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Primordial gravitational waves are a crucial prediction of inflation theory, and their detec-
tion through their imprints on the cosmic microwave background is actively being pursued.
However, these attempts have not yet been successful. In this paper, we propose a novel
approach to detect primordial gravitational waves by searching for a signal of second-order
tensor perturbations. These perturbations were produced due to nonlinear couplings be-
tween the linear tensor and scalar perturbations in the early universe. We anticipate a
blue-tilted tensor spectral index, and suggest that the tensor-to-scalar ratio can potentially
be measured with high precision using a detector network composed of the ground-based
Einstein Telescope and the space-borne LISA project on a decade timescale.

Motivation. Primordial gravitational waves, originated from quantized tensor modes of per-
turbed metric in the very early universe, are one of the most important predictions of cosmic
inflation theory [1–6]. On large scales comparable to the whole scale of observable universe, im-
prints of primordial tensor perturbations on the cosmic microwave background (CMB) have been
proposed before two decades [7–10], but have not been observed yet. Recent studies have es-
tablished upper limits on the spectral amplitude of primordial tensor perturbations [11–15]. The
tensor-to-scalar ratio has been shown to be less than 0.032 at the 95% confidence level, based
on precise measurements of anisotropies and polarization in the CMB by the Planck satellite and
BICEP/Keck Array [15].

Efforts have been made to detect primordial tensor perturbations on small scales, which are
detectable by space-borne and ground-based gravitational-wave interferometers [16–22]. However,
models of canonical single-field slow-roll inflation predict a red-tilted tensor spectrum, with the
spectral index exhibiting a consistency relation of nt = −r/8 [23]. This makes it particularly
challenging for these detectors to measure such a spectrum. Further, a blue-tilted tensor spectrum
would imply a violation of the null-energy condition in the effective field theory of single-field
inflation models [24–26]. To generate a blue-tilted tensor spectrum, additional assumptions, such
as higher-derivative operators [27] and strong deviations from single-field slow-roll [28, 29], are
necessarily involved.

Considering the absence of measurements of primordial tensor perturbations on large scales
and the difficulties in generating a blue-tilted tensor spectrum on small scales, it is important to
give serious consideration to any new mechanisms that can enhance the tensor spectral amplitude
without requiring extraordinary assumptions.
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Our proposal suggests that during the early universe, the linear scalar perturbations could have
modulated the primordial tensor perturbations, resulting in the production of second-order tensor
perturbations with a significantly blue-tilted power spectrum. This anticipated signal can poten-
tially be detected by ongoing and planned ground-based detectors such as the Advanced LIGO,
Virgo and KAGRA (LVK) [30–32], Einstein Telescope (ET) [33] and Cosmic Explorer (CE) [34].
Furthermore, scalar perturbations are believed to contribute to the formation of primordial black
holes (PBHs), which are considered as a viable candidate for dark matter [35, 36]. Additionally,
they are expected to produce scalar-induced gravitational waves, which can be detected by planned
space-borne detectors such as the Laser Interferometer Space Antenna (LISA) [37, 38], big bang
observer (BBO) [39, 40], or Deci-hertz Interferometer Gravitational wave Observatory (DECIGO)
[41, 42]. If both the modulated primordial and scalar-induced gravitational waves are detected
simultaneously, it would provide valuable insights into the mechanism of cosmic inflation and the
nature of dark matter.

This paper investigates the theory of second-order tensor perturbations and the possible multi-
band measurements of modulated primordial and scalar-induced gravitational waves using a future
detector network consisting of the ground-based ET and the space-borne LISA. The main objective
of this study is to achieve a high-precision measurement of the tensor-to-scalar ratio r with an
accuracy of ∆r ∼ O(10−4), based on a fiducial model with r = 10−2 and a bumpy scalar power
spectrum with amplitude Aζ = 10−3.

Primordial tensor perturbations modulated by cosmological scalar perturbations. The perturbed
Friedman-Robertson-Walker metric in the Newtonian gauge is ds2 = a2{−(1 + 2ϕ)dη2 + [(1 −
2ϕ)δij + hij + h̃ij/2]dxidxj}, where h̃ij denotes the second-order tensor perturbation sourced
by the linear scalar perturbation ϕ, and the linear tensor perturbation hij . The scalar pertur-
bation in Fourier space is given by ϕk(η) = (2/3)ζkTs(kη), where ζk is the initial comoving
curvature perturbation with power spectrum ⟨ζkζk′⟩ = (2π2/k3)Ps(k)δ(k + k′), and the scalar
transfer function during the radiation-dominated era is Ts(kη) = 3(sin x/x − cos x)/x2 with x =
kη/

√
3 [43]. The tensor perturbation in Fourier space is decomposed into two components, i.e.,

hk,ij = h+
k ϵ+

k,ij + h×
k ϵ×

k,ij , where the polarization tensors are defined as ϵ+
k,ij = (eiej − eiej)/

√
2

and ϵ×
k,ij = (eiej + eiej)/

√
2 with ei and ei being orthonormal vectors that are transverse to

k. It is given by hλ
k(η) = Hλ

kTt(kη) (λ = +, ×), where Hλ
k is the initial tensor perturbation

with the power spectrum ⟨Hλ
kHλ′

k′ ⟩ = (2π2/k3)Pt(k)δλλ′
δ(k + k′) and the tensor transfer function

is Tt(kη) = sin(kη)/(kη) [43]. Similarly, we decompose the second-order tensor perturbation in
Fourier space into two polarization components, and further decompose each component into three
terms, i.e., h̃λ

k = h̃λ
k

ss + h̃λ
k

st + h̃λ
k

tt, where the superscripts s and t stand for contributions from the
linear scalar and tensor perturbations, respectively.

