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I. INTRODUCTION

Gravity is the weakest fundamental force in nature.
Nevertheless, the gravitational waves (GW) were pro-
duced from energy-momentum or matter disturbance, as
the theory of General Relativity (GR) predicted[1, 2].
These GW propagate throughout spacetime without
much being affected by the interstellar regions. In other
words, they preserve most of the information from their
sources, according to the feebleness of gravitational force!
After more than half a century’s efforts, the first GW
event of binary black holes (BBH) coalescence, named
GW150914, was observed in the year 2015 by LIGO Sci-
entific Collaboration and Virgo Collaboration [3]. The
penetrability of GW opens a window to detect the bi-
nary systems and stochastic GW background for comple-
mentary study for astronomy. Also, it provides valuable
information on the early universe, such as inflation, pri-
mordial black holes (PBH), phase transition, topological
defects, etc., for cosmology.

Coincidently, not only GW that weakly interacts with
the matter but dark matter (DM), which is composed of
about a quarter of the energy density in our universe, also
feebly couples with ordinary matter. Currently, three
ways to unclose the mystery of DM: direct detection is
the observation of light or thermal signals that the nuclei
or electron recoils scattering by interstellar DM parti-
cles [4–9], while indirect detection is to search for the
excess of cosmic rays from the core regions of galaxies or
cluster systems where is believed to have a highly dense
distribution of DM [10–18]. The DM pair annihilations
produce these extra cosmic rays. The final method is
collider production, which uses the inverse process of the
indirect search and tracing the missing energy or searches
for long-live neutral particles [19, 20].

However, gravity couples universally to all matters, in-
cluding DM. This opens a new opportunity to detect
the nature of DM. It is well known that DM plays a
critical role in structure formation according to the den-
sity perturbations in the early stage of the universe [21].
The standard ΛCDM (collisionless DM) model simula-
tions predict a large-scale structure consistent with the
observations, while some puzzles at small-scale structures
demand further study [22]. There are several possible so-
lutions to the small-scale problems [23–27]; in this review
article, we focus on the self-interacting DM (SIDM) sce-
nario [28]. This is also the nature of the DM we probe.

The progenitors of the stellar objects are formed in in-
terstellar gas clouds. They further evolve into more com-
pact objects through various processes such as accretions,
nuclear reactions, gravitational collapses, mergers, etc.,
among which DM halos are known to provide the grav-
itational well for such a formation process [29, 30]. If
Standard Model (SM) particles that consist of about 5%
of the energy density in the universe provide a rich cat-
alog of stellar objects such as black holes (BH), neutron
stars (NS), ordinary stars, planets, etc. It is arguable
that DM, which has about five times more energy den-

sity than the SM particles, might also have similar or even
richer possible configurations of stellar objects. However,
the lack of self-interaction CDM would make it challeng-
ing to form a stellar structure. SIDM, on the other hand,
would provide a theoretical ground base for the forma-
tion of dark stars (DS). For more detailed reviews on DS,
please check [31–33].

We will not address the formation mechanism of DS
but comment on the potential importance of SIDM to
have stellar objects in the dark side of the universe. In-
stead, we study the stable configurations of DS according
to GR for various equations of state (EoS), which corre-
spond to different forms of dark scalar self-interactions.
Over one hundred binary-system GW events are observed
by the LIGO Scientific, Virgo, and KAGRA Collabo-
rations (LVK) from O1 to O3 in the past years [34–
36]. Some recently observed LIGO/Virgo/KAGRA bi-
nary events show the masses of the component compact
objects may lie in the regions of low and high mass gaps,
which are forbidden for the standard BH formation mech-
anism. Although the exact values of the mass gaps are
uncertain, see [37, 38] for some discussions, our current
knowledge of stellar evolution supports their existence.
Thus, it is quite possible that these mass-gap objects
can be regarded as DS and called BH mimickers. More
information about these compact objects, such as mass-
radius relation and tidal deformability, will depend on the
nature of DM and be imprinted in the waveform of GW.
Besides, the spin-induced multipole moments and oscilla-
tion frequencies, e.g., f-mode frequency, GW absorption,
and other information not discussed in this review, will
also be encoded in the GW signal. Thus, one can extract
the properties of DM through the data analysis of the
mass-gap events.

As this review covers a broad interdisciplinary land-
scape across particle physics, astrophysics, and GW as-
tronomy, we give a graphic outline of this review in Fig.
1 to orient the readers on how the pieces fit together and
provide an at-a-glance roadmap.

The plan for the rest of the review goes as follows.
The next section reviews the basics of dark energy, DM
models, PBH, and their implications for GW physics.
Section III reviews the models of dark and hybrid stars
and their properties, such as stable configurations and
tidal deformability, and also sketches the possible forma-
tion mechanisms. Section IV discusses the boson stars as
the mimickers of NS and BH. Section V briefly reviews
the data analysis methodology to infer the existence and
properties of DS from GW events. We then conclude
our review in section VI. There are two appendices: the
first reviews the derivation of the equation of states for
generic bosonic self-interacting DM; the second reviews
the Bondi accretion mechanism for star or spike forma-
tion out of non-relativistic or relativistic fluids. In this
work, we have adopted G = c = h̄ = 1 units in most
places.
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FIG. 1: Graphic roadmap of this review with the corresponding sections for each topic indicated in red.

II. DARK SIDES OF THE UNIVERSE

A. Dark energy and dark matter

It is well established that the energy density of our uni-
verse is composed of around 70% dark energy, 25% DM,
and the rest 5% is the SM particles [39]. The expansion of
our universe is accelerating rather than slowing down by
observing the redshift of supernovae [40]. The negative
pressure of dark energy is believed to be responsible for
causing the late-time cosmological acceleration. Though
the equation of state (EoS) of vacuum energy offers the
simplest solution, adding scalar fields also provides a dy-
namical EoS satisfying the current observations. It would
rely on future astrophysical precision measurements to
deepen our understanding of this issue.

Our primary focus, however, in this review article is
DM. DM was first proposed for the validity of the virial
theorem to infer the stability of cluster galaxies (i.e.,
Coma galaxy cluster, etc.) and the galaxies (i.e., Milky
Way, etc.). A significant component of a missing mass
composed by DM is regarded to support the fast infall
velocity of satellite objects. Another key reason for in-
troducing the DM is to resolve the rotation curve puzzle,

which cannot be explained solely by the visible matter.
Similarly, the light bending due to the invisible DM grav-
itational lens can also explain the novel observed distor-
tion source images. Furthermore, different epochs in the
evolutionary universe, such as the relic abundance of the
light nucleus at the early stage and cosmic microwave
background (CMB) after the photon decoupling, suggest
evidence for the extra energy density of DM. Last but not
least, the primordial energy distributions of DM provide
the initial space-time perturbations to the galactic struc-
ture formation. The resulting N-body simulation used
the initial perturbation condition analyzed from CMB
data, consistent with the large-scale survey.
The best knowledge on the nature of DM is still obscure

at the moment of writing; it would be the lack of under-
standing in gravity theory, or it suggests a new kind of
particle. Various experimental searches and theoretical
constructions try to solve the mysterious missing piece
of energy contribution. In the particle physics aspect,
however, it is commonly suggested that DM is presum-
ably a stable particle that interacts inertly with electro-
magnetic force. Therefore, it is an invisible matter dis-
tributed among interstellar space and provides the extra
gravitational attraction to sustain the galactic structure.
Under this assumption, the nature of DM turns into the
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quest for its fundamental quantum numbers, such as its
spin, its interactions (in terms of Lagrangian), its mass,
etc. The form of its interactions with the SM particles
will determine the DM relic abundance as the universe
evolves. Some mechanisms suggest that DM will ther-
mally freeze out, and some models design for the thermal
freeze-in from the thermal bath, to achieve the observed
25% energy density. It is generally thought that the DM
interacts with the SM particles weakly and moves non-
relativistically to evolve into the current structure. This
is called cold DM (CDM).

Even though the CDM provides a successful frame-
work to generate large-scale structure, consistent with
the observation, some ambiguities at small-scale struc-
ture, namely core/cusp problem, missing satellites, and
too-big-to-fail, suggest the extension of the CDM model.
The collisionless among CDM would generically produce
a cuspy density in the central region of the DM halo due
to the gravitational accumulation. On the other hand,
the observations indicate the core structure is a relatively
flat profile. This inconsistency is called the core/cusp
problem [41–47]. In contrast, the missing satellites prob-
lem comes from the number of satellite galaxies surround-
ing a cluster, which is smaller than the prediction of N-
body simulation [48–50]. A collisionless CDM is used in
the simulation and can produce a DM halo surrounded
by several sub-halos. The gravitational potential wells
produced by DM halo or sub-halos are believed to be the
seeds of galactic structure. Therefore, the numbers of
sub-halo suggested in the N-body simulation will be iden-
tified as the satellite galaxies. However, the conflict oc-
curs between the simulations and observations. Further-
more, the massive DM halos are often preferred in the N-
body simulations that infer that large galaxies should be
commonly observed. A measurement of the infall veloc-
ity of objects located around the boundaries would tell us
the mass content of the galaxy due to the Virial theorem.
It is not a regular event to see such a giant galaxy. The
name of the problem refers to too-big-to-fail, suggest-
ing this opposite preference. These three small structure
puzzles may come from the insufficient understanding of
the interaction between DM and SM particles and/or the
baryonic processes, such as supernova feedback and pho-
toionization. However, it also suggests the non-trivial
feature of DM, such as the DM self-interaction. Overall,
for the proposed DM model to solve the above problems,
it imposes the cross-section σDM of self-scattering, and
the DM’s mass mDM in a small window [28, 51–54],

0.1 cm2/g < σDM/mDM < 1 cm2/g . (1)

This can serve as a stringent constraint on the DM model
with self-interaction.

B. GW signatures and gap events

Gravity couples universally to stress tensors for all
forms of matter, including DM. Therefore, besides the

primary goal of testing the strong gravity regime for Ein-
stein’s gravity by detecting the GW from distant sources,
it also provides a viable venue to detect the sources void
of electromagnetic signals, such as the DS.

Since LIGO’s first detected BBH event GW150914 [3]
found on September 2015, LIGO and Virgo collabora-
tions have finished the third operation run (O3). They
will launch their fourth operation run (O4) in the mid-
dle of 2023. Up to now, there are about a hundred
observed gravitational events of compact binary coales-
cences (CBC), most of which are BBH events [34, 36, 55].
Among them, some are deservedly highlighted discus-
sions. For example, the first discovery of binary neutron
stars (BNS) event GW170817 [56, 57], which was also
detected by the gamma-ray detector [58] and can shed
some light on the equation of state (EoS) of dense nuclear
matter. Especially the data analysis of GW170817 shows
evidence of a nonvanishing tidal Love number; see [59] for
the more subtle discussions. Due to the considerable un-
certainty of sky location at the current LIGO/Virgo sen-
sitivity stage, detecting the companion electromagnetic
signals of BNS or binary neutron star/BH (NSBH) events
is usually challenging. For example, the other possible
BNS event GW190425 [60], or NSBH events GW200105
and GW200115 [61] do not have the detected electromag-
netic follow-up due to the high mass of GW190425 mak-
ing prompt collapse likely, and the high mass ratios of the
two NSBH events making tidal disruption of the NS un-
likely. At least, among the observed GW events up to O3,
GW170817 is the only one with detected multi-messenger
signals. The later LIGO/Virgo/KAGRA (LVK) opera-
tion is hoped to run with enhanced sensitivity, improv-
ing the GW events’ sky localization and helping find the
multi-messenger signals.

The other two LIGO/Virgo events, which fall in the
so-called mass gap regimes, are GW190521 [62] and
GW190814 [63]. The former consists of two BH with
masses about 85.3+21

−14 M⊙ and 66+17
−18, respectively. The

latter consists of a BH with a mass of 22.2−24.3M⊙ and
a companion compact object with a mass of 2.5−2.67M⊙
which is marginally beyond the maximal mass 2.5M⊙ of
a neutron star [64, 65].

The mass gap means the range of BH’ masses for which
the corresponding population of BH is rare [66]. There
are two mass gaps:

• The lower mass gap ranges from 2.5-5 M⊙ and
is mainly supported by the scarcity of the observation
events in this range [67, 68]. However, the physical rea-
son for such a mass gap is unclear. Note that the max-
imal mass of the NS roughly sets the lower bound. On
the other hand,

• The stage of pair-instability supernovae predicts the
upper mass gap of the BH’s masses in the stellar evolu-
tion, for which the electron-positron production prevents
further gravitational collapse and prefers the supernovae
explosion. The exact upper mass gap depends on the
details of the stellar evolution model [69], and the one
adopted by LIGO/Virgo [68] ranges between 50 and 150
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solar masses.
• Besides, there is a less mentioned sub-solar mass gap

between 0.2 and 1 M⊙ [70] simply because of no viable
stellar evolution channel to produce such BH unless in-
voking the primordial origin due to the density fluctua-
tion at early Universe [71].

According to LVK’s Gravitational-Wave Transient
Catalog (GWTC) of compact binary mergers up to O3
[34, 36, 55], there are about a dozen of mass-gap candi-
date events. Some may have considerable uncertainty on
the component masses due to insufficient signal-to-noise
(SNR). However, their median values fall in the mass
gap. Then, the question is, what are the sources for such
mass-gap events? There are three possible scenarios.

• The first scenario is that they are the secondary ob-
jects from previous mergers but not from the collapse
of stellar evolution. The observed population tomogra-
phy and its connection to the formation mechanism can
verify or falsify this scenario. One should wait for more
observed events to build up the correct tomography.

• The second one is that they are PBH, which rely on
the observed population tomography to be fitted to the
inflationary models.

• The third option is that they are BH mimickers
formed by some exotic DM. For a given type of DM, the
associated DS will have the specific mass-radius relation
as a prediction be verified or falsified by the observed
gravitational events. Moreover, as the mimickers of BH,
the tidal Love number (TLN) of DS should be tiny to
mimic the BH known to have zero TLN. This review will
focus on the third option, as it is an exciting interplay be-
tween GW astronomy and the mysterious part of particle
physics.

