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ON GROUPS WITH THE SAME CHARACTER DEGREES AS

ALMOST SIMPLE GROUPS WITH SOCLE SMALL REE GROUPS

SEYED HASSAN ALAVI

Abstract. Let G be a finite group and cd(G) denote the set of complex irre-
ducible character degrees of G. In this paper, we prove that if G is a finite group
and H is an almost simple group with socle H0 = 2G2(q), where q = 3f with
f > 3 odd such that cd(G) = cd(H), then G is non-solvable and the chief factor
G′/M of G is isomorphic to H0. If, in particular, f is coprime to 3, then G′ is
isomorphic to H0 and G/Z(G) is isomorphic to H .

1. Introduction

Let G be a finite group, and let Irr(G) be the set of complex irreducible characters
of G. Denote the set of character degrees of G by cd(G), and when the context
allows us the set of irreducible character degrees will be referred to as the set of
character degrees. There are various examples showing that the set of character
degrees of G cannot completely determine the structure of G even for nilpotent
and solvable groups. For example, the non-isomorphic groups D8 and Q8 not only
have the same set of character degrees, but also share the same character table
and cd(Q8) = cd(S3) = {1, 2}. However, in the late 1990s, Huppert [15] posed
a conjecture which, if true, would sharpen the connection between the character
degree set of a non-abelian simple group and the structure of the group.

Conjecture 1.1 (Huppert). Let G be a finite group, and let H be a finite non-
abelian simple group such that the sets of character degrees of G and H are the
same. Then G ∼= H × A, where A is an abelian group.

The conjecture asserts that the non-abelian simple groups are essentially charac-
terized by the set of their character degrees. This conjecture is verified for alternating
groups, sporadic simple groups, some finite simple groups of Lie type including the
Ree groups 2G2(q), see for example [1, 7, 8, 15, 16, 24, 30, 31]. Since 2016, we have
started to study the structure of groups with the same character degrees as almost
simple groups including those with socle PSL2(q) [2, 12], Suzuki groups [6], Ree
groups [3] and sporadic simple groups [4, 5]. There are several examples provided
in [4, 5, 12] which show that Huppert’s conjecture cannot be extended to almost
simple groups. If H is an almost simple group with socle H0 = PSL2(2

f) with f
prime, Daneshkhah [12] proved that there is an abelian group A such that G/A is
isomorphic to H . In particular, she proved that G′ = H0 and A = Z(G) with only
one exception, namely, when H = Aut(PSL2(4)) in which G′ = H0 or 2 ·H0, see [12,
Theorem 1.1]. It seems that if G is a group with the same character degrees as an
almost simple group H with socle H0, then G′ = H0 and G/Z(G) is isomorphic to
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2 S.H. ALAVI

H with a few exceptions for which G′ is an extension of an abelian normal subgroup
of G by H0 in which cases we still have G/A ∼= H with A central in G. In this paper,
we continue our investigation to support this statement which is the almost simple
group version of Huppert’s conjecture, and study groups whose character degrees
are the same as those of almost simple groups with socle Ree groups:

Theorem 1.1. Suppose that H is an almost simple group with socle H0 = 2G2(q),
where q = 3f with f > 3 odd. Let G be a finite group with cd(G) = cd(H). Then G
is nonsolvable and the chief factor G′/M of G is isomorphic to H0. If f is coprime
to 3, then G′ ∼= H0 and G/Z(G) is isomorphic to H.

Note that Theorem 1.1 for H = 2G2(q) is proved by Wakefield [31], and so we
need only to focus on the case where 2G2(q) 6= H 6 Aut(2G2(q)). In order to prove
Theorem 1.1, it is worth noting that we do not need to determine all the character
degrees of H . We use several useful facts proved in Lemma 3.2 on the character
degrees of G. For example, one of the key result is the fact that the 2-part of the
character degrees of G divides 23. It is unfortunate to state that our method does
not work when 3 | f , in which case, we think that G′ may not be isomorphic to H0

but we still believe that G/A is isomorphic to H , for some abelian subgroup A of G.

2. Preliminaries

In this section, we present some useful results to prove Theorem 1.1. We first
establish some definitions and notation. Throughout this paper all groups are finite.
A finite group of order n is denoted by “n”. We use Cn to denote the cyclic group
of order n, and An and Sn are the alternating group and the symmetric group on n
letters, respectively. We follow standard notation as in [11] for finite simple groups.
A group H is said to be an almost simple group with socle H0 if H0 6 H 6 Aut(H0),
where H0 is a non-abelian simple group. If N EG and θ ∈ Irr(N), then the inertia
group (or the stabilizer of θ in G) IG(θ) of θ in G is defined by IG(θ) = {g ∈ G | θg =
θ}. If the character χ =

∑k
i=1 eiχi, where each χi is an irreducible character of G

and ei is a non-negative integer, then those χi with ei > 0 are called the irreducible
constituents of χ. All further notation and definitions are standard and can be found
in [14, 17]. For the computation parts, we use GAP [13].

