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The present study explores the edge states in a finite-width graphene ribbon and a semi-infinite
geometry subject to a perpendicular magnetic field and an in-plane electric field, applied perpen-
dicular to a zigzag edge. To accomplish this, a combination of analytic and numerical methods
within the framework of low-energy effective theory is employed. Both the gapless and gapped
Dirac fermions in graphene are considered. It is found that a surface mode localized at the zigzag
edge remains dispersionless even in the presence of electric field. This is shown analytically by
employing Darwin’s expansion of the parabolic cylinder functions of large order and argument.

I. INTRODUCTION

Graphene continues to be a playground for investigat-
ing a plethora of unusual electronic phenomena, making
it a fascinating system for fundamental studies in con-
densed matter physics. The fact that graphene is two-
dimensional material allows to access the regime when
the confining potential at the edges of graphene nanorib-
bons is atomically sharp. The quantum Hall edge states
in this case are defined by boundary conditions of van-
ishing electron wave functions at the crystal edges.

We recall that in the conventional experiments on two-
dimensional semiconductors only the regime with elec-
trostatically reconstructed edges is accessible. In this
case the system lowers its energy by reconstructing the
edge states into steps which produce alternating com-
pressible and incompressible stripes [1]. Furthermore,
imaging these edge states is difficult because they are
buried inside the semiconductors.

Therefore graphene provides an opportunity to explore
the real-space structure of the edge states by scanning
probe techniques [2, 3] avoiding their electrostatic recon-
struction. Other techniques of vizualization of charge
transport through Landau levels are also available. For
example, one can rely on the scanning photocurrent mi-
croscopy [4] to use an engineered array of near-surface,
atomic-sized quantum sensors [5] or apply high-resolution
atomic force microscopy [6].

An additional opportunity provided by graphene is a
mechanism for manipulating the transport channels by
using an external in-plane Hall electric field. Theoretical
exploration of this mechanism is based on description of
graphene layer in crossed uniform electric and magnetic
fields.

The behavior of electrons in crossed electric and

magnetic fields was studied by considering the 3 + 1-
dimensional Dirac equation. For example, it was shown
that there are no relativistic corrections to the quantized
Hall conductivity [7, 8].

After discovery of graphene an attention to 2 + 1-
relativistic fermions in crossed fields was brought because
of the spectacular phenomenon of Landau level collapse.
As the dimensionless parameter β = cE/(vFH) reaches
its critical value, |βc| = 1, the Landau level staircase
merges [9, 10]. Here H is a magnetic field H applied
perpendicular to the sheet of graphene, E is an applied
in-plane electric field E, vF is the Fermi velocity and
CGS units are used. The observation of the Landau level
collapse was reported in Refs. [11, 12].

The spectrum of an infinite graphene’s sheet in pres-
ence of crossed uniform electric and magnetic fields was
investigated analytically in Ref. [9] by means of a “Lorenz
boost” transformation that eliminates the electric field
and thus reduces the problem of finding spectrum to
the known one. The same problem was addressed in
Ref. [10] using algebraic methods. The influence of a
Hall electric field on the Hall conductivity in graphene
was analytically studied in Ref. [13] using the spectrum
and wave functions found in Refs. [9, 10]. Another pos-
sibility to realize the Landau-level collapse would be by
generating strain induced either pseudomagnetic or elec-
tric fields suggested in Refs. [14, 15], respectively (see
also, for example, Refs. [16, 17] on a recent progress in
curved spacetime Dirac equation approach for generation
of these fields). The creation of pseudomagnetic field in
graphene was proven experimentally in Ref. [18].

As the parameter β approaches the critical value, the
large values of the involved wave vectors go beyond the
range of applicability of long wave length approximation.
Nevertheless, its validity was verified in Ref. [9] by per-
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forming numerical computations on tight binding model
for graphene lattices of a finite size with the current par-
allel to the zigzag edges. Still the Landau level collapse
occurs in this case, yet at the lower value of βc ' 0.9.

Furthermore, numerical computations on the finite lat-
tice in Ref. [9] [see also Refs. [19, 20]] allow to explore the
evolution of the edge states in the presence of electric
field. One of the observations is that because of the tilt
of the spectrum, the number of edge channels on the two
sides of the zigzag ribbon becomes different, and current
carrying channels appear in the middle of the stripe [20].

The ribbons with current along the armchair edges
were considered in Ref. [19]. It is pointed out that
the combined effect of both magnetic and electric fields
breaks the symmetry between electronic and hole energy
bands which is present when either magnetic or electric
field is applied. This paves a way for creation valley fil-
tering devices tunable by an in-plane electric field [21]
(see also, e.g. Ref. [22]). Various ways of controlling
the electron propagation in graphene nanostructures with
magnetic and electric fields are discussed, for example, in
Refs. [23–26].

In addition to the analytical studies of Landau levels
in crossed fields [9, 10], Landau levels for ribbons and
in semi-infinite geometries were also investigated using
the low-energy model without electric field. The corre-
sponding differential equation for the spectrum with the
appropriate boundary conditions is treated analytically
and then the eigenenergies are computed numerically by
solving the transcendental equation for gapless [27–30]
and gapped [31–33] graphene. A quantitative analyti-
cal description of the edge states within WKB approx-
imation is developed in Ref. [34] basing on an effective
Hamiltonian with a potential depending on the boundary
conditions [27, 28].

