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Abstract

Using first-principle numerical simulations of the lattice SU(3) gauge theory, we calculate the isothermal moment of inertia of the
rigidly rotating gluon plasma. We find that the moment of inertia unexpectedly takes a negative value below the “supervortical
temperature” Ts = 1.50(10)Tc, vanishes at T = Ts, and becomes a positive quantity at higher temperatures. The negative moment
of inertia indicates a thermodynamic instability of rigid rotation. We derive the condition of thermodynamic stability of the vortical
plasma and show how it relates to the scale anomaly and the magnetic gluon condensate. The rotational instability of gluon plasma
shares a striking similarity with the rotational instabilities of spinning Kerr and Myers-Perry black holes.
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1. Introduction

In thermodynamic equilibrium, all physical objects have pos-
itive moments of inertia, implying that in order to set a static ob-
ject into rotation, one needs to apply a torque [1]. While a neg-
ative moment of inertia is impossible in thermal equilibrium,
this effect can be achieved in non-equilibrium, open systems.

In mechanics, the realization of a I < 0 system requires the
presence of an active component such as a motor [2]. In elec-
tronics, the relevant example is played by electrical negative-
impedance converters identified as an active electric circuit with
negative resistivity [3]. A negative moment of inertia can also
be realized in rotating Casimir systems associated with negative
vacuum energy [4–6]. In addition, the negativity of isothermal
moment of inertia can be achieved in thermodynamically unsta-
ble systems such as rotating black holes [7–11].

In our paper, we show that the rigidly rotating gluon plasma
possesses, in thermal equilibrium, a negative moment of inertia
(I < 0) below the temperature

Ts = 1.50 (10) Tc , (1)

where Tc is the deconfining transition temperature in the non-
rotating plasma. We call Ts the “supervortical temperature”
since at T = Ts, the rigidly rotating plasma loses its moment
of inertia, I(Ts) = 0, in a distant similarity with a superconduc-
tor which loses its resistivity at a certain critical temperature.

Rotating quark-gluon plasma (QGP) with temperatures
around the supervortical temperature (1) is routinely produced
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in relativistic heavy-ion collisions. Such plasma can have ex-
ceptionally high vorticity of the order of ω ≈ (9±1)×1021 s−1 ∼

0.03 fm−1c ∼ 7 MeV [12]. The properties of vortical QGP
can be probed via spin polarization of produced hadrons that
provide us with an opportunity to confront theoretical meth-
ods with experimental results [13, 14]. While the rotation in
the expanding plasma fireball is not a solid rotation, all the-
oretical – both numerical and analytical – approaches to the
thermodynamics of rotating QGP assume a rigid rotation of the
system, which drastically simplifies analytical treatment of the
problem [14–34], allowing, the same time, to probe the effect
of vorticity on thermodynamics of the system in a systematic
and controllable way and to tackle the approach to the thermo-
dynamic limit (see, in particular, Refs. [20, 27, 33]).

The thermal transition from hadronic to the QGP phase is
accompanied by the restoration of the chiral symmetry and the
deconfinement of color. There is a general agreement in the
community that the rigid rotation, according to all model esti-
mates, should reduce the critical temperature of the chiral tran-
sition in the fermionic sector [17–23].

However, the situation with the deconfining transition is not
clear: the rigid rotation should either drive plasma to the de-
confinement phase [24–29] or, with another scenario, should
not affect the system at the rotational axis, forming, at high
vorticity, an inhomogeneous confining-deconfining phase (the
inverse hadronization effect) [30]. While signatures of the in-
homogeneity are seen in kinematic variables in numerical simu-
lations of pure gluon plasma [31], the numerical first-principle
simulations have also revealed that the bulk critical tempera-
ture of the deconfining phase transition grows with the increase
of the angular frequency [32, 33]. Moreover, it turns out that
gluons and fermions have opposite effects on the critical tem-
perature in rotating QGP. It seems that the gluon sector wins in
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this contest, and the deconfinement, as well as the chiral criti-
cal temperatures, increase with the rotation [34]. The results for
the behavior of critical temperature in rotating QCD [34] have
also been recently confirmed using another fermionic lattice ac-
tion [35].

Thus, the model-based analytical approaches and the first-
principle numerical simulations of rigidly rotating gluon
plasma do not match. To explore this puzzle deeper, in our
work we look at the mechanical properties of the rotating gluon
plasma.

