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Abstract

We show that for any finitely generated subgroup H of a limit group L
there exists a finite-index subgroup K containing H, such that K is a sub-
group of a group obtained from H by a series of extensions of centralizers
and free products with Z. If H is non-abelian, the K is fully residually H.
We also show that for any finitely generated subgroup of a limit group,
there is a finite-dimensional representation of the limit group which sep-
arates the subgroup in the induced Zariski topology. As a corollary, we
establish a polynomial upper bound on the size of the quotients used to
separate a finitely generated subgroup in a limit group. This generalizes
the results in [10]. Another corollary is that a hyperbolic limit group
satisfies the Geometric Hanna Neumann conjecture.

1 Introduction

A group is said to retract onto a subgroup if the inclusion map of the subgroup
into the group admits a left-inverse. In which case, the left-inverse is called a
retraction and the subgroup a retract. In [22], Wilton proves that if H is a
finitely generated subgroup of a limit group L, g ∈ L−H, then H is a retract
of some finite-index subgroup K ≤ L which contains H but not g [22]. We will
refer to the smallest set of groups containing all finitely generated free groups
that is closed under extensions of centralizers as ICE. By [6], limit groups are
precisely the finitely generated subgroups of groups from ICE. We will modify
the construction, from [22], of a finite-index subgroup K ≤ G, where G is an
ICE group, in such a way that not only is there a retraction K → H, but, for
a non-abelian H, a discriminating family of retractions (for each finite set S of
non-trivial elements in K, there is a retraction from K onto H that is injective on
S). In other words, K is fully residually H. This finite-index subgroup K will be
a group obtained from H by a finite chain of groups H = K0 < . . . < Kn = K,
where Ki+1 is either Ki∗F , where F is some free group or Ki+1 is an extension of
a centralizer in Ki. We will call a group obtained by such a chain an H−GICE
group. (If H is free, then the classes of H-GICE groups and ICE groups
containing H, coincide.) It is well known that an extension of a centralizer of a
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limit group G is fully residually G. This was first proved in [11] (one can find
a detailed proof, for example, in [16, Lemma 3.7].) It is also known that a free
product of a non-abelian limit group G and a free group is fully residually G.
Therefore, each group in the chain used to construct K is fully residually H.

Theorem 1. Let G be an ICE-group, H be a finitely generated subgroup, and
g ∈ L−H. Then, there exists a finite-index subgroup K of G such that H ≤ K,
K is an H-GICE group, and g 6∈ K.

Corollary 2. Let L be a limit group, H be a finitely generated subgroup, and
g ∈ L−H. Then, there exists a finite-index subgroup K of L such that H ≤ K,
K is a subgroup of an H-GICE group, and g 6∈ K.

This theorem implies the following result.

Theorem 3. Let L be a limit group, H be a finitely generated non-abelian
subgroup, and g ∈ L − H. Then, there exists a finite-index subgroup K of L
such that H ≤ K, K is fully residually H, and g 6∈ K.

Theorem 3 is also true when L is abelian and, therefore, H is abelian (see
Remarks at the end of the proof). In the case when H is abelian and L is
non-abelian a finite-index subgroup of L cannot be fully residually H.

Theorem 4. Let L be a limit group. If H is a finitely generated non-abelian
subgroup of L, then there is a faithful representation ρH : L→ GL(V ) such that
ρH(H) ∩ ρH(L) = ρH(H), where ρH(H) is the Zariski closure of ρH(H).

Likewise, this theorem is true when L is abelian.

Corollary 5. Let L be a limit group and S be a finite generating set for L.
If H ≤ L is a finitely generated subgroup, then there exists a constant N > 0
such that for each g ∈ L−H, there exist a finite group Q and a homomorphism
ϕ : L −→ Q such that ϕ (g) /∈ ϕ (H) and |Q| ≤ ||g||NS . If K = H kerϕ, then K

is a finite-index subgroup of L whose index is at most |Q| ≤ ||g||NS with H ≤ K
and g /∈ K. Moreover, the index of the normal core of the subgroup K is bounded
above by |Q|.

To use Theorem 4 for the proof of this corollary in the case when L is non-abelian
and H is abelian we can take instead of H a non-abelian subgroup H1 = H ∗〈x〉
for a suitable element x.

Our Theorem 4 and Corollary 5 generalize results for free and surface groups
from [10]. We use [10] to deduce Corollary 5 from Theorem 4. Corollary 5
establishes polynomial bounds on the size of the normal core of the finite index
subgroup used in separating g from H. The constant N explicitly depends on
the subgroup H and the dimension of V in Theorem 4. For a general finite
index subgroup, the upper bound for the index of the normal core is factorial
in the index of the subgroup. It is for this reason that we include the statement
about the normal core of K at the end of the corollary.
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Recently, several effective separability results have been established; see [2]-
[10], [12]-[14], [17]-[21]. Most relevant here are papers [10], [9]. The methods
used in [9] give linear bounds in terms of the word length of |g| on the index of
the subgroup used in the separation but do not produce polynomial bounds for
the normal core of that finite index subgroup. We can also obtain bounds on
the index of the separating subgroup on the order of magnitude C|g|, where C
is a constant depending on L and H.