On the other hand, the consideration of Landau levels
in the crossed fields on the ribbons is limited to the nu-
merical consideration of the lattice model [9, 19, 20]. The
purpose of the present work is to extend the analytical
study of graphene nanoribbons in the crossed magnetic
and in-plane electric Hall field applied perpendicular to
the ribbon edges.

The paper is organized as follows. In Sec. II, we in-
troduce a low-energy model for a graphene ribbon with
a zigzag edge subject to crossed magnetic and electric
fields. A general solution of the differential equations de-
scribing graphene in terms of the parabolic cylinder We-
ber functions is obtained in Sec. III and the spectrum of
an infinite graphene’s sheet is reproduced. In Sec. IV, we
present the spectra for a ribbon solving numerically the
equations derived in Appendix A. In Sec. V, we present
the spectra in a semi-infinite geometry and obtain the
asymptotic solutions for these spectra for zero electric
field in the bulk and near the edge. We also present an
analytic consideration of the dispersionless mode specific
for the zigzag edges. The details are provided in Ap-
pendix B. In the Conclusion (Sec. VI), we summarize the
obtained results and discuss their possible experimental

observation.

II. MODEL

To determine eigenenergy E we consider the stationary
Dirac equation

[~vF (−α1iDx − α2iDy) + ∆α3 + V (r)− E ] Ψ(r) = 0,
(1)

which describes low-energy excitations in graphene. The
4×4 α-matrices αi = τ3⊗σi and the Pauli matrices τi, σi
(as well as the 2×2 unit matrices τ0, σ0) act on the valley
(Kη with η = ±) and sublattice (A,B) indices, respec-
tively, of the four component spinors ΨT =

(
ΨT

+,Ψ
T
−
)

=(
ψAK+ , ψBK+ , ψBK− , ψAK−

)
. This representation fol-

lows from a tight-binding model for graphene, see e.g.
Ref. [35] and thus allows one to write down the appropri-
ate boundary conditions for zigzag and armchair edges
in the continuum model.

We consider both the massless Dirac-Weyl fermions
in the pristine graphene and the massive Dirac fermions
with the mass ∆/v2

F . Note that a global A/B sublat-
tice asymmetry gap 2∆ ∼ 350 K can be introduced in
graphene [36–39] when it is placed on top of hexagonal
boron nitride (G/hBN) and the crystallographic axes of
graphene and hBN are aligned.

The orbital effect of a perpendicular magnetic field
H = ∇×A is included via the covariant spatial deriva-
tive Dj = ∂j +(ie/~c)Aj with j = x, y and −e < 0, while
the potential V (r) corresponds to the static electric field
eE = ∇V (r). Since moderate values of magnetic field are
considered, the Zeeman energy is small and neglected in
this paper (see, e.g., Ref. [35]).

We consider the ribbons with the zigzag as shown in
Fig. 1. The ribbons are subjected to the combination

E
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A A
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H

FIG. 1. The lattice structure of a finite width graphene rib-
bon with zigzag edge and the configuration of applied mag-
netic and electric fields.

of crossed uniform magnetic and electric fields. The
magnetic field H applied perpendicular to the plane of
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graphene ribbon along the positive z axis, and in-plane
electric field E applied perpendicular to the ribbon edges.

The equation (1) splits into a pair of two independent
Dirac equations for each Kη point:

[−i~vF η(σ1Dx + σ2Dy) + η∆σ3 + V (r)− E ] Ψη(r) = 0
(2)

and as we will discuss below, the boundary conditions for
the zigzag edges (7) also do not mix the corresponding
wave functions.

One can see from Eq. (2) that having the solutions for
K+ point, the corresponding solutions for K− can be
obtained by changing the signes of energy E and electric
field in V (r). Finally, one should take into account that
for the spinor Ψ− the components of the spinor corre-
sponding to A and B sublattices are exchanged as com-
pared to Ψ+.

A zigzag edge is parallel to the x direction as shown in
Fig. 1. The in-plane electric field E is applied in the y di-
rection, so the potential V (r) = eEy. The vector poten-
tial is taken in the Landau gauge, (Ax, Ay) = (−Hy, 0),
where H is the magnitude of a constant magnetic field
orthogonal to the graphene plane.

Accordingly, the differential equations in Eq. (1) do
not depend explicitly on the x coordinate. Therefore,
the wave functions are plane waves in the x direction,

ψAK+
(r, k) =

e−ikx√
2πl

u+(y, k), ψBK+
(r, k) =

e−ikx√
2πl

v+(y, k),

ψAK−(r, k) =
e−ikx√

2πl
u−(y, k), ψBK−(r, k) =

e−ikx√
2πl

v−(y, k).

(3)

The wave vector k measures the displacement from Kη

points. A particular choice of the coordinate system in
Ref. [35] determines that K± = ±(2π/a) (2/3, 0), where
a is the lattice constant. The maximum value of the wave
vector k is limited by the boundaries of the first Brillouin
zone.