2. Angular momentum and moment of inertia

A mechanical response of a thermodynamic ensemble to a
rigid rotation with the angular velocity Ω can be quantified in
terms of the conjugated variable, the total angular momentum
J, which includes orbital and spin parts. These quantities deter-
mine the relation between the energy E(lab) in the inertial labo-
ratory frame and the energy in the co-rotating, non-inertial ref-
erence frame, E = E(lab) − JΩ [1]. The angular momentum
J can be expressed via either the energy E or the free energy
F = E − TS in the co-rotating frame:

J = −
(
∂E
∂Ω

)
S
= −

(
∂F
∂Ω

)
T
, (2)

where we used dE = TdS − JdΩ and dF = −S dT − JdΩ.
The moment of inertia is a scalar quantity,

I(T,Ω) =
J(T,Ω)
Ω

= −
1
Ω

(
∂F
∂Ω

)
T
, (3)

which fixes a relation between the angular momentum
J(T,Ω) = I(T,Ω)Ω and the angular velocity Ω = Ωe of ro-
tation around a fixed axis e.

We start our discussion with a cylinder-shaped gluon plasma
with a radius R, rigidly rotating with the angular frequency Ω
around the symmetry axis. We consider slowly rotating gluon
plasma implying the velocity,

vR = ΩR , (4)

at the boundary is non-relativistic, v2
R ≪ 1, thus ensuring that

the rotating system respects the causality bound, −1 < vR < 1.
It is important to notice that for rotating quantum fields, two
possible extreme types of vacua have been considered in the lit-
erature: the nonrotating (Vilenkin) vacuum [36] and the rotating
(Iyer) vacuum [37]. For a causally rotating vacuum, these vacua
are identical and, therefore, a thermodynamic system built over
these vacua has the same physical properties (e.g., phase dia-
gram or thermodynamic instabilities) in all frames [16].

As we work with a large system size, R ∼ (a few) fm, the
condition of the slowness of rotation implies also that the an-
gular velocity is much smaller than the intrinsic QCD energy
scale, Ω ≪ ΛQCD. Moreover, in the whole range of tempera-
tures in our work, T ≃ (1.0 ∼ 2.0)Tc, the boundary effects can
also be neglected because the spatial thermal correlation lengths
in the strongly interacting gluonic plasma at T ≳ Tc are of the

order of Λ−1
QCD or shorter. In contrast, below Tc, the correlations

are governed by the glueball masses, which correspond to even
shorter correlation lengths, e.g. M0++ = 1.653(26) GeV [38].
These physical conditions (system size R, temperature range T ,
and rotational frequency range Ω) correspond to physical con-
ditions of vortical plasma created at RHIC in noncentral rela-
tivistic heavy-ion collisions [12].

3. Thermodynamics and velocity at the boundary.

Several theoretical approaches to rigidly rotating gluon
plasma [14, 25] express its thermodynamic properties as a func-
tion of the angular frequency Ω, suggesting independence (or a
mild dependence) of the thermodynamics on the system size in
directions perpendicular to the axis of rotation [25]. However,
first-principle numerical simulations indicate that the transverse
size dependence is very pronounced [32, 33] (see also discus-
sion in Ref. [19] and the explicit derivation for a bosonic sys-
tem in Ref. [39]). Moreover, it appears that the thermodynamic
potentials of the slowly rotating system incorporate angular fre-
quency only via the common product ΩR given by Eq. (4).1

We neglect a shape change of the slowly rotating plasma,
thus assuming that the mass density ρ0, which represents the
number of degrees of freedom that couple to rigid rotation, is a
coordinate- andΩ-independent quantity [40]. Then the moment
of inertia does not depend on Ω:

I(T,R) =
π

2
LzR4ρ0(T ) ≡ −K2(T )F0(T,R)R2 , (5)

where F0 ≡ F(lab)(Ω = 0) < 0 is the free energy of the non-
rotating gas. The dimensionless coefficient K2 in Eq. (5) has
a sense of a specific moment of inertia. It is a non-extensive
quantity that corresponds to the moment of inertia of the system
normalized by the system size and its free energy in the non-
rotating state. The expected insensitivity of this quantity on the
size of the system is particularly useful as it allows us to check
the volume independence of our results.

The thermodynamic relation (3) implies that the co-rotating
free energy,

F(T,R,Ω) = F0(T,R) −
1
2

I(T,R)Ω2 (6a)

≡ F0(T,R)
(
1 +

1
2

K2(T )v2
R

)
, (6b)

possess a minus sign for the Ω2 term as it represents a cen-
trifugal energy responsible for particle run-away forces directed
outwards the axis of rotation.

4. Numerical first-principle results

We calculate the free energy density f = F/V using the stan-
dard relations [41]

f (T )
T 4 = −N4

t

∫ β

β0

dβ′∆s(β′) , (7a)

1I.e., pressure does not depend on the combination Ω/ΛQCD.
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Figure 1: The free energy density f in the co-rotating frame as a function of the
temperature T for the Nt = 6 lattice. The vertical line shows the supervortical
temperature Ts for this lattice. The inset shows the expectation value of the
lattice action density ∆s as a function of the lattice gauge coupling β. Both
plots are given for several imaginary velocities squared v2

I at the boundary of
the system.