Expanding the Einstein field equations up to second order using the xPand [44] package, we
derive the equation of motion for the second-order tensor perturbation. The evolution of h̃λαβ

k with
αβ = ss, st, tt is governed by

¨̃hλ
k

αβ + 2H ˙̃hλ
k

αβ + k2h̃λ
k

αβ = 4Sλ
k

αβ , (1)
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where an overdot denotes a derivative with respect to η, H = ȧ/a is the comoving Hubble param-
eter, and Sλ

k
αβ, as formulated in Eqs. (A1–A3), is the source term for h̃λαβ

k .
We solve Eq. (C6) with the Green’s function method and obtain h̃k ∝

∫ η dη̃ sin(kη−kη̃)[a(η̃)/a(η)]Sk(η̃)
[45, 46], where a(η) ∝ η in the radiation-dominated universe. The power spectrum of gravitational
waves is defined as the two-point correlation function, i.e.,

⟨h̃λαβ
k h̃λ′αβ

k′ ⟩ = 2π2

k3 Pαβ

h̃
(k) δλλ′

δ(k + k′) , (2)

where ⟨...⟩ denotes the ensemble average. The dimensionless energy-density spectrum of the second-
order tensor perturbations, i.e., the energy density per logarithmic frequency normalized with the
critical energy density of the early universe, is given by [47]

Ωαβ
gw(η, k) = 1

24

(
k

H

)2
Pαβ

h̃
(η, k) , (3)

where the overbar denotes the oscillation average and the two polarization modes have been
summed over. After tedious but straightforward calculations, we obtain

Ωαβ
gw(η, k) =

∫ ∞

0
du

∫ |1+u|

|1−u|
dv {...}αβPα(uk)Pβ(vk) , (4)

where {...}αβ composed of u and v is formulated in Eqs. (B1–B3), and the limit kη → ∞ has been
used, implying that the tensor perturbations are deeply within the horizon. The total spectrum
is Ωgw = Ωss

gw + Ωst
gw + Ωtt

gw. Since the energy density of gravitational waves decays as radia-
tion, the present-day physical energy-density spectrum for the second-order tensor perturbations
is approximated by [48]

h2Ωαβ
gw,0(k) = h2Ωr,0 × Ωαβ

gw(η, k) , (5)

where the corresponding one for photons and neutrinos is h2Ωr,0 = 4.15 × 10−5, with h being the
dimensionless Hubble constant [49].

Before delving into the precision of detection, we present a featured asymptotic behavior of
Ωst

gw in the following. In particular, we remind that the scalar power spectrum on large scales
follows a power-law with amplitude Aζ,0.05 ≃ 2.1 × 10−9 and index ns ≃ 0.96 at the pivot scale
kp = 0.05 Mpc−1 [49]. However, the formation of primordial black holes necessitates an enhanced
scalar spectral amplitude of ∼ 10−2 on small scales (see Ref. [50] for a review). We model the scalar
power spectrum on small scales as a normal distribution of ln k with mean kζ , standard deviation
σζ and spectral amplitude Aζ at the scale kζ , i.e., [51]

Ps(k) = Aζ√
2πσζ

exp
[
− ln2(k/kζ)

2σ2
ζ

]
. (6)

On the other hand, we assume that the tensor power spectrum follows a sudden-broken power-law
distribution of k throughout the entire scale, i.e.,

Pt(k) = rAζ,0.05

(
k

kp

)nt

Θ (kreh − k) , (7)
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FIG. 1. Present-day physical energy-density spectra h2Ωss
gw,0 (dashed lines) and h2Ωst

gw,0 (solid lines) for
σζ → 0 (blue), σζ = 0.5 (red) and σζ = 1 (green). The vertical lines from left to right denote freh =
27/270/2700 Hz. Other parameters are given as Aζ = 10−3, fζ = 2.7 mHz, r = 0.01 and nt = −r/8. The
shaded regions show the sensitivities of LISA (orange), LIGO (purple) and ET (blue). The horizontal short
line (black) denotes the upper limit of h2Ωgw,0(25Hz) for LIGO O3, using the power-law model marginalizing
over the spectral index with a log-uniform prior [52].

where r and nt represent the tensor-to-scalar ratio and tensor spectral index, respectively, kreh

is the high-frequency end of the spectrum due to reheating at the end of inflation, and Θ(x)
is the Heaviside function with variable x. In models of canonical single-field slow-roll inflation,
the consistency relation nt = −r/8 holds [23]. The current upper bound on the tensor-to-
scalar ratio is r < 0.032 at the 95% confidence level [15], indicating a slightly red-tilted ten-
sor spectrum. The reheating frequency freh = kreh/(2π) is related to the reheating tempera-
ture Treh and the effective number of relativistic degrees of freedom g∗,reh during reheating, with
freh ≃ 0.027 Hz (Treh/106GeV) (g∗,reh/106.75)1/6 [43]. Noticing that the contribution from g∗,reh

may be negligible due to the small value of the power-law index, thus the reheating frequency is
approximately determined by the reheating temperature.

Fig. 1 demonstrates that Ωst
gw,0(k) ∝ k2+nt as kζ ≪ k < kreh. The enhancement results from

the leading term q2ϕk−qhλ1
q of the source Sλst

k (see Eq. (A2)) in the limit |k − q| ≪ q ≈ k. On
the one hand, for larger momentum q of linear tensor perturbations, the source term q2ϕk−qhλ1

q

can be significantly enhanced by the factor q2. On the other hand, for smaller momentum |k − q|
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of linear scalar perturbation, considering Ts(|k − q|η) ∼ 1/(|k − q|η)2 within the horizon in the
radiation-dominated era, the scalar perturbation decays slower and thus keeps the source term
q2ϕk−qhλ1

q important for a longer time to induce h̃λst
k . To make some rough estimates, we have the

leading term {...}st ∝ 1/u4 approximately in the limit u = |k − q|/k → 0 and v = |q|/k → 1. For
simplicity, we take the limit σζ → 0 and get the scalar spectrum Ps(k) = Aζδ(ln(k/kζ)), therefore,
the energy-density spectrum can be approximated as Ωst

gw(k) ∝
∫

du
∫

dv u−4 δ[ln(uk/kζ)] knt ∝
kntu−2|u=kζ/k ∝ k2+nt , where

∫
dv has been replaced with the integral width 2u. The spectral

index (2 + nt) remains unchanged for different values of σζ , while the spectral amplitude varies.
Further, we can simply use Ωst

gw(k) ≃ few × rAζ,0.05Aζ(k/kζ)2(k/kp)ntΘ(kreh − k) in k ≫ kζ region
for a good order estimate. The null-energy condition is not violated by this blue-tilted spectrum
since second-order gravitational waves were produced during the radiation-dominated era, not the
inflationary stage.