C. Dark matter models

Since there is only astrophysical evidence for DM,
which implies that DM mainly interacts with the bary-
onic matter through gravitational interaction, there is
almost no constraint on the DM models as long as
it interacts weakly with the standard model particles.
Therefore, the weak interacting massive particle (WIMP)
model is the simplest DM model. WIMP particles are al-
most non-interacting and massive enough that they will
decouple from the cosmic thermal bath in the early uni-
verse. However, it also means that the WIMP is hard to
detect by the conventional detector through its interac-
tion with the baryons. The direct search now finds no
evidence and severely constrains the masses of WIMP
particles and the constant coupling strength with the
standard model particles.

Some natural candidates for the WIMP are neutralino
or gravitino of the supersymmetric field theory or super-
gravity theory [72, 73]. However, as there is no direct
evidence for the supersymmetry from the collider exper-
iments, it then puts the physical supports of such candi-
dates with a question mark. There are other astrophys-

ical phenomena that the WIMP may not explain suffi-
ciently. For example, the core-cusp and missing satellite
problems for the dark halos are the discrepancies between
the N-body simulations based on the WIMP scenario and
the observational structures of small-scale. This then
opens the door for alternative DM models.
Since we focus on the possibility of compact DS for

this review, we will emphasize the DMmodels compatible
with such a possibility.

1. Fermionic models

Up-to-date experimental instruments are still explor-
ing the nature of DM. Depending on the motivation for
extending the SM, it could be a fundamental fermion or
a bosonic particle. In this subsection, we focus on the
fermionic nature of DM particles. Neutrinos were first
considered the DM candidate when the neutrino oscillat-
ing data did not confirm their mass scales. Though the
absolute mass of each SM neutrino is still unknown, the
oscillating data and cosmology energy density observa-
tion provide the heaviest neutrino to lie around 10−1 eV
to 10−2-eV [74–77]. It suggests that the SM neutrinos
can not explain the energy density of the missing matter.
However, the lightness of neutrino masses is a fundamen-
tal question; the famous Type-I seesaw mechanism does
provide the right-handed neutrino as a good candidate
for DM [78].
If the right-handed neutrinos νR are introduced, their

SM quantum numbers are completely neutral. It suggests
νR can be the so-called Majorana fermion (a fundamental
fermion is an anti-particle of itself), and its mass term
is purely a parameter of the theory and not constrained
by the SM gauge symmetries. The Lagrangian, which is
relevant to neutrino masses, has the form

L = LSM − Yαi l̄αHνRi −
MRi

2
ν̄cRiνRi + h.c. (2)

where LSM is the SM largrangian, H is the SM Higgs dou-
blet, lα are the SU(2)L leptonic doublet with flavor index
α, Yαi is the Yukawa couplings with i = 1, 2, 3 refers to
the assumed right-handed species. The number of right-
handed neutrinos is not restricted here, and we assume
three νR’s for illustration. Note c is the charged con-
jugation, and MRi is the Majorana mass of νRi, which
is not forbidden by the gauge symmetries, as we men-
tioned. One does not assume the global lepton number
to be necessarily conserved. The Majorana mass matrix
MRi is chosen to be diagonal without loss of generality.
After diagonalizing the 6×6 neutrino mass matrix in the
basis of (νe, νµ, ντ , νR1, νR2, νR3), one obtains the mass
eigenvalues of SM neutrinos as the form

mν =
m2
D

MR
=
Y 2v2

MR
. (3)

Here, we suppress the flavor indices, and mD = Y v is
the Dirac mass of the neutrino, with v being the vacuum
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expectation value of Higgs. The lightness of neutrino
masses can be explained by the suitable choices of the
sizes of Yαi and MRi. It was proposed that if one of the
right-handed neutrinos has a mass around the keV-scale.
It can be a good DM matter candidate and satisfy the
current neutrino oscillating data.

Besides the Type-I seesaw mechanism to generate the
small neutrino masses, one may also introduce vector
fermions with suitable quantum numbers and impose cer-
tain discrete symmetries. The neutrino masses are de-
signed to originate at quantum-loop levels; hence, the
corresponding quantity is presumably small. The lightest
discrete symmetric odd particle is stable and the candi-
date for DM. Our argument of fermionic DM in this sub-
section seems to originate from the neutrino mass mech-
anism. In general, it is unnecessary; other possibilities,
such as mirror fermions [79] and the lightest supersym-
metric R-parity-odd particles, have their motivations.

Although we will not discuss this extensively in this
review, the fermionic DM with self-interaction or weekly
interaction with the visible sector could also be the can-
didate materials to form DS or hybrid stars. However,
the requirements from not destroying the NS [80, 81] or
from the solar capture [82] put some constraints on the
interaction cross-section, hence on their masses and cou-
pling strengths. Despite that, there is still a wide range of
parameter spaces for the fermionic DM to form interest-
ing astrophysical compact objects. In principle, DM can
clump together if the density perturbations satisfy Jean’s
instability condition or if the dissipative processes due to
SIDM would drive the gravothermal evolution. A DS so-
lution is obtained by solving a static and spherically sym-
metric metric to have the Tolman-Oppenheimer-Volkoff
(TOV) equations and combine the specific EoS of the
DM model. For details, see, for example, [83–85]. For
free fermion, the M-R relation for DS would be scaled
by comparing with NS, namely mDM = 1 GeV with
MDS ≈ 1M⊙ and R⊙ ≈ 10 km. For other interesting
examples in particle physics models, the supersymmet-
ric DM to be around 100 GeV, its DS corresponds to
MDS ≈ 10−4M⊙ and R⊙ ≈ 10−3 km. And for the case
of right-handed neutrino mνR = 10 keV, the DS is about
MDS ≈ 1010M⊙ and R⊙ ≈ 1011 km. Adding the poten-
tial energy due to the SIDM will change the precise M-R
relations but not the overall orders, as we provided in the
above examples. In [83], the EoS can be abstracted from
two-body repulsive interactions, and the fermionic DM
admixed NS stability and M-R relations are evaluated
for three different cases: static, rigid rotating, and differ-
entially rotating. It is found that the third case allows
the highest mass, with a maximum of up to 1.94 M⊙
with a radius of about 10.4 km. Thus, the interacting
fermionic DM is also a promising candidate for forming
the mimickers for BH and NS. In [83], the EoS can be
abstracted from two-body repulsive interactions, and the
fermionic DM admixed NS stability and M-R relations
are evaluated for three different cases: static, rigid ro-
tating, and differentially rotating. It is found that the

third case allows the highest mass, with a maximum of
up to 1.94M⊙ with a radius of about 10.4 km. Thus, the
interacting fermionic DM is also a promising candidate
for forming the mimickers for BH and NS.
Besides, in [86], it is shown that fermion soliton stars

also exist at the non-perturbative level, with the solutions
numerically found. Then, the whole parameter space of
the system is explored, and implications for astrophysical
observations/DM searches are deduced. In particular, a
standard gas of degenerate neutrons (resp. electrons) can
support stable (sub)solar (resp. supermassive) fermion
soliton stars with compactness comparable to that of or-
dinary NS. Thus, fermion soliton stars are compelling
neutron star mimickers.

2. Bosonic models

Unlike the fermionic model, there is no degenerate
pressure for the bosonic DM model, so it is hard to form
compact boson stars for the free massive bosons with-
out the help of degenerate pressure. Surprisingly, it was
discovered in [87] that compact stars can form by intro-
ducing tiny self-interactions. This is because the self-
gravitating collapse will rapidly squeeze the boson field
into higher density so that the self-interacting repulsive
force can balance the gravitational attraction to form
compact stars. Indeed, the same effect can also be used
to resolve the core-cusp and missing satellites problems
of dark halos. In [87], the simplest self-interacting model
is considered, namely, the λ4

4 |ϕ|4 self-interaction for the
complex scalar ϕ of mass m, for which it was argued that

a compact star of mass of the order of λ
1/2
4 M3

pl/m
2 could

form if the following condition holds,

λ4M
2
pl

m2
≫ 1, (4)

where Mpl is the planck mass. Furthermore, it was also
shown in [87] that in this limit, the scalar field inside the
compact star is in a steady state and can be approxi-
mated by a perfect fluid with the following form of the
equation of state (EoS) 1,

ρ = 3p+ 4

√
3m4p

2λ4
(5)

where p and ρ are the pressure and energy density, respec-
tively. It is then easy to see that this kind of equation of
state can yield compact stars by solving the TOV equa-
tion as long as (4) holds. Besides, due to the simplicity of
this model, the cross-section of the self-scattering can be

1 However, in the form of (5) it is more clear to see how the mass
and self-coupling modify the EoS from ρ = 3p, which is the one
for the free massless scalar.
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obtained to be σDM = 9λ2

16πm2 , by which we can translate
the constraint (1) into the following [88]

30
( m

GeV

)3/2

< λ4 < 90
( m

GeV

)3/2

. (6)

Given the mass m, this constrains the self-interaction λ4
in a very narrow window. This is good for falsifying the
model by other constraints, such as the DS candidates
from GW events.

Motivated by [87], one can consider other self-
interacting bosonic field theories as possible DM can-
didates, which, most importantly, can also yield com-
pact stars and solve dark halo problems. We now know
that the Higgs field is a typical self-interacting scalar.
Higher theories for the UV completion of standard model
or gravity, such as grand unified theory or string the-
ory, can invoke more scalars with exotic interactions, for
example, the dilatons and axons. On the other hand,
from the bottom up, we can also have the boson field
as the mean field for the Bose-Einsten condensation to
yield some superfluid/superconductor states, which can
also be the ingredient for the DM and compact boson
stars. Later, we will discuss these possibilities and the
associated EoSs and boson star configurations.

3. Composite models

The collisionless CDM encounters difficulty explaining
the core density profile, missing satellites, and the too-
big-to-fail problems described in previous sections. The
idea that DM is composed of new fundamental particles
was proposed. This kind of DM is often called Dark nu-
clei or Dark atoms. The mechanism is to assume the
strongly coupled fundamental particles form composite
states similar to the quarks form hadrons. In general,
due to the hypothetical strong force, the van der Waals
force will produce the effects of DM self-interaction. In
such cases, the problems of small-scale structure forma-
tion can be reconciled. One of the advantages of this
scenario is that one may have a series of mass spectra of
new composite particles. The variety of composite states
could be used to explain DM existence and provide the
excess of cosmic rays and DM abundance. We know of
large self-interactions among the composite hadrons via
the strong nuclear force in the SM. It is, therefore, nat-
ural to imagine and investigate the hypothesis that DM-
DM self-interactions arise from a new but similar type of
composite dynamics. Although suitable parameters and
mechanisms to produce the correct relic abundance and
the mass spectrum are necessary, in the present Universe,
the mass density of DM is about five times larger than
that of the SM baryon. This coincidence can be nat-
urally explained when the DM number density has the
exact origin as the baryon asymmetry of the Universe,
and the DM particle mass is in the GeV range. Such
a framework is called asymmetric dark matter (ADM).
It is interesting to notice that the mass scale of DM is

around the GeV range for various ADM models. In par-
ticular, the scarcity of anti-particles in the thermal bath
can allow the formation of larger composite bound states
like dark nuclei and dark atoms, leading to a very rich
phenomenology.
The typical idea behind such Composite DM models

is to provide a stable DM candidate thanks to accidental
symmetries in the Lagrangian, similar to proton stabil-
ity and baryon number conservation in QCD. The visible
sector is thus enlarged with a Dark Sector (DS) made of
new fermions ψ, called dark quarks with quantum num-
bers of Dark Color based on a certain non-Abelian gauge
symmetry such as SU(N) or SO(N). The dark quarks are
assumed to be in the fundamental representation of dark
color and vector-like representation under the SM. The
Lagrangian is given by

LDS = −1

4
Gµν,aD GDµν,a + ψ̄i(iγµD

µ −mψ)ψi

+yijψiψjH + h.c. (7)

Here, the vector-fermion of dark quark ψ is assumed,
and its mass mψ is a gauge-invariant quantity. The mass
spectrum of bound states of ψ is related to the confine-
ment scale ΛDS as an analogy to QCD. The cosmological
abundance of DM can also be determined by ΛDS .
It is also interesting to notice that a new fundamental

fermion with QCD SU(3)C fundamental representation
or adjoint representation can form the bound states that
satisfy DM’s features. The mass scale of such DM lies
around 12.5 TeV.
Here, we illustrate the idea of composite DM by intro-

ducing a compelling model named ”Quark Nugget Dark
Matter.” The original idea was based on ref. [89] and
other proposals afterin [90–93]. In this kind of model,
the DM is formed by quark and/or antiquark nuggets of
huge baryon density (the baryon number is of the order
of |B| > 1025). The nuggets were produced during the
QCD phase transition with a correlation length of the or-
der of the inverse of axion mass (m−1

a ). At the same time,
its stability is protected by the axion domain walls [94].
An additional feature of this model is the explanation of
the matter-antimatter asymmetry via the strong CP ax-
ion θ term, and the abundance of the visible matter to
DM matter densities is close to the observed ratio 1:5.
Therefore, in the case of the Quark Nugget model, the
fundamental interaction between DM and the ordinary
matter is strong interaction rather than the weekly cou-
pled strength. Its abundance is provided by the ratio
Ωvisible

ΩDM
≈ 1

5 , while due to their large masses, the number
density is small. As a result, this model satisfies current
DM direct and indirect observations. The M-R relations
of DS composed by the Quark Nuggets are not clear at
the moment, and one may resolve the question if the ef-
fective theory for the large baryon number fields could be
obtained. Finally, one commend to make that our review
paper is to study the potential GW signals of DS. An ob-
vious question is the formation of DS, and we found it is
generically difficult for the DM fields to provide a good
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mechanism. The quark nuggets or composite DM models
might solve the puzzle.

4. Primordial black holes

The first discussion on the formation of BH in the early
universe was given by Zeldovich and Novikov in 1967 [95].
Independently, Hawking focused on the gravitationally
collapsed object with much smaller masses in the early
universe in 1971 [96]. Furthermore, the popular model
of PBH due to the inhomogeneities of the early Universe
was proposed by Carr and Hawking in 1974 [97]. Ad-
ditionally, the idea of PBH regarded as DM was first
proposed by Capline in 1975 [98].