In Section 6 we will formulate the Geometric Hanna Neumann conjecture
by Antolin and Jaikin-Zapirain for limit groups and give a proof (due to Jaikin-
Zapirain) that Theorem 1 implies the conjecture for hyperbolic limit groups
(Theorem 29).

2 Preliminaries

Definition 6. A family F of H-homomorphisms (identical on H) from a group
G onto a subgroup H is called a discriminating family if for any finite set S of
non-trivial elements in G there exists a homomorphism ψ ∈ F such that for any
g ∈ S, ψ(g) 6= 1. We say G is fully residually H if there exists a discriminating
family of H-homomorphisms from G to H.

Definition 7. Let G be a group and CG(u) denote the centralizer of an element
u ∈ G. An extension of a centralizer of G is the group

(G, u) = 〈G, t1, . . . , tk | [c, ti] , c ∈ CG(u), [ti, tj ], i, j = 1, . . . , k〉.

Similarly, if we extend centralizers of several non-conjugated elements u1, . . . , um
in G we denote the obtained group by (G, u1, . . . , um).

An iterated extension of centralizers is obtained by finitely many applications
of this construction to a finitely generated free group and is called an ICE-group.
In this case we can assume that each centralizer is extended only once. In other
words, on each step CG(u) is cyclic.

Let
F = G0 < G1 = (G, u1) < . . . < Gn = (Gn−1, un) = G (1)

be a chain of centralizer extensions to obtain an ICE-group G. Then we always
assume that in this chain centralizers in Gi are extended before centralizers in
Gi+1. We can modify this chain the following way

F = G0 < Gi1 < . . . < Gik = G, (2)

where Gi1 = (G0, u1, . . . , ui1), where u1, . . . , ui1 are in G0 is obtained from G0

by extending all the centralizers of elements from G0 that appear in the first
chain. Similarly Gij+1 is obtained from Gij by extending all the centralizers of
elements in Gij that were extended in the first chain.

Definition 8. Let G be an ICE group. Then associated with G is a finite
K(G, 1) space, called an ICE space, which is constructed as follows:
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1. If G is free, then take X = K(G, 1) to be a compact graph of suitable
rank.

2. If G is obtained from a group G′ by an extension of a centralizer and Y =
K(G′, 1), then given an essential closed curve ∂+ : S1 −→ Y representing
a generator of CG′(g

′) and a coordinate circle ∂− : S1 −→ T, where T is
a torus, take

X = Y t
(
[−1, 1]× S1

)
t T,

identifying (±1, θ) ∈ [−1, 1]× S1 with ∂± (θ) .

Remark 9. Associated to each ICE space X is a graph of spaces decomposition
whose vertices are Y and T and edges are circles.

Definition 10. A group G is an H-GICE group if it is obtained from H by
a series of free products with free groups and extensions of centralizers. Here,
GICE stands for generalized iterated centralizer extension.

If H is a non-abelian limit group, then any H-GICE group and its subgroups
containing H are fully residually H, see, for example [16]. Therefore, Theorem
1 implies Theorem 3.

Definition 11. Let each of the following spaces have a chosen basepoint, and
suppose that the maps are basepoint preserving. Let ρ : (B′, b′) → (B, b) be a
covering map. Let δ : (A, a)→ (B, b) be a map, where A is a connected complex
(in our case A will be a loop). Let κ : (A′, a′)→ (A, a) be the smallest cover of
(A, a) such that the map δ ◦ κ has a lift δ′. We call δ′ : (A′, a′) → (B′, b′) the
elevation of δ.

Two elevations δ1
′ : A1

′ → B′ and δ2
′ : A2

′ → B′ are isomorphic if there
exists a homeomorphism ι : A1

′ → A2
′ covering the identity map on A, such

that δ1
′ = δ2

′ ◦ ι.

For more information on elevations we refer to [22, Section 2].

Definition 12. Let X and X ′ be graphs of spaces (X ′ is not assumed to be
connected). A pre-covering is a locally injective map X ′ −→ X that maps
vertex spaces and edge spaces of X ′ to vertex spaces and edge spaces of X
respectively and restricts to a covering on each vertex space and each edge
space. Furthermore, for each edge space e′ of X ′ mapping to an edge space e of
X, the diagram of edge maps

e′ V̄±

e V±

∂̄±

∂±

is required to commute. The domain X ′ is called a pre-cover.
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Definition 13. ([22, Definition 3.1]) Let X be a complex, X ′ −→ X be a
covering, and

L = {δi : Ci −→ X}

be a finite collection of independent, essential loops. The cover X ′ is said to be
tame over L if the following holds: let ∆ ⊂ X ′ be a finite subcomplex and

L′ = {δ′j : C ′j −→ X ′}

be a finite collection of pairwise non-isomorphic infinite degree elevations, each
of which is an elevation of some loop in L. Then for all sufficiently large positive
integers d there exists an intermediate finite-sheeted covering

X ′ −→ X̂ −→ X

such that

1. each δ′j descends to some degree d elevation δ̂j

2. the δ̂j are pairwise non-isomorphic,

3. ∆ embeds into X̂, and

4. there exists a retraction ρ : π1(X̂) −→ π1(X ′) such that

ρ(δ̂j∗(π1(Ĉj))) ⊂ δ′j∗(π1(C ′j))

for each j.

