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Many systems in physics, chemistry and biology exhibit oscillations with a pronounced random
component. Such stochastic oscillations can emerge via different mechanisms, for example linear
dynamics of a stable focus with fluctuations, limit-cycle systems perturbed by noise, or excitable
systems in which random inputs lead to a train of pulses. Despite their diverse origins, the phe-
nomenology of random oscillations can be strikingly similar. Here we introduce a nonlinear trans-
formation of stochastic oscillators to a new complex-valued function Q∗1(x) that greatly simplifies
and unifies the mathematical description of the oscillator’s spontaneous activity, its response to an
external time-dependent perturbation, and the correlation statistics of different oscillators that are
weakly coupled. The function Q∗1(x) is the eigenfunction of the Kolmogorov backward operator
with the least negative (but non-vanishing) eigenvalue λ1 = µ1 + iω1. The resulting power spec-
trum of the complex-valued function is exactly given by a Lorentz spectrum with peak frequency
ω1 and half-width µ1; its susceptibility with respect to a weak external forcing is given by a simple
one-pole filter, centered around ω1; and the cross-spectrum between two coupled oscillators can be
easily expressed by a combination of the spontaneous power spectra of the uncoupled systems and
their susceptibilities. Our approach makes qualitatively different stochastic oscillators comparable,
provides simple characteristics for the coherence of the random oscillation, and gives a framework
for the description of weakly coupled oscillators.

INTRODUCTION

In the age of big data, the human mind craves simple
explanations of complex phenomena. The general cate-
gory of “stochastic oscillations” embraces a bewildering
array of natural and engineered systems in which one or
more measurable quantities vary repeatedly but irregu-
larly. Examples range from the molecular scale (oscilla-
tions in genetic regulatory circuits [1]) to the macroscopic
scale (fluctuations in predator-prey systems [2, 3]), from
physical and chemical systems (lasers [4, 5], chemical os-
cillations [6], swaying of bridges [7], oscillations in air-
craft wings [8, 9]) to living systems (oscillations in hair
cell bundles [10, 11], in glycolytic yeast activity [12, 13],
in locomotor CPG activity [14], and in cortical networks
[15, 16]), and from millisecond time scales (neuronal fir-
ing [17, 18]) to hours (circadian rhythms [19, 20]) and
longer (menstrual cycle [21]).
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A universal framework for understanding and compar-
ing stochastic oscillations would seem to be an impossi-
ble goal, not only because nonlinear stochastic dynamical
systems are intrinsically difficult to analyze, but because
stochastic oscillations arise from a wide variety of un-
derlying dynamical mechanisms. In the simplest case,
one may obtain irregular oscillations by incorporating
noise into a deterministic limit-cycle system. Examples of
noisy oscillations generated by such mechanisms include
spontaneously active hair bundles in the auditory system
[22], or tonically active nerve cells in the sensory periph-
ery, that produce trains of action potentials perturbed by
“channel noise” (random gating of ion channels) [23, 24],
or oscillations in genetic regulatory circuits perturbed by
copy-number noise [1]. In addition, there are multiple
types of noise-induced oscillations: systems in which the
oscillatory activity would die out in the absence of noise.
A well-known class of noise-induced mechanisms arises
when a deterministic excitable systems is perturbed by
noise. Below its activation threshold, such an excitable
system will not produce sustained activity. But when
perturbed by dynamical noise, an excitable system may
produce an ongoing train of pulsatile activations [25]. A
nerve cell receiving a subthreshold current provides a fa-
miliar example [26–29]. Another important class of noise
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induced-oscillators include quasicycle systems. Quasicy-
cles arise when a system has a stable equilibrium (with
complex eigenvalues), perturbed by fluctuating inputs
[30]. Many physical and biological systems show ran-
dom oscillations attributed to quasicycle dynamics. Ex-
amples include underdamped linear mass-spring system
immersed in a heat bath [31], subthreshold oscillations
in nerve cells sustained by channel noise [32], models of
EEG oscillations and intermittent cortical network ac-
tivity [33–36], and oscillations in predator-prey systems
sustained by demographic (finite-population) noise [2].
Demographic fluctuations can also sustain oscillations in
systems with rock-paper-scissors interactions by yet an-
other mechanism: noisy heteroclinic cycle dynamics [37–
40].

Despite this diversity in the origins of noisy oscilla-
tions, each of the mechanisms above can be instantiated
as a Markov process, for example as a system of stochas-
tic differential equations. Previous investigations of such
systems have relied on empirical quantities such as the
power spectrum (for a single unit), the cross-correlation
(for multiple units), or the linear response to small-
amplitude perturbations. The possibility of a simpler,
unifying description of Markovian oscillators remains an
important open question. Ideally, one would aim to find
the stochastic analogue of the well known ‘phase reduc-
tion’. In deterministic limit-cycle systems, the phase re-
duction [41, 42] (and also the phase-amplitude reduction
[43–46]) provide low-dimensional descriptions that have
yielded far reaching insights into regulation, entrainment,
and synchronization of oscillating systems [47–50]. Al-
though the deterministic phase concept can also be ap-
plied to some noisy systems (e.g. single linear and nonlin-
ear oscillators [51] and coupled stochastic systems [52]),
generally, the notion of phase has to be generalized in
a stochastic framework in order to make it applicable to
cases of pure noise-induced oscillations for which a deter-
ministic phase does not exist [53–58]. Here we go beyond
such a simple extension of the phase definition, and sug-
gest a transformation to a complex-valued function that
brings about a tremendous simplification in the descrip-
tion of stochastic oscillators. We show that by transform-
ing the system’s output to a complex eigenfunction of the
backward Kolmogorov operator we obtain a surprisingly
simple, unified treatment of irregular oscillations, regard-
less of their underlying mechanisms. Importantly, using
our complex-valued eigenfunction description, we show
that both the power spectrum and the susceptibility for
single oscillators, and the cross spectrum for multiple os-
cillators, take dramatically simplified, universal forms.

STOCHASTIC OSCILLATORS DESCRIBED BY
EIGENFUNCTIONS

The key step in finding a universal description comes
from the observation that stochastic systems may be de-
scribed not just by individual trajectories but by an en-

semble of trajectories, described by a probability density.
Nonlinear stochastic dynamical systems are difficult to
analyze [25, 59–62]. However, their densities evolve fol-
lowing linear dynamics, making the densities amenable
to analysis as linear systems.