Due to the quantum properties of BH proposed by
Hawking, one would be interested in the well-known
evaporation effect [99, 100]. From the discussion, PBH
with a mass larger than 1015g are unaffected by Hawking
radiation, and the corresponding lifetime is long enough
than the age of the Universe [96, 101]. Recall from
the constraint of Big Bang nucleosynthesis (BBN); the
baryon energy density is at most 5% of critical density
[102]. Ordinary BH are formed at late times, all bary-
onic, and cannot be the candidate for DM. However, PBH
are formed in the radiation-dominated era (RD) before
BBN and are not constrained by BBN results. Therefore,
the non-baryonic property of PBH leads them to cold
dark matter (CDM) candidates. PBH mass spectrum
and their relic abundance have been estimated in [103].
In addition, the possible mass windows of PBH have been
reviewed in [104]. All the up-to-date constraints of PBH
are discussed in [105].

Below, we give a sketch of the basics of PBH. For more
details, the readers can find in recent reviews [104–107].

a. Formation— The PBH mass can be estimated
through the energy density at the RD. The equation of
state can be described in the simple form of p = wρ with
w = 1/3 at RD. So the energy density and scale factor are
given by ρ ∝ a−4 and a ∝ t1/2. The PBH mass would
approximately have an order of horizon mass [96, 97]

MPBH ∼MH ∼ c3t

G
∼ 1015

(
t

10−23 s

)
g ∼ 105

(
t

1 s

)
M⊙.

(8)

So PBH can have mass about 10−5 g and 105M⊙ if they
form at Planck time tpl ∼ 10−43 s and t ∼ 1 s respec-
tively. There are other formation mechanisms, for exam-
ple, models of pressure reduction [108–110], cosmic string
loops [111–115], vacuum bubbles [116–122], domain walls
[123–125] and string necklaces [126, 127].

The most popular formation model is the gravitational
collapse of overdense regions in the early RD universe
[96]. This mechanism can be easily realized by connecting
density perturbation with curvature perturbation. One
can consider a homogeneous and isotropic universe de-
scribed by a spatially flat Robertson–Walker (RW) uni-

verse with the scale factor a(t), and its dynamical evolu-
tion is governed by the background Friedmann equation

H2 =
8πG

3
ρ̄, (9)

where H := ȧ/a with ȧ ≡ da/dt and ρ̄ is the background
energy density. However, we expect a PBH to form at a
dense local region, and the energy density could be un-
derstood to be perturbed. The locally perturbed region
is approximately a spherically symmetric region of posi-
tive curvature K and can be described by the metric of
the closed universe model, and its dynamical evolution
is again governed by the Friedmann equation but with
perturbed energy density,

H2 =
8πG

3
ρ− K

a2
. (10)

As a result, the density contrast should be

δ :=
ρ− ρ̄

ρ̄
=

K

H2a2
. (11)

The density contrast δ will evolve up to the order of
unity at the time of PBH formation tf, which implies
K/a2 = 8πGρ/3. The collapse can be described by Jeans’
instability if the length scale is greater than the Jeans’
length

λJ =
2πa

kJ
∼ cs
H

= cstf (12)

where the Jeans wavenumber is

kJ =
a

cs

√
4πGρ̄ ≈ a

cs
H. (13)

Thus, we obtain δ(tf) =
K
c2sk

2
J
. Since δ(tf) ≃ 1, this leads

to

K ≈ c2sk
2
J, at t = tf . (14)

Since the density fluctuation freezes after crossing the
horizon, that determines the spectrum of density con-
trast. The fluctuation with wavenumber k exits the hori-
zon at tk when k = H(tk)a(tk). Thus, the density con-
trast for mode k is

δ(tk) =
K

H2(tk)a2(tk)
=
c2sk

2
J

k2
>
c2sk

2
J

k2J
= c2s. (15)

Thus, in the RD era, we can obtain the threshold value

δc := c2s =
dp

dρ
= w =

1

3
. (16)
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b. Abundance— We can write the mass fractions of
PBH at the present time t0 and at the formation time tf,
respectively, as

f =
ΩPBH,0

ΩDM,0
and β =

ΩPBH,f

ΩR,f
=

ΩPBH,0

ΩR,0
af, (17)

where Ω(z) = ρ(z)/ρc is the energy density parame-
ter. Through the condition of matter-radiation equality
ρR,eq = ρDM,eq, or ΩR,0 = ΩDM,0 aeq with aeq = a(teq),
we can a relation of mass fractions of PBH

f =
aeq
af
β =

1 + zf
1 + zeq

β, (18)

with zeq ≈ 3500.
The size of the PBH formed at tf will approximately be

the contemporary Hubble radius. From the Friedmann
equation in the RD era,

H2
f =

8πG

3
ρ̄f =

4π3G

45
g∗,f T

4
f , (19)

the Hubble radius at the formation time will be

af ∝ g
−1/4
∗,f T−1

f . (20)

Moreover, we can also determine the typical mass of
PBH, which is the mass contained inside the Hubble hori-
zon, i.e.,

MPBH = γMH(tf) = γρ̄f
4π

3
H−3

f =
γ

2G
H−1

f . (21)

where γ is a numerical efficiency factor and depends on
the details of gravitational collapse, which can be eval-
uated as γ ≈ 0.2 [103]. See also (8) for the numerical
values of the mass span of PBH.

To estimate the initial abundance of PBH at the for-
mation time, the energy density contrast should be larger
than its threshold value δc. If the distribution of primor-
dial density perturbations fluctuations is assumed to be
a Gaussian distribution

Pg(δ) =
1√

2πσ(MPBH)
exp

(
δ2

2σ2(MPBH)

)
(22)

with deviation σ(MPBH) obtained by

σ(MPBH) =

∫
dk

k
Pδ(k)W 2(k), (23)

where Pδ is the power spectrum of the density fluctuation
and W (k) is the windows function of the scale 1/(aH).
The mass distribution function of PBH can be evaluated
according to the Press-Schechter theory [128], and the
result is

β(MPBH) =

∫ ∞

δc

γPg(δ)dδ =
γ

2
erfc νc ≈

γ

2

e−ν
2
c

√
πνc

. (24)

where we have defined ν = δ/(
√
2σ), and the complemen-

tary error function erfc z = 1 − erf z = 2√
π

∫∞
z
e−t

2

dt ≈
e−z2

√
πz

.

In summary, we see that the mass spectrum of PBH
covers a wide range. This will contrast the mass spectrum
of DS with a limited mass spectrum constrained by the
equation of state for DM.
Moreover, two exciting observations of supermassive

BH (SMBH) in the supergiant elliptical galaxy Messier
87 (M87), and in the Milky Way’s center are given by
the Event Horizon Telescope (EHT). The formation of
SMBH is still a mystery in the field of research. It is
concluded by Volonteri that the stellar remnant BH of
the accretion is hardly a progenitor of the initial mass
of the SMBH [129]. However, the sufficiently large PBH
might grow enough by accretion and could still constitute
the seeds for the SMBH [130, 131]. Recent observational
event of GW190521 from GW by LIGO-Virgo detectors
shows the first detection of the intermediate-mass BH
(IMBH) [132]. The merger event of GW190521 indicates
one of the components is more massive than the mass gap
of BH, which could be accounted for by a PBH origin.
Of course, these events could also be explained as the
black-hole mimickers of some DS, which we will review
below.

III. DARK AND HYBRID STARS

A. Compact stars and equation of state

BH are the most compact astrophysical objects, so
their mergers can produce detectable strong GW to dis-
tant observers. By definition, the compactness C :=
M/rH of a BH is 0.5 in the G = c = h̄ = 1 units. To
have compact objects other than BH produce detectable
GW by ground-based detectors, the compactness of such
objects should be comparable to the ones of BH2, for ex-
ample, around 0.1 to 0.3. This requires some repulsive
force of dense matter to counteract the immense grav-
itational inward force in the late stage of gravitational
collapse to avoid the formation of BH. Such an endur-
ing force is so huge that such matter phase is exotic and
cannot be found or formed in the Earth’s experiments.
That is, they can only form in the strong gravity regions
of the Universe. Once formed, these matter phases have
the exotic equation of states uncommon to daily life.
One natural origin of such repulsive force is the degen-

erate pressure of fermions. For example, the electrons’
degenerate pressure helps to form the white dwarfs whose

2 Binary white dwarfs are much less compact but are standard
space-based detectors (like eLISA) sources. The scaling of the
Newtonian estimate for the merger frequency with compactness
and mass is given explicitly in [133].
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C’s are about 10−3. Reaching the compactness compara-
ble to BH requires higher degenerate pressure provided
by neutrons or quarks. This is why NS are the most
natural candidates as the sources of GW besides BH.
However, due to the complication of nuclear theory, such
as quantum chromodynamics of describing the neutron
or quark fluids, it is hard to derive the EoS of the dense
nuclear matter from even the first principle method. De-
spite that, there are many proposed EoS obtained from
alternative or hybrid methods for the dense nuclear mat-
ter inside the NS, such as SLy4 [134], Apr4 [135] and
SKb [136]. We may expect this EoS to be pinned down
by observing enough GW events of BNS mergers or su-
pernovae, EM observations from NICER, etc. [137].

On the other hand, the DM with interactions opens
avenues to the exotic equations of state. The simplest
equation of states from the free fermionic DM of mass m
takes the following form [33]

ρ =
m4

8π2

[
x
√
1 + x2(2x2 + 1)− ln(x+

√
1 + x2)

]
, (25)

p =
m4

8π2

[
x
√
1 + x2(2x2/3− 1) + ln(x+

√
1 + x2)

]
(26)

where x = kF /m with kF the Fermi momentum. One
can also add various interactions to the fermions to ob-
tain more equations of state. As we will see later, some
of these equations of state can yield compactness compa-
rable to one of the BH.

Besides the fermionic DM, there also exist bosonic
ones. Unlike the fermions, the bosons have no degen-
erate pressure. Therefore, we will not expect to form
compact stars from the free bosons. On the other hand,
it is natural to expect that the bosonic DM can have self-
interaction, as discussed earlier, even though they almost
do not interact with standard model particles. Hence, the
self-interacting force provides the enduring force against
gravitational collapse. Indeed, the self-interactions pro-
vide exotic state equations to form the compact boson
stars. The first example is proposed in [87] for the scalar

with the potential V (ϕ) = m2

2 |ϕ|2 + λ4

4 |ϕ|4 theory, which
yields the following equation of state in the isotropic limit
( λ
m2 ≫ 1),

ρ

ρ⊙
=

3p

ρ⊙
+ B4

√
p

ρ⊙
(27)

where B4 = 0.08√
λ4
( m
GeV )2 a free parameter. In the above,

we have adopted the astrophysical units associated with
the solar mass M⊙:

r⊙ = GNM⊙/c
2, ρ⊙ =M⊙/r

3
⊙, p⊙ = c2ρ⊙. (28)

To follow the same line, one can obtain more exotic
equations of state for various self-interacting dark bo-
son models. Below, we give some examples. The first

example is the extension of [87] with V (ϕ) = m2

2 |ϕ|2 +
1
n

λn

Φn−4
0

|ϕ|n. This model has an approximate good UV Zn

symmetry. The corresponding isotropic EoS is

ρ

ρ⊙
=
n+ 2

n− 2

p

ρ⊙
+ Bn(

p

ρ⊙
)

2
n (29)

where Bn = ( 2n
n−2 )

2
n (

ρn,0

ρ⊙
)1−

2
n with ρn,0 =

m2M2
pl

4πΛn
with

Λn = (λn
Φ2

0

m2 )
2

n−2
M2

pl

Φ2
0
, and Mpl the planck mass. The

isotropic limit holds when Λn ≫ 1.
The second example is the Liouville field with V (ϕ) =

m2

2β2

[
eβ

2|ϕ|2 − 1
]
, which is a typical dilaton field in the

context of low energy string theory. The corresponding
isotropic EoS is parametrized as follows:

ρ

ρ⊙
= B

(
σ2
∗e
σ2
∗ + eσ

2
∗ − 1

)
, (30)

p

ρ⊙
= B

(
σ2
∗e
σ2
∗ − eσ

2
∗ − 1

)
, (31)

where the free parameter B = ρ0
ρ⊙

with ρ0 =
m2M2

pl

4πΛ and

Λ = βMpl. The parameter σ∗ is the scaled ϕ, and the
isotropic limit holds when Λ ≫ 1. From this EoS, we
can solve the TOV equation and find that the maximum
compactness of the stable stars is 0.194.
The third example is cosh-Gordon field with V (ϕ) =

m2

β2 [cosh(β
√

|ϕ|2) − 1]. This model is motivated by the

vortex dynamics of the superfluid and can be seen as a
kind of superfluid DM. The corresponding EoS in the
isotropic limit is

ρ

ρ⊙
= B

(
1

2
σ∗ sinhσ∗ + coshσ∗ − 1

)
, (32)

p

ρ⊙
= B

(
1

2
σ∗ sinhσ∗ − coshσ∗ + 1

)
. (33)

The free parameter B is defined as in the case of Liouville
field, so are the parameter Λ with Λ ≫ 1 the isotropic
limit. The maximum compactness of the stable stars
from this EoS is 0.182.
The fourth example is the sine-Gordon field with

V (ϕ) = m2

β2 [1 − cos(β
√
|ϕ|2)]. This model is a typical

one for the axion field. The corresponding EoS in the
isotropic limit is

ρ

ρ⊙
= B

(
1

2
σ∗ sinσ∗ − cosσ∗ + 1

)
, (34)

p

ρ⊙
= B

(
1

2
σ∗ sinσ∗ + cosσ∗ − 1

)
. (35)

The free parameter B is defined as in the case of Liouville
field, so are the parameter Λ with Λ ≫ 1 the isotropic
limit. However, this type of EoS has the sinusoidal fea-
ture, yielding sensible compact stars only for some range
of σ∗.
The last example is the one for constructing the

non-topological soliton stars [138–140] with V (ϕ) =
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1
2m

2|ϕ|2(1 − β2|ϕ|2)2. The corresponding EoS in the
isotropic limit is

ρ

ρ⊙
= Bσ2

∗(1− σ2
∗)(1− 2σ2

∗) , (36)

p

ρ⊙
= Bσ4

∗(σ
2
∗ − 1) . (37)

The free parameter B is defined as in the case of Liouville
field, so are the parameter Λ with Λ ≫ 1 the isotropic
limit.

In Fig. 2, we compare the behaviors of the above EoSs.

FIG. 2: An illustration of the abovementioned EoSs
shows their relative behaviors. The adjusting parame-
ters Bn and B are chosen to make the maximal masses of
the boson stars have several solar masses. We consider p
up to 10−3 since the typical range of the corresponding
central pressure is between 10−6 to 10−2 as a reference.
Here ρ and p are measured in the unit of ρ⊙.