Remark. We will also say a covering X ′ −→ X is tame over a given set of finite
independent, essential loops whenever its domain X ′ is.

Notice, that covers of tori are tame over coordinate circles, see [22, Lemma
3.3].

Definition 14. The cover X ′ is strongly tame over L if it is tame over L
and π1(X̂) is a (π1(X ′) ∗ F )-GICE group, where F is a free group with basis

{δ̂j∗(π1(Ĉj))}.

Definition 15. A group G is said to admit a local GICE structure if for each
finitely generated subgroup H ≤ G and a finite set of elements gi 6∈ H one
can construct a finite-index subgroup K containing H and not containing these
elements such that K is a H-GICE group.

3 Proof of Theorems 1, 3

We will follow the construction in [22] changing it a couple of times to prove
a theorem similar to [22, Theorem 3.8]. One difference is that we will use
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induction on the number of steps in chain (2) while [22, Theorem 3.8] is proved
by induction on the number of steps in chain (1).

Let X be an ICE space constructed by gluing several tori T1, . . . , Tk to a simpler
ICE space Y with edge spaces being loops. Let H ⊂ π1(X) be a finitely gener-
ated subgroup and XH → X be the corresponding covering. Then XH inherits
a graph of spaces decomposition, with vertex spaces the connected components
of the pre-images of the vertex spaces of X and edge spaces and maps given
by all the (isomorphism classes of) elevations of the edge maps to the vertex
spaces of XH . Let X ′ ⊆ XH be a core of XH . A core is a connected sub-
graph of spaces with finite underlying graph such that the inclusion map is a
π1-isomorphism. Since H is finitely generated, a core exists. Let ∆ ⊂ XH be a
finite subcomplex. Enlarging X ′ if necessary we can assume ∆ ⊂ X ′.

Replacing the tameness hypothesis in [22, Proposition 3.4] by strong tameness,
we have the following.

Proposition 16. (Passing to finite-sheeted pre-covers) Let X be an ICE space
constructed by gluing several tori T1, . . . , Tk to a simpler ICE space Y with edge
spaces being loops, Let X ′ → X be a pre-covering with finite underlying graph.
Every vertex space V ′ of X ′ covers some vertex space V of X. Assume that each
Y ′ is strongly tame over the set of edge maps incident at Y . Let ∆ ⊂ X ′ be a
finite subcomplex. Then there is a finite-sheeted intermediate pre-covering

X ′ → X̄ → X

such that

1. ∆ embeds into X̄; and

2. π1(X̄) is a π1(X ′)-GICE group.

Proof. Let ∆0 be a finite complex that contains ∆ and all the compact edge
spaces of X ′. Let V ′ be a vertex space of X ′ covering the vertex V of X. Set
∆V ′ = V ′ ∩∆0 and consider the edge maps ∂′i : ei → V ′ of edges ei incident at
V ′ that are infinite-degree elevations of ∂± : e→ V. Since each V ′ is tame over
the set of edge maps incident at V and each Y ′ is strongly tame over the set of
edge maps incident at Y , for all sufficiently large d there exists a an intermediate
finite-sheeted covering

V ′ → V̄ → V

such that

1. ∆V ′ embeds into V̄ ,

2. each ∂′i descends to some degree d elevation ∂̄i of ∂±.

If d is large enough, we can take it to be the same d over all vertex spaces of
X ′. Let X̄ be the graph of spaces with the same underlying graph as X ′, but

6



with the corresponding V̄ in place of V ′. If e′ is an edge space of X ′ then the
edge map

∂± : e′ → V ′

descends to a finite-degree map ∂± : ē± → V̄ . Because ē+ → e and ē− → e
are coverings of e with the same degree, we have a finite-sheeted pre-cover X̄.
By construction, ∆ embeds into X̄. Since the compact edge spaces are added
to ∆, non-isomorphic finite degree elevations are mapped into non-isomorphic
elevations. This implies that π1(X̄) decomposes as a graph of groups, with the
same underlying graph as the decomposition of π1(X ′).