Recall that the wave vector k determines the center
of the electron orbit along the y direction, y0 = −kl2.
Then, as we shall see below, for a system with a ribbon
geometry, e.g., 0 ≤ y ≤ W , the condition that the peak
of the wave function is inside the ribbon will be satis-
fied only for eigenstates with wave vectors k in a finite
range, −W/l2 ≤ k ≤ 0. This is known as the position –
wave vector duality in the Landau gauge. Note that the
values of the total wave vector for different Kη valleys in
the tight-binding calculation fall in different wave vectors
domains, because K+x 6= K−x.

Substituting Eq. (3) in Eq. (2) we obtain the following
system of equations for the K+ point(

eEy−E+∆
~vF −∂y − k − e

~cHy

∂y − k − e
~cHy

eEy−E−∆
~vF

)
ψ+ = 0, (4)

where ψT+ = (u+, v+). One can see that the envelope
functions u+(y, k) and v+(y, k) (u−(y, k) and v−(y, k))

depend only on a single dimensionless combination of the
variables, ξ = y/l + kl with l =

√
~c/|eH| being the

magnetic length, so Eq. (4) acquires the form(
βξ − ε+ δ −i∂ξ − iξ
−i∂ξ + iξ βξ − ε− δ

)
ψ̃+ = 0. (5)

Here we introduced the notations

β =
cE

vFH
, ε =

lE
~vF

+ lβk, δ =
l∆

~vF
. (6)

Writing Eq. (5) we used the spinor ψ̃T+ = (u+,−iv+).
This notation together with the opposite sign in
exp(−ikx) as compared to [31–33] allows us to unify the
equations describing zigzag and armchair edges. The lat-
ter will be considered in a separate publication. Here we
only remind that the dispersionless edge mode is absent
in the case of the armchair edge.

The important dimensionless parameter β in Eq. (6)
describes the strength of the electric field relative to the
magnetic field. In this paper, we restrict ourselves to the
|β| ≤ 1 case and do not consider pair creation regime.

To obtain the energy spectrum we need to supple-
ment the differential equations for the envelope functions
u±(y, k) and v±(y, k) with suitable boundary conditions.
Such conditions can be derived from the tight-binding
model [27, 28, 40, 41].

In the case of a graphene ribbon of a finite width in
the y direction, 0 ≤ y ≤ W , and with two zigzag edges
parallel to the x direction, the A and B components of
wave functions should vanish on the opposite edges:

y = 0 : u+(kl) = u−(kl) = 0, (7a)

y = W : v+(W/l + kl) = v−(W/l + kl) = 0, (7b)

see Fig. 1. Note that the case of the armchair edges is dif-
ferent, because in the tight-binding calculation the values
of the total wave vector projected on the armchair edge
direction coincide for the different Kη valleys (see e.g.
Ref. [34]). This allows valley admixing by the boundary
condition.

III. GENERAL SOLUTIONS

As mentioned in Introduction, the Dirac equation (2)
for the massless case, ∆ = 0 and infinite plane was solved
in Refs. [9, 10]. Here we apply a different analytic ap-
proach for a finite system.

The main equation (5) can be rewritten in the following
form

∂ξψ̃+(ξ) =
(
Ã+ B̃ξ

)
ψ̃+(ξ) (8)

where the 2× 2 ξ-independent matrices Ã, B̃ are, respec-
tively,

Ã =

(
0 i(ε+ δ)

i(ε− δ) 0

)
, B̃ =

(
1 −iβ
−iβ −1

)
. (9)
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Now we make the transformation ψ̃+ = Pχ with the

matrix P which diagonalizes the matrix B̃, where the
matrix

P =

(
iγ i
1 γ

)
, γ =

β

1 +
√

1− β2
. (10)

Thus one transforms the system (8) to the form

∂ξχ(ξ) = (A+Bξ)χ(ξ) (11)

with

A = P−1ÃP =

 − βε√
1−β2

δ − ε√
1−β2

δ + ε√
1−β2

βε√
1−β2

 , (12)

and

B = P−1B̃P =

(
−
√

1− β2 0

0
√

1− β2

)
. (13)

Note that while the present problem in the crossed uni-
form fields in the Cartesian coordinates is exactly solv-
able by diagonalizing the matrix B, the problem with
the radial electric field [42] which involves three matrices

Â/ρ+ B̂+ Ĉρ with ρ being the radial variable cannot be
solved analytically.

Introducing a new variable ζ = (1− β2)1/4ξ + βε/(1−
β2)3/4, we rewrite Eq. (11) as follows

∂ζχ(ζ) =

(
−ζ

√
2κ−√

2κ+ ζ

)
χ(ζ), (14)

where the following notations are introduced

κ± =
δ
√

1− β2 ± ε√
2(1− β2)3/4

. (15)

Then one can express the component χ1 via χ2,

χ1(ζ) =
χ′2(ζ)− ζχ2(ζ)√

2κ+

, (16)

and obtain the following equation for χ2:

χ′′2(ζ)− (1 + ζ2 + 2κ−κ+)χ2(ζ) = 0. (17)

Here prime denotes a differentiation over ζ.
The general solution of the last equation can be writ-

ten in terms of the parabolic cylinder (Weber) functions
U(a, x) and V (a, x) [43]

χ2(ζ) = C1U
(
a,
√

2ζ
)

+ C2V
(
a,
√

2ζ
)

(18)

with

a =
1

2
+ κ+κ− =

1

2
+
δ2(1− β2)− ε2

2(1− β2)3/2
. (19)

and C1,2 being the integration constants. Accordingly,
using the recurrence relations (19.6.2) and (19.6.5) from
[43]:

U ′(a, x)− x

2
U(a, x) + U(a− 1, x) = 0,

V ′(a, x)− x

2
V (a, x)− (a− 1

2
)V (a− 1, x) = 0

(20)

we obtain from Eq. (16) the expression for χ1 component

χ1(ζ) = − 1

κ+

[
C1U

(
a− 1,

√
2ζ
)

−C2

(
a− 1

2

)
V
(
a− 1,

√
2ζ
)]
.