∆s(β) = ⟨s(β)⟩T=0 − ⟨s(β)⟩T , (7b)

where the SU(Nc) lattice coupling β = 2Nc/g2
0 is expressed in

terms of the bare continuum coupling g0, while s = T/V · S is
the density of the lattice action S .

For Euclidean lattice calculations, the angular velocity Ω is
put in the purely imaginary form ΩI = −iΩ to avoid the sign
problem [42]. The expressions for thermodynamic equilibrium
in the Minkowski spacetime can be obtained by the analytic
continuation. In particular, the velocity vR at the boundary (4)
becomes imaginary vI = −ivR, with the following relation:

v2
I = −v2

R . (8)

Our calculations are performed on the lattices of size Nt ×

Nz × N2
s = Nt × 40 × 412 with Nt = 5, 6, 7, 8 and Nt = 40 for

the zero temperature subtraction in Eq. (7b). We incorporate
the rotation into the lattice simulations following Ref. [33, 42]
using the tree-level improved Symanzik gauge action [43, 44].
Other details about our lattice setup are provided in the Supple-
mentary Material. We use periodic boundary conditions in all
directions2. The imaginary velocity at the boundary is identified
with the velocity at the middle of the boundary side, vI = ΩIR,
where R = a(Ns − 1)/2 is the distance from the boundary to the
rotational axis, which is the z-axis. In our work, we keep the an-
gular velocity in lattice units constant as the value of lattice cou-
pling β varies. This condition ensures that the physical linear
velocity vI of the plasma at the boundary of the system remains
fixed during the integration in Eq. (7) as temperature varies.

Our numerical approach, which involves the integration of
the lattice coupling β in Eq. (7), respects the line of constant

2Our previous study shows that lattice simulations of rotating gluodynamics
with different boundary conditions give qualitatively the same results [33].

physics. This property follows from the fact, discussed in
Sec. 3, that the angular frequency Ω enters the co-rotating free
energy only in the combination vI = ΩIR. Therefore, despite
a variation of the lattice coupling β affecting both the physi-
cal angular velocity ΩI and the physical size of the system R,
the system remains physically the same provided the product of
these two quantities is kept constant.3 While we cannot guar-
antee that the boundary velocity is not subjected to renormal-
ization in the course of our procedure, the coincidence of our
results with the ones obtained on a non-rotating lattice with a
completely different method –shown in Fig. 3 and discussed in
detail below– strongly suggests that the renormalization effects
are within the uncertainty of the calculation.

In the inset of Fig. 1, we show the normalized difference of
lattice action densities ∆s, Eq. (7b), which enters the free en-
ergy density (7a). At vanishing velocity of the rotation, vI = 0,
we recover the known result [41, 46, 47]. The steep rise of ∆s,
which happens close to the critical coupling β ≃ βc, points to
the first-order nature of the phase transition in the non-rotating
plasma.

As the imaginary velocity vI increases, the transition shifts
towards smaller lattice couplings β, signaling that the critical
temperature Tc = Tc(vI) decreases as the imaginary angular
frequency ΩI (the velocity vI of the rotation) raises. This result
is in agreement with previous numerical calculations [32–34].

The normalized free energy density in the co-rotating frame,
− f /T 4, calculated via Eq. (7a), is shown in Fig. 1. This quantity
is a monotonically raising function of the temperature T at all
imaginary velocities vI , indicating the presence of a plateau at
T → ∞ for each fixed vI .

The free energy density f , shown in Fig. 1, is a rising (di-
minishing) function of v2

I at fixed temperature T < Ts (T > Ts).
This property can be quantified by fitting the free energy den-
sity with a parabolic function of vI :

f (T, vI) = f0(T )
(
1 −

1
2

K2(T )v2
I

)
, (9)

where f0 and K2 serve as fit parameters (with f0 < 0). The ex-
pression in the Euclidean spacetime (9) corresponds to the free
energy (6b) in the co-rotating frame in the Minkowski space-
time after the Wick transformation for the boundary veloci-
ties (8). The dimensionless moment of inertia K2 is shown in
Fig. 2 for the used lattices and in the continuum limit (a → 0,
or, equivalently, 1/Nt → 0 at a fixed temperature T ).

A striking feature of the free energy, Fig. 1, is that the curves
corresponding to different vI intersect at the same “supervorti-
cal” temperature Ts, signaling that at this temperature, the free
energy (9) loses, at least for slow rotation v2

I ≪ 1, the depen-
dence on the rotational frequency. Therefore, the rigidly rotat-
ing gluon plasma loses its moment of inertia at T = Ts. We

3Here, we silently require that the temperature is fixed and the system is
sufficiently large so that the finite volume effects are small. The fulfillment of
the former property in our simulations of the gluon plasma is seen from the
excellent scaling of Fig. 2, where points with different spatial sizes collapse to
the same function of temperature, while the latter property has been thoroughly
verified in our related study [45].

