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The quest for exotic quantum magnetic ground states, including the Kitaev spin liquid and quan-
tum spin-ices, has led to the discovery of several quantum materials where low energy pseudospin-1/2
doublets arise from the splitting of spin-orbit entangled multiplets with higher degeneracy. Such
systems include d-orbital and f -orbital Mott insulators. When the gap between the low energy
pseudospin-1/2 levels and the excited levels of the multiplet or ‘excitons’ is not large, the effective
low-energy exchange interactions between the low energy pseudospin-1/2 moments can acquire sig-
nificant corrections from coupling to the excitons. We extract these corrections using higher order
perturbation theory as well as an exact Schrieffer-Wolff transformation. Such corrections can impact
the exchange matrix for the low energy pseudospin-1/2 levels by renormalizing the strength and the
sign of Heisenberg exchange or Ising anisotropies, and potentially even inducing bond-anisotropic
couplings such as Kitaev-Γ exchange interactions. We discuss recent experiments on various cobal-
tate and osmate materials which hint at the ubiquity and importance of this physics.

Magnetic solids exhibit strong quantum spin fluctua-
tions in the limit of small spin. Spin-1/2 systems are thus
natural candidates to look for exotic phases of quantum
matter including quantum spin liquids. The simplest re-
alization of such spin-1/2 degrees of freedom corresponds
to single electrons nailed down at atomic sites in a single-
orbital Mott insulating crystal. The low energy order-
ing and dynamics of such single-orbital Mott insulators
can be described using effective Heisenberg models in the
limit of strong Hubbard repulsion, with higher order ring-
exchange terms becoming important for moderate Hub-
bard repulsion. A prototypical example is La2CuO4[1–5],
the undoped parent of the cuprate superconductors.

More interesting realizations of low-spin quantum mag-
nets occur in multi-orbital systems with spin-orbit cou-
pling (SOC), where the role of “spin” is played by an ef-
fective pseudospin-1/2 moment with entangled spin and
orbital degrees of freedom. The most well-studied ex-
ample of this kind are the jeff = 1/2 Mott insulators
in compounds such as the layered Ir4+ perovskite iri-
date Sr2IrO4 [6–11], the layered honeycomb and hyper-
honeycomb polytypes of A2IrO3 (with A=Li, Na)[12–
14], or the analogue Ru3+ honeycomb ruthenate α-
RuCl3[15, 16]. In these cases, SOC splits the six-fold
degenerate local t2g orbitals (including spin) into a lower
jeff = 1/2 doublet with a significant gap ∼ 0.2-0.6 eV
to the higher energy jeff = 3/2 quartet which has been
termed a ‘spin-orbit exciton’.

Here, we will focus on a distinct class of interesting
pseudospin-1/2 magnets which appear in a variety of
d-orbital transition metal oxides, and f -orbital heavy
fermion materials, where the pseudospin doublet arises
from weak splitting of a higher moment multiplet with
SOC. A simple illustrative example is the case of a spin-
3/2 multiplet which splits into a pair of Kramers doublets
with Sz =±1/2 and Sz =±3/2 due to SOC in a tetrag-
onal crystal. In this case, the lower Kramers doublet
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acts as a low-energy pseudospin-1/2 degree of freedom
while the upper doublet may be viewed as a ‘gapped ex-
citon’. However, the exciton gap is not large. In order
to understand the low energy emergent quantum phases
of these pseudospin-1/2 magnets, we have to first extract
the effective Hamiltonian describing the interaction be-
tween these doublets. This is commonly done by appeal-
ing to microscopic calculations of the two-site exchange
interaction between the pseudospin-1/2 moments (e.g.,
from tight-binding models based on density functional
theory), or tuning parameters of symmetry-based model
spin Hamiltonians to fit experimental data from low en-
ergy probes such as inelastic neutron scattering. The
reduction of the Hamiltonian from the full Hilbert space
to the low energy pseudospin-1/2 Hilbert space is impor-
tant to enable numerical studies on larger system sizes.

A key message of our work is that in Mott insulators
where the splitting ∆ between the low energy pseudospin-
1/2 doublet and the ‘gapped exciton’ is not very large,
the correct way to extract the two-site pseudospin ex-
change starting from an electronic Hamiltonian is via
a two-step procedure. The first step involves second-
order perturbation theory in the electron hopping which
couples the entire pair of nearest neighbor multiplets.
In Mott-Hubbard insulators, this results in a matrix of
exchange couplings with an exchange scale Jex ∝ t2/U
where t is used as a shorthand for the orbital-dependent
electron hopping matrix elements, and U is used as a
shorthand for scales arising from Kanamori interactions.
The second step is to integrate out the higher levels of the
multiplet, which are split off by ∆, leading to an effective
pseudospin-1/2 model. This induces important exchange
corrections which are on the scale of J2

ex/∆ which is thus
fourth-order in the electron hopping. We will discuss sev-
eral examples showing how the resulting low energy effec-
tive Hamiltonian can differ significantly from the naive
result where we project to the low energy doublet from
the outset.

Quantum magnets which possess a pair of weakly
split Kramers doublets can be realized in several octa-
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hedrally coordinated Mott insulators with SOC, so it
is not an uncommon scenario. Examples of such sys-
tems include d7 cobaltates such as CoTiO3 which ex-
hibits low energy Dirac magnons and dispersive spin-
orbit excitons [17–19], and candidate Kitaev materials
such as BaCo2(AsO4)2, BaCo2(PO4)2, Na3Co2SbO6 and
Na2Co2TeO6[19–26] These systems with strong trigonal
distortion realize an effective spin S=3/2 moment which
is split into two Kramers doublets by SOC. Other ex-
amples include d1 Mott insulators such as Ba2MgReO6

which displays a higher temperature quadrupolar and
lower temperature dipolar magnetic ordering transitions,
and magnetically ordered d3 materials such as Sr2FeOsO6

[27, 28] In these systems, the pair of Kramers doublets
may arise, respectively, from tetragonal splitting of a
j=3/2 or J=3/2 moment.