(21)

One can notice from the definition of ζ that for a finite
electric field, the electron- and hole-like solutions become
asymmetric.

Finally, one should return to the original spinor com-
ponents for the sublattices, ψ̃+ = Pχ (see Appendix A).
The representation of the solution Eqs. (A1) and (A2)
(see also Eqs. (21) and (18)) in terms of the Weber
parabolic cylinder functions U(a, x) and V (a, x) is par-
ticulary convenient because their Wronskian W {U, V } =√

2/π [43] is independent of the parameters.

Another advantage of utilizing these functions is that
in an infinite system without boundaries, the normal-
izable wave functions contain only the parabolic cylin-
der U(a, x) functions. This is because the cylinder func-
tions V (a, x) diverge exponentially for both positive and
negative x, as shown by the asymptotics (A3b) and
(A5b), which necessitates C2 to be equal to zero. As
one can see from Eq. (A3a) the remaining U(a, x) func-
tions are bound at x → +∞. Furthermore, it follows
from Eq. (A5b)) that the condition of their finiteness at
x → −∞ requires that a = −n − 1/2 with n being a
non-negative integer, viz.

εn = (1− β2)1/2

{
−ηδ sgn(eH), n = 0,

±
√

2n(1− β2)1/2 + δ2, n = 1, 2 . . .

(22)
Thus we recover the result of Refs. [9, 10] generalized for
a finite ∆ case (see Ref. [44] and recent works [42, 45]):

En = E∗n − ~k
cE

H
,

E∗n = (1− β2)1/2

×

{
−η∆, n = 0,

±
√

2n~v2F eH
c (1− β2)1/2 + ∆2, n = 1, 2 . . .

(23)

Here and in what follows we assume that H > 0. Ob-
viously the collapse of Landau levels occurs as |β| ap-
proaches 1.
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IV. ZIGZAG EDGE STATES FOR A RIBBON

To comprehend a link between the existing computa-
tions on the lattice and the considered here continuum
model we begin with numerical solution of the equations
(A6) and (A8) derived in Appendix A. They determine
dimensionless energies εα = εn(kl,W/l) as functions of
quantum numbers α ≡ (n, k) and the ratio W/l for the
K+ and K− valleys, respectively. To return to the to-
tal energy E (or its dimensionless analog lE/(~vF )) one
should use Eq. (6) to restore its linear in k part.

A. The gapless case, ∆ = 0

The corresponding spectra for ∆ = 0 case are com-
puted numerically and presented in Fig. 2. The pan-
els (a), (b) show the results for zero and the panels (c),
(d) for a finite (β = 0.1) electric field. Since the wave vec-

lℰ

ℏvF

lℰ

ℏvF

kl kl

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-12 -10 -8 -6 -4 -2 0 -12 -10 -8 -6 -4 -2 0 2

-12 -10 -8 -6 -4 -2 0 -12 -10 -8 -6 -4 -2 0 2

(a) (b)

(c) (d)

FIG. 2. The energy spectra lE(k)/(~vF ) of the first few Lan-
dau levels of the ribbon of widths W = 10l for the gapless,
∆ = 0 case. Panels (a) and (b) show the results for β = 0
and (c) and (d) for β = 0.1, respectively. The solutions for
the K+ valley are shown in panels (a) and (c) by the solid
(blue) lines, the solutions for the K− valley in panels (b) and
(d) by the dashed (red) lines.

tor k is counted from K±x the spectra for both valleys
fell on the same range of the wave vectors as compared
to the solutions of the lattice model [9, 19, 20], where
the wave vector includes the value K±x. In our case the
edges correspond to the values kl = −10 and kl = 0 for
both valleys, but to facilitate the comparison we showed
the results for the K+ and K− valleys side by side. One
finds that the results presented in Fig. 2 are in agreement
with the calculations done for the lattice model in a finite
electric field [9, 20] (notice the opposite sign of k).

In Fig. 2 (a), (b) we observe the dispersionless Landau
levels in the bulk of the ribbon. The n 6= 0 Landau lev-
els are dispersing independently near the edges for each
valley, while for the lowest n = 0 Landau level there is

a dispersionless part of the spectrum branch that unites
both valleys together. These dispersionless surface states
localized at the boundaries [27, 28, 41, 46] and n = 0
Landau level form the degenerate states.

On the contrary, Fig. 2 (c), (d) show that the degen-
eracy is lifted by an applied electric field [9]. All Landau
levels including the lowest one develop a linear k dis-
persion with the slope proportional to the electric field,
whereas only the surface states remain dispersionless.