3
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Figure 2: The dimensionless moment of inertia K2 of the gluon plasma as a
function of the temperature T for the used lattices. The red shaded region, with
the central values marked by the red solid line, denotes the continuum extrapo-
lation, K2 = K(cont.)

2 +C/N2
t at Nt → ∞. The best fit (10) of the continuum curve

is shown by the dashed black line. The position of the supervortical tempera-
ture Ts in the continuum limit is marked by the vertical line, which separates
the unstable (T < Ts) and stable (T > Ts) regimes of rigid plasma rotation.
The error estimations (the shaded regions for Ts and K(cont.)

2 , and the bars of the
data) include both statistical and systematic uncertainties.

use the K2(Ts) = 0 property as a definition of the supervortical
temperature, and show its continuum limit in Fig. 2.

The continuum limit of the dimensionless moment of inertia
K2 can be well reproduced by a rational function

K(fit)
2 (T ) = K(∞)

2 −
c

T/Tc − 1
, (10)

where the best-fit parameters are the high-temperature asymp-
totics K(∞)

2 = 2.23(39) and the slope coefficient c = 1.11(20).
The high-T limit of the moment of inertia, K(∞)

2 , is a non-
universal quantity that may depend on the geometry of the sys-
tem.

5. (In)stability and sign of the moment of inertia

Formally, the negative moment of inertia, observed in the
region of temperatures T < Ts, might imply that the rota-
tion causes the quark-gluon plasma to cool down (the faster
the rotation, the lower the thermal energy). However, physi-
cally, this counter-intuitive effect, contradicting the kinematic
Tolman-Ehrenfest picture [48, 49], indicates that the rigid rota-
tion is impossible thermodynamically, thus making the physical
rotation non-rigid. Similar instabilities occur in curved gravi-
tational backgrounds of rotating Kerr and Myers-Perry black
holes [7–9].

For a system in stable equilibrium at a given temperature
T and angular velocity Ω, any deviation from the equilibrium
should obey the following condition [40]:

δE − TδS −ΩδJ > 0 , (11)

which implies that all eigenvalues of the inverse Weinhold met-
ric, defined in the thermodynamic space [50],

g(W),µν = −
∂2 f (T,Ω)
∂Xµ∂Xν

, Xµ = (T,Ωi) , (12)

must be positively defined (see a discussion in [10]).
The positivity of the matrix (12) is achieved provided the

specific heat at constant angular momenta CJ = T (∂S/∂T )J
and the eigenvalues (spectrum) of the tensor of isothermal dif-
ferential moment of inertia Ii j ≡ I ji =

(
∂Ji/∂Ω j

)
T

are positive
quantities: CJ > 0 and spec(Ii j) > 0, respectively. The former
is a standard requirement for the thermodynamic stability [40],
while the latter, given the (square) cylindrical geometry of our
system, is reduced to the requirement I > 0 for the principal
moment of inertia (3) at infinitesimally slow rotations, Ω → 0.
In terms of the coefficient K2, Eq. (6b), the thermodynamic sta-
bility thus requires:

K2(T ) > 0 (thermodynamic stability), (13)

which is violated below the supervortical temperature, T < Ts.
This instability has a thermodynamic origin. It has no obvious
relation to hydrodynamic instabilities that might be generated
by the viscous flow of hot gluons. Moreover, theoretically, in-
stability is expected to be realized only at near-luminal veloci-
ties, vR → 1 [51].

6. Moment of inertia and scale anomaly

The difference of lattice action densities ∆s, shown in the in-
set of Fig. 1, is closely connected with the scale anomaly [41].
The moment of inertia I is also directly related to the trace
anomaly (see Supplementary Material):

I(T ) = −VT 4
∫ T

0

dT ′

T ′
⟨T µ

µ⟩
(2)(T ′)

T ′4
, (14)

where ⟨T µ
µ⟩

(2) is the second moment of the anomalous trace

⟨T µ
µ⟩

(2)(T ) =
 ∂2

∂Ω2
I

⟨T µ
µ⟩(T,ΩI)

 ∣∣∣∣∣∣
ΩI=0

. (15)

Therefore, the moment of inertia corresponds to the rotational
response of the scale anomaly.