Consider a non-abelian vertex group π1(V̄ ) of π1(X̄) (this means V = Y ).
To obtain π1(V̄ ) we first take π1(V ′′) = π1(V ′) ∗F , the free product with cyclic
groups corresponding to elevations of degree d obtained from infinite degree
elevations of edge maps, and then by a series of extensions of centralizers and
free products with free groups. A cyclic fundamental group of an elevation of
degree d obtained from an infinite degree elevation of an edge map extends the
abelian fundamental group of an infinite cover of some torus Ti. On the group
level this corresponds to the extension of the centralizer of an abelian free factor
of π1(X ′) (and, therefore, extension of a centralizer of π1(X ′) itself, because the
extending element is in the free factor F of π1(V ′) ∗ F . So, to obtain π1(X̄)
we first extend centralizers of π1(X ′) corresponding to abelian free factors. We
also extend centralizers of all π1(T ′), where T ′ covers some Ti so that all T̄ ’s
become finite covers. Denote by X ′′ the pre-cover that is obtained from X ′ by
replacing the covers of tori by finite covers as above and replacing V ′ by V ′′

for each V that is not a torus. Second, we notice that the free constructions
that were applied to each π1(V ′)∗F to obtain π1(V̄ ), for V ′ covering the vertex
V = Y , can be thought as applied to the whole group π1(X ′′). Replacing each
V ′′ by V̄ for covers V ′ of the non-abelian vertex group V = Y we obtain X̄.

Lemma 17. ([22, Lemma 3.5] Let T be a torus and δ : S1 → T be an essential
loop. Then for every positive integer d there exists a finite-sheeted covering
T̂d → T so that δ has a single elevation δ̂ to T̂d and δ̂ is of degree d.

Lemma 18. (cf [22, Lemma 3.6]) Let Y be a space such that π1(Y ) has local
GICE structure and δ : S1 → Y be a based essential loop. Then for every
positive integer d there exists a finite-sheeted covering Ŷd → Y so that δ has an
elevation δ̂ of degree d to Ŷd and π1(Ŷd) is an 〈δ̂〉-GICE group.

Proof. Because π1(Y ) has local GICE structure, for every positive integer d
there exists a finite-sheeted covering Ŷd → Y so that Ŷd → Y is a 〈δd〉-GICE

group. Note that δk 6∈ π1(Ŷd) for 0 < k < d, therefore δ̂ is an elevation of degree
d.

Proposition 19. (cf [22, Proposition 3.7])(Completing a finite-sheeted pre-
cover to a cover) Let X be an ICE space constructed by gluing together tori
T1, . . . , Tk and a simpler ICE space Y, as above. Assume that π1(Y ) admits a
local GICE structure. Let X̄ → X be a finite-sheeted connected pre-covering.
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Then there exists an inclusion X̄ ↪→ X̂ extending X̄ → X to a covering X̂ → X
such that π1(X̂) is a π1(X̄)−GICE group.

Proof. Follows the proof of [22, Proposition 3.7]. The addition of copies of Ti,d
correspond to extensions of centralizers. The addition of Yd’s correspond by
Lemma 18 to taking a free product with infinite cyclic group and then a GICE
over the obtained group. Indeed, π1(Y ) has a local GICE-structure, therefore
Yd is C − GICE group, where C is a cyclic group generated by the boundary
element.

A collection of elements g1, . . . , gn of a group G is called independent if
whenever there exists h ∈ G such that ghi and gj commute, then, in fact, i = j.

Proposition 20. (cf [22, Proposition 3.8]) Let X be an ICE space constructed
by gluing together tori T1, . . . , Tk and a simpler ICE space Y . Let H ≤ π1(X)
be a finitely generated subgroup and let XH → X be the corresponding covering.
Suppose L is a (possible empty) set of hyperbolic loops that generate maximal
cyclic subgroups of π1(X). Then XH is strongly tame over L.

Proof. The proof is an induction on the length of the chain (2). Notice, that the
induction basis holds by [22, Corollary 1.8]. Indeed, if H is a finitely generated
subgroup of π1(X), where X is a graph, then the cover XH is strongly tame over
the set of independent elements {γi} such that each generate a maximal cyclic
subgroup, because it is tame and for a finite-sheeted intermediate covering

XH → X̂ → X

π1(X̂) = H ∗ F , where F is a free group.
Fix a finitely generated non-abelian subgroup H ⊂ π1(X), and let XH → X

be the corresponding covering. There exists a core X ′ ⊆ XH . Let ∆ ⊂ XH be
a finite subcomplex. Enlarging X ′ if necessary we can assume ∆ ⊂ X ′, infinite
degree elevations of hyperbolic loops {δi} are first restricted to elevations {δi′}
and then made disparate. This is possible by [22, Lemma 2.24] without changing
the fundamental group.

As in the proof of [22, Theorem 3.8], X ′ is extended to a pre-cover X̄ where
elevations {δi′} are extended to full elevations δ̄j : D̄j → X̄ of degree d by [22,
Lemma 2.23]. By [22, Lemma 2.23], π1(X̄) = π1(X ′)∗F , where F is a free group
generated by π1(δ̄i∗(D̄j))’s. Enlarging ∆ again we assume that the images of
the δ̄j are contained in ∆.
By Proposition 16 there exists an intermediate finite-sheeted pre-covering

X̄ → X̂ → X,

into which ∆ injects. Since ∆ injects into X̂ we have that δ̄j descends to an

elevation δ̂j = δ̄j .