B. The gapped case

The corresponding spectra for a finite ∆ case are com-
puted numerically and presented in Fig. 3. The corre-

lℰ

ℏvF

lℰ

ℏvF

kl kl

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

-12 -10 -8 -6 -4 -2 0 -12 -10 -8 -6 -4 -2 0 2

-12 -10 -8 -6 -4 -2 0 -12 -10 -8 -6 -4 -2 0 2

(a) (b)

(c) (d)

FIG. 3. The energy spectra lE(k)/(~vF ) of the first few Lan-
dau levels of the ribbon of widths W = 10l for the gapped,
δ = 0.2 case. The panels (a), (b), (c) and (d) are for the same
valleys and values of β as in Fig. 2.

sponding numerical solution shown in Figs. 3 (a) and (b)
is in agreement with the results presented in Refs. [33] for
zero electric field. The gap ∆ considered in the present
work corresponds to the parity breaking and the time
reversal symmetry conserving gap ∆̃ in the notation of
[31–33].

The presence of the mass gap results in the absence of
the gapless edge states, the degeneracy of the n = 0 level
is lifted. The degeneracy of the surface modes is also
lifted, yet they remain dispersionless with the energies
∼ ±∆.

In the presence of an electric field [see Figs. 3 (c) and
(d)] all Landau levels acquire linear k dispersion, but
the surface modes remain dispersionless. Furthermore,
while for the ∆ = 0 case the linearly dispersing part of
the n = 0 level has the same energy, for a finite ∆ this
degeneracy is lifted as for the β = 0 case.

To study the discussed features by analytic methods
we need to simplify the problem by considering the semi-
infinite geometry.
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V. ZIGZAG EDGE IN SEMI-INFINITE
GEOMETRY

On a half-plane, normalizable wave functions are also
given in terms of only U(a, x) function which as men-
tioned above falls off exponentially as x→∞, while the
function V (a, z) is growing exponentially in both direc-
tions x → ±∞. Therefore, we must take again C2 = 0.
Yet, in contrast to the case of an infinite plane, on a half-
plane, there is no restriction for the parameter a to be a
negative half-integer [see the discussion above Eq. (22)].

The zigzag boundary conditions (7b) at y = W → ∞
are automatically satisfied due to the asymptotic (A3a).
It follows from the remaining boundary conditions (7a)
at y = 0 that the term with C1 in Eq. (A1) has to be zero.
The latter condition produces the following equation for
the spectrum for the K+ valley:

γU
(
a− 1,

√
2ζ(0)

)
− κ+U

(
a,
√

2ζ(0)
)

= 0. (24)

Using the asymptotics Eq. (A3) one can verify that
Eq. (24) also follows from Eq. (A6) in the limit W →∞.

To write down the corresponding equation for the spec-
trum for the K− valley we use the prescriptions described
below Eq. (2). They imply that ε → −ε, β → −β and
ψ1 ↔ ψ2, so that we arrive at the following equation

U
(
a− 1,

√
2ζ(0)

)
+ γκ−U

(
a,
√

2ζ(0)
)

= 0. (25)

Eqs. (24) and (25) determine dimensionless energies εα =
εn(kl) as functions of quantum numbers α ≡ (n, k). To
return to the total energy E (or its dimensionless analog
lE/(~vF )) one should use Eq. (6) to restore its linear in
k part.

The corresponding spectra are computed numerically
and presented for the gapless and gapped cases in Figs. 4
and 5, respectively. In contrast to Figs. 2 and 3 where we
showed the K+ and K− valleys on separate panels, here
we superimpose both valleys on the same panel to allow
a direct comparison of the corresponding energy levels.
This is possible, because in the continuum model the
wave vector k is counted from K±x values. The negative
values of k correspond to the bulk, while the edge is at
k = 0.

Since a half-plane geometry is considered, for a finite
β there is an unbound linear growth of the dispersion
curves as kl → −∞. The presence of the other edge
at y = W modifies this behavior. The hole-like levels
including the blue line (the K+ solution) that goes to
zero for kl→∞ would go downward, while the electron-
like levels go upward. Furthermore, the degeneracy of
the solutions for the K+ and K− valleys would be lifted
near the other edge as one can see in Figs. 2 and 3.

The only curve which remains dispersionless as kl →
−∞ even in the ribbon geometry is the zero energy lower
branch of the K− valley spectrum that corresponds to the
surface states mentioned in Sec. IV A. The second edge of
the ribbon supports a second dispersionless mode which

(a)

-6 -4 -2 0 2 4

-3

-2

-1

0

1

2

3

lℰ

ℏvF

(b)

-6 -4 -2 0 2 4

-3

-2

-1

0

1

2

3

kl

lℰ

ℏvF

FIG. 4. The energy spectra lE(k)/(~vF ) of the first few Lan-
dau levels near a zigzag edge of graphene for the gapless,
∆ = 0 case. The solutions for the K+ and K− valleys are
shown by the solid (blue) and dashed (red) lines, respectively.
(a) β = 0; (b) β = 0.25

is absent in a half-plane geometry. The surface state in
the semi-infinite geometry will be discussed in Sec. V B.

A. Zero electric field limit

In the absence of electric field, β = γ = 0 and a =
[1 + δ2 − ε2]/2, so Eqs. (24) and (25) for the spectra
in the K± valleys are in agreement with the equations
studied in Refs. [31, 32]

(δ + ε)U
(
a,
√

2kl
)

= 0, U
(
a− 1,

√
2kl
)

= 0. (26)

The corresponding numerical solutions shown in
Figs. 4 (a) and 5 (a) are in agreement with the results
presented in Refs. [27, 28, 31, 32].