B. Tolman-Oppenheimer-Volkoff equations

The EoSs give the relation between ρ and p, then the
mass and radius of the star can be fixed through the
following procedure.

For a static star with spherical symmetry, consider the
Schawarzchild metric

ds2 = −e2ϕ(r)c2dt2 +

(
1− 2GNm(r)

rc2

)−1

dr2 + r2dΩ . (38)

Or, for later convenience,

ds2 = −B(r)dt2 +A(r)dr2 + r2dΩ . (39)

The Einstein equations read,

Gµν =
8π

c4
GNTµν , (40)

where Gµν can be constructed from the expression of the met-
ric gµν , and the energy-momentum tensor is

Tµν = (ρ+ p/c2)uµuν + pgµν . (41)

Especially in the static case, we can choose uµ = (c, 0, 0, 0).
Then, from the Einstein equation and the conservation of

the energy-momentum tensor, one can obtain the TOV equa-
tions [141, 142] , and here we present its multi-component
version [143, 144] with the convention of G = c = 1:

dpI
dr

= −(ρI + pI)
dϕ

dr
,

dmI

dr
= 4πr2ρ,

dϕ

dr
=

m+ 4πr3p

r(r − 2m)
,

(42)
where I marks different fluids, m(r) =

∑
I mI is the total

mass inside radius r, total pressure p =
∑

I pI , and total
energy density ρ =

∑
I ρI with the contribution from each

fluid, and the Newton potential ϕ := 1
2
ln(−gtt) is introduced

in the metric (38). Taking the single component case, for
example, since there are four unknowns as functions of r but
with only three equations, we need one more equation to solve
them. In this case, the EoS provides the relation between p
and ρ.

Given the initial pressure in the center, we can obtain the
solution with those equations. The size of the star radius R is
taken when p(r = R) = 0, and the total star mass M is given
by m(R).

C. Tidal Love number

When a static and spherically symmetric star is located
under an external quadrupolar tidal field Eij , it develops a
quadrupole moment Qij , both appeared in the metric at large
distance r [145–147],

gtt = −1 +
2M

r
+

3Qij

r3

(
xixj

r2
− 1

3
δij

)
+O

(
1

r3

)
−Eijx

ixj +O
(
r3
)
, (43)

where M = m(R) is the star’s total mass.
Then the Tidal Love number (TLN) Λ is introduced, de-

fined by the coefficient to linear order,

Qµν = −M5Λ Eµν . (44)

Affected by the external tidal field, the metric also suffers a
perturbation hµν , and to its linear order, we have

gµν = g(0)µν + hµν , (45)

where g
(0)
µν stands for the unperturbed BH metric. Apply the

Regge-Wheeler gauge and restrict to the l = 2, static and
even-parity perturbations, hµν can be expressed as

hµν = Y2m(θ, φ)× (46)

diag
[
e−ν(r)H0(r), eλ(r)H2(r), r2K(r), r2 sin2 θK(r)

]
.

Then, from the perturbed Einstein equation, we find that
H2 = H0 ≡ H, which satisfies the differential equation:

0 = H ′′ +H ′
[
2

r
+ eλ

(
2m(r)

r2
+ 4πr (p− ρ)

)]
+H

[
−6eλ

r2
+ 4πeλ

(
5ρ+ 9p+

ρ+ p

(dp/dρ)

)
− ν′2

]
. (47)

For later convenience, we can introduce y(r) := rH ′(r)/H(r),
then the second order differential equation forH becomes first
order:

ry′ + y2 + Py + r2Q = 0 , (48)
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where

P (r) = (1 + 4πr2(p− ρ))/(1− 2m/r), (49)

Q(r) = 4π
5ρ+ 9p+

∑
I

ρI+pI
dpI/dρI

− 6
4πr2

1− 2m/r
− 4ϕ′2, (50)

and the boundary condition is now simply y(0) = 2. Notice
that the above equations apply to the multi-fluid case, which
is also rigorously derived from the Einstein equation, and the
main difference from the single-fluid case is encoded in the∑

I
ρI+pI
dpI/dρI

term of (50).

Once (48) is solved, the TLN Λ can be obtained from an
expression[147, 148] of Y ≡ y(R) and the “compactness” C =
M/R,

Λ =
16

15
(1− 2C)2 [2 + 2C (Y − 1)− Y ]×{

2C (6− 3Y + 3C(5Y − 8)) (51)

+ 4C3 [13− 11Y + C(3Y − 2) + 2C2(1 + Y )
]

+ 3(1− 2C)2 [2− Y + 2C(Y − 1)] log (1− 2C)

}−1

.

D. Scaling symmetry of TOV and TLN
configurations

By taking a close look into the Mass-Radius curves and
TLN-Mass curves for the same series of EoSs, we find that
there is a scaling symmetry in the TOV equations and the
TLN equation. For the self-similarity in M-R curves, later, we
notice that it is already discovered in [33] with an equivalent
description, i.e., rewriting TOV into a dimensionless form.
While for TLN-Mass curves, the observation is new.

The EoS can usually be described by a pair of parameter
functions in the form of

ρ

ρ⊙
= B f(σ∗) , (52)

p

ρ⊙
= B g(σ∗) , (53)

where f and g are some arbitrary functions, and B is a control
parameter. Then we can confirm that, if B → kB, then p →
kp is consitent with ρ → kρ.

And it is easy to check that the TOV equation is invariant
under the symmetric transformation:

ρ → kρ , (54)

p → kp , (55)

m → 1√
k
m , (56)

r → 1√
k
r . (57)

That is to say, if we set B → kB, then the variables change
according to the above, while the “compactness” C = M/R
remains the same.

Furthermore, TLN also has the same symmetry. From the
previous section, it is obvious that Λ does not change if we
alter p → kp and ρ → kρ simultaneously, since then we have
m → 1√

k
m and r → 1√

k
r, while H and Λ are homogeneous

yi xi ai bi ci di ei

Ī λ̄(tid) 1.47 0.0817 0.0149 2.87× 10−4 −3.64× 10−5

Ī Q̄ 1.35 0.697 -0.143 9.94× 10−2 −1.24× 10−2

Q̄ λ̄(tid) 0.194 0.0936 0.0474 −4.21× 10−3 1.23× 10−4

TABLE I: (Taken from [149]). The fitting values in (58)
for the I-Love-Q relations, extracted from 7 NS EoS and

3 QS EoS.

functions in the order of m and r so that the 1√
k
scalings will

all cancel out.
That is to say, if the EoS can be written in the form of

(52) and (53) when we alter the parameter B → kB, the M-R
curves will be similar figures with the ratio of 1√

k
. In contrast,

the TLN-M curves will be magnified by 1√
k
only the M axis

alone. The maximum compactness and the minimum TLN
will remain unchanged when changing B.

We must emphasize that one analytic EoS is generally easy
to rewrite in the form of (52) and (53). For example, if we
consider a polytropic EoS ρ = αpγ , then it is equivalent to

set f(σ∗) = σ∗, g(σ∗) = σγ
∗ and B = α

1
1−γ .

E. I-Love-Q relation

A neutron star (NS) or quark star (Q) is characterized by
macroscopic quantities such as mass M , spin angular momen-
tum J , angular velocity Ω, the moment of inertia I = J/Ω,
quadrupole moment Q and TLN Λ (or their dimensionless
counterparts Ī = I/M3, Q̄ = −Q/(MJ2), and Λ̄ = Λ/M5,
respectively). Since these macroscopic quantities are self-
consistently determined from the dynamical equations with
a definite EoS, they should depend strongly on the EoS. Sur-
prisingly, it is observed [149] that some of these quantities
obey universal relations, which are not sensitive to the EoS.
They relate the reduced quantities Ī, Λ̄ and Q̄, and are named
as I-Love-Q relations.

In detail, taking any two of those above three reduced quan-
tities and denoting them as yi and xi, the I-Love-Q relations
take the following form on a log-log scale,

ln yi = ai + bi lnxi + ci(lnxi)
2 + di(lnxi)

3 + ei(lnxi)
4, (58)

with all the coefficients shown in Table I, which barely varied
while changing the EoS. For NS, those coefficients are fitted
using six phenomenological EoS including APR [135], SLy
[134], LS220 [150], Shen [151], PS [152] and PCL2 [153], and

one polytropic EoS ρ = Kp1/2. For QS, three EoS are applied:
SQM1, SQM2, and SQM3 [153].

We also report that similar relationships exist for DS EoS
[154], as the Ī-Λ̄ relation illustrated in Fig. 3, and also the Ī-Q̄
and Q̄-Λ̄ relations. In fact, for ϕn EoS, the relation coincides
with the neutron star case, with a slight deviation starting
from n = 8. This is predictable because when p is small,
they reduce to single polytropic neutron EoS ρ = pγ , with
0 ≤ γ ≤ 1/2, and it is the small p part that dominates the
behavior of I-Love-Q relation. The Liouville EoS and cosh-
Gordon EoS share the same type of I-Love-Q relation as the
neutron case, implying that the I-Love-Q relation is universal
for compact stars.
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FIG. 3: (Taken from [154]). The relation between
reduced moment-of-inertia Ī and tidal Love number Λ̄

for 4 DS EoS.

F. Hybrid stars

Due to the mixture of baryonic matter and DM in the Uni-
verse, it is reasonable to speculate the existence of hybrid stars
made of both. Since DM almost does not interact with the
baryonic ones, and we have little idea of the nature of DM, it
is hard to pin down the internal structure of the hybrid stars.
By simply classifying the geometric setup, we can have three
types of hybrid stars [155, 156]. The first type (called Scenario
I) is to have a neutron core covered by a DM shell, and the
second type (called Scenario II) is to have a DM core covered
by a neutron shell. Admittedly, we do not have a mecha-
nism to form a robust domain wall between the core and the
shell, such as the one usually adopted by the mechanism of
spontaneous symmetry breaking; we assume some unknown
mechanism may support such kinds of hybrid stars. There-
fore, a more natural type (called Scenario III) is to have mixed
baryonic and DM in the inner core but with one of them left
in the outer shell. Due to the different inner structures, these
hybrid stars should have different mass-radius relations and
tidal deformability, which can be distinguished among them-
selves and from the pure neutron and DS. Of course, this will
add up the variety of compact stars and cause more difficulty
when identifying the sources of the gravitational events. In
[155, 156], all three scenarios have been studied and adopted
to fit some GW events. Below, we will review some essential
ingredients of hybrid stars in [155, 156].

1. Junction conditions

Because of the domain wall structure inside the hybrid stars
of Scenario I and II, we need to impose appropriate junction
conditions when solving the TOV configurations and then cal-
culating the associated tidal Love numbers. Before that, the
first question is how to determine the inner core’s size or the
domain wall’s position denoted by rW , upon which we impose
the junction condition. As we can imagine, the value of rW
should be related to the formation mechanism of the domain

wall. Before we have such a mechanism to determine rW dy-
namically, we can only treat it as a free parameter in Scenario
I and II. On the other hand, in Scenario III, rW can be de-
termined by solving TOV equations for the pure neutron or
DS.

Given the initial value for the core pressure, we then evolve
the single-component TOV equations to obtain the pressure
pW at the domain wall located at r = rW . We require the
pressure to be continuous across the domain wall. Then there
is a jump of energy density at the domain wall due to the
change of the EoS, i.e., ∆ρp = ρ(pW + 0) − ρ(pW − 0), or
equivalently ∆ρp = − (ρ(rW + 0)− ρ(rW − 0)) ≡ −∆ρ since
p decreases as r increases. The discontinuity ∆ρp, however,
can be determined by requiring the continuity of the sound
speed at the domain wall,

dρ

dp
=

1

c2s
=

dρ

dp

∣∣∣∣
p ̸=pW

+∆ρp δ(p− pW ) . (59)

Similarly, when calculating the TLN for a given TOV con-
figuration of Scenario I and II hybrid stars, we need to inte-
grate (48) across the domain wall. Only the terms propor-
tional to δ-function can contribute to this integration. Thus,
(48) can be reduced to [148]

ry′(r)
∣∣
r=rW

+ r24πeλ(r) (ρ(r) + p(r))
dρ

dp

∣∣
r=rW

= 0 . (60)

Making use of dρ
dp

= dρ
dr

1
dp/dr

and dρ
dr
|r=rW = ∆ρ δ(r − rW ),

we have

∆y ≡ y(rW + 0)− y(rW − 0) =
∆ρ

p+m(rW )/(4πr3W )
. (61)

Then, the TOV and TLN for scenarios I and II can be solved
using the above junction conditions.

2. Stability criteria

After solving a TOV configuration, it is essential to check
its stability by studying the linear perturbation. There are
various linear modes; the simplest one is radial oscillation,
which obeys the master equations derived from the linearized
Einstein equation and conservation equation of stress tensor.
If there is no growing mode, then the TOV configuration is
stable. A detailed derivation for the master equation for a
given set of the equation of states of multiple fluids can be
found in [157], and its application to DM admixed NS can
be found in [158]. By the same author, a direct study of the
linear stability of the boson stars and hybrid stars based on
the scalar-tensor theory can be found in [159, 160].

If limiting the discussion to a single-fluid star, Here
we can introduce a more intuitive but empirical criterion
based on the Sturm-Liouville analysis of the radial oscilla-
tion eigenmodes to judge the stability of the compact stars
based on their mass-radius relation. This is the so-called
Bardeen–Thorne–Meltzer (BTM) criteria [161]. The BTM
criteria are stated as follows. In the direction of increas-
ing the core pressure along the mass-radius curve, one sta-
ble mode becomes unstable whenever an extremum is passed
in the counterclockwise sense. Reversely, an unstable mode
becomes stable if an extremum is passed clockwise. The orig-
inal BTM criteria require transversing the mass-radius curve
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by starting from stable planet configurations with low enough
core pressure. In practice, it is more useful to argue the BTM
criteria in a reverse way by traveling along the mass-radius
curve to decrease core pressure to avoid the requirement of
the above initial condition. We call this Reverse BTM cri-
teria [155, 156], which also applies to the multi-fluid cases,
states as follows. Whenever an extremum is passed along the
mass-radius curve in either direction of increasing or decreas-
ing the core pressure, a stable mode becomes unstable if the
curve bends counterclockwise. Otherwise, an unstable mode
becomes stable.