Lemma 2.1 ([14, Theorems 19.5 and 21.3]). Suppose that N EG and χ ∈ Irr(G).

(i) If χN = θ1 + · · · + θk with θi ∈ Irr(N), then k divides |G/N |. In particular, if
χ(1) is prime to |G/N |, then χN ∈ Irr(N).

(ii) (Gallagher’s Theorem) If χN ∈ Irr(N), then χψ ∈ Irr(G) for all ψ ∈ Irr(G/N).

Lemma 2.2 ([14, Theorems 19.6 and 21.2]). Suppose that N E G and θ ∈ Irr(N).
Let I = IG(θ).

(i) If θI =
∑k

i=1 φi with φi ∈ Irr(I), then φG
i ∈ Irr(G). In particular, φi(1)|G :

I| ∈ cd(G).
(ii) If θ extends to ϕ ∈ Irr(I), then (ϕτ)G ∈ Irr(G) for all τ ∈ Irr(I/N). In

particular, θ(1)τ(1)|G : I| ∈ cd(G).

A character χ ∈ Irr(G) is said to be isolated in G if χ(1) is divisible by no proper
non-trivial character degree of G and no proper multiple of χ(1) is a character degree
of G. In this situation, we also say that χ(1) is an isolated degree of G. We define a
proper power degree of G to be a character degree of G of the form ca for integers c



GROUPS WITH CHARACTER DEGREES OF ALMOST SIMPLE REE GROUPS 3

Table 1. Character degrees of finite simple groups of Lie type.

S Conditions Label Degree

PSLm(q) m > 2, q > 5 if m = 2, (m, q) 6= (3, 2), (4, 2) St q
m(m−1)

2

m > 4 (1, m) q(qm−1−1)
q−1

PSUm(q) m > 3, (m, q) 6= (3, 2), (4, 2) St q
m(m−1)

2

m > 4 (1, m) q(qm−1−(−1)m−1)
q+1

PSp2m(q) m > 2, (m, q) 6= (2, 2) St qm2

m > 2

(

0 m
1

)

q(qm−1)(qm−1+1)
q−1

PΩ2m+1(q) m > 3, q odd St qm2

m > 3, q odd

(

0 m
1

)

q(qm−1)(qm−1+1)
q−1

PΩǫ
2m(q) m > 4, ǫ = ± St qm(m−1)

2B2(q) q = 22a+1 > 8 St q2

3D4(q) St q12

Eǫ
6(q) ǫ = ± St q36

E7(q) St q63

Φ7,46 q46Φ7Φ12Φ14

E8(q) St q120

F4(q) St q24

2F4(q) q = 22a+1 > 8 St q12

G2(q) q > 3 St q6

2G2(q) q = 32a+1 > 27 St q3

Note: Φi is the ith cyclotomic polynomial in terms of q.

with a > 1. A mixed degree of G is a character degree which is divisible by at least
two distinct primes.

Lemma 2.3 ([30, Lemma 3]). Let G/N be a solvable factor group of G minimal
with respect to being non-abelian. Then two cases can occur.

(i) G/N is an r-group for some prime r. In this case, G has a proper prime
power degree. Hence there exists ψ ∈ Irr(G/N) such that ψ(1) = rb > 1. If
χ ∈ Irr(G) and r ∤ χ(1), then χτ ∈ Irr(G) for all τ ∈ Irr(G/N);

(ii) G/N is a Frobenius group with an elementary abelian Frobenius kernel F/N .
Then e := |G : F | ∈ cd(G) and |F/N | = ra for some prime r and a is
the smallest integer such that ra ≡ 1 mod e. If ψ ∈ Irr(F ), then either
fψ(1) ∈ cd(G) or ra divides ψ(1)2. In the latter case, r divides ψ(1).
(1) If χ ∈ Irr(G) such that no proper multiple of χ(1) is in cd(G), then

either e divides χ(1), or ra divides χ(1)2;
(2) If χ ∈ Irr(G) is isolated, then e = χ(1) or ra | χ(1)2.

Lemma 2.4 ([9, Lemma 5]). Let N be a minimal normal subgroup of G so that
N ∼= Sk, where S is a non-abelian simple group. If θ ∈ Irr(S) extends to Aut(S),
then θk ∈ Irr(N) extends to G.