It is known that the zigzag edge hosts a band of disper-
sionless zero-energy states localized at the edge even in
the absence of magnetic and electric fields [27, 28, 41, 46].

In the presence of a magnetic field, the lowest n = 0
Landau level coexists with this surface state and behaves
rather differently for the two valleys. As discussed in
[28, 29], the lowest Landau level for the K+ valley near
the edge transforms into the surface mode [see the blue
straight line in Fig. 4 (a)]. For the K− valley the lowest
Landau level and the surface state mix, producing two
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(b)
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FIG. 5. The energy spectra lE(k)/(~vF ) of the first few Lan-
dau levels near a zigzag edge of graphene for the gapped,
δ = 0.2 case. The panels (a) and (b) are for the same values
of β as in Fig. 4.

dispersing edge modes as can be seen from the behavior
of the red dashed lines in Fig. 4 (a).

It is possible to find out the approximate solutions of
Eqs. (26) in the vicinity of the y = 0 edge and for the
bulk. The derivation follows along the lines of the corre-
sponding derivation for the Shrödinger equation [47, 48].
First of all one can verify that the dispersionless solution
E0 = −∆ of the first equation in Eqs. (26) for the K+

valley indeed satisfies the original system (14).
Depending on the relationship between the y coordi-

nate of the center of the electron cyclotron orbit, y0 =
−kl2, and the magnetic length l one can obtain two types
of the asymptotic solutions of Eqs. (26).

For electrons near the boundary, y0 � l, Eqs. (26)
are solved by expanding the function U(a, z) in the
argument z (see Eqs. (19.3.5) in [43]). In the
first order in z we obtain the following equation
Γ (1/4 + a/2) Γ−1 (3/4 + a/2) =

√
2z for the K+ valley,

while for the K− valley a → a − 1. Exactly at the edge
for z = −

√
2y0 = 0 the eigenenergies are determined

by the poles of the gamma function Γ(z) in the denom-
inator at z = −n with n = 0, 1, 2, . . . These eigenval-
ues do not depend of y0. Then we use the expansion
Γ−1(−n − α) ' (−1)nΓ(n + 1)(−α) in order to obtain
correction α to these eigenenergies dependent on y0.

For the bulk electrons, y0 � l, the argument of the
parabolic functions is large and negative, so that one uses
firstly the relationship (A4a) which brings in the gamma

function Γ(1/2 + a) in the denominator. Then after us-
ing the asymptotic expressions (A3) essentially the same
procedure as in the previous case is applied. As the result
we obtain the following expressions for the K+ valley

ε2+,n − δ2 =

2n+ 2n
√
π(n−1)!

(
y0
l

)2n−1
e−y

2
0/l

2

, y0 � l,

4n
[
1− Γ(n+1/2)

πn!
2y0
l

]
, y0 � l,

(27)

with n = 1, 2, . . . and for the K− valley

ε2−,n − δ2 =

2n+ 2n+1
√
πn!

(
y0
l

)2n+1
e−y

2
0/l

2

, y0 � l,

2(2n+ 1)
[
1− Γ(n+1/2)

πn!
2y0
l

]
, y0 � l,

(28)

with n = 0, 1, 2, . . . The level ε−,0 ≈ −δ is related to the
surface mode and it disappears when the edge is moved
to infinity, similarly to the disappearance of another sur-
face mode when one goes from the ribbon to a half-plane
geometry. Thus the combined spectrum for both K±
valleys reduces the one to given by Eq. (22) with β = 0.

By studying the spectra of the edge and bulk regions,
we can observe an interesting property: for the K+ valley,
we have ε+,n(y0 = 0) = ε+,2n(y0 � l) with n > 0, and for
the K− valley, we have ε−,n(y0 = 0) = ε−,2n+1(y0 � l)
with n ≥ 0 [29, 34]. This feature of the spectra can be
traced back to the character of the spectrum for the har-
monic oscillator with reflecting wall at the minimum of
potential (see the Problem 2.5 in Ref. [49]). The differ-
ence between the valleys is caused by the difference of
the first arguments of U in Eqs. (26). When the opposite
edge is also considered, these properties of the spectra
for the K+ and K− valleys are interchanged.

B. The lowest Landau level and surface mode in a
finite electric field

As discussed at the end of Sec. IV A, the electric field
lifts the degeneracy of the n = 0 Landau level and the
dispersionless state. Indeed, in Fig. 4 (b) one observes
splitting of the two red (dashed) curves for the K− valley
that merge to zero energy in Fig. 4 (a) as kl → −∞.
The upper curve corresponds to the dispersing n = 0
level, while the lower curve is related to the dispersionless
surface state. As we saw in the case of the ribbon shown
Fig. 2 (c) and (d) in the K+ valley this state evolves in
the dispersing lowest n = 0 Landau level whose energy
decreases as kl → −∞. In a half-plane geometry the
corresponding blue curve increases linearly as kl→ −∞.