We suppose that a stochastic oscillator obeys the
Langevin equation

dx

dt
= f(x) + g(x)ξ(t) (1)

where ξ represents k-dimensional white Gaussian noise
with uncorrelated components 〈ξi(t)ξj(t′)〉 = δ(t−t′)δi,j .
For (1) the conditional probability of the state vector x,
given initial condition x0, obeys the forward Kolmogorov
equation [62]:

∂

∂t
P (x, t | x0, s) = L[P ] (2)

= −∇x ·(f(x)P ) +
∑
i,j

∂2

∂xixj
(Dij(x)P )

where D = 1
2gg

ᵀ. The formal adjoint of the operator L is

Kolmogorov’s backward operator L† (also known as the
generator of the Markov process (1), and closely related
to the Koopman operator), which satisfies the equation

− ∂

∂s
P (x, t | x0, s) = L†[P ] (3)

= f(x0)·∇x0
(P ) +

∑
i,j

Dij(x0)
∂2P

∂x0,ix0,j

We will assume that the operators L, L† possess a dis-
crete set of bi-orthogonal eigenfunctions

L[Pλ] = λPλ, L†[Q∗λ] = λQ∗λ,

〈Qλ′ | Pλ〉 =

∫
dxQ∗λ′(x)Pλ(x) = δλ′λ,

(4)

so that the transition probability can be expressed as [62]

P (x, t|x0, s) = P0(x) +
∑
λ6=0

eλ(t−s)Pλ(x)Q∗λ(x0), (5)

for t > s. That is, the transition probability P can be re-
garded as a sum of modes, each of which decays at a rate
given by the real part of its respective eigenvalue λ, lead-
ing in the long-time limit to the stationary distribution
P0(x).

The decaying modes in (5) have been shown to con-
tain important information about the stochastic oscilla-
tion [54, 58, 63]; the most prominent mode being the one
whose associated eigenvalue has least negative real part
– as this is the mode that decays the slowest. Some
of us suggested a definition of a stochastic oscillator
and its stochastic phase along these lines: according to
[54] the stochastic system in (1) qualifies as robustly os-
cillating if the following conditions are met: i) there ex-
ist a nontrivial eigenvalue with least negative real part
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λ1 = µ1+iω1 which is complex valued and unique; ii) the
oscillation is pronounced, i.e. the quality factor |ω1/µ1|
is much larger than one; iii) all other nontrivial eigenval-
ues λ′ are significantly more negative in their real parts,
i.e. |<[λ′]| ≥ 2|<[λ1]|. If these conditions are fulfilled,
then one can extract the stochastic asymptotic phase
ψ(x) as the complex argument of the slowest decaying
eigenfunction Q∗1(x), i.e. ψ(x) = arg(Q∗1(x)). We can
then ascribe at any time t a phase variable to the state
x(t) of the system by making the nonlinear transforma-
tion to a real-valued phase of the system ψ(t) = ψ(x(t))
(modulo 2π).

Here, we pursue this eigenfunction perspective further
by demonstrating that the nonlinear transformation of
the system, using the complex eigenfunction Q∗1(x), i.e.

x(t) → Q∗1(x(t)), (6)

leads to a universal description of stochastic oscillations,
independent of the specific stochastic mechanism respon-
sible for their generation. The transformation to the new
complex-valued variable Q∗1(x(t)) entails a tremendous
simplification for all of the oscillator’s essential aspects.
Firstly, we derive unifying and strikingly simple formu-
las for its spontaneous spectral statistics; this enables
a systematic comparison of different stochastic oscilla-
tors. Secondly, we also calculate its linear response to
external time-dependent stimuli and derive a novel form
of fluctuation-dissipation theorem. Thirdly, we put for-
ward a simple but quantitatively successful theory of
cross-correlations of weakly coupled stochastic oscilla-
tors. Hence, using the full function Q∗1(x) (instead of
using only its complex argument ψ(x)) as the stochastic
analog of asymptotic phase, we achieve a true simplifica-
tion and capture the universal characteristics of stochas-
tic oscillations.

Before proceeding, we note that Q∗1(x(t)) has a zero
stationary mean value, in the sense that

〈Q∗1(x(t))〉 =

∫
dxQ∗1(x)P0(x) = 0, (7)

which follows from the bi-orthogonality relation (4). Fur-
thermore, we normalize it to have unit variance〈

|Q∗1(x(t))|2
〉

=

∫
dx |Q∗1(x)|2P0(x) = 1. (8)

Finally we note that the complex argument of Q∗1(x) (the
above mentioned asymptotic phase of a stochastic oscil-
lator) is only defined up to a constant phase shift.

EXAMPLE MODELS

Throughout the paper we will illustrate our unified the-
ory by applying it to three models in which stochastic os-
cillations arise from qualitatively different mechanisms.
We will use each model at two different parameter sets
– one corresponding to a more coherent (cf. Fig. 1) and

FIG. 1. Three models of ‘robust’ stochastic oscillations. In
the three panels we show for each model ten sample trajec-
tories in phase space together with the stochastic asymptotic
phase ψ(x) (left subpanel), a time series of one of the compo-
nents (lower right subpanel), and the spectrum of eigenvalues
(top right subpanel). For the three models, parameters have
been tuned so they have the same value for the eigenvalue
λ1 = −0.048 + 0.698i with the smallest non-vanishing real
part. a: Damped noisy harmonic oscillator for γ = 0.096,
ω0 = 0.699, D = 0.01125. b: Noisy Stuart-Landau for a = 1,
b = −0.3, D1 = D2 = 0.04. c: Noisy SNIC model (beyond
the bifurcation, i.e. in the limit-cycle regime) for m = 1.216,
n = 1.014, D1 = D2 = 0.0119. d: Power spectra (left)
and correlation function (right) of x(t) (harmonic oscillator,
green), x1(t) (noisy Stuart-Landau model, purple), and x1(t)
(SNIC model, blue).

one to a less coherent (cf. Fig. 2) stochastic oscillation.
We tune parameters such that all models in the more co-
herent case have the same leading nontrivial eigenvalue
λ1 = −0.048 + i0.698 and thus also the same quality fac-
tor of |ω1/µ1| = 14.5, thereby satisfying condition (ii)



4

for a robust stochastic oscillation well. Likewise, we find
parameters such that all models in the less coherent case
have the same λ1 = −0.168 + i0.241 and thus also the
same quality factor of |ω1/µ1| = 1.43 which obeys condi-
tion (ii) for a robust stochastic oscillation only barely but
represents the interesting limit case in which fluctuations
definitely cannot be regarded as weak.