Finally, X̂ can be extended to a finite sheeted covering X̂+ by Proposition
19.
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We have that ∆ injects into X̂+. By Proposition 19, π1(X̂+) is a π1(X̂)-
GICE group. By Proposition 16, π1(X̂) is a π1(X̄)-GICE group. And π1(X̄) =
π1(X ′) ∗ F . Therefore, by transitivity, π1(X̂+) is a π1(X ′) ∗ F -GICE group.
Since H = π1(X ′), the proposition is proved.

Theorem 1 follows from the proposition (with the empty set L). Since every
limit group is a subgroup of an ICE-group by [15], Corollary 2 follows from
Theorem 1. If H is non-abelian, then H-GICE groups are fully residually H and
subgroups of fully residually H groups that contain H are also fully residually
H. Therefore Theorem 3 follows from Theorem 1.

Example 1. Let us illustrate the proof of Theorem 3 with an example when L
is just an extension of a centralizer of a free group. Consider the group

L = F (a, b) ∗〈a〉 〈a, t, |[a, t] = 1〉,

where F (a, b) is a free group, a subgroup

H = 〈a2, b2〉 ∗〈a2〉 〈a2〉 ∗〈a2〉 〈a2t, b2t〉

and g = ∆ = b 6∈ H. Let us construct a finite-index subgroup K such that
H ≤ K, b 6∈ K and K is an H-GICE group.

In Fig. 1 we show the space X such that L = π1(X). Here X is a graph
of spaces with one edge and two vertices. The loops labelled by a and t are
generating loops of the torus T with a fundamental group 〈a, t, |[a, t] = 1〉 and
the bouquet of loops labelled by a and b has a fundamental group F (a, b). A
pre-cover X ′ corresponding to H is a pre-cover with the finite graph. It is
a graph of spaces with two edges and three vertices, H = π1(X ′). The space
corresponding to the vertex in the middle is the cylinder that is an infinite cover
of the torus T . The other two vertex spaces are infinite covers of the bouquet
of loops.
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Figure 1: ICE space X and a pre-cover X ′ with a finite graph

In Fig. 2 we make X ′ into a finite-sheeted pre-cover X̄ as it is done in
Proposition 16. The space X̄ has the same underlying graph as X ′, but the
vertex spaces are now finite covers of the vertex spaces of X. The torus with
the fundamental group generated by a2, t2 is a cover of T of degree 4. Two other
vertex spaces are graphs that are covers of degree 3 of the bouquet of loops in
X. We have

π1(X̄) = 〈a2, b2, a−1ba, b−1ab〉 ∗〈a2〉 〈a2, t2〉 ∗〈a2〉 〈a2t, b2t, t−1a−1bat, t−1b−1abt〉.

We have that π1(X̄) is obtained fromH by taking a free product with 〈a−1ba, b−1ab〉
and 〈t−1a−1bat, t−1b−1abt〉 and then extending the centralizer of a2 by t2. There
are two hanging elevations of the loop labelled by a in X̄. They both have degree
1.
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Figure 2: Finite-sheeted pre-cover X̄

Figure 3 shows a finite cover X̂ of X. It is obtaiinef from X̄ by attaching two
tori T1 to the hanging elevations of the loop labelled by a (as in Proposition
19). Then K = π1(X̂) is obtained from π1(X̄) by extending centralizers of b−1ab
(by b−1tb) and of t−1b−1abt (by t−1b−1tbt). Therefore K is an H-GICE group,
b 6∈ K. Notice that [L : K] = 6.

Figure 3: Finite cover X̂

Example 2 (Figures 4-6) Now with the same L we take

H = 〈a2, b2〉 ∗〈a2〉 〈a2〉 ∗〈a2〉 〈a2t, b2t〉 ∗ 〈tba〉

and g = ∆ = b 6∈ H. In this example we will have an edge in X ′ corresponding
to an infinite degree elevation of the loop labelled by a. Then π1(X̄) is obtained
from H by the following chain: H < H1, where

H1 = 〈H, aba, t2|[aba, tba] = 1, [a2, t2] = 1〉,

H1 < π1(X̄), where

π1(X̄) = H1 ∗ 〈at, ab
−1a, b3a, bat, abt〉,
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where the last group is freely generated by the five given elements. So, to obtain
pi1(X̄) from H we used two centralizer extensions and then a free product with
a free group. To obtain K = π1(X̂) from pi1(X̄) we make three centralizer
extensions, as Figure 6 shows and obtain s finite cover of X of degree 8.

Figure 4: Pre-cover X ′ with finite graph

Figure 5: Finite sheeted pre-cover X̄
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Figure 6: Finite cover X̂
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Remark 21. Theorem 3 is also true when L is abelian, therefore, free abelian.

Proof. We take a basis a1, . . . an of L such that H has a basis ak11 , . . . , a
kr
r . Let

g = am1
1 . . . amn

n .

If mi is not divisible by ki for some i = 1, . . . , r, then we take K generated
by ak11 , . . . , a

kr
r , ar+1, . . . , an. If each mi is divisible by ki for i = 1, . . . , r, then

some of mr+1, . . . ,mn is non-zero, because g 6∈ H. Suppose mn 6= 0. Then take
K generated by ak11 , . . . , a

kr
r , ar+1, . . . , a

mn+1
n .