7. Role of the magnetic gluon condensate

Using Eqs. (3) and (6a), we get the gluon moment of inertia:

I = Imech + Imagn =
1
T

∫
V

d3x
∫

V
d3x′ ⟪M12

0 (x)M12
0 (x′)⟫T

+

∫
V

d3x⟪(ϵ i jFa
i3x j)2 + (Fa

12)2(x2
1 + x2

2)⟫T , (16)

where the relation Ω2 = −Ω2
I is used. Here

Mi j
0 (x) = xiT j0(x) − x jT i0(x) , i, j = 1, 2, 3 , (17)

4



is the local angular momentum related to the Ω → 0 limit
of the gluon stress-energy tensor: T µν = Fa,µαFa,ν

α −

(1/4)ηµνFa,αβFa
αβ. We also denoted ⟪O⟫T = ⟨O⟩T − ⟨O⟩T=0 to

represent the thermal part of the expectation value of an opera-
tor O. The normalization of Eq. (16) is chosen by requiring that
the cold (T = 0) vacuum has no inertia.

The first term in Eq. (16) corresponds to a mechanical term
that describes fluctuations of the angular momentum via a stan-
dard linear response form

Imech =
1
T
⟪(J3)2⟫

T , Ji =
1
2

∫
V

d3x ϵ i jk M jk
0 (x) , (18)

where we used that
〈
J3〉 = 0 at Ω = 0 at any temperature.

The second term in (16) involves a nonperturbative magnetic
gluon condensate in the static, Ω → 0, limit. Using the SO(3)
rotational symmetry and the translational invariance of the
plasma in spatial dimensions, we get the relation ⟪Fa

i3Fa
j3⟫T =

δi j⟪(Fa
12)2⟫T , which can be expressed via the magnetic gluon

condensate at a finite temperature ⟪(Fa
i j)

2⟫T ≡ 6⟪(Fa
12)2⟫T . We

get:

Imagn =
1
3

∫
V

d3x x2
⊥ ⟪(Fa

i j)
2⟫

T
=
π

6
LzR4 ⟪(Fa

i j)
2⟫

T
. (19)

Surprisingly, this relation has the same form as the classical for-
mula for the moment of inertia (5), where the mass density ρ0
corresponds to the thermal part of the magnetic gluon conden-
sate ρ0(T ) = ⟪(Fa

i j)
2⟫T /3.

The full gluon condensate
〈
G2

〉
(a sum of its magnetic

and electric parts) is a phenomenologically important quantity
which takes a positive value at T = 0 [52, 53]. It decreases
monotonically with the increase of the temperature, implying
that the thermal part of the condensate, ⟪G2⟫

T , always takes a
negative value [54, 55]. This “melting” of the gluon condensate
agrees with the negative value of the thermal part of the scale
anomaly: ⟪G2⟫

T = −
〈
T µ
µ

〉
T
< 0 (see a discussion in [41]).

However, the magnetic contribution to the scale anomaly re-
verses its sign at T ≃ 2Tc [41] indicating that the magnetic part
of the thermal gluon condensate becomes positive and implying
that I > 0 above 2Tc. This effect is associated with the evapo-
ration of the magnetic component of the gluon plasma [56, 57]
and the associated string dynamics [56, 58]. Thus, the negative-
valued condensate in Imagn should nullify the positive contri-
bution of the correlator (mechanical) term Imech in at a certain
temperature Ts below 2Tc in agreement with our estimate (1).

The suggested mechanism is also in qualitative agreement
with previous numerical observations indicating that rigid ro-
tation increases the critical transition temperature Tc [32, 33].
Indeed, if the rigid rotation makes the plasma colder, then
stronger thermal fluctuations (and, consequently, higher tem-
peratures) are needed to destroy the confinement phase in the
rotating plasma as compared to the non-rotating plasma. This
simple observation explains the effect of raising critical tem-
perature Tc with increasing angular frequency Ω. Moreover,
the crucial role of the magnetic condensate in our mechanism
suggests that this effect should be absent for non-gluonic de-
grees of freedom. The latter hypothesis is perfectly consistent
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from JETP Lett. 117, 639 (2023)

Figure 3: The dimensionless moment of inertia K2 of the gluon plasma as a
function of the temperature T , obtained in this work after analytic continuation
procedure, and the continuum limit results of the direct computation on non-
rotating lattices [45].

with the recent first-principle observation made separately for
quarks and gluons in Ref. [34]

To clarify the contribution of quarks to the moment of iner-
tia, we notice that Eq. (16) remains also valid in QCD. Namely,
the total angular momentum M12 now includes not only the
gluon part (17), but also the orbital, ψ̄γ4(xDy − yDx)ψ, and
spin, i/2ψ̄γ4σ12ψ, angular momenta of quarks. While the quark
fields make a positive thermal contribution to the mechanical
term Imech, the gluomagnetic contribution Imagn stays negative
in QCD [59]. Thus, we believe that the rigid rotation of quark-
gluon plasma is also unstable in a region near Tc.