Damped harmonic oscillator with white noise – As
a first illustration, we consider an elementary physi-
cal model that is analytically treatable [31]: a one-
dimensional harmonic oscillator with unit mass which is
subject to Stokes friction and white Gaussian noise and
obeys the stochastic differential equations

ẋ = v, v̇ = −γv −Mω2
0x+

√
2Dξ(t). (9)

The model is already formulated in non-dimensional vari-
ables (space and time) and parameters (friction coeffi-
cient γ, eigenfrequency ω0 and noise intensity D) and
will be considered exclusively in the underdamped limit
(ω0 > γ/(2M)). We show sample trajectories and the
time courses of the stochastic oscillation for a high qual-
ity factor of |ω1/µ1| = 14.5 in Fig. 1a and for a less
coherent oscillation with |ω1/µ1| = 1.43 in Fig. 2a. The
trajectories in phase-space spend most time around the
origin and in the time series of the position variable
strong stochastic variations in amplitude and phase are
seen. The eigenvalue spectra (upper right in Fig. 1a and
Fig. 2a) on the left side of the complex plane are in part
complex-valued but some are also purely real; the next
eigenvalue to λ1 fulfills the condition (iii) with the equal
sign (the spectrum is discussed in [60])[64].

Noisy Stuart-Landau oscillator – This is the canoni-
cal model for a supercritical Hopf bifurcation, which we
consider in a version endowed with white Gaussian noise

ẋ1 = ax1 − x2 − a(x21 + x22)(x1 + bx2) +
√

2D1ξ1(t)

ẋ2 = ax2 + x1 − a(x21 + x22)(x2 − bx1) +
√

2D2ξ2(t)
(10)

with a, b ∈ R. In the absence of noise this system has a
limit cycle of period T = 2π/(1 + ba). Because of the ex-
isting limit cycle the amplitude variations of the stochas-
tic oscillations are much smaller than for the harmonic
oscillator (see left and bottom right panels of Fig. 1b
and Fig. 2b). The eigenvalue spectra (top right panels of
Fig. 1b and Fig. 2b) are, in the displayed region, far less
populated than for those of the harmonic oscillator. We
note that there are also purely real eigenvalues outside
the shown range; these are related to the amplitude of
the stochastic oscillation [58].

Noisy SNIC system – A two-dimensional system that,
in its deterministic version, undergoes a saddle-node bi-

FIG. 2. Three models of stochastic oscillations. In the three
panels we show for each model ten sample trajectories in phase
space together with the stochastic asymptotic phase ψ(x) (left
subpanel), a time series of one of the components (lower right
subpanel), and the spectrum of eigenvalues (top right sub-
panel). For the three models, parameters have been tuned
so they have the same value for slowest decaying eigenvalue
λ1 = −0.168 + 0.241i. a: Damped noisy harmonic oscillator
for γ = 0.337, ω0 = 0.294, D = 0.01125. b: Noisy Stuart-
Landau for a = 1, b = −0.713, D1 = D2 = 0.0995. c: Noisy
SNIC model (prior to the bifurcation, i.e. in the excitable
regime) for m = 0.99, n = 1, D1 = D2 = 0.01125. d: Power
spectra (left) and correlation function (right) of x(t) (har-
monic oscillator, green), x1(t) (noisy Stuart-Landau model,
purple), and x1(t) (excitable SNIC model, blue).
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furcation on an invariant circle (SNIC) is given by

ẋ1 = nx1 −mx2 − x1(x21 + x22) +
x22√
x21 + x22

+
√

2D1ξ1(t),

ẋ2 = mx1 + nx2 − x2(x21 + x22)− x1x2√
x21 + x22

+
√

2D2ξ2(t).

(11)
Without noise, the saddle-node bifurcation from the ex-
citable to the oscillatory regime occurs atm = 1. Here we
consider this model endowed with white Gaussian noise
once set in the oscillatory regime (leading to the more co-
herent stochastic oscillation, see Fig. 1c) and once set in
the excitable regime (leading to the less coherent stochas-
tic oscillation, see Fig. 2c). In marked contrast to the first
two models, the x1 variable of the SNIC model has a tem-
porally asymmetric time series; however, we observe this
asymmetry to be more pronounced in the excitable case.
In this case, the trajectory stays most of the time close to
the stable node and occasionally the noise causes a tran-
sition across the unstable saddle. Similarly to the Stuart-
Landau case, we have fewer eigenvalues in the displayed
range compared to the harmonic oscillator; again there
exist purely real eigenvalues outside the range shown.

As Fig. 1d and Fig. 2d show, despite having chosen
the parameters of the three models such that they all
have the same value of λ1 = µ1 + iω1 and thus share the
same long-term evolution time dependence[65] in (5), the
power spectra and autocorrelation functions of the mod-
els at one λ1 differ. The differences are more pronounced
for the less coherent oscillation (Fig. 2d) and they reflect
the specific nature of the system. For instance, the SNIC
system with its highly temporally asymmetric time series
shows pronounced higher harmonics, while the harmonic
oscillator does not. Except for the harmonic oscillator
[31], it is difficult to calculate power spectra or correla-
tion functions for these stochastic oscillators analytically
(for the Stuart-Landau oscillator, some approximations
for power spectrum and linear response have been put
forward in [66–68]).

By contrast, and as we show next, the heterogeneous
profiles for the statistics of spontaneous fluctuations, as
given by the power spectra or correlation functions, will
be reduced to a universal form when we observe the pro-
cesses through the lens of the leading backward eigen-
function Q∗1(x(t)).