By applying the Reverse BTM criteria, one can ascertain
the unstable regime on the mass-radius curve but can only
confirm the stable regime if starting the travel from a stable
regime. Therefore, it is easy to find the stable regime on the
M -R relation for the pure neutron or DS using the (Reverse)
BTM criteria since we know the starting stable region.

3. Examples

Up to the current observations of GW (GW) events, there
is insufficient data and accuracy in telling the constituents
of an observed compact star candidate. This is because the
GW data can give the mass and inaccurate TLN, yielding
high degeneracy in the parameter space when fitting the EoS.
Therefore, it will not provide any sensible insight to identify
the observed compact star candidate as some neutron, dark
or hybrid star. Instead, we should use the GW data to fix
the parameter of a given EoS. If we assume the DM model is
unique for its associated EoS, the different observed compact
candidates should yield the same EoS.

In [155, 156], we have adopted this strategy to obtain the
parameters of some EoS by fitting to some GW events with
some possible compact star candidates. For example, in [156],
we have fitted the parameter B of (27) for the GW190425
based on the Scenario I and II with three different choices of
EoSs for the dense neutrons: SLy4 EoS [134], APR4 [135] and
SKb [136]. The result is shown in Table II.

TYPE Scenario I Scenario II

B4 rW (km) B4 rW (km)

SLy4 0.07+0.09
−0.02 6.44+1.98

−2.85 0.05+0.04
−0.02 10.29+3.49

−4.10

APR4 0.07+0.10
−0.02 6.02+2.05

−2.74 0.05+0.04
−0.03 9.98+3.46

−3.69

SKb 0.08+0.16
−0.03 6.95+2.06

−2.89 0.05+0.05
−0.03 9.78+3.65

−4.23

TABLE II: The inferred best-fitted values of the EoS pa-
rameter B4 and the core-radius rW for scenario I & II
of hybrid stars, with three different EoSs for dense neu-
trons.

We see that the model parameters B4 and rW are not so
sensitive to the chosen EoS for the dense neutrons. Moreover,
if we also require the SIDM to explain the dark halo problems,
then there is a further constraint on the cross-section σDM

of self-scattering, which means (6) should also be satisfied.
Combining this constraint with the PE results of Table II,
we can put the following constraints on the mass m and the
coupling λ4 of ϕ4 SIDM assuming SLy4 for the EoS of dense

neutrons,

2.68GeV < m < 10.53GeV, 131 < λ4 < 3076 (62)

for the scenario I, and

1.78GeV < m < 6.65GeV, 71 < λ4 < 1542 (63)

for scenario II. The future GW events with the compact star
candidates can be used to rule out or reinforce the above
prediction.

G. Possible formation mechanism

1. Capture mechanism

The formation of a DS is an interesting issue, particularly
for the potential signals of GW produced by such exotic stel-
lar objects. Here, we provide a particle scale process of DM
particles captured by stellar objects. Essentially, this mech-
anism is difficult for the DS formation since the capture DM
number is too small compared with the stellar objects. An
estimation for the capture DM mass to be around 1011 kg for
the Sun. The idea is similar to DM direct detection processes.
An underground laboratory is needed to search for the signals
of the collision between the DM and the detectors’ nuclei (or
electrons). DM mass and its coupling strength to SM par-
ticles are essential in the observation. The stellar DM will
scatter with the massive stellar objects (i.e., the Sun or NS,
etc.) and be captured by their gravitational wells if the scat-
tered velocity is smaller than the escape velocity. On top of
this, for the case that the DM has self-interaction, the capture
rate is considerably enhanced [162]. In summary, the num-
ber evolution of the captured DM inside the stellar objects is
given by

dNχ

dt
= Cc − CeNχ + CsNχ̄ − (Ca + Cse)NχNχ̄, (64)

depending on various scattering processes among the DM and
the stellar objects. Here Cc called the capture rate, Ce the
evaporation rate, Cs the capture rate due to self-interaction,
Cse the self-interaction induced evaporation rate, and Ca the
annihilation rate. For different underlying assumptions, Cc

can be divided into spin-independent (SI) interaction and
spin-dependent (SD) interaction, respectively, because the
distribution of nucleons in the nucleus plays a crucial role.
The SD and SI interactions are given by

CSD
c ≈ 3.35× 1024

( ρ0
0.3GeV/cm3

)(270km/s

v̄

)3

×
(GeV

mχ

)2( σSD

10−6pb

)
(65)

and

CSI
c ≈ 1.24× 1024

( ρ0
0.3GeV/cm3

)(270km/s

v̄

)3

×
(GeV

mχ

)2(2.6σSI
H + 0.175σSI

He

10−6pb

)
(66)

respectively, where ρ0 is the local DM density and we take the
typical DM density as a reference, v̄ is the velocity dispersion

if DM is assumed to be thermally equilibrium, σ
SD(SI)
H and
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σ
SD(SI)
He are the SD(SI) DM-hydrogen and DM-helium scat-

tering cross sections. Because the collisions occur at the non-
relativistic limit, the cross-section is inversely proportional to
m2

χ. Here mχ is the DM mass.
Ce in the second term of Eq. (64) refers to the DM evapo-

ration. This captured DM can be kicked out while scattering
with the stellar nucleus. The DM evaporation rate not only
depends on the DM mass but also the stellar object’s gravi-
tational potential distribution [163, 164]. We take the Sun as
an example; it is expressed as

Ce ≈ 8

π3

√
2mχ

πTχ(r̄)

v2esc(0)

r̄3
exp

(
− mχv

2
esc(0)

2Tχ(r̄)

)
Σevap, (67)

where vesc(0) is the escape velocity from the core of the Sun,
and Tχ is the DM temperature in the Sun, which corresponds
to its average kinetic energy. r̄ is the average DM orbit radius,
which is the mean DM distance from the solar center, and
Σevap is the sum of the scattering cross-sections of all the
nuclei within a radius r95%, where the solar temperature has
dropped to 95% of the DM temperature. The exponential
distribution is due to the DM thermal distribution in the core
region of the stellar object. We also take the approximation
that the DM temperature is equal to the nucleus temperature
around the core.

Cs is the DM capture rate by colliding off the DM that has
been captured inside the stellar objects, and The calculation
is similar to the nucleus evaporation effect. One integrates
out the final velocity distribution cut by the escape velocity,
and it is given by [165]

Cs =

√
3

2
nχσχχvesc(r)

vesc(r)

v̄
⟨ϕ̂χ⟩

erf(η)

η
, (68)

where ⟨ϕ̂χ⟩ is the dimensionless average of potential for the
captured DM inside the stellar object, the value is about
⟨ϕ̂χ⟩ ∼ 5.1 for the Sun [166]. nχ is the local density of halo
DM, σχχ is the elastic scattering cross section of DM with
themselves, vesc(r) is the escape velocity, and η2 is the square
of the dimensionless velocity of the stellar object in the DM
halo.

Finally, the captured DM in the stellar objects might an-
nihilate each other and produce a pair of SM particles. This
effect is described by Ca, the annihilation coefficient, given
by

Ca ≈ ⟨σv⟩V2

V 2
1

, (69)

where Vj is the DM effective volume inside the Sun, it is
about 6.5×1028cm3( 10GeV

jmχ
)3/2 and ⟨σv⟩ is the relative velocity

averaged annihilation cross section for DM pairs.

2. Hydrodynamic approach: Accretion and fragmentation

One possible formation mechanism of boson stars is the
accretion of DM around some massive region due to density
fluctuation. The simplest accretion mechanism is Bondi ac-
cretion, which assumes spherical symmetry. See Appendix B
for the outline of solving Bondi accretion. If the DM is non-
relativistic with equation of state p = κργ0 , then the accretion
rate is given by (see also (B7))

Ṁ = πG2
NM2 ρ0(∞)

c3s(∞)

[ 2

5− 3γ

] (5−3γ)
2(γ−1)

(70)

where the adiabatic index is restricted to γ ≤ 5/3, so that the
factor of γ is O(1) and

Ṁ ∼ 10−19M⊙yr
−1

( M

M⊙

)2( ρ0(∞)

10−21kg m−3

)( cs(∞)

102km s−1

)−3

.

(71)
On the other hand, for the relativistic DM, we shall adopt
the relativistic Bondi accretion; see Appendix B for a brief
account. Take the λ|ϕ|4 self-interacting boson field as an ex-
ample; the Bondi accretion rate is bounded from below [167],

Ṁmin ≤ Ṁ < ∞ (72)

with Ṁmin given in (B15)[167]

Ṁmin := 64π
G2

NM2

c3
ρB ,

∼ 10−9M⊙yr
−1

( M

M⊙

)2( ρ0(∞)

10−21kg m−3

)( cs(∞)

102km s−1

)−2

.(73)

From the above result, we can find that the relativistic
SIDM enhances the accretion rate by several orders higher
than the conventional nonrelativistic WIMP. Despite that,
the typical value of Ṁmin is still smaller than the Eddington
accretion rate of baryons ≃ 10−2M⊙yr

−1. This implies that
it is challenging to form dark boson stars by accreting the DM
for either WIMP or SIDM.

If we instead consider the above Bondi accretion of DM
around a supermassive BH with mass ≃ 106 ∼ 109M⊙, then
the accretion rate will be enhanced by about 1012 ∼ 1018 fac-
tor. This means that the DM can accumulate quickly around
a supermassive BH and form a spike profile. The discussion of
the detailed profiles of the spikes can be found in [167]. The
typical density profile of the spike goes as r−α with α ≃ 1 ∼ 2
depending on the equation of state and the location around
the BH. This sharp spike can easily fragment further due to
the usual Jean’s instability, and the resultant fragments will
be the (seed of) boson stars. This accretion and fragmenta-
tion mechanism can speed up the production of DS. The mass
distribution for the DS produced from the above mechanism
is an interesting issue for future study.

Finally, we should emphasize that we assume the DM does
not interact with photons or some dark photons. This is
quite different from the usual Eddington accretion, for which
there will be a radiative energy outflow carried by photons.
Its typical accretion rate around a BH of mass M is about
10−8M⊙yr

−1( M
M⊙

) 3.

3. A tentative example of composite dark matter: Mirror
copy approach

From the above discussions, it is challenging to form DS
by accretion mechanism within a reasonable timescale mainly
due to the weak interactions with the standard model particles
or the constraints on their self-interactions with the observed
astrophysical phenomena.

On the other hand, baryonic stars are easier to form
through the interplay of large-scale structure and molecular

3 See https://ilyamandel.github.io/BackOfTheEnvelopeNotes
/Eddington.pdf
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dynamics. An interstellar cloud of molecules can collapse to
form the seed for star formation [168, 169]. It is tempting
to speculate the possible mechanism for ample DS formations
by mimicking the one for the baryonic stars. The simplest
way is to speculate the DM model as the mirror copy of the
baryonic one, a kind of asymmetric composite DM discussed
earlier. For example, we can consider the dark quark models
with SU(3) color group so that dark nucleons can form by
the confinement mechanism. Suppose we do not mirror the
electroweak sector for the DM. In that case, the color-neutral
dark nucleons with the mass scale from the dimensional trans-
mutation [170] below the GeV scale will be the fundamental
constituents from which suitable dark molecules can form by
aggregation via the residual van der Waals forces. These dark
molecules will be the primary materials to form the interstel-
lar dark clouds for star formations.

Because of lacking the atomic structure in the absence of
dark electroweak sectors, the size of the dark nucleon will be
five orders smaller than the one of the baryonic atom. Based
on naive scaling, this implies that the DS could be at least five
orders smaller than the baryonic stars if DS formations follow
the same mechanism of molecular dynamics as the baryonic
ones. This means that the typical DS with about one solar
mass will have compactness like the NS. The DS formed in
this way will have a similar internal structure to the NS, ex-
cept they are composed of dark neutrons. As the underlying
formation mechanism is similar to the baryonic ones, we ex-
pect the formation rate to be comparable to or even faster
than the baryonic ones due to the smaller overall size scale,
thus, stronger van der Waals forces. Therefore, we will expect
to have populated binary DS merger events to be observed by
LIGO/Virgo/KAGRA. Due to their compactness, thus, small
tidal deformability, these kinds of DS will behave like mim-
ickers of BH and NS. For future GW detectors with the high
capability of multimessenger detection rate, we can tell these
DS from the NS by the observed multimessenger signals. On
the other hand, these DS can also be adopted to explain the
BH mass gap events. Detailed studies of the dark molecule
formation and the subsequent cloud formation are needed for
a full-scale understanding.

IV. MIMICKERS OF BLACK HOLES AND
NEUTRON STARS

In gravitational-wave (GW) and electromagnetic (EM) ob-
servations, BH are generally justified by their masses and in-
visibility rather than the determination of zero TLN. In the
EM case, getting the TLN information is impossible, while
in the GW case, the TLN corrections are usually too weak
for distant events. Thus, it is difficult to distinguish DS from
BH with similar masses. On the other hand, NS can have
detectable TLN but are constrained to have masses between
1M⊙ and 2.6M⊙. The lower mass bound is suggested by the
optical observations that almost no NS with masses below
1M|odot have been observed [171]. The upper mass bound
depends on the EoS of dense nuclear matter, which is uncer-
tain and should be inferred from the observed M-R relation.
However, most candidate EOS suggest that the upper mass
bound shall not be larger than 2.6M⊙ [63, 172]. Therefore, if
the boson stars can have masses and TLNs fitted to the above
consideration, it is hard to distinguish them from BH or NS.
Such kinds of boson stars can be the mimickers of BH or NS.

The masses of the boson stars can also fall in the ranges of
either lower or higher mass gaps for the BH, and then these
boson stars can be the candidates for the gap events with
small TLNs.

We illustrate that BS is the BH and NS mimickers rather
than fermionic stars. It is because both EOCs could have
similar (or even identical) macroscopic M-R relations, and
currently, the only GW observable to differentiate ECO from
the BH is the tidal deformability. With the degeneracy of
various DM models, one essentially can not pin down the un-
derlying nature of DM, namely fermionic particles or bosonic
ones, from a single event. However, suppose we believe a
single and unique DM particle exists to explain the cosmolog-
ical anomaly, statistical-wise. In that case, one can read out
the details of the underlying DM model after accumulating
sufficient events and data.

In this section, we would like to demonstrate the possibility
of the boson stars as the mimickers of BH or NS based on the
EoSs discussed in section IIIA.