We compare physical energy-density spectra of second-order tensor perturbations (as functions
of frequency) with sensitivity curves of LISA, LIGO, and ET in Fig. 1. The scalar-induced tensor
perturbations with Ωss

gw,0(k) have been semi-analytically studied in the literature [45, 46, 53, 54].
Due to r < 0.032, the amplitude of Ωtt

gw,0(k) is too small to fit the scope of Fig. 1. However,
the blue-tilted Ωst

gw,0(k) makes it promising to measure primordial tensor perturbations (r and
nt) and reheating physics (Treh) with high-frequency gravitational-wave detectors. Therefore, we
expect that multi-band measurements of second-order tensor perturbations may lead to a better
understanding of the late-time stage of inflation.

Expected sensitivity of gravitational-wave detectors to measure the anticipated signal. We per-
form Fisher-matrix forecasts by considering instrumental uncertainties for detector networks com-
posed of space-borne LISA and ground-based LIGO or ET. The Fisher matrix for second-order
tensor perturbations is given by

Fab =
N∑

i=1
Tiϵi

∫
df

∂θaΩgw,0(k) ∂θb
Ωgw,0(k)

Ω2
n,i(f)

, (8)

where f = k/(2π) is the frequency of gravitational waves, θ = {ln Aζ , σζ , ln fζ , r, nt, ln freh} is the
parameter space being determined, Ωn(f) denotes the effective detector noise as a function of f ,
as summarized in Ref. [55], N is the number of independent detectors, T is the observing time,
and ϵ is the duty circle. For LISA, we consider a single detector with 75% duty circle during a
four-year observation. For LIGO (ET), we consider two (three) independent detectors with 100%
duty circle during a four-year (one-year) observation. The fiducial parameters are Aζ = 10−3,
σζ = 0.5, fζ = 2.7 mHz, r = 0.01, nt = −r/8, and freh = 27/270/2700 Hz. The corresponding
spectra have been shown in Fig. 1.

Though multi-band measurements are performed with detector networks, the parameters of the
scalar spectrum in Eq. (6) are completely determined by LISA. The results are given as ∆ ln Aζ =
7.5×10−3, ∆σζ = 6.0×10−3, and ∆ ln fζ = 3.9×10−3, indicating (sub)percent-level measurements.
On the other hand, the parameters of the tensor spectrum in Eq. (7) are completely determined
by LIGO and ET. For our fiducial model, LIGO could achieve ∆r/r ∼ O(1) and ∆nt ∼ O(10−2),
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Detector freh/Hz ∆r ∆nt ∆ ln freh

LIGO
27 1.5 3.7 1.8 × 10−3

270 2.9 × 10−2 6.8 × 10−2 2.2 × 10−4

2700 2.0 × 10−2 4.7 × 10−2 2.3 × 10−3

ET
27 1.6 × 10−3 3.9 × 10−3 1.9 × 10−5

270 3.4 × 10−4 6.8 × 10−4 2.6 × 10−6

2700 3.0 × 10−4 5.4 × 10−4 5.5 × 10−5

TABLE I. The 1σ confident uncertainties of r, nt and ln freh measured by LIGO and ET for freh =
27/270/2700 Hz.

while ET, with better sensitivity than LIGO, could achieve ∆r/r ∼ O(10−2) and ∆nt ∼ O(10−4),
allowing for more-than-10σ confident measurements of the tensor-to-scalar ratio and a possibility
to test the consistency relation nt = −r/8 at the 2σ confidence level. The precision for measuring
r and nt depends on the fiducial value of freh, as shown in Tab. I. For higher reheating frequency,
which implies wider frequency band being captured by LIGO and ET, we expect better precision
for measurements of r and nt. Fig. 2 shows the marginalized 1σ and 2σ cross-correlations between
r and nt, as well as their dependence on freh. In addition, the best measurement of freh can be
performed when freh coincides with the most sensitive frequency band of detectors, which is given as
∼ O(102) Hz for LIGO and ET. Therefore, we expect the best precision to be ∆ ln freh ∼ O(10−4)
for LIGO and ∆ ln freh ∼ O(10−6) for ET. If such a measurement works in the best case, our results
may provide meaningful insights for particle physics, as the reheating temperature is ∼ O(1010)
GeV.

To enhance the detectability of primordial tensor perturbations, our results can be further
improved if using fiducial models that anticipate larger amplitudes for Ωst

gw,0(k). This could be
achieved, for example, by enhancing the amplitude of the scalar or tensor spectrum, or both, as
Ωst

gw,0 ∝ rAζ . In particular, LIGO could potentially measure primordial tensor perturbations by
setting the fiducial value to be Aζ ∼ 10−2, which is related to an interesting topic of the formation of
PBHs [50]. Other alternatives include increasing the bump width of the scalar spectrum, indicating
a larger value for σζ , or decreasing the peak frequency of the scalar spectrum, indicating a smaller
value for fζ , etc.

Conclusion. In the early universe, the linear tensor perturbations were modulated with bump-
spectral scalar perturbations to produce second-order tensor perturbations. The resulting tensor
spectral index was found to be (2+nt), which may have a significant blue tilt. Currently, plans are
underway to develop next-generation ground-based gravitational-wave detectors that could pro-
vide accurate measurements of the tensor-to-scalar ratio within the next decade. However, such
measurements require the existence of both inflationary tensor perturbations and linear scalar per-
turbations with a bumpy power spectrum, making it difficult to discuss their specifics until the
measurements are completed. If future multi-band measurements are able to detect the anticipated
signal of second-order tensor perturbations, it could provide valuable insights into the physics of
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FIG. 2. Cross-correlations between r and nt measured by ET for freh = 27(blue)/270(red)/2700(green) Hz.
Dark and light shaded contours stand for the 1σ and 2σ confident regions, respectively. The fiducial model
with r = 0.01 and nt = −r/8 (other parameters are marginalized) is marked as a star.

cosmic inflation and help constrain inflation models. While scientists are actively pursuing mea-
surements of CMB B-mode polarization (see review in Ref. [56]), our proposal offers an alternative
approach to accurately measure primordial tensor perturbations.
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Appendix A: Expression of Sαβ
k in Eq. (C6)