Finally, it is worth mentioning that in classical mechanics,
the moment of inertia of a physical body enters various quan-
tities and, consequently, can be calculated using several ways.
Likewise, the moment of inertia of the rotating plasma can be
determined numerically in independent physical environments.
One of these methods, implemented in the present paper, in-
cludes the direct calculation of the free energy of a rotating
gluon plasma. Another method, used in our earlier numerical
calculations on coarser lattices [45], applies to a non-rotating
gluonic system, in a reminiscence to a classical calculation of
the moment of inertia via a volume integral over the mass dis-
tribution within the body. The results of these two independent
approaches, compared in Fig. 3, show an excellent agreement
with each other. This coincidence supports the validity of our
analytic continuation procedure, and it clarifies our proper un-
derstanding of the constant line physics in the evaluation of the
free energy of the rotating system (7).

8. Conclusions

All field-theoretical analytical and first-principle numerical
approaches dedicated to the investigation of the thermodynam-
ics of rotating quark-gluon plasma consider a rigidly rotating
plasma, meaning the angular velocity Ω at all points of the sys-
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tem, regardless of the distance to the rotational axis, takes the
same value4. In other words, the plasma rotates like a solid.

In our work, we show that below the supervortical tempera-
ture (1), the rigid rotation of the gluon plasma is thermodynam-
ically unstable even at slow rotational velocities. This effect
exhibits a striking similarity with spinning black holes [7–11].
While the curved gravitational background promotes the back-
hole rotational instability, the instability in the gluon plasma
originates from the scale anomaly via the thermal magnetic
gluon condensate. Thus, we conclude that rigid rotation can-
not be used for thermodynamic reasons for a realistic study of
the rotation of the gluon plasma.

Our results also suggest that the puzzling discrepancy be-
tween numerical [32–34] and analytical [17–31] predictions
for the critical temperature of rotating QCD (gluon) plasma
might originate from the scale anomaly, which should be taken
into account appropriately. We demonstrate that the magnetic
gluon condensate – which has a nonperturbative component at
any temperature – plays a crucial role in rotating quark-gluon
plasma.
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Supplementary Material

Negative moment of inertia and rotational instability of gluon plasma

by Victor V. Braguta, Maxim N. Chernodub, Artem A. Roenko, Dmitrii A. Sychev

SM1. Scale (trace) anomaly and equation of state

To calculate the free energy density f = F/V , we use the standard integral method [41]

f (T )
T 4 = −N4

t

∫ β

β0

dβ′∆s(β′) , (S1.1a)

∆s(β) = ⟨s(β)⟩T=0 − ⟨s(β)⟩T , (S1.1b)

where the SU(Nc) lattice coupling β = 2Nc/g2
0 is expressed in terms of the bare continuum coupling g0, while s = T/V · S is the

density of the lattice action S . This approach directly follows from the common thermodynamic relation F/T = − ln Z and its
derivative with respect to the lattice coupling β. The free energy density also relates to the scale (trace) anomaly [41]:

⟨T µ
µ⟩ = −T 5 d

dT

(
f

T 4

)
. (S1.2)

A justification of the above formula for a rotating system will be given in Section SM2.
Integrating (S1.2), we get the free energy density:

f (T )
T 4 = −

∫ T

0

dT ′

T ′
⟨T µ

µ⟩(T ′)

T ′4
, (S1.3)

highlighting the importance of the anomaly ⟨T µ
µ⟩ , 0. When defining the integral in Eq. (S1.3), we used the fact that the anomalous

trace vanishes rapidly at low temperatures, ⟨T µ
µ⟩ ∼ exp(−M/T ), due to the mass gap M , 0. The lattice formula (S1.1a) has the

same meaning as the continuum relation (S1.3), with the right-hand-side of Eq. (S1.1a) expressed via the lattice form of the scale
anomaly [41]:

⟨T µ
µ⟩

T 4 = −N4
t a

dβ
da
∆s, (S1.4)

where the β-function a · dβ/da = −T · dβ/dT is computable via the scale dependence of the lattice spacing a = a(β).
The lattice formula (S1.1a) is also suitable for direct calculation of the free energy density f in the non-inertial co-rotating

reference frame. The method, described by Eqs. (S1.1), remains valid for the rotating lattices if the angular velocity in lattice
units is kept constant with the variation in β, which corresponds to the constant linear velocity at the boundary of the rotating
system. In Eq. (S1.1a), the lower integration limit β0 is chosen in a deep confinement phase where the integrand, represented by the
difference (S1.1b) in the expectation values of the action at vanishing and finite temperatures, is negligibly small.