CORRELATION FUNCTIONS AND POWER
SPECTRA

Generally, for any eigenfunction Q∗λ(x(t)), the correla-
tion function is given by Cλ,λ(τ) = 〈Q∗λ(x(τ))Qλ(x(0))〉
and its Fourier transform, the power spectrum, by
Sλ,λ(ω) =

∫∞
−∞ Cλ,λ(τ)e−iωτdτ . Following [60] (see also

SI), we can write the autocorrelation function as an inte-
gral over the formal solution of the Fokker-Planck equa-

FIG. 3. Power spectra S1(ω) and real part of the auto-
correlation function C1(t) of Q∗1(x(t)) for the different models
in Fig. 1 (panel a) and Fig. 2 (panel b). a: For parameters
from Fig. 1 (chosen such that λ1 = µ1 + iω1 is approximately
the same for all models with µ1 = −0.048, ω1 = 0.698, lead-
ing to a more coherent oscillation with a quality factor of
|ω1/µ1| = 14.3) we compare (14) (solid line), to stochastic
simulations of the three models (symbols). b: For parame-
ters from Fig. 2 (chosen such that λ1 = µ1 + iω1 is approxi-
mately the same for all models with µ1 = −0.168, ω1 = 0.241,
leading to a less coherent oscillation with a quality factor of
|ω1/µ1| = 1.43) we compare (14) (solid line), to stochastic
simulations of the three models (symbols).

tion using the stationary probability density P0(x)

Cλ,λ(τ) =

∫
dxQ∗λ(x)eL(x)τ

[
Qλ(x)P0(x)

]
.

If we expand the function Qλ(x)P0(x) =
∑
λ′ κλ′Pλ′(x)

in terms of the forward eigenfunctions, and use the
biorthogonal properties (4) of these functions (see SI),
we arrive for τ > 0 at

Cλ,λ(τ) = 〈|Q∗λ|2〉eλτ . (12)

This is a strikingly simple result: the correlation function
is given by the product of the stationary variance of Q∗λ
and a complex exponential function. Specifically, for our
new variable Q∗1(x), taking into account (8) and general-
izing the formula to both negative and positive time lags
τ , the correlation function reads

C1(τ) = exp [µ1|τ |+ iω1τ ] . (13)

Real and imaginary parts of this function display damped
oscillations (not shown) corresponding to the finite co-
herence of the stochastic oscillations. One characteristic
of the oscillation is the quality factor |ω1/µ1| that tells
us how many cycles (in multiples of 2π) are seen in the
correlation function before the exponential envelope has
decayed to 1/e.

The even simpler expression for the power spectral
density corresponds to a (purely real-valued) Lorentzian,
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peaked at ω = ω1 with a half-width of µ1

S1(ω) =
2|µ1|

µ2
1 + (ω − ω1)2

. (14)

In Fig. 3 we show the power spectra of Q∗1(x) and the
real part of the auto-correlation function C1(τ) for the
parameters chosen in Fig. 1 and Fig. 2 (panels Fig. 3a
and b, respectively). As we show in Figs. 1d and 2d, the
power spectra and correlation functions of the models
in the original variables exhibit different shapes. How-
ever, when transforming to Q∗1(x), since we tuned pa-
rameters such that all three models in Figs. 1 and 2 have
the same complex eigenvalue with smallest real part, λ1,
the three very different systems possess identical power
spectra. This is confirmed by our simulations (symbols)
which all fall on the line predicted by (14) (see Fig. 3).
Therefore, by means of the function Q∗1 we have made
the three systems quantitatively comparable and, more-
over, characterizable with a simple analytical expression
and two informative parameters – the frequency and the
half-width of the spectral peak (or, equivalently, the fre-
quency and the quality factor).

By a procedure similar to that for the correlation
functions and power spectra for Q∗λ(x(t)), we can also
calculate expressions for the cross-correlation functions
Cλ,λ′(τ) = 〈Q∗λ(x(τ))Qλ′(x(0))〉 (see SI for details):

Cλ,λ′(τ) = 〈Q∗λQλ′〉

{
e−λ

′∗τ , τ < 0

eλτ , τ > 0
(15)

and for the cross-spectra Sλ,λ′(ω) =
∫∞
−∞dτCλ,λ′(τ)e−iωτ

Sλ,λ′(ω) = −〈Q∗λQλ′〉
(

1

λ− iω
+

1

λ′∗ + iω

)
. (16)

We will need these expressions below for the theory of
coupled stochastic oscillators.

LINEAR RESPONSE AND
FLUCTUATION-DISSIPATION THEOREM

We now consider how the stochastic oscillators respond
to a weak time-dependent forcing εp(t) that enters the
system via a perturbation vector e. That is, we consider

dx

dt
= f(x) + εp(t)e + g(x)ξ(t) x, e ∈ Rn. (17)

How the time-dependent mean value of our new variable
Q∗1(x(t)) is affected by the perturbation p(t) can be de-
scribed in terms of linear response theory [60, 61, 69, 70]

〈Q∗1(x(t))〉 = ε

∫ t

−∞
dt′Ke(t− t′)p(t′) (18)

FIG. 4. Susceptibility functions χe(ω) of the variable
Q∗1(x(t)) for the different models with the same parameters
as in Fig. 2 and different perturbation vectors e as indicated.
For each model, we show the squared of the absolute value,
|χe(ω)|2, (left panel) showing a Lorentzian profile and its an-
gle arg(χe(ω)) (right panel). The perturbation vectors are
e1 = (1, 0)> and e2 = (0, 1)>. a: The harmonic oscillator
βev = 3.87i (blue, computations; cyan, theory); b: Stuart-
Landau model βe1 = −0.641 + 0.297i (orange, computations;
yellow, theory), βe2 = −0.297 − 0.641i, (blue, computations;
cyan, theory); c: SNIC excitable system βe1 = −1.38 − 1.3i
(orange, computations; yellow, theory), βe2 = 0.54 − 0.19i
(blue, computations; cyan, theory).

where we have taken into account (7) and introduced
the complex-valued linear-response function Ke(τ) (the
index indicates the dependence on the direction of per-
turbation, e). Equivalently, we can use the susceptibility
χe(ω) =

∫∞
−∞ dτe−iωτKe(τ), the Fourier transform of the

response function.
In order to derive an expression for Ke(τ), we follow

Risken [60, chapter 7] and express the Fokker-Planck op-
erator by an unperturbed part L and a perturbation part
Le = −e · ∇, leading to the Fokker-Planck equation

∂tP (x, t) =
(
L(x) + εp(t)Le(x)

)
P (x, t). (19)

Expanding the density in powers of ε, P (x, t) = P0(x) +
εPe(x, t) + O(ε2), taking only the leading linear order
and expressing this by an integral over the formal time-
dependent solution, we obtain

Pe(x, t) =

∫ t

−∞
dt′ p(t′)eL(x)(t−t

′)
[
Le(x)[P0(x)]

]
. (20)

By expressing the time-dependent mean value
〈Q∗1(x(t))〉 by the integral over Pe(x, t) and comparing
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to (18), we obtain for the linear-response function the
intermediate result

Ke(τ) =

∫
dx Q∗1(x)eL(x)τ

[
Le(x)[P0(x)]

]
, τ > 0.