Remark 22. In the case when H is abelian and L is non-abelian a finite-index
subgroup of L cannot be fully residually H. In this case there exists x ∈ L such
that g /∈ H1 = 〈H,x〉 = H ∗ 〈x〉.

Proof. Take some x ∈ L such that [h, x] 6= 1 for h ∈ H. Then for any h ∈ H,
elements h, x generate a free subgroup. Therefore H1 = 〈H,x〉 = H ∗ 〈x〉. If
g 6∈ H1, then we found x. If g ∈ H1, then g can be uniquely written as

g = h1x
k1 . . . hrx

kr ,

where h1, . . . , hr are elements in H, all, except maybe h1 non-trivial. Let k be
a positive number that is larger than all |k1|, . . . , |kr|. Then g 6∈ H2 = 〈H,xk〉
and we can take xk instead of x.

4 Proof of Theorem 4

Definition 23. [10] Let G be a finitely generated group and H a finitely gen-
erated subgroup of G. For a complex affine algebraic group G and any repre-
sentation ρ0 ∈ Hom(G,G), we have the closed affine subvariety

Rρ0,H(G,G) = {ρ ∈ Hom(G,G) : ρ0(h) = ρ(h) for all h ∈ H}

The representation ρ0 is said to strongly distinguish H in G if there exist rep-
resentations ρ, ρ′ ∈ Rρ0,H(G,G) such that ρ(g) 6= ρ′(g) for all g ∈ G−H.

If L is a closed surface group or a free group, then Theorem 4 follows from [10,
Theorem1.1]. Suppose L is not a surface group and not an abelian group. Let G
be a complex affine algebraic group. By the following lemma, it is sufficient to
construct a faithful representation ρ ∈ Hom(L,G) that strongly distinguishes
H in L.

Lemma 24. [10, Lemma 3.1] Let G be a finitely generated group, G a complex
algebraic group, and H a finitely generated subgroup of G. If H is strong distin-
guished by a representation ρ ∈ Hom(G,G), then there exists a representation
% : G −→ G × G such that %(G) ∩ %(H) = %(H), where %(H) is the Zariski
closure of %(H) in G×G.
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Proposition 25. Let L be a limit group and H a non-abelian finitely generated
subgroup. There exist a finite-index subgroup K ≤ L and a faithful representa-
tion ρω : K → G that strongly distinguishes H in K.

Proof. By Theorem 3, there exists a finite-index subgroup K of L such that K is
fully residually H. Let ρ be a faithful representation of H in G. We order balls
Bt of radius t in the Cayley graph of K and finite sets St = Bt∩ (K−H). Since
we have a discriminating family of H-homomorphisms from K to H, we can
construct for any t ∈ N representations ρt and ρ′t in Hom(K,G) that coincide on
H, distinguish all elements in St, and map Bt monomorphically. Selecting a non-
principal ultrafilter ω ∈ N, we have two associated ultraproduct representations
ρω, ρ

′
ω : K → G (see [10, Proof of Lemma 3.2]). These representations are

faithful because each Bt is mapped monomorphically on a co-finite set of j ∈ N
and for any g ∈ K −H, ρω(g) 6= ρ′ω(g).

Let us prove the first statement of Theorem 4. The proof of [10, Theorem 1.1]
shows that it is sufficient to have a representation of K that strongly distin-
guishes H. Indeed, like in [10, Corollary 3.3], we can construct a representation
Φ : K → GL(2,C) × GL(2,C) such that Φ(g) ∈ Diag(GL(2,C)) if and only if
g ∈ H. Setting dH = [G : K], we have the induced representation

IndK
G(Φ) : G→ GL(2dH ,C)×GL(2dH ,C).

Recall, that when Φ is represented by the action on the vector space V and G =
∪ti=0giK, then the induced representation acts on the disjoint union tti=0giV as
follows

gΣgivi = Σgj(i)Φ(ki)vi,

where ggi = gj(i)ki, for ki ∈ K. Taking ρ = IndK
G(Φ), it follows from the

construction of ρ and definition of induction that ρ(g) ∈ (ρ(H)) if and only if
g ∈ H. If we set ρ = ρH , then Theorem 4 is proved.

5 Proof of Corollary 5

Given a complex algebraic group G < GL(n,C), there exist polynomials P1, . . . , Pr ∈
C [Xi,j ] such that

G = G (C) = V (P1, . . . , Pr) =
{
X ∈ Cn

2

| Pk(X) = 0, k = 1, . . . , r
}

We refer to the polynomials P1, . . . , Pr as defining polynomials for G. We will
say that G is K–defined for a subfield K ⊂ C if there exists defining polynomials
P1, . . . , Pr ∈ K [Xi,j ] for G. For a complex affine algebraic subgroup H < G <
GL(n,C), we will pick the defining polynomials for H to contain a defining set
for G as a subset. Specifically, we have polynomials P1, ..., PrG , PrG+1, ..., PrH
such that

G = V (P1, . . . , PrG) and H = V (P1, . . . , PrH) (3)
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If G is defined over a number field K with associated ring of integers OK ,
we can find polynomials P1, . . . , Pr ∈ OK [Xi,j ] as a defining set by clearing
denominators. For instance, in the case when K = Q and OK = Z, these are
multivariable integer polynomials.