Lemma 2.5 ([15, Lemma 6]). Suppose that M EG′ = G′′ and for every λ ∈ Irr(M)
with λ(1) = 1, λg = λ for all g ∈ G′. Then M ′ = [M,G′] and |M/M ′| divides the
order of the Schur multiplier of G′/M .
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Lemma 2.6. If S is a non-abelian simple group, then there exists a non-trivial
irreducible character of S that extends to Aut(S). Moreover, the following holds:

(i) if S is an alternating group An of degree at least 8, then S has an irreducible
character degree divisible by 16;

(ii) if S is a simple group of Lie type as in Table 1 and χ is an irreducible character
of S labeled as in the third column of Table 1, then χ extends to Aut(S);

(iii) if S is the Tits group 2F4(2)′ or a sporadic simple group except for M22, then
S has an irreducible character degree divisible by 16 unless S is J1 or M22.

Furthermore, all the characters in (i) and (iii) are extendible to Aut(S).

Proof. The existence of an extendible character of S to Aut(S) follows from [9,
Lemma 5].

(i) For a partition (n− s− r, s+ 1, r − 1) of n > 8, it follows from [23] that Sn has
an irreducible character labeled by χr,s, where r > 1, s > 0 and r+ 2s+ 1 6 n. The
character χr,s restricts irreducibly to An except when s = 0 and n = 2r+ 1 or s = 1
and n = 2r + 2, and its degree is

χr,s(1) =

(

n

s

)(

n − s − 1

r − 1

)

n− 2s− r

r + s
.

If n = 4t + 1 for some t > 2, then 16 divides 8t(t − 1), and so χ1,2(1) = 8t(t −
1)(4t + 1)/3 is divisible by 16. If n = 4t + 3 for some t > 2, then 16 divides
χ3,2(1) = 8t(t− 1)(2t+ 1)(4t + 3)(4t− 1)/5, and if n = 2t for some t > 4, then 16
divides χ2,1(1) = 8t(t − 1)(t − 2)/3. Therefore, for a given n, at least one of the
degrees χ1,2(1), χ2,1(1) and χ3,2(1) is divisible by 16.

(ii) For a finite simple group S listed as in the first column of Table 1, the irreducible
character labeled by St in Table 1 is the Steinberg character of S, and by [27, 28],
St extends to Aut(S). The remaining characters with degrees in Table 1 are the
unipotent characters of S which are extendible to G by [22, Theorems 2.4-2.5].

(iii) This part follows from ATLAS [11] and GAP [13]. �

Lemma 2.7. Let G be a finite group with G′ being a non-abelian finite simple group.
Then G′CG(G′) = G′ × CG(G′), CG(G′) = Z(G) and G/Z(G) is an almost simple
group with socle G′.

Proof. Let A := CG(G′) and T := G′A. Since G′ is a non-abelian simple group,
G′ ∩A = 1, and hence G′A = G′ ×A. As G′ ∩A = 1, it also follows that [G,A] = 1,
and hence A = Z(G). Moreover, G′ ∼= G′Z(G)/Z(G) E G/Z(G) 6 Aut(G′), that is
to say, G/Z(G) is an almost simple group with socle G′. �

3. Proof of the main result

In this section, we prove Theorem 1.1. We will denote the small Ree group
by 2G2(q) with q = 32n+1 > 27. These groups have been introduced by Ree in
[25, 26]. We mainly follow the description of these groups and their subgroups given
in [18, 21, 32] with a few exceptions in our notation. In what follows, we provide
some information on small Ree groups and their character degrees.

Lemma 3.1 ([19, Table 5.1.A and Theorem 5.1.4]). Let H0 = 2G2(q) with q = 3f >

27 and f odd. Then the outer automorphism group Out(H0) of H0 is isomorphic to
the cyclic group Cf generated by the field automorphism and the Schur multiplier
M(H0) of H0 is trivial.
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Table 2. The character degrees of the finite simple group 2G2(q)
with q = 3f > 27 and f odd.

Line Degree Comment
1 1
2 (q − √

3q + 1)(q +
√

3q + 1)

3
√

3q
6 (q − 1)(q − √

3q + 1) The character extends to Aut(2G2(q))

4
√

3q
6 (q − 1)(q +

√
3q + 1) The character extends to Aut(2G2(q))

5
√

3q
3 (q − 1)(q + 1) The character extends to Aut(2G2(q))

6 (q − 1)(q + 1)(q − √
3q + 1)

7 (q − 1)(q − √
3q + 1)(q +

√
3q + 1)

8 q(q − √
3q + 1)(q +

√
3q + 1)

9 q3 The character extends to Aut(2G2(q))
10 (q + 1)(q − √

3q + 1)(q +
√

3q + 1)
11 (q − 1)(q + 1)(q +

√
3q + 1)