A. Mimickers in the lower mass range

We start with the cases for the lower mass gap. Fig. 4 and
Fig. 5 show the Mass-Radius and TLN-Mass relations, re-
spectively, with the masses below 6M⊙ for the EoSs discussed
in section IIIA, namely, ϕ4 (CSW) BS, ϕ8 BS, Liouville BS,
and Cosh-Gordon BS. By varying B or Bn in the EoS, see the
range shown in Table III, the stable boson stars can cover a
wide mass range.

The 2.6 M⊙ curves are marked to compare with
GW190814, whose secondary star has a mass 2.59+0.08

−0.09 M⊙,
with no measurable TLN data, and no EM counterpart of this
event is reported. The General BS EoS ϕn could serve as the
candidates for this component compact object. Similarly, due
to the wide parameter space of boson star models, now LBS,
C-G BS also could achieve 2.59 M⊙ while keeping a low TLN
as shown in Fig. 5.

The 4M⊙ curves show the typical candidates for the lower
gap events, with the radius ranging from about 22 km to
36 km and the TLN from about 10 to 250. Since masses
of the gap events exceed the possible upper mass range
of the NS while still too low for generally accepted BH
scenarios, boson stars are the very competitive candidates.
Several other compact objects are observed in the lower
gap, including GW190814. One of them is named 2MASS
J05215658+4359220 [173], where a red giant forms a non-
interacting binary system with a likely BH, which has a mass
of 3.3+2.8

−0.7 M⊙.
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FIG. 4: Mass-Radius relation for the four types of the
considered boson stars in the lower mass gap region. Blue
curves stand for the General BS with n = 4 (CSW ϕ4),
orange curves with n = 8 (BS ϕ8), green for the Cosh-
Gordon BS (C-G BS), and red for the Liouville BS (LBS).
These groups of solid curves are marked, with maximum
masses to be 1.4M⊙, 2.6M⊙, 4M⊙, and 6M⊙, respec-
tively. The dash-dot line with the same color as the
corresponding EoS links the maximal-mass points of the
same type of boson stars labeled by the same color, in-
cluding those not drawn explicitly. The yellow area is
the range of GW190814 secondary mass(m2) 2.6

+0.1
−0.1M⊙

at 90% credible interval from GW Open Science Center
(GWOSC) [56]. The dashed curve region of each curve
is unstable. Different M-R curves are obtained by tun-
ing the parameter B of the corresponding EoS, shown in
Table III.

FIG. 5: TLN-Mass relation for the four types of the con-
sidered boson stars in the lower mass gap region. The
color and mark schemes are the same as in Fig. 4. Differ-
ent TLN-M curves are obtained by tuning the parameter
B of the corresponding EoS, shown in Table III.

Parameter
Mmax

1.4M⊙ 2.6M⊙ 4.0M⊙ 6.0M⊙

CSW (B4) 0.086 0.047 0.031 0.02

BS ϕ8 (B8) 0.10 0.055 0.036 0.024

LBS (104BL) 27.5 8.05 3.40 1.52

C-GBS (105BC) 40.0 11.2 4.90 2.18

TABLE III: The values of B of the corresponding EoS for
the curves shown in Fig. 4 and Fig. 5 below.

From the results, we see that all four boson star models
can serve as the mimickers of NS for the masses between 1M⊙
and 2.6M⊙ as their TLNs for stable configurations are below
few hundred, that is comparable with the current observa-
tion from GW170817 [56, 57]. By the multimessenger con-
straints [137], a neutron star of 1.4 M⊙ should have a radius
11.75+0.86

−0.81 km at 90% confidence level. Thus, we find that the
LBS and C-G BS curves with maximum 1.4 M⊙ fall into this
range, while ϕ4 BS, ϕ8 BS seem outside of it. But since the
mass does not necessarily be the maximum, ϕ8 BS curve with
higher maximum mass, say 2 M⊙, could clear this criterion.

The above Mass-Radius relations can also explain the sec-
ondary mass 2.59+0.08

−0.09 M⊙ of GW190814 as the mimicker of
a BH in the lower mass gap. Therefore, by choosing the EoS
parameter B or Bn, the boson star models can easily accom-
modate the events of black-hole and neutron-star mimickers,
even for the ones in the lower mass gap. This comes as no
surprise as there are almost no constraints on the proper-
ties of DM, hence boson stars. Instead, one can use the GW
events, especially the ones in the mass gap, to constrain the
properties of DM, such as the SIDM considered here.

Besides, two more remarks are in order. First, the bo-
son star models can also predict compact stars with masses
less than 1M⊙. For example, one 0.6M⊙ would have a ra-
dius from 3km for ϕ8 BS to 5.5km for ϕ4 BS. These will be
novel candidates for GW detections. See [174, 175] for more
discussions on the search plan. Second, the maximal com-
pactness is a constant for each EoS, independent from the
adjusting parameter Bn or B. As shown in Fig. 4, if we link
the maximal-mass points of MR curves with the same EoS
together by dashed lines, they form strict straight lines, pass-
ing through the original point. This can be explained by the
scaling symmetry of the TOV equation as discussed in section
IIID.

B. Mimickers in the higher mass range

We now consider the cases of black-hole mimickers around
the upper mass gap, i.e., 50 to 150M⊙. We show the Mass-
Radius and TLN-Mass relations in Fig. 6 and Fig. 7, respec-
tively, in the range of the upper mass gap. The corresponding
range of the EoS parameter B is also shown in Table IV.
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FIG. 6: Mass-Radius relation for the four types of the
considered boson stars in the upper mass gap region.
These groups of solid curves are marked, with maximum
masses of 55M⊙, 75M⊙, 95M⊙, 115M⊙, and 135M⊙, re-
spectively. The dash-dot line links the TLNs (Λs) of the
maximal-mass points of the same type of boson stars la-
beled by the same color, including those not drawn ex-
plicitly. The sky blue area is the range of GW190521
primary mass(m1) 98.4+33.6

−21.7M⊙. The yellow area is the

range of GW190521 secondary mass(m2) 57.2+27.1
−30.1M⊙.

Both data are at a 90% confidence level.

FIG. 7: TLN-Mass relation for the four types of the con-
sidered boson stars in the upper mass gap region. The
color and mark schemes are the same as in Fig. 6. Differ-
ent TLN-M curves are obtained by tuning the parameter
B of the corresponding EoS, shown in Table IV.

As expected, we find that the boson stars can be the black-
hole mimickers in the upper mass gap by choosing the proper
EoS parameter B. Thus, they can be the candidates to ex-
plain the GW events in the upper mass gap as the black-hole
mimicker, such as the primary mass of GW190521, which is
estimated to be 85.3+21

−14 M⊙ with the final mass of merger

to be 142+28
−16 M⊙ [62]. All four EoS could reach this pri-

mary mass, with TLN as low as 100 to 300. This makes them
nice black-hole mimickers because they are indistinguishable
from BH, considering their low TLN and little interaction

with EM signals. There are alternative proposals for explain-
ing GW190521 as the BH mimickers based on different boson
star models, e.g., in [176], it is interpreted as the head-on
collision of vector boson (Proca) stars; see also [177].

B Mmax

55M⊙ 75M⊙ 95M⊙ 115M⊙ 135M⊙

103B4 2.23 1.64 1.30 1.07 0.908

103B8 2.61 1.91 1.51 1.25 1.06

108BL 18.0 9.70 6.05 4.13 3.00

109BC 26.0 14.0 8.73 5.96 4.32

TABLE IV: The values of B of the corresponding EoS for
the curves shown in Fig. 6 and Fig. 7

Besides, many other events contain stars in the upper mass
gap, like GW190403 051519 with an 88.0+28.2

−32.9 M⊙ primary

star, GW190426 190642 with a 106.9+41.6
−25.2 M⊙ primary star

and a 76.6+26.2
−33.6 M⊙ secondary star, GW190929 012149 with

an 80.8+33.0
−33.2 M⊙ primary star, and GW200220 061928 with

an 86+38
−22 M⊙ primary star, etc. It seems that upper-mass-

gap GW events are not rare. However, we shall emphasize
that none of the above events have enough significance to
be included in the LVK’s testing GR analysis. Despite that,
we may expect similar mass-gap events to occur in the next-
generation GW detector. Of course, these mass-gap events
could be either primary or secondary objects by merging pri-
mary compact objects. However, the latter possibility should
be far less than the former one, because most mergers do not
have their final masses in the upper mass gap. Moreover,
there are ways to distinguish the secondary from the primary
objects, notably by the larger spin of the secondary from the
orbital angular momentum before the merger.

Also, note that using the same EoS with fixed parameter
B cannot explain the lower and upper mass gap events si-
multaneously. To do the job, at least two different SIDMs
with quite different B. Despite that, the SIDM is still the
most simple and natural to yield the black-hole mimickers for
the gap events. After introducing the data analysis method-
ology in the next section, we will present some posteriors of
GW190521 and GW190814 to fit the models of BH mimickers.

V. METHODOLOGY OF DATA ANALYSIS

Due to unavoidable noises in the GW detector, it is essen-
tial to devise the data analysis methodology to extract the
source properties from the observed strain data. Also, the
GW analysis heavily relies on the waveform models. If one
would like to consider the GW signals from the DS, the con-
struction of the waveforms will be dictated by the underlying
DM theory. Therefore, it is impossible to give a full review
on this subject. Instead, we will sketch the basic concepts
of the data analysis methodology and how to discriminate
the BH and NS from their mimickers. We hope this will be
helpful for the novices. For the recent progress, please see
[33, 155, 156, 178–180] and the references therein and their
future citations.

Below, we first review the general theory of Bayesian statis-
tics [181–183] on which the framework of GW data anal-
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ysis follows. Denote the observed data as a vector, y =
(y1, y2, . . . , yn) with the index labeling the various observed
properties. Similarly, the parameters of interest can be writ-
ten as = (ϑ1, ϑ2, . . . , ϑn). Due to the detector’s noises, the
measured ϑ is a random variable. For example, ϑ ∼ N(µ, σ2)
or p(ϑ) = N(ϑ|µ, σ2), denotes that ϑ obeys a (multi-)normal
distribution with mean µ and variance σ2 which is represented
by N(ϑ|µ, σ2). Here are two key elements of Bayesian statis-
tics.

a. Bayes’ theorem— The joint probability for ϑ and y
can be written as

p(ϑ, y) = p(ϑ)p(y|ϑ), (74)

where we call p(ϑ) and p(y|ϑ) the prior and sampling distri-
butions respectively. Bayes’ theorem is a basic property of
conditional probability on the known data y, which can be
given by

p(ϑ|y) = p(ϑ, y)

p(y)
, (75)

where

p(y) =
∑
ϑ

p(y|ϑ) or p(y) =

∫
dϑ p(y|ϑ) (76)

is called the marginalized distribution of data or evidence. By
substituting (74) into (75), we obtain the so-called posterior
distribution

p(ϑ|y) = p(ϑ)p(y|ϑ)
p(y)

∝ p(ϑ)p(y|ϑ). (77)

This tells the probability distribution of the parameter ϑ ex-
tracted from the data y.

Based on (77) with a given prior p(ϑ), to infer the posterior
p(ϑ|y) of the source properties ϑ for a given data y, we need to
construct a probability model from y to obtain the likelihood
function p(y|ϑ). The standard method to construct the likeli-
hood function is by the numerical methods based on Monte-
Carlo methods, such as Markov chain Monte-Carlo (MCMC)
or nested sampling. We will not discuss these methods here.

The posterior predictive distribution can be identified as
the average over the posterior distribution of ϑ, the distribu-
tion p(ϑ|y)

p(ỹ|y) =
∫

dϑ p(ỹ|ϑ)p(ϑ, y), (78)

where we have

p(ỹ|ϑ) = p(ỹ|ϑ, y) (79)

due to the independence of ỹ and y.

b. Bayes factor— Scientific measurements aim to ver-
ify or falsify some scientific theory, scenario/hypothesis. Usu-
ally, there exist competitive theories/hypotheses. To deal
with the so-called hypothesis testing, we can evaluate the
Bayes factor to see which theory/hypothesis fits the data bet-
ter. Let us denote two competing hypotheses as HA and HB .
For each model hypothesis m = A,B, we have the corre-
sponding prior p(θm|Hm) and likelihood p(y|θm, Hm), then
the associated posterior by Bayes’ theorem should be

p(ϑm|y,Hm) ∝ p(y|ϑm, Hm)p(ϑm|Hm). (80)

On the other hand, if we like to compare the superiority
between the hypotheses HA,B based on the observed data y,
we would like to evaluate the following ratio of odds,

p(HA|y)
p(HB |y)

=
p(HA)

p(HB)

p(y|HA)

p(y|HB)
, (81)

where we have again adopted Bayes’s theorem. The part that
involved both data and hypothesis is called the Bayes factor,

BAB =
p(y|HA)

p(y|HB)
=

∫
dϑA p(ϑA|HA)p(y|ϑA, HA)∫
dϑB p(ϑB |HB)p(y|ϑB , HB)

. (82)

If we do not prefer either hypothesis HA or HB , we can as-
sume p(HA) = p(HB). Thus, the ratio of odds is nothing but
the Bayes factor. From the second equality of (82), we see
that it needs to obtain the likelihood function for each model
hypothesis to evaluate the Bayes factor, which can be done
by invoking either MCMC or nested sampling.

In the above, we have reviewed the basics of Bayesian
statistics. In the following, we will apply GW data analy-
sis.

A. Matched filtering

The data analysis aims to extract the source properties,
such as the masses, spins, and locations of the binary com-
pact objects, from the observed strain data. Also, we need
to prepare some mock strain data for the overhead training
of the data analysis algorithm. Now we denote the time se-
ries strain data by d(t) = {di}, which uniformly sammpled at
times ti, instead of y in the GW data analysis. In general, a
strain data d(t) can be decomposed as following,

d(t) = n(t) + hϑ(t). (83)

where n(t) is the intrinsic detector’s noise, which contami-
nates the intrinsic/theoretical strain hϑ(t) from the sources in
the strain/mock data. We usually assume n(t) is a stationary
Gaussian noise, though the deviation from this assumption is
expected but shall be controllable. With such an assumption,
one should fit the best fit of d(t)−hϑ(t) to a Gaussian by scan-
ning the space of the theoretical strain h(t) to construct the
likelihood function p(d(t)|ϑ,H) for the source parameters ϑ in
the model H. This is the so-called matched filtering method,
which aims to maximize the signal-to-noise ratio (SNR) given
by

sup
ϑ,t0

ℜ
∫ fmax

fmin

d̃(f) · h̃∗
ϑ(f)

Sn(f)
e2πift0df (84)

where the tilde quantity denotes its Fourier transform coun-
terpart, and Sn(f) is the power spectral density of the detec-
tor noise.