It is interesting to investigate the origin of the disper-
sionless state. Indeed, in our approach all branches of
the spectrum are obtained from Eq. (6), viz. lE/(~vF ) =
ε−βkl. This implies that the linear dispersion of the Lan-
dau levels in the bulk is related to the −βlk (−~kE/H
in the dimensional units) term, while the dispersionless
mode has to emerge from a delicate cancelation with the
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ε term that should show the same dependence on kl. By
using the expansion of parabolic cylinder functions of
large order and argument as developed by Darwin [43],
Appendix B demonstrates that a solution exists for the
mode where ε ∼ βlk as kl→ −∞.

Furthermore, one can show that there is also a similar
surface mode solution in the K+ valley which shows the
same behavior as kl→∞.

For the ∆ = 0 and finite β the dispersive parts of the
curves corresponding to the n = 0 level for the K+ and
K− valleys have the same energy [see Fig. 4 (b)]. As
shown in Fig. 5 (b), for a finite ∆ this degeneracy is
lifted as for the β = 0 case. The dispersionless mode in
the gapped case tends to ∼ −∆ value.

C. Landau levels with n 6= 0 in a finite electric field

The behaviour of the n 6= 0 Landau levels is similar
for β = 0 and finite β, viz. there are two branches of the
edge states, one for each valley. These states are degen-
erate in the bulk and split near the edge. An increase
in the electric field deforms the spectrum in two ways:
firstly, the familiar linear term ~kE/H, which is present
in nonrelativistic systems, appears; and secondly, the en-
ergy levels themselves merge as |β| approaches 1. Both
these effects are indeed observed for the computations
done for the larger values of β than shown in Figs. 4 (b)
and 5 (b). The second feature reflects the Landau level
collapse.

VI. CONCLUSION

We conducted both analytical and numerical studies
on the edge states of a graphene ribbon with finite width
and semi-infinite geometry utilizing low-energy theory in
the presence of the crossed magnetic and electric fields.
Our findings are consistent with numerical calculations
performed on a lattice. When an electric field is present,
all Landau levels exhibit linear wave vector dispersion,
except for surface modes that remain dispersionless. We
devoted special attention to the analytical study of these
states and demonstrated that they can be obtained using
Darwin’s expansion of the parabolic cylinder functions of
large order and argument.

The existence of states localized near the zigzag edges
of a graphene ribbon in the absence of a magnetic field
was confirmed by STS measurements [50]. More recently,
the signatures of these states were observed in magneto-
transport measurements [51]. Extending these measure-
ments to cases where an electric field is applied to the
ribbon would be useful.
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Appendix A: Explicit form of the solution and
equations for eigenenergies

The explicit form of the general solution for the com-
ponents of the spinor χ̃ reads

ψ̃+1(ζ) = iC+1

[
γU
(
a− 1,

√
2ζ
)
− κ+U

(
a,
√

2ζ
)]

+iC+2

[
γV
(
a− 1,

√
2ζ
)

+
κ+

a− 1/2
V
(
a,
√

2ζ
)]
,

(A1)

ψ̃+2(ζ) = C+1

[
U
(
a− 1,

√
2ζ
)
− γκ+U

(
a,
√

2ζ
)]

+C+2

[
V
(
a− 1,

√
2ζ
)

+
γκ+

a− 1/2
V
(
a,
√

2ζ
)]
,

(A2)
where for the convenience of further analysis we rede-
fined the integration constants C1,2 in Eqs. (21) and (18).
Writing Eqs. (A1) and (A2) we used κ+, a and γ defined
by Eqs. (15), (19) and (10), respectively.

The asymptotic behavior of the functions U(a, x) and
V (a, x) for the large positive x is the following (see
Eqs. (19.8.1) and (19.8.2) from [43]):

U(a, x→∞) ' e− x2

4 x−a−
1
2

[
1 +O

(
1

x2

)]
, (A3a)

V (a, x→∞) '
√

2

π
e

x2

4 xa−
1
2

[
1 +O

(
1

x2

)]
. (A3b)

To derive asymptotics of the functions U(a, x), V (a, x)
for large negative x we use Eqs. (19.4.2), (19.4.3) from
[43] rewritten as follows

U(a,−x) =
π

Γ
(

1
2 + a

)V (a, x)− sinπaU(a, x), (A4a)

V (a,−x) = sinπaV (a, x) +
1

π
Γ

(
1

2
+ a

)
cos2 πaU(a, x)

(A4b)
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and obtain as x→∞:

U(a,−x) '
√

2π

Γ
(

1
2 + a

)e x2

4 xa−
1
2

[
1 +O

(
1

x2

)]
, (A5a)

V (a,−x) '
√

2

π
sin(πa) e

x2

4 xa−
1
2

[
1 +O

(
1

x2

)]
.

(A5b)

It follows from the zigzag boundary conditions (7) for
the K+ valley that the spectrum is determined by the
following transcendental secular equation[

U
(
a− 1,

√
2ζ(W )

)
− κ+γU

(
a,
√

2ζ(W )
)]

×
[
γV
(
a− 1,

√
2ζ(0)

)
+

κ+

a− 1/2
V (a,

√
2ζ(0))

]
=

[
V
(
a− 1,

√
2ζ(W )

)
+

κ+γ

a− 1/2
V
(
a,
√

2ζ(W )
)]

×
[
γU
(
a− 1,

√
2ζ(0)

)
− κ+U

(
a,
√

2ζ(0)
)]
,

(A6)

where

ζ(0) ≡ζ(y = 0) = (1− β2)1/4kl +
βε

(1− β2)3/4
,

ζ(W ) ≡ζ(y = W ) = (1− β2)1/4

(
W

l
+ kl

)
+

βε

(1− β2)3/4
.