Lemma 3.2. Let H0 = 2G2(q) with q = 3f > 27 and f odd, and let H0 6 H 6

Aut(H0) with |H : H0| = d. Then

(i) the irreducible character degrees of H0 are recorded in Table 2, and the irre-
ducible characters with degrees as in one of the lines 2, 3, 4 and 9 extend to H
which are consequently character degrees of H;

(ii) if χ is an irreducible character of H of prime power degree, then χ(1) = q3;
(iii) if χ is an irreducible character of H, then the 2-part of χ(1) divides 23;
(iv) the smallest even degree of H is

√
3q(q − 1)(q + 1)/3;

(v) the group H has an irreducible character of degree (q3 + 1)d.

Proof. (i) The irreducible character degrees of H0 can be read off from [32]. The
irreducible characters whose degrees are as in one of the lines 2, 3, 4 and 9 are the
unipotent characters of H0, see [10, pp. 488-489]. Therefore, these characters extend
to H by [22, Theorems 2.4-2.5].

(ii) We know by Lemma 2.1 that each degree of H is a multiple of some character
degree of H0. We also observe that

(q − 1, q + 1) = 2,

(q + ǫ11, q + ǫ2
√

3q + 1) = 1, (3.1)

(q −
√

3q + 1, q +
√

3q + 1) = 1,

where ǫ1 = ± and ǫ2 = ±. Therefore, the only prime power degree of H0 is q3 which
is also extendible to H . This shows that the only prime power degree of H is q3.

(iii) It follows from [32, Theorem] that the Sylow 2-subgroups of H0 are elementary
abelian groups of order 8. Indeed, the 2-part of q − 1 = 3f − 1 is 2 and the 2-part
of q+ 1 = 3f + 1 is 4. Since f is odd and the irreducible character degree χ(1) of H
is a multiple of a divisor of f and an irreducible character degree of H0, it follows
the 2-part of χ(1) divides 8.

(iv) Note that the 2-part of q − 1 = 3f − 1 is 2. Then the degrees in lines 3 and
4 of Table 2 are odd. Moreover, the irreducible character of H whose degree is a
multiple of (q − √

3q + 1)(q +
√

3q + 1) and a divisor of f is also odd. Therefore,
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Table 3. Maximal subgroups of the finite simple group 2G2(q) with
q = 3f > 27 and f odd.

Maximal subgroup structure Order Index
[q3] : Cq−1 q3(q − 1) q3 + 1
2 × PSL2(q) q(q2 − 1) q2(q2 − q + 1)
22 × D(q+1)/2 : C3 6(q + 1) 1

6q3(q − 1)(q2 − q + 1)
Cq+

√
3q+1 : C6 6(q +

√
3q + 1) 1

6q3(q + 1)(q − 1)(q − √
3q + 1)

Cq−
√

3q+1 : C6 6(q − √
3q + 1) 1

6q3(q + 1)(q − 1)(q +
√

3q + 1)
2G2(q0), q = qr

0, r prime q3
0(q3

0 + 1)(q0 − 1)
q3r

0 (q3r

0 +1)(qr

0−1)

q3
0(q3

0+1)(q0−1)

√
3q(q− 1)(q+ 1)/3 is the smallest even irreducible character degree of H0 which is

also a degree of H by part (i).

(v) Let ι be an involution in H0. Then the centralizer of ι is (isomorphic to) 〈ι〉 ×
PSL2(q). We now consider an element x of PSL2(q) of order (q − 1)/2 which is
conjugate to its inverse but to no other power. By replacing R with x and r with
ε in [32, Theorem], H0 has the irreducible character ηε of degree q3 + 1, where ε is
(q − 1)/2th root of unity. We also observe by [32, Ch. I] that ηε(x

a) = εa + ε−a

which is obtained by the irreducible character of PSL2(q) denoted θε in [32, Ch. I].
Moreover, distinct characters ηε differ only on the classes of xa 6= 1 and ιxa 6= ι,
see [32, Ch. V]. Recall from Lemma 3.1 that the field automorphism ϕ of H0

induced by the Frobenius automorphism of Fq is of order f and generates Out(H0),
where q = 3f > 27 with f odd. We now prove that ηε is not invariant under any
outer automorphism of H0. Assume to the contrary that ϕi stabilizes ηε for some
1 6 i < f . Then ηϕi

ε (g) = ηε(g), for all g ∈ H0. In particular, ηϕi

ε (x) = ηε(x). Then

ε3i

+ ε−3i

= ε+ ε−1. By [33, Lemma 4.7], this is equivalent to 3i ≡ ±1 (mod q−1
2

).