B. Bayesian inferences for gravitational wave data
analysis

To avoid discussing the detection problem, the matched fil-
tering method can be adopted for the low-latency search for
the GW event candidates by setting an SNR threshold, say
SNR ≥ 10. Once a GW event candidate is found, the next
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step is to perform parameter estimation for the source prop-
erties by scanning the likelihood function based on MCMC or
nested sampling with the help of matched filtering.

The parameter estimation can help us understand the pa-
rameter space’s credible region. In GW astronomy, there
are many open-source toolkits for parameter estimation, e.g.,
LALInference[184], PyCBC Inference [185], and BILBY[186].
In this paper, we choose the PyCBC as the main toolkit. The
PyCBC is based on a Python code environment for parameter
estimation for compact binary coalescence (CBC) signals; it
uses Bayesian inference to infer the properties of the source.
Given the observed data d(t) under the hypothesis H, the
Bayes’s theorem (77) can be read as

p(ϑ|d(t), H) =
p(d(t)|ϑ,H)p(ϑ|H)

p(d(t)|H)
(85)

where p(ϑ|d(t), H) is the posterior probability density describ-
ing the conditional probability that the signal has parameter
ϑ given observation data d(t) and an uncertain hypothesis H,
for example, it includes waveform model, Gaussian noise, etc.
The probability density p(d(t)|ϑ,H) is the likelihood func-
tion, which is the probability of obtaining the observation
data d(t) given the hypothesis H with parameter ϑ. p(ϑ|H)
is prior describing our knowledge about the parameter ϑ be-
fore considering the observation data d(t).

If we are interested in a parameter ϑ, we can marginal-
ize the posterior probability by integrating p(d(t)|ϑ,H)p(ϑ|H)
over the unwanted parameters. If we marginalize over all pa-
rameters, we can get the evidence p(d(t)|H)∫ ϑmax

1

ϑmin
1

. . .

∫ ϑmax
N

ϑmin
N

dϑ1 . . . dϑN p(d(t)|ϑi, H)p(ϑi|H)

= p(d(t)|H) (86)

The evidence is a normalizing constant for the posterior prob-
ability given model H. If we want to compare two different
models, HA and HB , the Bayes factor can be used to deter-
mine which model favored according to the Bayes factor (82).
If BAB is greater than 1, then the model HA is favored over
HB .

To perform Bayesian inference, we implement the MCMC
algorithm [187–189] to sample the parameter space and then
calculate the posterior probability density. After the first l
initial iterations, the k-th Markov chain yields the set of pa-

rameters, ϑ
(k)
l given the prior probability density function.

The sampling algorithm will yield a new proposed set of pa-

rameters, ϑ
(k)

l′ with probability P (ϑ
(k)
l , ϑ

(k)

l′ ). Suppose a new
set of parameters is chosen. In that case, the sampler then
computes an acceptance probability, γ, which determines if
the Markov chain should move to the proposed parameter set

ϑ
(k)

l′ , such that ϑ
(k)
l+1 = ϑ

(k)

l′ . Otherwise, ϑ
(k)

l′ will be rejected,

then ϑ
(k)
l+1 = ϑ

(k)
l . After sufficient iterations, the ensemble

converges to a distribution proportional to the posterior prob-
ability density function sampling. The true astrophysical pa-
rameters can be estimated from a histogram of the Markov
chain distribution of the samplers in the parameter space.

In PyCBC, there are several well-developed software pack-
ages that implement algorithms for sampling from posterior
probability density functions. The commonly used algorithms
are emcee, published by Foreman-Mackey [190, 191], as well as
its parallel-tempered version, emcee-pt sampler [192]. These
sampling algorithms advance the position of the Markov chain

based on its previous position and provide inference capabil-
ities in PyCBC when updating these positions.

The emcee-pt sampler is a parallel-tempered sampler
that improves the exploration of different regions in high-
dimensional parameter space by sampling at multiple temper-
atures. It utilizes a set of Markov chains, where each chain
corresponds to a different temperature, T , such that

pT (ϑ|d(t), H) =
p(d(t)|ϑ,H)

1
T p(ϑ|H)

p(d(t)|H)
(87)

These chains exchange states between different temperatures,
enabling exploration in the temperature space. The emcee

sampler performs the sampling using one temperature, where
T = 1.

The output from these sampling algorithms is a Markov
chain. The consecutive steps of these chains are not indepen-
dent, as the Markov process depends on the previous states
[193]. The autocorrelation length τK of the Markov chain
is a measure of the number of iterations required to obtain
independent samples from the posterior probability density
function [194]. The autocorrelation length of the k-th Markov

chain, X
(k)
l = {ϑ(k)

g ; 1 < g < l}, of length, l, obtained from
the sampling algorithm is defined as

τK = 1 + 2

K∑
i=1

R̂i, (88)

where K is the first iteration along the Markov chain, the
condition mτ ≤ K is true, m being a parameter which in Py-
CBC Inference is set to 5 [194]. The autocorrelation function,

R̂i, is defined as

R̂i =
1

lσ2

l−i∑
t=1

(Xt − µ)(Xt+i − µ), (89)

where Xt are the samples of X
(k)
l between the 0-th and the

t-th iteration, Xt+i are the samples of X
(k)
l between the 0-th

and the (t + 1)-th iterations. Here, µ and σ2 are the mean
and variance of Xt, respectively.

The initial position of a Markov chain can affect its subse-
quent positions. The length of time before the Markov chain
is considered to have lost any memory of its initial position
is referred to as the ”burn-in” period. A common practice in
MCMC analysis is to discard samples from the burn-in pe-
riod to prevent any bias introduced by the initial position of
the Markov chain on parameter estimation in MCMC. There
are several ways in PyCBC Inference to determine when a
Markov chain has passed the burn-in period. Among them,
we often use the following two methods, max posterior and
n acl.

The max posterior algorithm is an implementation of the
burn-in test used for the MCMC sampler [195]. In this
method, the k-th Markov chain is considered to be past the
burn-in period at the first iteration, l, for which

logL(k)
l (ϑ) ≤ max

k,l
logL(ϑ)− Np

2
, (90)

where L(ϑ) is the prior-weighted likelihood,

L(ϑ) = p(d(t)|ϑ,H)p(ϑ|H), (91)

and Np is the number of dimensions in the parameter space.
The maximization, maxk,l logL(ϑ), is carried out over all
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Markov chains and iterations. The ensemble is considered
past the burn-in period at the first iteration, where all Markov
chains pass this test.

In addition to the max posterior test, the n acl test is
also used. All Markov chains converge when we use the
max posterior test to return an iteration in MCMC and use
it with the emcee pt sampler. This underestimates the burn-
in period as the initial points still influence the samples from
the posterior probability density function. However, adding
at least one autocorrelation length to the computation of the
burn-in period using the max posterior test can reduce this
effect. Therefore, we use the n acl test in conjunction with
the emcee pt sampler. If the length of the chains exceeds ten
times the autocorrelation length, this test assumes that the
sampler has passed the burn-in period. The autocorrelation
length is computed using samples from the latter half of the
Markov chain. If the test is satisfied, it is considered that the
sampler has passed the burn-in period at the midpoint of the
Markov chain.

C. Some example posteriors for mass gap events as
black hole mimickers

To demonstrate the results of the GW data analysis based
on the above Bayesian inference framework, we show the pos-
teriors for two mass gap events, GW190521 and GW190814
[196, 197], by fitting to the model of BH mimickers, namely,
compact stars with nonzero TLN. Here, we use the pub-
lic data on the GW Open Science Center (https://www.gw-
openscience.org) released by the LVC. 4

To demonstrate the result efficiently, we use the “IMR-
PhenomPv2 NRTidal” waveform model [198] instead of the
“SEOBNRv4 ROM NRTidalv2” model. Moreover, the BH
mimickers have nonzero TLNs, allowing one to distinguish
them from BBH. The analysis of BH mimickers with GW ob-
servations shows that the EoS can be constrained by masses
and TLNs of a binary [199]. In our work, we are also interested
in a binary of the BH mimickers, and therefore, we include the
analysis of the TLNs in GW190521 and GW190814 without
setting both values to zero.

4 The version of strain data we used was released on March 9,
2021.

1. Upper Mass Gap: GW190521

FIG. 8: The GW190521 posterior probability den-
sity with IMRPhenomPv2 NRTidal waveform template
bank.

We first consider GW190521 and follow the standard pro-
cedure by LIGO and Virgo [35], the candidate event in the
upper mass gap, and show the resultant posterior in Fig. 8
by using the “IMRPhenomPv2 NRTidal” waveform model for
the matched filtering. Each colored point in Fig. 8 is reached
by the MCMC walker in the last iteration with the SNR close
to the LIGO released data, 14.3+0.5

−0.4. The results show that

the TLN in each star is Λ1 = 2.7+8.8
−2.5 and Λ2 = 5.2+14.7

−4.8 , both
of which are lower than the values for the considered boson
stars. The small values of TLN imply that the objects could
be just BH or very rigid compact stars. The result is close to
the boson star model BS ϕ8 prediction despite that.

The parameter estimation result of this event has been up-
dated several times by LIGO Scientific Collaboration [200].
The most recent one yields the masses to be 98.4+33.6

−21.7M⊙ and

57.2+27.1
−30.1M⊙ as given in GWTC-2.1 [35]. However, our result

is closer to the one given in GWTC-2.0 [55] with secondary
mass 69.0+22.7

−23.1M⊙. Our result shows little change due to the
inclusion of TLN, and the SNR obtained is close to the pa-
rameter estimation results using ”IMRPhenomPv3HM”[201]
as the waveform template released by LIGO, 14.22+0.30

−0.34.
There may be a discrepancy in the results for the primary

mass compared to those released by LIGO. One possible rea-
son is that the waveform model used is only designed to model
the inspiral of NS, not the complicated merger phase. Hence,
it tapers the amplitude before the merger. Thus, it is unsuit-
able for analyzing this event, where the merger-ringdown pro-
duces most of the SNR. ”IMRPhenomPv2 NRTidal” is also
specifically tuned to numerical relativity simulations of BNS
and includes EOS-dependent effects in the tidal contribution.
Therefore, it is not suitable for analyzing binary boson stars.
However, we want to assume possible scenarios for parameter
estimation results when searching for BH mimickers. Cur-
rently, we are using a BNS waveform template for a simple
demonstration, hoping that better waveform templates will
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be available for improved analysis of BH mimickers in the
future.

2. Lower Mass Gap: GW190814

FIG. 9: The GW190814 posterior probability den-
sity with IMRPhenomPv2 NRTidal waveform template
bank.

The second example is the BH mimicker event in the
lower mass gap, namely, the GW190814. The posterior is
shown in Fig. 9, again with the ”IMRPhenomPv2 NRTidal”
waveform model for the matched filtering. The SNR ob-
tained is close to the parameter estimation results using
”IMRPhenomNSBH”[202] as the waveform template released
by LIGO, 23.41+1.65

−1.65. We focus on the mass-gap compo-
nent of the binary, the second one, which could be the BH
mimicker. However, we obtain an almost flat posterior for
Λ2 with a given uniform prior in [0, 1000]. Again, we can-
not conclude whether this is a boson star based on our re-
sult. Our result is similar to the LIGO released properties
of GW190814 [63] based on the NSBH model with a uniform
prior of Λ2 ∈ [0, 3000]. The absence of measurable tidal fea-
tures could be due to the highly unequal mass ratios and
relatively large primary masses, so the neutron star is tidally
disrupted before the merger. Therefore, the resultant wave-
form shows little information about the tidal deformability of
the massive secondary.

D. Boson stars discrimination

a. Tidal deformation in waveform— The relevant
difference in waveforms for boson stars, NS, and BH is mainly
due to their associated TLNs. Especially, the TLN of BH is
known to be zero5 [205–207]. When considering the wave-
form of inspiral, the TLNs of both component objects will

5 In case there is some cloud around BH due to phenomena like
accretion or superradiance, the TLN would deviate from zero, as

contribute to the waveform at the leading-order (5PN) cor-
rection through the combination [146, 208, 209]

Λ̃ =
16

13

(m1 + 12m2)m
4
1Λ1 + (m2 + 12m1)m

4
2Λ2

M5
. (92)

Later, we will focus on this quantity to distinguish boson stars
from NS and BH through data analysis; see also [33, 178].

b. Bayesian model— We would like to discriminate the
boson stars from BH in a binary system, which is followed
by two simple reasons: (i) most of the binaries observed by
LIGO-Virgo-KAGRA (LVK) are BNS; and (ii) within our
knowledge of boson stars, their tidal deformability is always
tiny.

Based on Bayes’ statistics, we can perform hypothesis test-
ing or model comparison by evaluating the Bayes factor. We
take the hypothesis of BBH as the null hypothesis denoted
by H0, a binary boson star (BBS) and a boson star-black
hole (BSBH) binaries are denoted by H1 and H2, respectively.
Without prejudice over the three hypotheses, we assume the
same prior probability for them, i.e., p(Ha) = 1/3.

The GW data analysis aims to extract the posteriors of the
model parameters of the sources. There are intrinsic param-
eters, such as the masses and TLNs of the compact binary,
and extrinsic parameters related to the location and orienta-
tion of the source relative to the detector. For simplicity, we
will neglect the extrinsic parameters for a given strain data
d but characterize them by the signal-to-noise ratio (SNR)

ρ(d) extracted from the matched filtering. For the intrinsic

parameters, we will only consider the masses m
(d)
1,2 and TLNs

Λ
(d)
1,2 of the binary. For BH, TLN is zero. On the other hand,

for the boson stars, the TLN is related to the mass by the
TLN-Mass relation, which can be denoted by Λ = Λ

(
m, b

)
with b the model parameter of the associated EoS for SIDM.
This implies that the combined TLN of (92) appearing in the
waveform will be just the function of the binary masses m1,2

and b, or denoted by

Λ̃ = Λ̃(m1,m2, b) . (93)

Since Λ̃ is crucial for the current hypothesis testing, we will
then use it to construct the Bayesian inference.