As explained in the main text, the response of the co-rotating free energy to a slow rotation may be expressed in terms of the
moment of inertia:

F(T,R,Ω) = F0(T,R) −
1
2

I(T,R)Ω2 , (S1.5)

where Ω is the angular velocity. As one can see from Eqs. (S1.3), and (S1.5):

I(T ) = −VT 4
∫ T

0

dT ′

T ′
⟨T µ

µ⟩
(2)(T ′)

T ′4
, (S1.6)

where ⟨T µ
µ⟩

(2) is the second moment of the anomalous trace

⟨T µ
µ⟩

(2)(T ) = −
[
∂2

∂Ω2 ⟨T
µ
µ⟩(T,Ω)

] ∣∣∣∣∣∣
Ω=0

. (S1.7)

The equation (S1.7) can be rewritten in terms of the imaginary angular velocity using the correspondence ΩI = −iΩ (i.e. ∂2/∂Ω2 =

−∂2/∂Ω2
I ). Therefore, the moment of inertia is connected to the rotational response of the scale anomaly.

S1



SM2. Scale (trace) anomaly for a rotating system

Our derivation of the equation of state and associated nontrivial inertial properties of gluon plasma is based on the specific
equation for the trace (conformal) anomaly (S1.2). This relation is obviously valid in the static (non-rotating) plasma, while its
applicability to the rotating system is not evident. Below, we show that Eq. (S1.2) is also applicable to the plasma in a rotating
cylinder.

SM2.1. ΩR-scaling of free energy

The first step of our arguments takes into account the fact that the system in rigid rotation must be spatially bounded in the
transversal plane to respect causality. A particular geometry of the transversal cross-section does not play a role as one can
demonstrate that a difference in shapes (e.g., round vs. square) results only in an overall geometrical factor that does not alter the
functional form of Eq. (S1.2). For simplicity, we consider below the round shape of the cylinder with the radius R. We assume
that the height of the cylinder is infinite as it does not affect our discussion on rotation, for which only the physics in the transverse
plane plays a role.

The second observation is that Eqs. (5) and (6) imply that the free energy, in the quadratic order, depends on the angular frequency
Ω only through the velocity of plasma at the boundary vR = ΩR, Eq. (8). In other words, for the free energy density, the following
relation holds:

f (T,Ω,R) = f (T,ΩR) . (S2.1)

For shortness, we call this property the vR-scaling below. Notice that the statement of the vR-scaling is intuitively nontrivial despite
its simplicity.

To justify the relevance of Eq. (S2.1) to our discussion, we mention that the moment of inertia is a property revealed in the
quadratic order of Ω. We remind that Eqs. (5) and (6) appear on the basis of generic analytical arguments implying that the first
correction to the energy density (S2.1) appears in the quadratic order in Ω.

We also mention, in bypassing, that the quadratic order is valid for moderately non-relativistic velocities corresponding to rotating
quark-gluon plasma observed at RHIC (for which v2

R ≪ 1). While the statement of the vR-scaling in quadratic order ofΩ is sufficient
for the purpose of this paper, we believe that it is valid in all orders of Ω, which adds more generality to our approach.

SM2.2. Scale (trace) anomaly in a rotating cylinder

Technically, the expression for the moment of inertia (14) originates from the integral formula for free energy relation (S1.3),
which, in turn, appears from the equation for the trace anomaly in the non-rotating state in thermodynamic limit:(

4 − T
∂

∂T

)
f (T ) =

〈
T µ
µ

〉
, [thermodynamic limit, no rotation] . (S2.2)

The coefficient 4 indicates the canonical dimensions of the free energy density, [ f ] = [mass]4. Equation (S2.2) can also be rewritten
in the concise form of Eq. (S1.2), from which Eq. (S1.3) follows immediately [41].

In the presence of other thermodynamic variables characterizing the system (such as a chemical potential µ, size l, etc.), the
logarithmic temperature gradient in Eq. (S2.2) should be extended as

T
∂

∂T
→ T

∂

∂T
+

∑
a

daXa
∂

∂Xa
, (S2.3)

where da is the dimension of the quantity Xa in the dimension of a mass scale (dµ = +1 for µ and dl = −1 for l, etc).
In a cylinder of the radius R (with dR = −1) rotating with the angular frequency Ω (with dΩ = +1), the extension (S2.3) applied

to Eq. (S2.2) gives us the corresponding differential anomaly equation:(
4 − T

∂

∂T
−Ω

∂

∂Ω
+ R

∂

∂R

)
f (T ) =

〈
T µ
µ

〉
, [rotating cylinder] . (S2.4)

However, the vR-scaling (S2.1), established earlier, implies that the effects of the rigid rotation and the finite transverse size of
the rotating cylinder cancel each other in the trance anomaly equation (S2.4), which brings us back to Eq. (S2.2), thus proving,
consequently, Eq. (S1.3) and our main formula (S1.6).
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SM3. Lattice action and simulation details

To perform the simulations, the action S of rotating gluon fields should be formulated in the curved background of the co-rotating
frame [42]:

gE
µν =


1 0 0 x2ΩI

0 1 0 −x1ΩI

0 0 1 0
x2ΩI −x1ΩI 0 1 + x2

⊥Ω
2
I

 , (S3.1)

written in the Euclidean coordinates xµ = (x1, . . . , x4), where x4 = −it is the imaginary time coordinate, and x2
⊥ = x2

1 + x2
2. The

system rotates around the x3 axis.
The angular velocity in Eq. (S3.1) is put in the purely imaginary form ΩI = −iΩ to avoid the sign problem [42]. In particular, the

velocity vR = ΩR at the boundary, where R is the distance to the rotational axis, becomes imaginary vI = −ivR. The expressions for
the Minkowski spacetime can be obtained by the analytic continuation.