So (q−1)/2 = (3f −1)/2 divides 3i ∓1, which is impossible. Therefore, the elements
of H0 are the only elements of H which stabilize ηε, in other words, IH(ηε) = H0.
Therefore, ηH

ε ∈ Irr(H), and hence (q3 + 1)d = ηH
ε (1) ∈ cd(H), as desired. �

Lemma 3.3. Let H0 = 2G2(q) with q = 32n+1 > 27, and let H0 6 H 6 Aut(H0)
with |H : H0| = d. If K is a maximal subgroup of H0 whose index in H0 divides
some degree χ(1) of H, then K = [q3] : Cq−1 and χ(1) = (q3 + 1)a for some divisor
a of d.

Proof. The list of maximal subgroups of 2G2(q) is obtained by Kleidman [20]. We
summarized the list of these subgroups in Table 3. Assume first that K is neither a
parabolic subgroup [q3] : Cq−1, nor a subfield subgroup 2G2(q0). Then the index of
the subgroup K in H0 must divide some mixed degrees of H . It is easy to observe
that the p-part of the indices of these subgroups have exponents on p too large
to divide a mixed degree of H . If K = 2G2(q0) with q = qr

0 and r prime, then
|H0 : K|3 = q3r−3 divides qd3 = qr

0d3. Since d3 < q = qr
0, we have that 3r − 3 < r

implying that r = 1, which is impossible. Therefore, K is the parabolic subgroup
[q3] : Cq−1 whose index divides the degree (q3 + 1)a for some divisor a of d. �

Proposition 3.4. Let G be a finite group, and let H be an almost simple group
whose socle is H0 = 2G2(q) with q = 3f > 27 and f odd, and |H : H0| = d 6= 1. If
cd(G) = cd(H), then G′ = G′′.
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Proof. Assume to the contrary that G′ 6= G′′. Then there is a normal subgroup N
of G, where N is maximal such that G/N is a non-abelian solvable group. We now
apply Lemma 2.3 and have one of the following two possibilities which leads to a
contradiction.

(i) G/N is a r-group with r prime. In this case, G/N has an irreducible character
ψ of degree rb > 1, so does G. Lemma 3.2(ii) implies that ψ(1) = q3. We consider
χ(1) = (q − 1)(q + 1)(q +

√
3q + 1)a ∈ cd(G) for some positive integer a > 1. Then

by Lemma 2.1(i), we have that χN ∈ Irr(N), and so Lemma 2.1(ii) implies that G
has an irreducible character of degree q3(q − 1)(q + 1)(q +

√
3q + 1)a, which is a

contradiction.

(ii) G/N is a Frobenius group with kernel F/N . Then |G : F | ∈ cd(G) divides ra−1,
where |F/N | = ra. Note that q3 is an isolated degree of G. Then Lemma 2.3(ii.2)
implies that |G : F | = q3 or r = 3. Let χ1 be an irreducible character of G of

degree χ1(1) =
√

3q
3

(q − 1)(q + 1). Let also c1 and c2 be the largest prime divisors
of d = |H : H0| such that χ2(1) = q(q − √

3q + 1)(q +
√

3q + 1)c1 and χ3(1) =
(q − 1)(q + 1)(q +

√
3q + 1)c2 being irreducible character degrees of G. Then no

proper multiple of each χi(1) is in cd(G).
Suppose that |G : F | = q3. Then by Lemma 2.3(ii.1), we conclude that ra divides

the greatest common divisor of χi(1)2, for i = 1, 2, 3, and so ra divides (c1, c2)
2 by

(3.1). Thus, ra divides d2. On the other hand, |G : F | = q3 divides ra−1. Therefore,
q3 6 ra − 1 6 d2 − 1, and hence, 33f 6 f 2 − 1, which is a contradiction.

Suppose that r = 3. Since |G : F | ∈ cd(G) and the greatest common divisor of
χ1(1)2, χ2(1)2 and χ3(1)2 divides d2, it follows from Lemma 2.3(ii.1) that ra divides
d2. Note that d is a divisor of |Out(H0)| = f . We again apply Lemma 2.3(ii) and
conclude that |G : F | 6 ra − 1 6 f 2 − 1, but then |G : F | is too small to be a
character degree of G, which is a contradiction. �

Proposition 3.5. Let G be a finite group, and let H be an almost simple group
whose socle is H0 = 2G2(q) with q = 3f > 27 and f odd, and |H : H0| = d 6= 1.
Then the chief factor G′/M of G is isomorphic to H0.

Proof. Let G′/M be a chief factor of G. As G′ is perfect, G′/M is non-abelian, and
so G′/M is isomorphic to Sk for some non-abelian simple group S and some integer
k > 1. Note that each finite simple group has an even irreducible character degree.
Then 2k divides some degrees of G. By Lemma 3.2(iii), we conclude that k 6 3.