Furthermore, in mocking data analysis, we need to gener-
ate the mocking strain data set dk for k-th GW event by su-
perposing the corresponding theoretical waveform with real-
time detector noise generated from the power spectral density.
We then perform Bayesian inference using MCMC or nested
sampling algorithm to scan the likelihood. Since the param-
eter estimation based on MCMC is very time-consuming, as
a proof-of-concept study, we assume the Gaussian likelihood,
i.e.,

p(dk|Λ̃, Ha) = N
(
Λ̃(dk); Λ̃

(th)(Ha), σ
(d)

Λ̃
(dk)

)
,

=
1

√
2πσ

(d)

Λ̃
(dk)

exp

[
−

(
Λ̃(dk)− Λ̃(th)(Ha)

)2
2
(
σ
(d)

Λ̃
(dk)

)2
]
.

(94)

investigated in [203, 204].
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In the above, the theoretical value of the effective TLN is rep-
resented by Λ̃(th)(Ha) which should be calculated through the
model of EoS and determined by prior, and the ”standard de-

viation” σ
(d)

Λ̃
(dk) should be inherited from the detector noise

so that a louder event, i.e., large SNR, has a smaller deviation.
Assuming the universal detector noise, it can then be gauged
by the known GW events. In our case, we choose GW170817
as the reference event so that

σΛ̃(ρ) =
ρGW170817

ρ
σGW170817
Λ̃ , (95)

where SNR ρ obeys a universal power-law distribution, [210]

f(ρ) =
3ρ3th
ρ4

, (96)

where the threshold SNR is taken to be ρth = 12.
Therefore, in our Bayesian model, we consider the effective

tidal deformability Λ̃ as the key random variable, whose prior
p(Λ̃|Ha) is determined from the priors of {m1,m2, ba} from
the TLN-Mass relation of a given SIDMmodel. For simplicity,
we fix ba = b and assume flat priors in a finite range for the
parameters {m1,m2}, i.e.,

pa(m1) = Uniform(m1|m1,lower,m1,upper, Ha), (97a)

pa(m2) = Uniform(m2|m2,lower,m2,upper, Ha). (97b)

The m1,2;lower/upper could be hypothesis dependent. We will
examine the effect of EoS parameter b.

With the above preparation for the Bayesian inference for
the mock data analysis, for a given mock strain data d, the
Bayes factor for the hypothesis testing of discriminating boson
stars from the BH is

Ba =

∫
dΛ̃ p(Λ̃|Ha)p(d|Λ̃, Ha)

p(d|Λ̃ = 0, H0)
, a = 1, 2. (98)

Since the mock data d should be associated with a given set of

binary masses and EoS parameter, i.e., d = d(m
(d)
1,2, b

(d), ρ(d)).
Therefore, the resultant Bayes factor should also be a function
of these parameters, i.e.,

Ba(d) = Ba(m
(d)
1,2, b

(d), ρ(d)) . (99)

The tomography of Ba encodes the population distribution
of boson stars. Especially for the events in the mass gap,
there is no primary BBH event. One can infer the boson star
population from the Bayes factor, which reflects the under-
lying TLN-Mass relation. This tomography can be verified
or falsified with future observation data on the gap events.
Finally, we should comment that the methodology presented
in the section is to examine the probability of the BH mim-
ickers located in gap events based on Bayesian analysis. In
other words, we tend to provide a way to determine if the
gap events may look like certain ECOs rather than ordinary
BH. If we wish to answer questions such as the composition
of the ECO, one would need numerical relativity to generate
the specific waveforms for a chosen DM model. One should
be able to calibrate the inspiral-merger-ringdown waveforms,
particularly in the duration of the merger. With such wave-
form models for DS, hopefully, we can provide the answer to
the nature of DM.

VI. CONCLUSION

In this review, we have discussed various properties of DSs,
mainly the BS supported by self-interactions motivated by
particle physics and string theory. Moreover, we have focused
on the implication of these BS candidates to the GW obser-
vations. We believe the DS will be our universe’s universal
component if nontrivial DM exists with self-interactions. By
the nature of DM, GW emitted from binary DSs will be the
most natural and reliable way to detect them and explore their
properties. We hope our review can serve as an introductory
summary of this topic and guide the novices with an overview
of the relevant issues. The DS is a topic covering a wide range
of knowledge, and our review can’t be complete. We did not
discuss much on the formation issues but just some very pre-
liminary proposals. A full-scale study of the DS formations
should involve the N-body simulation based on some partic-
ular SIDM model and should wait for future works. To be
honest, the main obstacle to answering the above difficulties
lies in the nature of DM, namely, whether the DM is a single
kind of particle or purely modified gravity as the explanation
for the missing energy. The mass scale of DM, a fundamen-
tal particle or a composite one, the forms and strengths of
DM to ordinary particles and themselves. All those proper-
ties would change the complete picture of DS formation and
populations. Despite that, we hope our review can motivate
extensive research on the DS and their observations.
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Appendix A: Derivation of isotropic Equations of
State

In this paper, we study the canonical (massive) complex
scalar for boson stars with the following Lagrangian

L = −1

2
gµν∂µϕ

∗∂νϕ− V (|ϕ|), (A1)

where

V (ϕ) =
1

2
m2|ϕ|2 + U(|ϕ|) (A2)

where U is the potential for the self-interactions.
Under spherical symmetry, we consider the following the

metric ansatz form

ds2 = −B(r)dt2 +A(r)dr2 + r2dΩ . (A3)

In such a background, we assume the following stationary and
spherical symmetric ansatz for the scalar field,

ϕ(t, r) = e−iωtΦ(r) . (A4)

The field equations for the boson star configurations con-
tain two parts: The first part is the Einstein equation with
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anisotropic stress tensor given by Tµ
ν = diag(−ρ, p, p⊥, p⊥)

with

ρ = m2M2
pl

[1
2
(
Ω2

B
+ 1)σ2 +

|∂xσ|2

2A
+

U(Mplσ)

m2M2
pl

]
(A5)

p = m2M2
pl

[1
2
(
Ω2

B
− 1)σ2 +

|∂xσ|2

2A
− U(Mplσ)

m2M2
pl

]
(A6)

p⊥ = p−
m2M2

pl|∂xσ|2

A
, (A7)

where we have introduced the following dimensionless scaled
quantities

x = mr , Ω =
ω

m
, σ =

Φ

Mpl
(A8)

with the Planckian mass Mpl = 1/
√
4πGN . Note that the

anisotropy of the pressures is due to the gradient term |∂xσ|2.
The second part of the field equations is the one for Φ (or now
σ),

∂x(x
2

√
B

A
∂xσ)+x2

√
AB

[
(
Ω2

B
−1)σ−U ′(Mplσ)

m2Mpl

]
= 0 , (A9)

where U ′(Mplσ) :=
δU(X)
δX

|X=Mplσ.
Due to the anisotropic stress tensor, the Einstein equation

cannot be further reduced to TOV equations. The only way
to solve the boson star configuration is to solve the coupled
field equations by the shooting method, which is numerically
difficult to obtain the full mass-radius or even mass-TLN re-
lations. One simplification is to assume the scalar field profile
is almost flat inside the boson stars so that the gradient term
∂xσ|2 in (A5)-(A6) and (A9) can be dropped. However, the
gradient term cannot always be small unless for some partic-
ular self-interaction regime. To see this, let us assume that
for some proper choice of a dimensionless parameter Λ, which
is the combination of m, σ, and coupling constants in U , one
can have

U(Mplσ)

m2M2
pl

−→ U∗(σ∗)

Λ
where σ∗ =

√
Λσ (A10)

with U∗ being in a universal form involving none of the model
parameters in V . Note that this above implies

U ′(Mplσ)

m2Mpl
→ U ′

∗(σ∗)√
Λ

with U ′
∗(X) =

δU∗(X)

δX
. (A11)

If we further scale x by x∗ = x/
√
Λ and assume that A and

B are not affected by this scaling, then it is straightforward
to see that the terms involving the gradient ∂xσ in (A5)-(A6)
and (A9) are suppressed by 1/Λ factor than the other non-
gradient terms in the corresponding equations. Therefore, the
gradient terms can be neglected in the large Λ limit. In this
case, scalar field equation (A9) is reduced to the algebraic one

(
Ω2

B
− 1)σ∗ = U ′

∗(σ∗) . (A12)

Then we obtain that, (A5) and (A6) reduce to

ρ = ρ0
[1
2
σ∗U

′
∗(σ∗) + U∗(σ∗) + σ2

∗

]
, (A13)

p = p⊥ = ρ0
[1
2
σ∗U

′
∗(σ∗)− U∗(σ∗)

]
, (A14)

and the overall energy density scale

ρ0 =
m2M2

pl

Λ
. (A15)

Then, for specific EoS, we can insert the corresponding po-
tential U∗ and find the results listed in the main text.

Appendix B: Bondi accretion for non-relativistic and
relativistic fluids

Bondi accretion [211, 212] is the simplest accretion scenario
by assuming spherical symmetry. It can be the approximate
mechanism to create the boson stars or the DM spike around
a central BH. Consider first the non-relativistic fluid, i.e., the
sound speed is far less than the speed of light. Kinematically,
the continuity equation 1

r2
d
dr
(r2ρ0v) = 0 defines the accretion

rate
Ṁ = 4πρ0r

2v (B1)

where M is the total mass of the central object, ρ0 is the
mass density of the fluid, r is the radial distance, and v is the
magnitude of the inward velocity of the fluid element. On the
other hand, the dynamics are dictated by the Euler equation

v
dv

dr
+

1

ρ0

dp

dr
+

GNM

r2
= 0 (B2)

where p is the pressure of the fluid, and GN is the Newton
constant. Use the definition of the sound speed c2s = dp

dρ0
, we

can turn the Euler equation into

1

2

(
1− c2s

v2

)dv2
dr

= −GNM

r2

(
1− 2c2sr

GNM

)
. (B3)

Note that cs = cs(r). This equation predicts a sonic horizon

at r = rs with rs = GNM
2c2s(rs)

, at which v(rs) = cs(rs). It is

naturally assumed the fluid speed v approaches zero at r = 0,
so the Euler equation tells that v is monotonically increasing
toward the sonic horizon; thus v > cs for r < rs. If we further
assume the equation of state of the fluid is in the polytropic
form p = κργ0 , the Euler equation yields

v2

2
+

c2s
γ − 1

− GNM

r
= constant =

c2s(∞)

γ − 1
. (B4)

Along with the above boundary condition, we obtain

cs(rs) = cs(∞)
( 2

5− 3γ

)1/2

. (B5)

On the other hand, from the continuity equation (B1), we

have Ṁ = −4πr2ρ0v = 4πr2sρ0(rs)cs(rs), which can yield

ρ0(rs) = ρ0(∞)
[ cs(rs)
cs(∞)

]2/(γ−1)

(B6)

and

Ṁ = πG2
NM2 ρ0(∞)

c3s(∞)

[ 2

5− 3γ

] (5−3γ)
2(γ−1)

. (B7)

Therefore, the accretion rate is determined by γ, the total
mass M of the central object, and the boundary values ρ0(∞)
and cs(∞).

However, the DM can be relativistic, e.g., the self-
interacting relativistic bosonic scalar, then the above non-
relativistic formulation of Bondi accretion can fail. For the
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relativistic fluid, the energy density ρ is different from the
mass density ρ0 used above, and they are related by [213]( dρ

dρ0

)
ad

=
ρ+ p

ρ0
(B8)

where the subscript ad indicates the variation is adiabatic.
The continuity equation takes the same form as (B1), how-
ever, the Bernoulli equation (B3) should be replaced by
its relativistic partner [167, 213, 214] in the background
Schwarzschild metric,(p+ ρ

ρ0

)2(
1 + v2 − 2GNM

r

)
=

(p(∞) + ρ(∞)

ρ0(∞)

)2

, (B9)

and the sonic horizon rs is at where the local Mach number
equal to one [213], i.e.,

v/cs√
1− 2GNM/rs + v2

= 1 . (B10)

Thus, given the equation of state p = p(ρ), we can solve the

accretion rate Ṁ and the sound speed profile cs(r) in a sim-
ilar way to the non-relativistic case. In [167], the relativistic
Bondi accretion for the λ|ϕ4| self-interaction bosonic scalar of
mass m has been studied. In this case, the accretion rate can
be obtained analytically as follows,

Ṁ ≡ 8πG2
NM2 ρB

c3

(c2 + 3c2s
c2 − 3c2s

)3/2

√
c2 − c2s

c2s
, (B11)

where c is the speed of light and the normalization for the
mass density

ρB =
3.48× 1020

λ

( m

GeV

)4

kg m−3 , (B12)

and the sound speed in terms of the boundary value,

c2s =
c2 − 3c2s(∞) +

√
c2 + 66c2s(∞)− 63c4s(∞)

18(c2 − c2s(∞))
. (B13)

Furthermore, note that 1/9 ≤ c2s < 1/3 so that

Ṁmin ≤ Ṁ < ∞ (B14)

where

Ṁmin := 64π
G2

NM2

c3
ρB . (B15)

For a typical dark halo with a dispersion velocity of about
100 km s−1,

Ṁmin ≈ 1.4× 10−9
( M

M⊙

)2

M⊙ yr−1. (B16)

This is too slow an accretion rate to form astrophysical-sized
DS. Therefore, forming DS from pure Bondi accretion mecha-
nism is hard. However, it can be adapted to consider the dark
spike around a supermassive BH as considered in [167]. An
interesting extension to the Bondi accretion around a moving
BH can be found in [215].
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D. de Florian, A. de Gouvêa, T. DeGrand, P. de Jong,
G. Dissertori, B. A. Dobrescu, M. D’Onofrio, M. Doser,
M. Drees, H. K. Dreiner, D. A. Dwyer, P. Eerola, S. Ei-
delman, J. Ellis, J. Erler, V. V. Ezhela, W. Fetscher,
B. D. Fields, R. Firestone, B. Foster, A. Freitas, H. Gal-
lagher, L. Garren, H.-J. Gerber, G. Gerbier, T. Ger-
shon, Y. Gershtein, T. Gherghetta, A. A. Godizov,
M. Goodman, C. Grab, A. V. Gritsan, C. Grojean,
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