(21)
We expand Le(x)[P0(x)] =

∑
λ′ βe,λ′Pλ′(x) into for-

ward eigenfunctions, use the eigenvalue equations and
the biorthogonality relation (4), and finally take into ac-
count causality (which implies Ke(τ) ≡ 0 for τ < 0)
to arrive at a simple expression for the linear-response
function (see SI for details)

Ke(τ) = βe

{
eλ1τ , τ > 0

0, else
, (22)

where the complex-valued coefficient βe = βe,λ1 (we omit
the second index for ease of notation) is given by

βe = −
∫
dxQ∗1(x)[e · ∇P0(x)], (23)

where ∇P0(x) is the gradient of the stationary density
in our n-dimensional phase space. We note that for a
stationary density P0(x) obeying natural boundary con-
ditions, βe = e · 〈∇Q∗1(x)〉, i.e. the coefficient is related
to the mean change of Q∗1(x) in the direction of the per-
turbation.

The susceptibility of the stochastic oscillator is given
by

χe(ω) =

∫ ∞
−∞

dτ Ke(τ)e−iωτ =
βe

−µ1 + i(ω − ω1)
, (24)

i.e. a simple bandpass filter centered at ω = ω1. Its
modulus and its phase are given by,

|χe(ω)| = |βe|√
µ2
1 + (ω − ω1)2

,

arg(χe(ω)) = arg(βe) + arctan(ω1 − ω,−µ1).

(25)

We confirm these results via numerical simulations of all
three models in Fig. 4 (see SI for details on measuring
susceptibilities). For the harmonic oscillator, we show
only the susceptibility for the physically relevant case of
a perturbation of the velocity equation. For the Stuart-
Landau model the susceptibilities for perturbations in
the x1 and x2 directions are shown separately but coin-
cide because of the symmetry of the model; the phase
shifts are also the same up to a constant (we recall that
the phase of our output variable Q∗1 is only determined
up to a constant phase). In contrast to the rotational
symmetry of the Stuart-Landau oscillator, the excitable
SNIC model differs in its response to perturbations in the
x1 and x2 directions: perturbations in the x1 direction
are more efficient in kicking the system out of the stable
fixed point and thus in evoking a response; consequently,
χex1

> χex2
for all frequencies.

We note that we can calculate the response functions
and susceptibilities of the higher eigenfunctions Q∗λ′(x(t))

in an analogous fashion, resulting in very similar formu-
las, (22) and (24). The main differences are that (i) we
have to use λ′ instead of λ1, and (ii) in the computation
of the coefficient βe in (23), we use Q∗λ′(x) instead of
Q∗1(x).

Turning back to the statistics of Q∗1(x(t)), we stress
that the simple expressions for the autocorrelation func-
tion of the oscillator and its response function permit a
simple connection between them, which can be regarded
as a fluctuation-dissipation theorem (FDT). FDTs are re-
lations between the spontaneous activity of a system and
its response to external perturbations, and have been de-
rived for thermodynamic equilibrium [60, 69, 71] as well
as for non-equilibrium settings [61, 72–76]. For our broad
model class, we obtain the simplest relation in the time
domain as follows

Ke(τ) = βeC1(τ), τ > 0, (26)

which, to the best of our knowledge, differs strongly from
the generalized fluctuation-dissipation theorem that is
based on the conjugated variable [61, 72, 73]. Thus (26)
constitutes a novel and simple fluctuation-dissipation
theorem holding true for the general class of stochas-
tic oscillators, most of which operate far from thermo-
dynamic equilibrium. For relations between the power
spectrum and the susceptibility that are formally closer
to the standard FDT of equilibrium systems [71], see SI.

TWO WEAKLY COUPLED STOCHASTIC
OSCILLATORS

We now demonstrate that the transformation to the
new variableQ∗1(x) also allows for a simplified description
of the statistics of weakly coupled stochastic oscillators.
For simplicity, we consider only two coupled oscillators;
however, the general method can be applied for larger
systems of interacting units too.

We couple the two oscillators with the scalar functions
Hx(x,y) = Hxx(x) +Hyx(y) and Hy(x,y) = Hxy(x) +
Hyy(y) along the directions ex and ey, respectively, and
scale the coupling terms by a small parameter ε

ẋ = fx(x) + εex[Hxx(x) +Hyx(y)] + gx(x)ξx(t),

ẏ = fy(y) + εey[Hxy(x) +Hyy(y)] + gy(y)ξy(t).
(27)

Here, the terms with mixed indices Hyx(y) (Hxy(x)) de-
scribe the effect of the y (x) oscillator on the x (y) os-
cillator; the diagonal terms Hxx(x) and Hyy(y) can in
principle be lumped into the drift terms fx(x) and fy(y),
respectively (which will then also change our Q∗1 func-
tions). Here we keep for clarity the diagonal terms as
a perturbing input, such that the eigenfunctions Q∗1x(x)
and Q∗1y(y) are those of the uncoupled oscillators (see
SI for a discussion of the alternative treatment of the
problem).
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We use the response functions (22) in a realisation-wise
version

Q∗1x= Q∗1x,0 + ε

t∫
−∞

dt′Kex(t−t′)[Hxx(x(t′))+Hyx(y(t′))]

Q∗1y= Q∗1y,0 + ε

t∫
−∞

dt′Key(t−t′)[Hxy(x(t′))+Hyy(y(t′))]

(28)
and similarly for the other backward eigenmodes Q∗λ′x
and Q∗λ′y (see SI). In (28) the functions Q∗1x,0 and Q∗1y,0
denote the spontaneous activity of the uncoupled oscil-
lator, respectively. A similar approximation (using the
response function for the time-dependent mean value to
approximate the realization-wise response of the system)
has been successfully applied in the past to stochastic
network models of recurrently coupled spiking neurons
[77, 78].