Suppose that S is an alternating group of degree n > 8, the Tits group 2F4(2)′ or
a sporadic simple group except for the Mathieu group M22 and the Janko group J1.
Then by Lemma 2.6(i) and (iii), S has an irreducible character degree divisible by
16, and so G has a character degree divisible by 16 but this violates Lemma 3.2(iii).
We now discuss the case where S is An for n = 5, 6, 7, M22 or J1.

If S = A5, then S has an irreducible character of degree 5 which extends to S5.
It follows from Lemma 2.4 that G has an irreducible character of degree 5k, but
this violates Lemma 3.2(ii). If S = A6, the fact that S has an irreducible character
of degree 9 which extends to A6 · C2

2 implies that G has an irreducible character
of degree 32k, and so by Lemma 3.2(ii), we have that 32k = q3 = 33f with f odd,
which is a contradiction. If S = A7, then the irreducible character of S of degree 6
extends to Aut(S), and so by Lemma 2.4, G has an even degree 6k for k = 1, 2, 3.
By Lemma 3.2(iv), we conclude that 63 > 6k >

√
3q(q2 − 1)/3, which is impossible

as q = 3f > 27 with f odd.
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If S = J1, then 56, 120 ∈ cd(S). This implies that k = 1 as if not G has an
irreducible character degree divided by 56 · 120 = 26 · 3 · 5 · 7, which contradicts
Lemma 3.2(iii). Thus k = 1, and hence G has an even irreducible degree 56. Now
we apply Lemma 3.2(iv), and so 56 >

√
3q(q2 − 1)/3, but this inequality has no

solution for q = 3f > 27. Similarly, if S = M22, then since S has irreducible
characters of even degrees 210 and 280, we conclude that k = 1. The irreducible
character of degree 210 extends to Aut(S) = M22 : 2, and so Lemma 2.4 implies
that 210 ∈ cd(G) and this violates Lemma 3.2(iv) as 210 <

√
3q(q2 − 1)/3 for all

q = 3f > 27.
Suppose now that S = S(q0) is a finite simple group of Lie type except the

Tits group 2F4(2)′, where q0 = pe for some positive integer e. In what follows, we
frequently use Lemma 2.6(ii) and the character degrees of S recorded in Table 1. By
Lemma 2.6(ii), the Steinberg character of degree St(1) = |S|p extends to Aut(S), and
so Lemma 2.4 implies that G possesses a non-trivial prime power character degree
|S|kp. Then Lemma 3.2(v) forces

|S|kp = 33f . (3.2)

This in particular implies that p = 3. Since f is odd and k is 1, 2 or 3, it also follows
that k is 1 or 3. We now discuss each possibilities of S separately.

Let S be PSLm(q0) with m > 2 or PSUm(q0) with m > 3. Then by (3.2),

we have that |S|kp = St(1)k = 33f , and so 3em(m−1)k/2 = q
m(m−1)k/2
0 = 33f . Thus

em(m − 1)k = 6f with k = 1, 3, and hence both e and m(m − 1)/2 are odd.
Therefore, m > 5, or S is PSL2(q0), PSL3(q0) or PSU3(q0). If m > 5, then by
Lemma 2.6(ii), S has a unipotent character χ of degree q0(qm−1

0 − 1)/(q0 − 1) or
q0(q

m−1
0 − (−1)m−1)/(q0 + 1) when S is PSLm(q0) or PSUm(q0), respectively. The

character χ extends to Aut(S), and so it follows from Lemma 2.4 that χ(1)k ∈ cd(G).
Therefore, the 3-part qk

0 of χ(1) is equal to the 3-part of some non-prime power
irreducible degree of G. Then qk

0 >
√

3q/3, and so 32ek+1 > 3f , and this implies
that 2ek + 1 > f . Since em(m − 1)k = 6f , it follows that m(m − 1) 6 18 which
has no solution for m > 5, which is a contradiction. Therefore, m = 2 or 3, that is
to say, S is PSL2(q0), PSL3(q0) or S = PSU3(q0). Let S = PSL2(q0). Then qk

0 = q3

by (3.2). If k = 3, then q0 = q, and so S has irreducible character degrees q and
q − 1. Therefore, q2(q − 1) divides some degree of G, which is impossible. If k = 1,
then q0 = q3, and so some degree of G is divisible by q0 − 1 = q3 − 1, which is a
contradiction. Let S = PSL3(q0) with q0 = 3e > 3 and e odd. It follows from [29]
that S has an irreducible character degree (q0 − 1)2(q0 + 1) which is divisible by 16.
Therefore, 16 divides some degree of G, and this contradicts Lemma 3.2(iii). Let
S = PSU3(q0) with q0 = 3e > 3 and e odd. By [29], S has an irreducible character
degree (q0 −1)(q0 +1)2 which is divisible by 16 which is a contradiction as the 2-part
of any degree of G divides 23.