Sλ
k

ss = ϵλ,lm
k

∫ d3q
(2π)3/2 qlqm

[
2ϕk−qϕq +

(
H−1ϕ̇k−q + ϕk−q

) (
H−1ϕ̇q + ϕq

) ]
, (A1)

Sλ
k

st = ϵλ,lm
k

∫ d3q
(2π)3/2 ϵλ1

q,lm

[
− 3ϕ̈k−qhλ1

q − 10Hϕ̇k−qhλ1
q − 1

3(5k2 + 5q2 − 4kcqc)ϕk−qhλ1
q

]
, (A2)

Sλ
k

tt =
ϵλ,lm
k
2

∫ d3q
(2π)3/2

{
ϵλ1,b
k−q,lϵ

λ2
q,bmk2ḣλ1

k−qḣλ2
q +

[
ϵλ1,b
k−q,lϵ

λ2
q,bm(kcqc − q2) − 2ϵλ1,bc

k−q ϵλ2
q,bm qcql

− ϵλ1
k−q,mcϵ

λ2
q,bl (kb − qb)qc − ϵλ1

k−q,bcϵ
λ2
q,lm qbqc − 1

2ϵλ1,bc
k−q ϵλ2

q,bc qlqm
]
hλ1

k−qhλ2
q

}
.(A3)

Appendix B: Expression of {...}αβ in Eq. (C19)

{
...
}

ss
= 3

1024u8v8

[
4v2 −

(
1 + v2 − u2

)2]2 (
u2 + v2 − 3

)2

×
{[

−4uv + (u2 + v2 − 3) ln
∣∣∣∣∣3 − (u + v)2

3 − (u − v)2

∣∣∣∣∣
]2

+ π2(u2 + v2 − 3)2 Θ(u + v −
√

3)
}

, (B1)

{
...
}

st
= 1

442368u8v8

[
16v4 + 24v2

(
1 + v2 − u2

)2
+
(
1 + v2 − u2

)4
]

×
{[

4uv
[
u2 − 9

(
v2 − 1

)]
+

√
3
[
u2 − 3 (v − 1)2

] [
u2 − 3 (v + 1)2

]
ln
∣∣∣∣∣3 − (u +

√
3v)2

3 − (u −
√

3v)2

∣∣∣∣∣
]2

+3π2
[
u2 − 3 (v − 1)2

]2 [
u2 − 3 (v + 1)2

]2
Θ
(
u2 − 3(v − 1)2

)}
, (B2)

{
...
}

tt
= 1

3145728u8v8

[
(u − v)2 − 1

]2 [
(u + v)2 − 1

]2
×
{

64u2v2
[
u4 + v4 + 6u2v2 + 6

(
u2 + v2

)
+ 1

]
− 16uv

[
5
(
u6 + v6

)
+ 11u2v2

(
u2 + v2

)
+11

(
u4 + v4

)
− 126u2v2 + 11

(
u2 + v2

)
+ 5

]
ln
∣∣∣∣∣1 − (u + v)2

1 − (u − v)2

∣∣∣∣∣
+
[
25
(
u8 + v8

)
− 4u2v2

(
u4 + v4

)
+ 86u4v4 − 4

(
u6 + v6

)
+ 68u2v2

(
u2 + v2

)
+86

(
u4 + v4

)
+ 68u2v2 − 4

(
u2 + v2

)
+ 25

] [
π2 + ln2

∣∣∣∣∣1 − (u + v)2

1 − (u − v)2

∣∣∣∣∣
] }

. (B3)

Appendix C: Supplemental Material

In this Supplemental Material, we present additional calculations and analysis that complement
the main text. The semi-analytical calculation of scalar-induced tensor perturbations are developed
in Refs. [45, 46, 53, 54]. The previous studies on “scalar-tensor” and “tensor-tensor” mode induced
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tensor perturbations can be found in Refs. [57, 58]. In our work, for the first time, we provide the
semi-analytical expressions for Ωst

gw and Ωtt
gw as given in Eq. (C28). Utilizing these calculations, we

propose a novel approach for detecting high-frequency primordial gravitational waves, as discussed
in the main text.

In Sec. C 1, we list the basic equations of second-order tensor perturbations. In Sec. C 2, we
provide the details of the calculation of Ωαβ

gw. In Sec. C 3, we analyze the disparities of Ωss
gw and Ωst

gw

under large-momentum and small-momentum coupling limits, which may be helpful to understand
the enhancement of primordial gravitational waves in the main text.

1. Basic Equations of Second-order Tensor Perturbations

We start with a perturbed spatially-flat Friedman-Robertson-Walker metric in the conformal
Newtonian gauge

ds2 = a2(η)
{

−(1 + 2ϕ) dη2 +
[
(1 − 2ϕ) δij + hij + 1

2 h̃ij

]
dxidxj

}
, (C1)

where a(η) is the scale factor at the conformal time η, ϕ and hij denote the linear scalar and tensor
perturbations, and h̃ij denotes second-order tensor perturbations induced by ϕ and hij . We expand
ϕ and hij (h̃ij in the same way) in Fourier space

ϕ(η, x) =
∫ d3k

(2π)3/2 ϕk(η)eik·x , (C2a)

hij(η, x) =
∑

λ=+,×

∫ d3k
(2π)3/2 hλ

k(η)ϵλ
k,ijeik·x , (C2b)

where polarization tensors are ϵ+
k,ij = (eiej − eiej) /

√
2 and ϵ×

k,ij = (eiej + eiej) /
√

2, with or-
thonormal vectors ei and ei being transverse to the wavevector k. For adiabatic perturbations, the
evolution of the Fourier components ϕk and hλ

k are governed by

ϕ̈k(η) + 3(1 + w)Hϕ̇k(η) + wk2ϕk(η) = 0 , (C3a)

ḧλ
k(η) + 2Hḣλ

k(η) + k2hλ
k(η) = 0 , (C3b)

where an overdot denotes a derivative with respect to η, H ≡ ȧ/a is the comoving Hubble pa-
rameter, and w ≡ p/ρ is the state parameter with p and ρ being pressure and energy density of
the Universe, respectively. Further, the solutions of Eq. (C3) can be written as the primordial
curvature (tensor) perturbations ζk (Hλ

k), times the scalar (tensor) transfer function Ts (Tt), i.e.,

ϕk(η) = 3 + 3w

5 + 3w
Ts(kη)ζk , hλ

k(η) = Tt(kη)Hλ
k . (C4)

The dimensionless primordial power spectrum Ps(k) and Pt(k) are defined as the two-point corre-
lation function, i.e.,

⟨ζkζk′⟩ = δ(k + k′)2π2

k3 Ps(k) , ⟨Hλ
kHλ′

k′ ⟩ = δ(k + k′)2π2

k3 Pt(k) . (C5)
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where ⟨...⟩ denotes the ensemble average, the Kronecker symbol δλλ′ and the Dirac function δ(k+k′)
reflect the independence between two polarizations of the tensor perturbations and the conservation
of momentum, respectively.