We assume that we can expand the coupling functions
into the backward eigenfunctions as follows

Hxx(x) +Hyx(y) =
∑
λ′x

γλ′xQ
∗
λ′x

+
∑
λ′y

αλ′yQ
∗
λ′y

Hxy(x) +Hyy(y) =
∑
λ′x

αλ′xQ
∗
λ′x

+
∑
λ′y

γλ′yQ
∗
λ′y

(29)

where the coefficients γλ′x , αλ′x are given by

γλ′x =

∫
dxPλ′x(x)Hxx(x), αλ′x =

∫
dxPλ′x(x)Hxy(x),

γλ′y =

∫
dyPλ′y(y)Hyy(y), αλ′y =

∫
dyPλ′y(y)Hyx(y).

(30)
In addition to introducing these coefficients, we now also
consider the finite-time-window Fourier transforms of the
observables (see SI for details) and thus obtain from (28)

Q̃∗1x = Q̃∗1x,0 + εχex

(∑
λ′x

γλ′xQ̃
∗
λ′x

+
∑
λ′y

αλ′yQ̃
∗
λ′y

)
Q̃∗1y = Q̃∗1y,0 + εχey

(∑
λ′x

αλ′xQ̃
∗
λ′x

+
∑
λ′y

γλ′yQ̃
∗
λ′y

) (31)

and similarly for the remaining modes. From this linear
system of equations, by a systematic expansion in the
weak coupling strength ε we obtain the cross-spectrum
between Q∗1x and Q∗1y in terms of the susceptibilities (24)
and cross-spectra between the modes of one oscillator
(16) (see SI):

Sc1,yx = ε
(
χ∗ex

∑
λ′y

α∗λ′yS1y,λ′y
+ χey

∑
λ′x

αλ′xSλ′x,1x

)
(32)

From this formula we can extract the following informa-
tion. First of all, for weak coupling, the cross-spectrum

FIG. 5. Cross-Spectra of two coupled units for weak coupling
strength ε = 0.01. In all panels the thin (thick) lines indicate
simulations (theory); blue (green) corresponds to real (imag-
inary) part. a: For two harmonic oscillators with parameters
as in Fig. 1 we show cross-spectra between the position vari-
ables of each oscillator (left) and between the Q∗1 functions,
Sc1,yx. b: For two symmetrically coupled but non-identical
Stuart-Landau oscillators we show the cross spectrum be-
tween the Q∗1 functions; left: oscillators slightly detuned with
one oscillator as in Fig. 1 and the other one with a changed
value of b = −0.25; right: second oscillator is more strongly
detuned with b = −0.1. c: For two coupled identically SNIC
systems we show the cross-spectra Sc1,yx with parameters as
in Fig. 1 (left panel) and Fig. 2 (right panel). In the right
panel two versions of the theory are shown: approximations
by one mode (dashed line) and by the five leading terms (solid
line, see text).

between oscillators is proportional to ε. Secondly, the
first term in the parenthesis consists of the susceptibility
of the x oscillator, and a weighted sum of cross-spectra
between the different eigenfunctions of the y oscillator
with the most important term being the power spectrum
S1y . The complex-valued coefficients of this sum are de-
termined by Hyx(y), the coupling function from y to x
(see (30)). The second term in the parenthesis is similar,
only the roles of x and y are switched. For two statis-
tically identical oscillators with symmetric coupling, the
second term is the complex conjugate of the first one
and hence the cross-spectrum will be real-valued; any
non-vanishing imaginary part thus reflects a heterogene-
ity in the oscillators or the coupling. For the interesting
case of a purely unidirectional coupling from y to x, for
instance, the second term in the parenthesis in (32) will
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simply vanish.
Our result for the cross-spectrum of the oscillators (32)

still contains an infinite sum of terms. However, as all
of our numerical examples below show, just a few terms
in the sums will effectively contribute. Specifically, for
the case of coherent stochastic oscillators with similar
frequencies, we may restrict the sums just to the first
terms (involving the spectra associated with λ1 and λ∗1)
and still obtain accurate results.

We start testing our formula for the cross-spectrum of
two identical harmonic oscillators that are weakly cou-
pled by a spring (Fig. 5a). In this case, of course, the
cross-spectrum between the original position variables of
the two oscillators can be easily calculated and is shown
in the left panel (and calculated in the SI): a purely real
function with a positive lobe for ω < ω0, a negative lobe
for ω > ω0 and everything mirrored at negative frequen-
cies. When computing the cross-spectrum of the new
variables Q∗1x , Q∗1y , we can take advantage of the analyt-

ical expression for Q∗1 (see SI), to find that the coupling
function is exactly given by a linear combination of Q∗1
and Q1 (hence, higher coefficients α∗λ′y and αλ′x in the

expansion are identically zero; see SI for further details).
Therefore, the infinite sum in (32) reduces to

Sc1,yx ≈ 2ε<
(
χ∗eα

∗
1S1 + χ∗eα1S1,1

)
, (33)

where we have omitted the x, y dependences of the func-
tions on the r.h.s. since both oscillators are assumed to
be identical.

As we observe in Fig. 5a right panel, (33) displays an
excellent agreement with numerical simulations. If we
compare the cross-spectrum of the Q∗1x , Q∗1y functions
with the cross-spectrum in the original position variables,
we note that they look very similar with the only dif-
ference being that in Sc1,yx(ω) everything happens exclu-
sively at positive frequencies (we consider rotating point-
ers in the complex plane instead of real-valued time se-
ries) and the zero crossing of the function is at ω1 (here
close to ω0). Hence, the cross-spectrum of the two sys-
tems described in terms of the backward eigenfunctions
reflects the interdependence of the two systems appro-
priately. We note that, while the largest contribution to
Sc1,yx in (33) is given by the power spectra term S1, the
additional term S1,1, even if it is small, has to be included
to match the asymmetry between the two lobes (sizes of
minimum and maximum are slightly different); including
only power spectra terms would result in a strictly odd
function with respect to ω = ω1.