Let S be PSp2m(q0) with m > 2 or PΩ2m+1(q0) with m > 3. It follow from (3.2)

that qm2k
0 = |S|kp = St(1)k = q3, and so 3em2k = 33f implying that em2k = 3f with

k = 1, 3. Thus e and m are odd. By Lemma 2.6(ii), S has a unipotent character
χ of degree q0(qm

0 − 1)(qm−1
0 − 1)/(q0 − 1) which extends to Aut(S), and so by

applying Lemma 2.4, we conclude that χ(1)k ∈ cd(G). This in particular implies
that the 3-part qk

0 of χ(1)k is equal to the 3-part of some non-prime power irreducible
degree of G. Then qk

0 >
√

3q/3, and so 2ek + 1 > f . Recall that em2k = 3f . Then



GROUPS WITH CHARACTER DEGREES OF ALMOST SIMPLE REE GROUPS 9

6ek+1 > em2k, and so m2 < 7. This is true only for m = 2, which is a contradiction
as m is odd.

Let S = PΩ±
2m(q0) with m > 4. Then (3.2) implies that 3em(m−1) = q

m(m−1)
0 = 33f .

Thus em(m − 1) = 3f , which is a contradiction as f is odd but m(m − 1) is even.
By the same argument, the case where S is an exceptional simple group except for
E7(q0) and 2G2(q0) can be ruled out, see Table 1 for the character degrees. Let

S = E7(q0). Then by (3.2), q63k
0 = St(1)k = q3, and so q0 = q

3
63k . The unipotent

character Φ7,46 of S extends to Aut(S) by Lemma 2.6(ii), and so Lemma 2.4 yields
Φ7,46(1)k ∈ cd(G). Note that the 3-part of Φ7,46(1)k is q46k

0 = q3·46/63 which is greater
than q2. Hence q2 divides the 3-part of some non-prime power irreducible degree of
G, which is impossible.

Therefore, S = 2G2(q0) with q0 = 3e > 27 and e odd. Then q3k
0 = |S|k3 = q3, and

so q0 = q1/k. If k = 3, then q3
0 · q2

0(q2
0 − q0 + 1)2 divides some degree of G, and so the

3-part of this number which is q5
0 = q5/3 has to divide the 3-part of some non-prime

power degree of G. Thus q5/3 6 qf , and hence q2 < f 3, or equivalently, 32f < f 3,
but this inequality has no solution for odd positive integers f > 3. Therefore, k = 1,
and hence q0 = q, that is to say, G′/M is isomorphic to 2G2(q), as claimed. �

Corollary 3.6. Let G be a finite group with cd(G) = cd(H), where H is an almost
simple group whose socle is H0 = 2G2(q) with q = 3f > 27 and f odd. Then there
exists a normal subgroup N of G such that G/N is an almost simple group with socle
H0.

Proof. By Proposition 3.5, the chief factor G′/M is isomorphic to H0. Let N be a
normal subgroup of G such that Z(G/M) = N/M . Applying Lemma 2.7 to G/M ,
we conclude that G/N is an almost simple group with socle H0. �

Proposition 3.7. Let G be a finite group with cd(G) = cd(H), where H is an
almost simple group whose socle is H0 = 2G2(q) with q = 3f > 27 and f odd, and
|H : H0| = d 6= 1. Let also the chief factor G′/M be isomorphic to H0. If f is
coprime to 3, then M = 1, and hence G′ ∼= H0.

Proof. We first show that every linear character θ of M is G′-invariant, that is to
say, IG′(θ) = G′. Assume to the contrary that I := IG′(θ) < G′ for some θ ∈ Irr(M)
with θ(1) = 1. Let θI =

∑k
i=1 φi, where φi ∈ Irr(I) for i = 1, 2, ..., k. Suppose that

U := U/M is a maximal subgroup of G′ := G′/M ∼= H0 containing I := I/M , and
set t := |U : I|. It follows from Lemma 2.2(i) that φi(1)|G′ : I| ∈ cd(G′), and so
tφi(1)|G′ : U | divides some character degree of G. Then |G′ : U | must divide some
character degree of G, and so by Lemma 3.3, |G′ : U | divides (q3 + 1)a ∈ cd(G) for
some divisor a of d = |H : H0| and the group U is Q : Cq−1, where Q := [q3]. Thus,
tφi(1) divides d which is a divisor of f . Therefore, t = |U : I| = |U : I| divides
f which is coprime to 3, and hence Q is contained in I. Let s := |I : Q|. Then
q − 1 = |U : Q| = ts. Since f is odd and t is a divisor of f , we observe that s is
even, and hence I = Q : Cs, where s = (q − 1)/t is even.