Based on the cosmological perturbation theory, each polarization component of the second-order
tensor perturbation is composed of three terms, i.e., h̃λ

k = h̃λ
k

ss + h̃λ
k

st + h̃λ
k

tt, where the superscripts
s and t stand for contributions from the linear scalar and tensor perturbations, respectively, and
the equation of motion of the second-order gravitational waves h̃λαβ

k (αβ = ss, st, tt) is given by

¨̃hλ
k

αβ + 2H ˙̃hλ
k

αβ + k2h̃λ
k

αβ = 4Sλ
k

αβ . (C6)

The explicit expression of the source term Sλ
k

αβ in Eq. (C6) is obtained to be

Sλ
k

ss =
∫ d3q

(2π)3/2 ϵλ,lm
k qlqm

[
2ϕk−qϕq + 4

3(1 + w)
(
H−1ϕ̇k−q + ϕk−q

) (
H−1ϕ̇q + ϕq

) ]
, (C7a)

Sλ
k

st =
∫ d3q

(2π)3/2 ϵλ,lm
k ϵλ1

q,lm

{
− 3ϕ̈k−qhλ1

q − 2(4 + 3w)Hϕ̇k−qhλ1
q

− [(1 + 2w)(k2 + q2) − 4wkcqc]ϕk−qhλ1
q

}
, (C7b)

Sλ
k

tt =
∫ d3q

(2π)3/2
ϵλ,lm
k
2

{
ϵλ1,b
k−q,lϵ

λ2
q,bmk2ḣλ1

k−qḣλ2
q +

[
ϵλ1,b
k−q,lϵ

λ2
q,bm(kcqc − q2) − 2ϵλ1,bc

k−q ϵλ2
q,bm qcql

− ϵλ1
k−q,mcϵ

λ2
q,bl (kb − qb)qc − ϵλ1

k−q,bcϵ
λ2
q,lm qbqc − 1

2ϵλ1,bc
k−q ϵλ2

q,bc qlqm
]
hλ1

k−qhλ2
q

}
. (C7c)

To establish a contact with primordial perturbations during the inflationary stage, we rewrite the
source term Sλ

k
αβ above in the form of

Sλss
k =

∫ d3q
(2π)3/2 Qλ

ss(k, q) k2fss(|k − q|, q, η) ζk−qζq , (C8a)

Sλst
k =

∫ d3q
(2π)3/2 Qλλ1

st (k, q) k2fst(|k − q|, q, η) ζk−qHλ1
q , (C8b)

Sλtt
k =

∫ d3q
(2π)3/2

( 5∑
i=1

Qλλ1λ2
tt,i (k, q) k2ftt,i(|k − q|, q, η)

)
Hλ1

k−qHλ2
q . (C8c)

The projection factor Qαβ(k, q) in Eq. (C8) describes the geometric relations between the momenta
and polarization tensors of the linear perturbations, being defined as

Qλ
ss(k, q) ≡ ϵλ,lm

k qlqm/k2 , (C9a)

Qλλ1
st (k, q) ≡ ϵλ,lm

k ϵλ1
q,lm , (C9b)

Qλλ1λ2
tt,1 (k, q) ≡ ϵλ,lm

k ϵλ1,b
k−q,l ϵλ2

q,bm ,

Qλλ1λ2
tt,2 (k, q) ≡ −ϵλ,lm

k ϵλ1,bc
k−q ϵλ2

q,bm (k − q)lqc/k2 +
(
(k − q) ↔ q term

)
,

Qλλ1λ2
tt,3 (k, q) ≡ ϵλ,lm

k ϵλ1
k−q,mc ϵλ2

q,lb kbkc/k2 ,

Qλλ1λ2
tt,4 (k, q) ≡ 1

2 ϵλ,lm
k ϵλ1

k−q,bc ϵλ2
q,lm kbkc/k2 +

(
(k − q) ↔ q term

)
,

Qλλ1λ2
tt,5 (k, q) ≡ −ϵλ,lm

k ϵλ1,bc
k−q ϵλ2

q,bc (k − q)lqm/k2 . (C9c)
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where Qλλ1λ2
tt,i is defined in a symmetric form with respect to k − q and q, which facilitates the

subsequent manipulation in Eq. (C18) while keeping the integral in Eq. (C19) unchanged. The
source function fαβ(|k−q|, q, η) in Eq. (C8) describes the time evolution of the linear perturbations,
being defined as

fss = 6(1 + w)
5 + 3w

Ts(|k − q|η) Ts(qη) + 12(1 + w)
(5 + 3w)2

[ 1
H

Ṫs(|k − q|η) Ts(qη)

+ 1
H

Ts(|k − q|η) Ṫs(qη) + 1
H2 Ṫs(|k − q|η) Ṫs(qη)

]
, (C10a)

fst = 3 + 3w

5 + 3w

[
− 3

k2 T̈s(|k − q|η) Tt(qη) − 2(4 + 3w)H
k2 Ṫs(|k − q|η) Tt(qη)

−
(

1 + q2

k2 + 2w |k − q|2

k2

)
Ts(|k − q|η) Tt(qη)

]
, (C10b)

ftt,1 = 1
4

(
1 − |k − q|2

k2 − q2

k2

)
Tt(|k − q|η) Tt(qη) + 1

2k2 Ṫt(|k − q|η) Ṫt(qη) ,

ftt,2 = ftt,3 = ftt,4 = 2ftt,5 = −1
2 Tt(|k − q|η) Tt(qη) . (C10c)

