynchronized
cases (ε ≤ 0.15). But beyond that ε > 0.15, the inference fails. Particularly, when SI=500
(Fig. 4f), the result is even worse that its counterpart with the traditional scheme as plotted
in Fig. 3f. This, of course, may be due to the resulting small sample size, which causes
singularity to the matrix logarithm.
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FIG. 4: As Fig. 3, but the information flow rates are computed with the new scheme.

V. DISCUSSION

The maximum likelihood estimator of the information flow (IF), Eq. (3), provides a very
easy way to causal inference. Theoretically it is based on a linear assumption, but practi-
cally it has shown tremendous success with series generated from highly nonlinear systems;
anyway, linearization piecewise in time proves to be an efficient asymptote to an otherwise
nonlinear system. In reality, series may be coarsely sampled; the time resolution may be
low. An issue thus arises, as this formalism is theoretically on the basis of infinitesimal time
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increments. In this case, as we have shown, it still works for linear systems in a qualita-
tive sense; but for a highly nonlinear system composed of two Rössler oscillators, the bias
becomes more and more significant as the sampling frequency is reduced.

A new scheme has been proposed to address this problem and provide a partial solution.
Due to the nice property of IF, as proved in [2], that additive noises do not alter the
IF flow in form, it is reasonable to directly estimate the IF without paying attention to
the stochasticity. Instead of estimating through the differential equations using the Euler-
Bernstein differencing, we choose to consider the integral form on the finite time interval,
i.e., to estimate the Lie group members. In doing this, the original formula (3), which is
rewritten here for easy reference,

T̂j→i =
1

detC
·

d
∑

ν=1

∆jνCν,di ·
Cij

Cii

,

is replaced by (13),

T̂j→i =
1

∆t

[

log(C̃TC−1)
]

ij
·
Cij

Cii

,

where C̃ = (Ci,j+), and Ci,j+ is the sample covariance between xi and xj+, i.e., xj advanced
by one time step. Note here log is the matrix logarithm; in MATLAB, the function is logm.
This way, it shows that the preset causality within the coupled system of chaotic oscillators
has been rather accurately reproduced even when the sampling interval is large (sampling
frequency is low).
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FIG. 5: As Fig. 4e, but the covariances are estimated using the residuals of xi relative to the model

result, instead of xi themselves. Here SI=300 approximately corresponds to a sampling frequency

of 18 points each period.

There is still much room for improvement for the above approach. For example, the
estimation of the covariances in the quotient

σij

σii
is by replacing the population covariances

with sample covariances, while the sample is formed from the time series. While this is
satisfactory for stochastic systems under the ergodic assumption, this may not be good for
deterministic chaos, such as the Rössler oscillators case here. The reason is obvious: The
time mean of the series in Fig. 2 is zero, but one can imagine that the ensemble mean of
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all the possible paths is by no means zero; rather, it should be a function of time (just like
the series itself), which may be close to the asymptotic linear system solution. So it makes
more sense to treat the linear system solution as the mean. As such, we have attempted
to improve the estimation by replacing the covariances of x with those of x − x, where x

stands for the resulting linear system solution; With this we get another causal inference
result for SI=300; the resulting IFs are plotted in Fig. 5. As one can see, the result looks
rather accurate, just as expected, in contrast to Fig. 4e.

We, however, do not claim that we have solved the problem. What we want to show
here is, how much room there is for improvement within a linear framework. Indeed, in
the case with high nonlinearity, the linear assumption is always easy to be blamed. While
theoretically it is not a problem (causality is guaranteed as proved in a theorem; see [1] and
other references), it is believed that, before a fully nonlinear algorithm is developed, this
will be a continuing issue.

Code availability

The codes are available, and will be updated, at www.ncoads.org/article/show/67.aspx.
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