The gluon action in the co-rotating frame in the continuum Euclidean spacetime has the following form:

S =
1

4g2
0

∫
d4x
√

gE gµνE gαβE Fa
µαFa

νβ , (S3.2)

where gE
µν = (gµνE )−1 is the rotational Euclidean metric (S3.1) with the determinant gE = det (gµν) = 1 and Fa

µν is the field strength of
SU(3) gauge field.

We discretize rotating terms in the action (S3.2) following Ref. [33, 42] and use the tree-level improved Symanzik gauge action
for the terms without rotation [43, 44]:

S G = β
∑

x

(
(c0 + x2

⊥Ω
2
I )(1 −

1
Nc

Re Tr Ū12) + (c0 + x2
2Ω

2
I )(1 −

1
Nc

Re Tr Ū13) +

+ (c0 + x2
1Ω

2
I )(1 −

1
Nc

Re Tr Ū23) + c0
(
3 −

1
Nc

Re Tr (Ū14 + Ū24 + Ū34)
)
−

+
∑
µ,ν

c1(1 −
1

Nc
Re Tr W̄1×2

µν ) −
1

Nc
Re Tr

(
x2ΩI(V̄124 + V̄134) − x1ΩI(V̄214 + V̄234) + x1x2Ω

2
I V̄132

))
, (S3.3)

where Ūµν denotes the clover-type average of four plaquettes, W̄1×2
µν is the rectangular loop, V̄µνρ is the asymmetric chair-type

average of eight chairs [33], and c0 = 1 − 8c1, c1 = −1/12. The action (S3.3) in the case c1 = 0 coincides with the lattice gauge
action used in Refs. [32, 33].

For each lattice size, we keep the (imaginary) angular velocity in lattice units unchanged with the variation of β. Therefore, the
linear velocity vI at the boundary of the system remains constant with the changes in temperature. In our simulations the linear
velocity takes the following values: v2

I = 0.000, 0.015, 0.030, 0.045, 0.060, 0.075, 0.090.
As mentioned in the main text, the absence of massless excitations in the deconfinement phase implies the independence of our

results on the type of boundary conditions in the transverse spatial directions, provided the spatial volume is large enough. To
verify this property, we additionally calculate the normalized moment of inertia K2 = −I/(F0R2) for the system with open boundary
conditions and find an agreement with the periodic lattices, albeit more significant uncertainties. The corresponding supervortical
temperature for the open system, Ts/Tc = 1.53(15), agrees with the estimate for periodic boundary conditions, Ts/Tc = 1.50(10).

In order to estimate the systematic errors related to our determination of the supervortical temperature Ts, we use several methods
of numerical integration in Eq. (S1.1a) and several upper limits v(max)

I for the fit of the free energy density with a quadratic function
in vI . The estimated uncertainty in the final result for the supervortical temperature incorporates both statistical and systematic
contributions.

To set the temperature scale, we use the results for the string tension from Ref. [47]. The definition of temperature in the
background gravitational field is not trivial. The Tolman-Ehrenfest law implies that local temperature T (r) in a system in ther-
modynamic equilibrium subjected to a static inhomogeneous gravitational field depends on the spatial coordinate according to the
relation T (r)

√
gtt = T = const [33, 48, 49], which is written in the mostly-minus metric convention. Following Ref. [33], we avoid

ambiguities in the definition of temperature by always using its value at the rotation axis T (0) ≡ T , where the metric-related effects
are absent. The on-axis temperature is directly related to the length of the compactified imaginary-time direction of the Euclidean
time 1/T = a(β)Nt in Eq. (S3.2) and exactly coincides with the temperature value for the non-rotating system with a flat metric
at the same lattice parameters. For the non-rotating lattices with periodic boundary conditions, we use the values of the critical
coupling βc taken from Ref. [47]. For the case of open boundary conditions, we determine βc from the peak of the Polyakov loop
susceptibility.

Simulations are performed using Monte Carlo algorithm, each sweep consists of one heatbath update and two steps of the
overrelaxation update. In finite (zero) temperature simulations, typical statistics of about 5000-40000 (2000-10000) sweeps after
thermalization for each set of parameters are employed. The statistical uncertainties are estimated via the jackknife method.
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