We can solve Eq. (C6) by Green’s function method with the Green’s function Gk(η, η) being
defined as the solution of the equation

∂2

∂η2 Gk(η, η) +
(

k2 − 1
a(η)

∂2a(η)
∂η2

)
Gk(η, η) = δ(η, η) , (C11)

and obtain

h̃λ
k

αβ(η) = 4
∫ η

dη
a(η)
a(η)kGk(η, η)Sλ

k
αβ(η) . (C12)

Substituting Eq. (C8) into Eq. (C12), we can recast h̃λ
k

αβ as

h̃λss
k = 4

∫ d3q
(2π)3/2 Qλ

ss(k, q)Iss(|k − q|, q, η) ζk−qζq , (C13a)

h̃λst
k = 4

∫ d3q
(2π)3/2 Qλλ1

st (k, q)Ist(|k − q|, q, η) ζk−qHλ1
q , (C13b)

h̃λtt
k = 4

∫ d3q
(2π)3/2

( 5∑
i=1

Qλλ1λ2
tt,i (k, q)Itt,i(|k − q|, q, η)

)
Hλ1

k−qHλ2
q . (C13c)

where the kernel function Iαβ(|k − q|, q, η) is defined as

Iαβ(|k − q|, q, η) =
∫ η

0
dη

a(η)
a(η) kGk(η, η) fαβ(|k − q|, q, η) . (C14)

The kernel function Iαβ(|k − q|, q, η) encodes the time evolution of the second-order tensor pertur-
bation h̃λαβ

k , where a(η)/a(η) describes the red-shift effect due to the expansion of the Universe,
kGk(η, η) describes the propagation of second-order tensor perturbation, and fαβ(|k − q|, q, η)
describes the evolution of the source terms.
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The dimensionless energy-density spectrum of the second-order tensor perturbations, i.e., the
energy density per logarithmic frequency normalized with the critical energy density of the early
universe, is given by [47]

Ωαβ
gw(η, k) = 1

24

(
k

H

)2
Pαβ

h̃
(η, k) , (C15)

where the overbar denotes the oscillation average and the power spectrum of the second-order
tensor perturbations Pαβ

h̃
is defined as the two-point correlation function with the two polarization

modes being summed over, i.e.,

⟨h̃λαβ
k h̃λ′αβ

k′ ⟩ = δλλ′
δ(k + k′) 2π2

k3 Pαβ

h̃
(k) . (C16)

The total spectrum is Ωgw = Ωss
gw + Ωst

gw + Ωtt
gw. Since the energy density of tensor perturbations

decays as radiation, the present-day physical energy-density spectrum for the second-order tensor
perturbations is approximated by [48]

h2Ωαβ
gw,0(k) = h2Ωr,0 × Ωαβ

gw(η, k) , (C17)

where the corresponding one for photons and neutrinos is h2Ωr,0 = 4.15 × 10−5, with h being the
dimensionless Hubble constant [49].

By neglecting the non-Gaussianity of the primordial curvature perturbations, we can use Wick’s
theorem and get

Ωss
gw ∝ ⟨ζk−qζqζk′−q′ζq′⟩ =

[
δ(q + q′) + δ(q + k′ − q′)

]
δ(k + k′) 2π2Ps(|k − q|)

|k − q|3
2π2Ps(q)

q3 ,

(C18a)

Ωst
gw ∝ ⟨ζk−qHλ1

q ζk′−q′H
λ′

1
q′ ⟩ = δλ1λ′

1δ(q + q′)δ(k + k′) 2π2Ps(|k − q|)
|k − q|3

2π2Pt(q)
q3 , (C18b)

Ωtt
gw ∝ ⟨Hλ1

k−qHλ2
q H

λ′
1

k′−q′H
λ′

2
q′ ⟩

=
[
δλ1λ′

1δλ2λ′
2δ(q + q′) + δλ1λ′

2δλ2λ′
1δ(q + k′ − q′)

]
δ(k + k′) 2π2Pt(|k − q|)

|k − q|3
2π2Pt(q)

q3 .

(C18c)

We can finally obtain the general expression of Ωαβ
gw after straightforward calculations, i.e.,

Ωαβ
gw(η, k) =

∫ ∞

0
du

∫ |1+u|

|1−u|
dv

k2

6H2u2v2 Q2
αβ(u, v)I2

αβ(u, v, x → ∞) Pα(uk)Pβ(vk) , (C19)

where u ≡ |k − q|/k, v ≡ q/k, x ≡ kη , and the limit x → ∞ has been used, implying that the
tensor perturbations are deeply within the horizon. In Eq. (C19), Q2

ss and Q2
st are defined as the

sum of the polarizations over two projection factors Qλ
ss(k, q) and Qλλ1

st (k, q) in Eq. (C9), i.e.,

Q2
ss(u, v) ≡ δλλ′

Qλ
ss(k, q)Qλ′

ss(k, q) =
(4v2 −

(
1 + v2 − u2)2

4

)2
, (C20a)

Q2
st(u, v) ≡ δλλ′

δλ1λ′
1Qλλ1

st (k, q)Qλ′λ′
1

st (k, q) = 1
4 + 3

(
1 + v2 − u2)2

8v2 +
(
1 + v2 − u2)4

64v4 , (C20b)
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while a bit differently, Q2
tt(u, v) are defined together with I2

tt(u, v, x) for convenience, given by the
expression below composed of Qλλ1λ2

tt,i in Eq. (C9) and Itt,i in Eq. (C13), i.e.,

Q2
tt × I2

tt ≡ δλλ′ (
δλ1λ′

1δλ2λ′
2 + δλ1λ′

2δλ2λ′
1
)( 5∑

i=1
Qλλ1λ2

tt,i Itt,i

)( 5∑
j=1

Q
λ′λ′

1λ′
2

tt,j Itt,j

)
. (C21)

where the contractions of polarization indices in Eq. (C21) correspond to those in Eq. (C18).
Remind that Qtt,i in Eq. (C9) and ftt,i in Eq. (C10) are already symmetric about k − q and q, so
the two types of momentum contractions in Ωtt

gw in Eq. (C18) yield the same result.
It is also important to mention that we have substituted the variables |k − q|, q, and η with

corresponding dimensionless variables rescaled by k (i.e., u ≡ |k − q|/k, v ≡ q/k, and x ≡ kη) in
Eq. (C19) and subsequent calculations. However, for simplicity, we still use the original names of
the functions (e.g., Iαβ(|k − q|, q, η) is substituted by Iαβ(u, v, x)).