If ϕi(1) = 1 for some i, then θ would extend to ϕi, and so Lemma 2.2(ii) implies
that (ϕiτ)G′

is an irreducible character of G′, for all τ ∈ Irr(I). We know that
|G′ : I| = (q3 + 1)t and I has a Frobenius subgroup J := Q : Cs/2 which has
an irreducible character of degree s/2, see [32, Theorem(3)]. Thus (q3 + 1)ts or
(q3 + 1)ts/2 is an irreducible character degree of G′, and hence some degree of G
is divisible by (q3 + 1)(q − 1)/2, which is a contradiction. Therefore, ϕi(1) > 1
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is an odd divisor of a, for all i. Since f is coprime to 3, each ϕi(1) is coprime
to 3. We claim that Q/ ker(θ) is abelian. To show this, it suffices to prove that
Q′ 6 ker(ϕi), for all i, as if this true, then Q′ 6 ∩k

i=1 ker(ϕi) = ker(θI) = ker(θ)
which implies that Q/ ker(θ) is abelian. Suppose that Q′ does not contain ker(ϕj)
for some j. Then (ϕj)Q =

∑

i σi with σi nonlinear in Irr(Q). Since M/ ker(θ) is
central in I/ ker(θ), by Ito’s theorem [14, Theorem 19.9], we conclude that the non-
trivial degrees of Q/ ker(θ) are powers of 3, and hence ϕj(1) is divisible by 3, which
is a contradiction. Therefore, Q/ ker(θ) is abelian as claimed. This implies that
Q′ 6 ker(θ), and so Q′ 6 M . Thus Q = Q/M is abelian, and this contradicts the

fact that Q
′
is a group of order q2, see [32, Theorem]. Therefore, IG′(θ) = G′.

We now show that M = M ′. Since every linear character θ of M is G′-invariant,
we apply Lemma 2.5 and conclude that |M/M ′| divides the order of Schur Multiplier
M(H0) of H0 which is trivial by Lemma 3.1, and so M = M ′. Suppose that M is
non-abelian, and let N 6 M be a normal subgroup of G′ such that M/N is a
chief factor of G′. Then M/N ∼= Sk, for some non-abelian simple group S. It
follows from Lemma 2.6 that S possesses a non-trivial irreducible character θ such
that χ := θk ∈ Irr(M/N) extends to G′/N . By Lemma 2.1(ii), we must have
χ(1)ψ(1) ∈ cd(G′/N) ⊆ cd(G′), for all ψ ∈ Irr(G′/M). Now we can choose ψ ∈ G′/M
such that ψ(1) = q3, and since θ is non-trivial, χ(1)ψ(1) = θ(1)k · q3 divides some
degree of G, which is a contradiction. Therefore, M is abelian, and since M = M ′,
we conclude that M = 1. Consequently, G′ is isomorphic to H0. �

We are now ready to prove Theorem 1.1. In what follows, suppose that G is a
finite group with cd(G) = cd(H), where H is an almost simple group whose socle is
H0 = 2G2(q) with q = 3f > 27 and f odd. Suppose also that |H : H0| = d.

Proof of Theorem 1.1 The case where H = H0 has been treated in [31]. Here,
we assume that H 6= H0. By Proposition 3.4, we conclude that G′ = G′′, and so
G is nonsolvable. Moreover, Proposition 3.7 implies that the chief factor G′/M is
isomorphic to H0. Suppose now that f is coprime to 3. Then Proposition 3.7 implies
that G′ ∼= H0 = 2G2(q). It follows from Lemma 2.7 that T := G′Z(G) = G′ × Z(G)
and G/Z(G) is isomorphic to H0 : Cs 6 Aut(H0) with s a divisor of d = |H : H0|. By
Lemma 3.2(v), the group H has an irreducible character χ of degree (q3 +1)d. Then
by Lemma 2.1(i), there exists θ ∈ Irr(T ) such that χ(1) = kθ(1) for some divisor k
of |G : T | = s. Note that cd(T ) = cd(G′) = cd(2G2(q)). Then by inspecting the
degrees of 2G2(q), we conclude that θ(1) = q3 + 1, and so k = d. This in particular
implies that d 6 s. If s > d, then G/Z(G) ∼= H0 : Cs has an irreducible character of
degree (q3 + 1)s, so does G, which is a contradiction. Therefore, s = d, and hence
G/Z(G) is isomorphic to H = H0 : Cd. �
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