Next, we employ our formula (32), to study a case of
symmetrically coupled but non-identical oscillators. We
consider two different noisy Stuart-Landau oscillators dif-
fusively coupled by their first coordinates x1 and y1. We
study two cases to inspect how inhomogeneities of the
oscillators affect the cross-spectrum: we set parameters
such that (i) both oscillators are slightly detuned (λ1x =
−0.048 + 0.698i, λ1y = −0.047 + 0.748i) and (ii) oscilla-
tors are more strongly detuned (λ1x = −0.048 + 0.698i,

FIG. 6. Spectral overlap and cross-spectra between Q∗1 and
the rest of the backward modes for a more (a) and less (b) co-
herent oscillator. Spectrum of eigenvalues (left panels), power
spectrum Sλ of different eigenmodes (mid panels) and the
cross-spectra betweenQ∗1 and different eigenmodes (right pan-
els). SNIC model with parameters as in Fig. 1 (a) and as in
Fig. 2 (b).

λ1y = −0.047+0.9i). As all quality factors in this exam-
ple are small and the system is rotationally symmetric
(which according to our numerical observations implies
S1,1(ω) ≡ 0), we expect that the cross-spectrum is ap-
proximately given by

Sc1,yx = ε
(
χ∗ex

α∗1yS1y + χeyα1xS1x

)
. (34)

This formula agrees well with numerical simulations for
both cases (see Fig. 5b). We note that, as both oscilla-
tors are non-identical, the cross-spectrum has both non-
vanishing real and imaginary parts. The effect of inho-
mogeneities is clearly seen by comparing left and right
panels in Fig. 5b. For small detuning (left panel), we ob-
serve a similar profile for the real and imaginary parts of
Sc1,yx: a one lobe function, which is only different from
zero around a narrow frequency band in the neighbour-
hood of both eigenfrequencies. As the detuning is small
in case (i), the real part of Sc1,yx is larger than the imag-
inary part. By contrast, in case (ii) with stronger detun-
ing, the situation is reversed and the imaginary part has
a larger absolute value than the real part; also now the
two frequencies of the oscillator become visible by two
distinct peaks in both real and imaginary parts. Indeed,
the larger degree of inhomogeneity is not only captured
by the increase of power in the imaginary part of Sc1,yx,
but also in the appearance of two secondary peaks around
the individual eigenfrequencies of each unit.

Finally, we illustrate how for less coherent oscillators,
more terms in the sum are required to yield a quantita-
tively correct result in (32). To this end, we consider first
two identical SNIC systems with parameters of the more
coherent case (chosen as in Fig. 1) and coupled symmet-
rically through their first coordinates. Here we expect
that, again, few modes are needed and, indeed, similarly
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to the Stuart-Landau case, we just need the power spec-
tra term

Sc1,yx = 2ε<
(
χeα1S1

)
(35)

(due to symmetry, we can drop the index again and ob-
tain a purely real-valued cross-spectrum). This formula
shows an excellent agreement with numerical simulations
(Fig. 5c, left panel). However, changing the parameters
to the less coherent case (parameters as in Fig. 2) (so
now both coupled units are in the excitable regime), we
find that (35) does not suffice (compare dashed and solid
curves in Fig. 5c right panel). Besides the power spectra
contribution, we find that obtaining an accurate predic-
tion in this non-coherent case, requires including cross-
spectral contributions between Q∗1 and the neighbour-
ing backwards eigenmodes associated to the eigenvalues
λ∗1, λ2, λ3 and λ4 (the contributions associated to λ∗2, λ

∗
3

and λ∗4 have negligible covariance values).
Why did this last example require more modes than

any other of the cases considered? There is no general
answer to this question as (32) depends on the coefficients
αλ′x , αλ′y which depend in turn on the specific systems
and the specific coupling functions. However, the depen-
dence of (32) on the cross-spectra S1,λ, can shed some
light on this question. As (16) shows, our formula for the
cross-spectra S1,λ between Q∗1 and any other backward
mode is weighted by their covariance 〈Q∗1Qλ〉. The more
robustly oscillatory a system is, the smaller we would ex-
pect the co-variance between Q∗1 and the rest of the back-
ward modes. The reason for such expectation is illus-
trated in Fig. 6. In Fig. 6a, we consider the SNIC model
in the coherent regime and show its eigenvalue spectrum
(left panel). We observe that the closest eigenvalue to
λ1 = −0.048 + 0.698i is λ2 = µ2 + iω2 = −0.18 + 1.42i.
Consequently, the power spectrum of Q∗2, which is also
given by a Lorentzian centered at ω2 and half-width of
µ2, shows very little overlap with the power spectrum
of Q∗1 (mid panel). Hence, it is not surprising that the
cross-spectrum S1,2 is small (right panel). By contrast,
if we now consider the SNIC in the less coherent case
(Fig. 6b), this scenario changes. As we see in Fig. 6b,
right panel, the eigenvalues are much closer in their imag-
inary parts (also real parts are larger) than in the coher-
ent case (now λ1 = −0.168 + i0.241, λ2 = −0.42 + i0.64
and λ3 = −0.73 + i1.11). Therefore, there is an effec-
tive overlap between their respective power spectra (mid
panel) leading to non-negligible cross-spectra between Q∗1
and its neighbouring modes (right panel) and these con-
tributions have to be taken into account in the theory.

SUMMARY AND DISCUSSION

In this paper we have developed a simplifying frame-
work for stochastic oscillators that can be described
by systems of stochastic differential equations. By
mapping the system’s n-dimensional state vector to

a complex-valued oscillator given by the eigenfunction
Q∗1(x) of the backward Kolmogorov operator to the
eigenvalue λ1 = µ1 + iω1 with the least negative real
part, we achieve a significant reduction in complexity.
By using the transformed variable Q∗1(x), i.e. the pair
(<[Q∗1(x(t))],=[Q∗1(x(t))]), we accomplish three major
simplifications. First, we can describe the single os-
cillator’s spontaneous activity by a simple correlation
function consisting of a single exponential, or, equiva-
lently, by a Lorentzian power spectrum with frequency
ω1, half-width µ1, and quality factor |ω1/µ1|. Sec-
ond, we can quantify the response to an external stim-
ulus with a simple linear response function of the form
K(τ) ∝ Θ(τ) exp(λ1τ), a function that is related to the
correlation function by a simple proportionality. This re-
sult constitutes a fluctuation-dissipation theorem for a
non-equilibrium system that is distinct from other theo-
rems that have been derived in the past (e.g. [72, 73, 75]).
Third, by mapping the oscillator state to the Q∗1(x) func-
tion, we can predict the form of the cross-correlations of
coupled noisy oscillators.