For a fixed finite set X = {x1, . . . , xt} with associated free group F (X) and any
groupG, the set of homomorphisms from F (X) toG, denoted byHom (F (X) , G) ,
can be identified withGt = G1×. . .×Gt. For any point (g1, . . . , gt) ∈ Gt, we have
an associated homomorphism ϕ(g1,...,gt) : F (X) −→ G given by ϕ(g1,...,gt) (xi) =
gi. For any word w ∈ F (X), we have a function Evalw : Hom(F (X), G) −→ G
defined by Evalw(ϕ(g1,...,gt))(w) = w(g1, . . . , gt). For a finitely presented group
Γ, we fix a finite presentation 〈γ1, . . . , γt | r1, . . . , rt′〉, where X = {γ1, . . . , γt}
generates Γ as a monoid and {r1, . . . , rt′} is a finite set of relations. If G is
a complex affine algebraic subgroup of Gln(n,C), the set Hom(Γ,G) of ho-
momorphisms ρ : Γ −→ G can be identified with an affine subvariety of Gt.
Specifically,

Hom(Γ,G) =
{

(g1, . . . , gt) ∈ Gt | rj (g1, . . . , gt) = In for all j
}

(4)

If Γ is finitely generated, Hom(Γ,G) is an affine algebraic variety by the Hilbert
Basis Theorem.

The set Hom(Γ,G) also has a topology induced by the analytic topology on
Gt. There is a Zariski open subset of Hom(Γ,G) that is smooth in the this
topology called the smooth locus, and the functions Evalw : Hom(Γ,G) −→ G
are analytic on the smooth locus. For any subset S ∈ G and representation
ρ ∈ Hom(Γ,G), ρ(S) will denote the Zariski closure of ρ(S) in G.

Lemma 26. ([10, Lemma 5.1]) Let G ≤ GL (n,C) be a Q-algebraic group,
L ≤ G be a finitely generated subgroup, and A ≤ G be a Q-algebraic subgroup.
Then, H = L ∩A is closed in the profinite topology.

Proof. Given g ∈ L−H, we need a homomorphism ϕ : L −→ Q such that |Q| <
∞ and ϕ (g) /∈ ϕ (H) . We first select polynomials P1, ..., PrG , ..., PrA ∈ C [Xi,j ]
satisfying (3). Since G and A are Q-defined, we can select Pj ∈ OK0 [Xi,j ] for
some number field K0/Q. We fix a finite set {l1, . . . , lrL} that generates L as
a monoid. In order to distinguish between elements of L as an abstract group
and the explicit elements in G, we set l = Ml ∈ G for each l ∈ L. In particular,
we have a representation given by ρ0 : L −→ G given by ρ0(lt) = Mlt . We set

KL to be the field generated over K0 by the set of matrix entries
{

(Mt)i,j

}
t,i,j

.

It is straightforward to see that KL is independent of the choice of the gen-
erating set for L. Since L is finitely generated, the field KL has finite tran-
scendence degree over Q and so KL is isomorphic to a field of the form K(T )
where K/Q is a number field and T = {T1, . . . , Td} is a transcendental basis
(See [10]). For each, Mlt , we have (Mlt)i,j = Fi,j,t(T ) ∈ KL. In particu-
lar, we can view the (i, j)–entry of the matrix Mlt as a rational function in
d variables with coefficients in some number field K. Taking the ring gener-

ated over OK0 by the set
{

(Mlt)i,j

}
t,i,j

, RL is obtained from OK0 [T1, . . . , Td]
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by inverting a finite number of integers and polynomials. Any ring homomor-
phism RL −→ R induces a group homomorphism GL(n,RL) −→ GL(n,R), and
since L ≤ GL(n,RL), we obtain L −→ GL(n,R) . If g ∈ L − H then there

exists rG < jg ≤ rA such that Qg = Pjg

(
(Ml)1,1 , . . . , (Ml)n,n

)
6= 0. Using

Lemma 2.1 in [6], we have a ring homomorphism ψR : RL −→ R with |R| <∞
such that ψR(Qg) 6= 0. Setting, ρR : GL(n,RL) −→ GL(n,R) we assert that
ρR(g) /∈ ρR(H). To see this, set Mη = ρR(η) for each η ∈ L, and note that
ψR(Pj((Mη)1,1, . . . ,Mη)n,n)) = Pj((Mη)1,1, . . . , (Mη)n,n) . For each h ∈ H, we
know that Pjl ((Mh)i,j) = 0 and so Pj((Mη)1,1, . . . , (Mη)n,n) = 0 . However,
by selection of ψR, we know that ψR(Qg) 6= 0 and so ρR(g) /∈ ρR(H) .