(A7)

Recall also that κ± and a depend on ε. Using the pre-
scriptions described above Eq. (25) one can write the
corresponding secular equation for the spectrum for the
K− valley:[

U
(
a− 1,

√
2ζ(0)

)
+ γκ−U

(
a,
√

2ζ(0)
)]

×
[
γV
(
a− 1,

√
2ζ(W )

)
− κ−

a− 1
2

U
(
a,
√

2ζ(0)
)]

=
[
γU
(
a− 1,

√
2ζ(W )

)
+ κ−U

(
a,
√

2ζ(W )
)]

×
[
V
(
a− 1,

√
2ζ(0)

)
− γκ−

a− 1
2

V
(
a,
√

2ζ(0)
)]
.

(A8)

Appendix B: Solution for the dispersionless mode at
the K− valley

We seek for a linear ε ' Akl solution of Eq. (25) in the
limit kl→ −∞. It is convenient to rewrite this equation
introducing the following notations a ≡ a− 1/2 = κ+κ−
and x ≡ −

√
2ζ(0)→∞:

U(a− 1/2,−x) + γκ−U(a + 1/2,−x) = 0. (B1)

Similarly to the derivation of the asymptotic solutions
(27) and (28) for the y0 � l case when the argument of

the parabolic functions is large and negative, one uses
firstly the relationship (A4a) written in the following
form

U(a,−x) = Γ(1/2− a) cosπaV (a, x)− sinπaU(a, x).
(B2)

However, in contract to the abovementioned case of
Eqs. (27) and (28) for y0 � l, one cannot rely on the
asymptotic expannsions (A3), because the argument a of
the parabolic functions also goes to −∞.

Thus one has to use another expansion of the parabolic
functions applicable for a < 0, x → +∞ and x2 + 4a →
∞. This case corresponds to the Darwin’s expansion
given by Eqs. (19.10.6) and (19.10.7) from [43]:

U(a, x) =

√
Γ(1/2− a)

(2π)1/4
exp [−θ(a, x) + v(a, x)] , (B3a)

V (a, x) =
2

(2π)1/4
√

Γ(1/2− a)
exp [θ(a, x) + v(a,−x)] ,

(B3b)

where

θ(a, x) =
1

4
xX(a) + a ln

x+X(a)

2
√
|a|

, (B4)

v(a, x) ∼ −1

2
lnX(a) +

∑
s=1

(−1)s
d3s

X3s(a)
, (B5)

with X(a) =
√
x2 − 4|a|, and the coefficients d3s are

given in Eq. (19.10.13) in [43]. We are interested in the
case X(a) � 1, so the terms with d3s can be neglected.
Furthermore, the functions U(a±1/2, x) that contain the
decaying exponents exp[−θ(a ± 1/2, x)] in the x → ∞
limit may also be neglected, so that we are left with the
following asymptotic expressions

U(a− 1/2,−x) =

2 sinπa
√

Γ(1− a)

(2π)1/4
X−1/2(a− 1/2, x)eθ(a−1/2,x),

U(a + 1/2,−x) =

−
2 sinπa

√
Γ(−a)

(2π)1/4
X−1/2(a + 1/2, x)eθ(a+1/2,x)

(B6)

that has to be substituted into Eq. (B1). For |a| � 1 the
functions X−1/2(a+ λ, x) and θ(a+ λ, x) with λ = ±1/2
can be expanded as follows

X−1/2(a + λ) = X−1/2(a)− λ

X5/2(a)
,

θ(a + λ) = θ(a) + λ ln
x+X(a)

2
√
−a

+O

(
x

aX(a)

)
.

(B7)

To rewrite the final equation that relates ε and kl in
the considered limit in the most elucidating form, we
introduce the new notations a = −µ2/2 and x = µt

√
2.
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Then using Eq. (19) and the value ζ(0) given by Eq. (A7)
we obtain that

µ =
|ε|

(1− β2)3/4
, t = (1− β2)

kl

ε
+ β. (B8)

Then one can see that

ln
x+X(a)

2
√
−a

= ln(t+
√
t2 − 1),

θ(a, x) =
µ2

2

[
t
√
t2 − 1 + ln(t+

√
t2 − 1

]
.

(B9)

Note also that these notations also allow to establish a
link between the used here Darwin’s expansion [43] and

the expansions of the Weber parabolic cylinder functions
obtained in [52] (see also [53]).

Substituting the representations (B6) in Eq. (B1),
where X−1/2(a + λ, x) and θ(a + λ, x) given by the ex-
pansions (B7) are rewritten using Eq. (B9), we arrive at
very simple equation for unknown t:

√
−a = γκ−(t+

√
t2 − 1). (B10)

Taking into account that for δ = 0 the parameter κ− =
µ/
√

2 the last equation reduces to

γ(t+
√
t2 − 1) = 1, (B11)

which has a solution t = 1/β. Therefore, using the defi-
nition (B8) of t we find that ε = βkl for kl→ −∞.
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