We illustrated the working of the general theory by
three models that have distinct mechanisms for gener-
ating stochastic oscillations; mathematically speaking,
these were a linear system with a stable focus driven
by fluctuations, the canonical model for a supercritical
Hopf bifurcation endowed with noise, and a system with
a saddle-node on invariant circle bifurcation likewise with
uncorrelated noise. It is important to note that the
first and the third example would not perform any os-
cillations (at least in the long-time limit) in the absence
of noise. These oscillations are noise-generated in both
cases, though by different mechanisms. The second sys-
tem constitutes a limit-cycle system perturbed by noise
and thus here the effect of the fluctuations are easier to
grasp: more noise will reduce the phase coherence of the
oscillation. Although the three systems are very differ-
ent in their dynamical mechanism, they become similar
and, moreover, comparable when viewed through the lens
of the Q∗1(x) function. Even in our framework, we still
see characteristic aspects of the system, when we look at
their response to external stimuli or the cross-correlation
statistics for coupled systems.

While results on the theory of the single power spec-
trum and the linear response are exact, the case of cou-
pled stochastic oscillators required a new idea for the
analytical calculation; we used an ansatz that employs
linear response theory (proceeding as if the dynamics in
the new variable were linear). We illustrated the result-
ing expressions for a number of numerical examples: for
the three models, for identical and non-identical oscilla-
tors, for rather coherent and for more noisy oscillators.
In all cases and for sufficiently weak coupling we found
excellent agreement between the predicted and the simu-
lated cross-spectra of the Q∗1 variables of the two systems.
We take this as an indication that the true dynamics of
the new variable is effectively linear. The reasons why
this is so merit further exploration.
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The universal description of stochastic oscillations put
forward here, may also be used to better highlight the
characteristic differences between the different systems.
Given that two oscillators have the same λ1 (i.e. the
same quality factor), what sets them apart? Should we
combine the information for the leading complex-valued
eigenvalue and its eigenfunction with that of the first
purely real-valued eigenvalue and the associated eigen-
function, which can be used to define the stochastic limit
cycle [79]? Or should we rather compare the higher os-
cillatory modes Q∗λ′ (with |<(λ′)| > |µ1| and =(λ′) 6= 0),
that play such a prominent role in our theory of coupled
oscillators? It seems to us that both comparisons offer a
novel perspective for the finer categorization of stochastic
oscillators.

The relation between our universal description of
stochastic oscillators and the classical phase description
of deterministic oscillators bears further discussion. Re-
call that, in deterministic limit-cycle systems, the phase
can be obtained from the argument of the principal eigen-
function of the Koopman operator with purely imaginary
eigenvalue [80, 81]. Upon introducing noise into the sys-
tem, this eigenvalue develops a negative real part. In-
deed it becomes λ1 and its associated eigenfunction be-
comes Q∗1. This connection between the deterministic
phase and the Q∗1 function in the noise vanishing limit is
not coincidental since the Kolmogorov backward opera-
tor L† corresponds to the stochastic version of the Koop-
man operator [82]. Indeed, the relationship between the
stochastic asymptotic phase (the complex argument of
Q∗1) and the deterministic phase in the limit D → 0 has
already been noted [54, 63, 83, 84]. Hence, our transfor-
mation also embraces the deterministic case and connects
cleanly with the well-established deterministic Koopman-
operator framework [85].

Returning to the specific results of our paper, we note
that they can be generalized in different directions. First
of all, even if our general setup includes multiplicative
noise, for simplicity we restricted all of our examples to
Langevin systems with additive white Gaussian noise.
Nothing keeps us from finding the eigenfunction to the
eigenvalue with the least negative real part and to make
the transformation to this complex-valued variable in a
system with multiplicative noise. Likewise, we are not
restricted to systems with Gaussian white noise but can
also apply the method to Markov processes described by
a master equation (for which there exist also a backward
operator with eigenfunctions; one such example has been
already treated in [54] for the extraction of the asymp-
totic phase of a stochastic neuron model with discrete
channel noise). More generally even, any jump-drift-
diffusion process [62] described by a master equation
(with additional drift and diffusion terms) that shows the
hallmarks of robust stochastic oscillations, can be cap-
tured by our universal description in terms of the Q∗1(x)
function. Our formulas for the main characteristics will
not change and, for instance, the power spectrum of such
systems in the new variable will still be a pure Lorentzian,

the response function a pure exponential, etc. Another
straightforward generalization concerns the external per-
turbation: this could (and will in certain cases) also de-
pend on the state of the system. This will mainly affect
the definition of the complex-valued coefficient β that
appears in the response function.

An exciting challenge is to extend our analysis of two
coupled oscillators to the general case of N weakly cou-
pled oscillators with its obvious applications to neu-
ral [86–88], mechano-sensory [89–91], genetic [1, 92],
metabolic [93], and energy supply networks [94], to name
but a few examples. Because our analytical approach can
be generalized to this case, different scenarios of connec-
tivity (sparse, random or structured) and heterogenity
(in the single oscillator properties or in the connections)
can be studied analytically. Moreover, the summed activ-
ity of subgroups of oscillators at the mesoscopic level can
be calculated from the cross-spectral statistics of single
stochastic oscillators.

Our theory was here applied to stochastic models,
but applications to data are conceivable. In [54] it was
demonstrated how the stochastic asymptotic phase (the
complex argument of the function Q∗1) can be extracted
from data. In the same way, the function Q∗1 itself can
be found, provided the data are consistent with a ro-
bustly oscillatory Markov process. We suggest that if
one were to propose a method for extracting either Q∗1,
or higher modes Q∗λ, our results offer a test: whether the
resulting power spectra fit simple Lorentzians at the re-
spective eigenfrequencies (see SI). Thus, in light of the
direct link between the Kolmogorov backwards operator
and the stochastic Koopman operator, our work may help
advance methods for extracting Koopman eigenfunctions
from data [95–98], as well as for providing physical inter-
pretations of particular modes [54, 58].

Our framework also offers a test of a key assump-
tion, namely that the stochastic oscillation arises from a
Markov process. Markovianity is an important character-
istic of stochastic processes, and different methods to test
for it are currently under debate (see e.g. [76, 99, 100]).
For the important class of stochastic oscillators, comput-
ing the statistics of Q∗1(x(t)), and specifically probing for
a purely Lorentzian line shape, may provide another in-
dependent tool to test for Markovianity.

In summary, there are many open problems that can
be studied within the framework put forward here.
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