Theorem 4 and Lemma 26 imply Corollary 5.

Proof. Since H ≤ L is finitely generated, by Theorem 4, there is a faithful
representation

ρH : L −→ GL (n,C)

such that ρH(H) ∩ ρH(L) = ρH(H). We can construct the representation in
Theorem 4 so that G = ρH(L) and A = ρH(H) are both Q-defined. So, by
Lemma 26, we can separate H in L. Next, we quantify the separability of H in
L. Toward that end, we need to bound the order of the ring R in the proof of
Lemma 26 in terms of the word length of the element g. Lemma 2.1 from [6]
bounds the size of R in terms of the coefficient size and degree of the polynomial
Qg. It follows from a discussion on pp 412-413 of [6] that the coefficients and
degree can be bounded in terms of the word length of g, and that the coefficients
and degrees of the polynomials Pj . Because the Pj are independent of the word

g, there exists a constant N0 such that |R| ≤ ||g||N0 . By construction, the group

Q we seek is a subgroup of GL(n,R). Thus, |Q| ≤ |R|n2 ≤ ||g||N0n
2

. Taking
N = N0n

2 completes the proof.

6 The Hanna Neumann conjecture for hyper-
bolic limit groups

Y. Antolin and A. Jaikin-Zapirain proved in [1] the geometric Hanna Neumann
conjecture for surface groups and formulated the Geometric Hanna Neumann
conjecture for limit groups [1, Conjecture 1]as follows. Let G be a limit group.
Then for every two finitely generated subgroups U and W of G

Σx∈U\G/W χ̄(U ∩ xWx−1) ≤ χ̄(U)χ̄(W )

Here for a virtually FL-group Γ we define its Euler characteristic as

χ(Γ) =
1

[Γ : Γ0]
Σ∞i=0(−1)idimQHi(Γ0,Q),
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where Γ0 is an FL-subgroup of Γ of finite index. And χ̄(Γ) = max{0,−χ(Γ)}.
Observe that for a non-trivial finitely generated free group Γ, χ̄(Γ) = d(Γ)− 1,
where d(Γ) is the number of generators, for a surface group Γ we have χ̄(Γ) =
d(Γ) − 2. By a surface group we mean the fundamental group of a compact
closed surface of negative Euler characteristic. Notice that by [1] limit groups
are FL-groups. Notice also that for hyperbolic limit groups dimQHi(Γ0,Q) = 0
for i > 2.

In this section we will prove the conjecture for hyperbolic limit groups.
The notion of L2-independence was introduced in [1]. The group G is L2-

Hall, if for every finitely generated subgroup H of G, there exists a subgroup
K of G of finite index containing H such that H is L2-independent in K. Let
G be a hyperbolic limit group. By [1, Theorem 1.3], if G satisfies the L2-Hall
property, then the geometric Hanna Neumann conjecture holds for G.

As explained in [1, Lemma 4.1] and the comment after the lemma, since
the limit groups satisfy the strong Atiyah conjecture, if G is a limit group and
H ≤ K subgroups in G, then H is L2-independent in K if the correstriction
map

cor : H1(H;DQ[G])→ H1(K;DQ[G])

is injective. Here DQ[G] denote the Linnell division ring.

Lemma 27. Let G be a limit group and H ≤ K subgroups of G. Assume
that there an abelian subgroup B of G such that K = 〈H,B〉 = H ∗A B, where
A = H ∩ B. Then the correstriction map cor : H1(H;DQ[G]) → H1(K;DQ[G])
is injective.

Proof. By [8, Theorem2(2)], we obtain the exact sequence

H1(A;DQ[G])→(cor,−cor) H1(H;DQ[G])⊕H1(B;DQ[G])→(cor,cor) H1(K;DQ[G]).

Since A is abelian, H1(A;DQ[G]) = 0. Indeed, the division ring generated by
Q[A] inside DQ[G] is isomorphic to the field of fractions R of Q[A], and so DQ[G]

is also an R-vector space. Thus, DQ[G] is flat as a Q[A]-module. In particular,
H1(A;DQ[G]) = 0.

So the correstriction map

H1(H;DQ[G])→ H1(K;DQ[G])

is injective.

Corollary 28. A limit group is L2-Hall.

Proof. Let G be an ICE- group and H a finitely generated subgroup of G. Then
by Theorem 1 there exists a finite chain of groups H = K0 < . . . < Kn = K
with K of finite index in G, where Ki+1 is either Ki ∗Z or Ki+1 is an extension
of a centralizer of Ki. By Lemma 27, the correstriction maps

H1(Ki;DQ[G])→ H1(Ki+1;DQ[G])
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are injective. Hence H is L2-independent in K. Now, let H < L < G, then
H will be L2-independent in L ∩K because the composition of correstrictions
maps is correstriction. Thus L is L2-Hall.

Therefore we obtain the following theorem.

Theorem 29. The geometric Hanna Neumann conjecture is true for hyperbolic
limit groups.
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