2. The calculation of energy density spectrum in RD era

We consider a radiation-dominated (RD) era after inflation and easily get w = 1/3, a(η) ∝ η

and H = 1/η. Solving Eq. (C3) , the linear perturbations in Eq. (C4) are given by ϕk(η) =
(2/3)Ts(kη)ζk and hλ

k = Tt(kη)Hλ
k with the transfer functions being

Ts(x) = 9
x2

(√
3

x
sin x√

3
− cos x√

3

)
, (C22a)

Tt(x) = sin x

x
. (C22b)

Substituting Eq. (C22) into Eq. (C10), the source functions in RD era are given by

fss(u, v, x) = 12
u2v2x6

{
18uvx2 cos ux√

3
cos vx√

3
+ [ 54 − 6(u2 + v2)x2 + u2v2x4 ] sin ux√

3
sin vx√

3

+ 2
√

3 ux(v2x2 − 9) cos ux√
3

sin vx√
3

+ 2
√

3 vx(u2x2 − 9) sin ux√
3

cos vx√
3

}
,

(C23a)

fst(u, v, x) = − 1
3u3vx6

{[
ux3

(
u2 − 3v2 − 3

)
− 18 ux

]
cos ux√

3
sin vx

+
[

3
√

3x2
(
−u2 + v2 + 1

)
+ 18

√
3
]

sin ux√
3

sin vx

}
, (C23b)

ftt,1(u, v, x) = −
(
u2 + v2 − 3

)
sin ux sin vx

4uvx2 ,

ftt,2(u, v, x) = ftt,3(u, v, x) = ftt,4(u, v, x) = 2ftt,5(u, v, x) = −sin ux sin vx

2uvx2 . (C23c)

On the other hand, the solution of Eq. (C11) with a(η) ∝ η is

Gk(x, x) = sin (x − x)/k (C24)
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Substuting Eq. (C23) and Eq. (C24) into Eq. (C14), we obtain the explicit expression of the
kernel function Iαβ(u, v, x), in which we have used a(η)/a(η) ≃ η/η in RD era by neglecting the
tiny correction from the change of the relativistic degrees of freedom, i.e.,

Iss(u, v, x) = 3 cos x

4u3v3x

{
(u2 + v2 − 3)2

[
− Si

((
1 − v − u√

3

)
x

)
+ Si

((
1 − v + u√

3

)
x

)
− Si

((
1 + v − u√

3

)
x

)
+ Si

((
1 + v + u√

3

)
x

)]}
− 3 sin x

4u3v3x

{
4uv(u2 + v2 − 3) − (u2 + v2 − 3)2

[
Ci
((

1 − v − u√
3

)
x

)
− Ci

(∣∣∣∣1 − v + u√
3

∣∣∣∣x)
+ Ci

((
1 + v − u√

3

)
x

)
− Ci

((
1 + v + u√

3

)
x

)
+ ln

(∣∣∣∣∣3 − (u + v)2

3 − (u − v)2

∣∣∣∣∣
) ]}

+ O
( 1

x2

)
,

(C25a)

Ist(u, v, x) = cos x

24u3vx

{√
3
[
u2 − 3 (v − 1)2

] [
u2 − 3 (v + 1)2

] [
Si
((

1 − u√
3

+ v

)
x

)
− Si

((
1 − u√

3
− v

)
x

)
− Si

((
1 + u√

3
+ v

)
x

)
+ Si

((
1 + u√

3
− v

)
x

)]}
+ sin x

24u3vx

{
4uv

[
u2 − 9

(
v2 − 1

)]
+

√
3
[
u2 − 3 (v − 1)2

] [
u2 − 3 (v + 1)2

]
×
[

Ci
((

1 − u√
3

+ v

)
x

)
− Ci

(∣∣∣∣1 − u√
3

− v

∣∣∣∣x)− Ci
((

1 + u√
3

+ v

)
x

)
+ Ci

(∣∣∣∣1 + u√
3

− v

∣∣∣∣x)+ ln
∣∣∣∣∣3 − (u +

√
3 v)2

3 − (u −
√

3 v)2

∣∣∣∣∣
]}

+ O
( 1

x2

)
,

(C25b)

Itt,1(u, v, x) = −sin x

4x
+ O

( 1
x2

)
,

Itt,2(u, v, x) = Itt,3(u, v, x) = Itt,4(u, v, x) = 2Itt,5(u, v, x)

= cos x

8uvx

{
Si
(
(1 − u + v)x

)
− Si

(
(1 − u − v)x

)
+ Si

(
(1 + u − v)x

)
− Si

(
(1 + u + v)x

)}
− sin x

8uvx

{
Ci
(
(1 − u + v)x

)
+ Ci

(
(1 + u − v)x

)
− Ci

(
|1 − u − v| x

)
− Ci

(
(1 + u + v)x

)
+ ln

∣∣∣∣∣1 − (u + v)2

1 − (u − v)2

∣∣∣∣∣
}

+ O
( 1

x2

)
. (C25c)

where Si(x) and Ci(x) are defined as Si(x) ≡
∫ x

0 dy (sin y/y) and Ci(x) ≡ −
∫∞

x dy (cos y/y). Thus
the square of kernel function Iαβ(u, v, x) in the limit of kη → ∞ and oscillation average are given
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by

I2
ss(u, v, x → ∞) = 1

2

(
3(u2 + v2 − 3)

4u3v3x

)2 {
π2(u2 + v2 − 3)2 Θ(u + v −

√
3)

+
[
−4uv + (u2 + v2 − 3) ln

∣∣∣∣∣3 − (u + v)2

3 − (u − v)2

∣∣∣∣∣
]2 }

, (C26a)

I2
st(u, v, x → ∞) = 1

2

( 1
24u3vx

)2 {
3π2

[
u2 − 3 (v − 1)2

]2 [
u2 − 3 (v + 1)2

]2
× Θ

(
u2 − 3(v − 1)2

)
+
[
4uv

[
u2 − 9

(
v2 − 1

)]
+

√
3
[
u2 − 3 (v − 1)2

] [
u2 − 3 (v + 1)2

]
ln
∣∣∣∣∣3 − (u +

√
3v)2

3 − (u −
√

3v)2

∣∣∣∣∣
]2}

, (C26b)

and the expression of Q2
tt(u, v) I2

tt(u, v, x → ∞) in Eq. (C21) is given by

Q2
tt(u, v) I2

tt(u, v, x → ∞)

= 1
524288u6v6x2

[
(u − v)2 − 1

]2 [
(u + v)2 − 1

]2
×
{

64u2v2
[
u4 + v4 + 6u2v2 + 6

(
u2 + v2

)
+ 1

]
− 16uv

[
5
(
u6 + v6

)
+ 11u2v2

(
u2 + v2

)
+11

(
u4 + v4

)
− 126u2v2 + 11

(
u2 + v2

)
+ 5

]
ln
∣∣∣∣∣1 − (u + v)2

1 − (u − v)2

∣∣∣∣∣
+
[
25
(
u8 + v8

)
− 4u2v2

(
u4 + v4

)
+ 86u4v4 − 4

(
u6 + v6

)
+ 68u2v2

(
u2 + v2

)
+86

(
u4 + v4

)
+ 68u2v2 − 4

(
u2 + v2

)
+ 25

] [
π2 + ln2

∣∣∣∣∣1 − (u + v)2

1 − (u − v)2

∣∣∣∣∣
] }

. (C27)

where we have used the limit limx→∞ Si(Ax) = sgn(A)π/2 and limx→∞ Ci(Ax) = 0, and the
Heaviside function Θ in Eq. (C26) comes from the discussion of the sign of the variable of Si
function. We finally get the expressions of the fractional energy density spectrum of the second-
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order tensor perturbations Ωαβ
gw(k) in Eq. (C19), namely

Ωss
gw(k) =

∫ ∞

0
du

∫ |1+u|

|1−u|
dv Ps(uk)Ps(vk)

× 3
1024u8v8

[
4v2 −

(
1 + v2 − u2

)2]2 (
u2 + v2 − 3

)2

×
{[

−4uv + (u2 + v2 − 3) ln
∣∣∣∣∣3 − (u + v)2

3 − (u − v)2

∣∣∣∣∣
]2

+ π2(u2 + v2 − 3)2 Θ(u + v −
√

3)
}

,

(C28a)

Ωst
gw(k) =

∫ ∞

0
du

∫ |1+u|

|1−u|
dv Ps(uk)Pt(vk)

× 1
442368u8v8

[
16v4 + 24v2

(
1 + v2 − u2

)2
+
(
1 + v2 − u2

)4
]

×
{[

4uv
[
u2 − 9

(
v2 − 1

)]
+

√
3
[
u2 − 3 (v − 1)2

] [
u2 − 3 (v + 1)2

]
ln
∣∣∣∣∣3 − (u +

√
3v)2

3 − (u −
√

3v)2

∣∣∣∣∣
]2

+3π2
[
u2 − 3 (v − 1)2

]2 [
u2 − 3 (v + 1)2

]2
Θ
(
u2 − 3(v − 1)2

)}
,

(C28b)

Ωtt
gw(k) =

∫ ∞

0
du

∫ |1+u|

|1−u|
dv Pt(uk)Pt(vk)

× 1
3145728u8v8

[
(u − v)2 − 1

]2 [
(u + v)2 − 1

]2
×
{

64u2v2
[
u4 + v4 + 6u2v2 + 6

(
u2 + v2

)
+ 1

]
− 16uv

[
5
(
u6 + v6

)
+ 11u2v2

(
u2 + v2

)
+11

(
u4 + v4

)
− 126u2v2 + 11

(
u2 + v2

)
+ 5

]
ln
∣∣∣∣∣1 − (u + v)2

1 − (u − v)2

∣∣∣∣∣
+
[
25
(
u8 + v8

)
− 4u2v2

(
u4 + v4

)
+ 86u4v4 − 4

(
u6 + v6

)
+ 68u2v2

(
u2 + v2

)
+86

(
u4 + v4

)
+ 68u2v2 − 4

(
u2 + v2

)
+ 25

] [
π2 + ln2

∣∣∣∣∣1 − (u + v)2

1 − (u − v)2

∣∣∣∣∣
] }

.

(C28c)

3. The Disparities of ”Scalar-Scalar” and ”Scalar-Tensor” Modes under Large-Momentum
and Small-Momentum Coupling Limits

We do some limit analysis in u = |k − q|/k → 0 and v = |q|/k → 1 to demonstrate the
differences between Ωss

gw and Ωst
gw, which can provide an explanation for why the large-momentum

modes can be enhanced in Ωst
gw, but not in Ωss

gw.
(a) One of the differences is “projection factors” Qαβ, which describes the geometric relations

between the momenta and polarization tensors of the linear perturbations. As shown in Eq. (C20),
we have Q2

ss(u, v) → 0 in u → 0, v → 1 limit, implying a suppression on the couplings between
small-momentum scalar and large momentum tensor. However, as for “scalar-tensor” mode in
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Eq. (C20), we have Q2
st(u, v) → 2 keeping a constant in u → 0, v → 1 limit, which means there is

always a non-vanishing “effective quadrupole moment” in “scalar-tensor” mode.
(b) Another difference is “kernel function” Iαβ, coming from the different transfer functions

between scalar and tensor perturbations. As shown in Eq. (C26), for “scalar-scalar” mode, I2
ss →

const in u → 0, v → 1 limit. However, for “scalar-tensor” mode in Eq. (C26), I2
st ∝ u−2 in u →

0, v → 1 limit, providing an enhancement factor related to small-momentum scalar perturbations.
In summary, the differences between Ωss

gw and Ωst
gw at high frequencies result from distinct

behaviors of the “projection factors” Qαβ (related to geometry) and “kernel function” Iαβ (related
to time evolution) in the limit u → 0, v → 1.
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