A distinct type of weakly split multiplet is realized
d2 Mott insulators which host an angular momentum
J=2 multiplet that splits into a ground non-Kramers Eg
pseudospin-1/2 doublet and an excited T2g triplet even
in an octahedral crystal field. Recent work has revealed
osmate double perovskites such as Ba2MOsO6 (M = Zn,
Mg, Ca) as candidates for realizing such non-Kramers
doublets[29–33] In this case, the low energy τx and τz
pseudospin operators transform as a two-component elec-
tric quadrupole, while τy transforms as an Ising magnetic
octupole. These compounds appear to show some ev-
idence for ferro-octupolar ordering of the non-Kramers
doublets, while the higher energy T2g triplet acts as a
‘gapped exciton’. In this case, the small Eg-T2g exciton
gap arises due to a combination of Hund’s coupling and
SOC-induced virtual transitions from single-particle t2g
to eg levels.

We will discuss several models where the coupling be-
tween the lower and upper multiplet significantly impacts
the naive low-energy Hamiltonian. Using a two-step per-
turbation theory, we show that this can renormalize and
even potentially flip the sign of the exchange couplings,
or can generate entirely new bond-anisotropic terms such
as Kitaev or off-diagonal Γ interactions. We test our
two-step perturbative results against an exact Schrieffer-
Wolff transformation. We note that similar ideas have
also been explored in recent work with applications to
Sr2IrO4, and may also be relevant to anisotropic and
higher-order spin interactions in heavy fermion systems.

I. EXTENDED PERTURBATION THEORY

Let us consider a D-dimensional multiplet at each site
split by energy ∆ into low energy ‘pseudospin’ multiplet
of degeneracy DL and a high energy ‘exciton’ multiplet
of degeneracy DH = D−DL. For the case of spin-3/2
split into two Kramers doublets, D=4 and DL=DH =2.
For the d2 ion split into a non-Kramers pseudospin and
a triplet exciton, we have D=5 with DL=2 and DH =3.
When a neighboring pair of sites are connected by a hop-
ping Hamiltonian HT , the standard procedure for com-

puting the two-site pseudospin exchange involves treating
HT within second order perturbation theory, integrating
out the intermediate charge transfer excitations which
are at much higher energy ∼ U (the Hubbard interac-
tion). This leads to a D2

L×D2
L Hamiltonian matrix which

can be recast in terms of exchange interaction parame-
ters between the pseudospins. However, when ∆ is small,
in a manner to be clarified below, the correct procedure
is a two-step approach. The first step is to extract the
full D2 ×D2 Hamiltonian VJ which espouses all second
order contributions in HT to exchange couplings between
the entire J-multiplets (i.e., both pseudospins and exci-
tons). The second step is to integrate out the high energy
excitons and obtain an effective low-energy pseudospin
Hamiltonian. Accordingly, we split up the full two-site
multiplet Hamiltonian, obtained at the end of the first
step above, as H = H0 + VJ , where H0 represents the
on-site splitting ∆ between the pseudospin and exciton
levels, and VJ is O(t2/U). This site-localized Hamilto-

nian H0 has three distinct energy levels: (i) E
(0)
0 corre-

sponding to both sites being in the pseudospin branch,

(ii) E
(0)
1 =E

(0)
0 +∆ corresponding to one of the sites be-

ing in the exciton branch, and (iii) E
(0)
2 =E

(0)
0 +2∆ when

both sites live in the exciton branch. The degeneracies

of these levels are D2
L, 2DLDH , and D2

H respectively.
Typically, the effective Hamiltonian between the sites is
just extracted at O(t2/U) as the projection of VJ onto

the E(0) manifold i.e. H
[1]
eff = P0 VJ P0, where P0 is the

projector onto the E(0) subspace. The exciton-induced
correction is given by

H
[2]
eff = P0 VJ P1

(
1

E
(0)
0 −H0

)
P1 VJ P0 (1)

where P1 =1−P0; this expression in Eq. (1) is fourth order
in the hopping Hamiltonian HT between the sites, and
is typically ignored. While this term is ∼O(t4/U2∆), it
can nevertheless become comparable to the conventional
exchange coupling, when ∆∼O(t2/U).

A. Split J = 3/2 moment

Here, we apply the extended perturbation theory to an
effective split J = 3/2 system (i.e. with DL = DH = 2).
Before exploring the physics, we establish a useful basis
for the two-site problem. Using σa to denote the usual
Pauli matrices [34], we define the following convenient
basis for the 4×4 Hermitian matrices (written in the basis
{|1/2〉 , |−1/2〉 , |3/2〉 , |−3/2〉}) that can act on each site:

ηa =

(
σa 0
0 0

)
, τa =

(
0 0
0 σa

)
, (2)

ξar =
1√
2

(
0 σa

σa 0

)
, ξai =

1√
2

(
0 −iσa
iσa 0

)
. (3)
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Here, a ∈ {0, 1, 2, 3} for each type of operator. In this
basis, the ηa operate within the J2

z = 1/2 subspace, the
τa operate within the J2

z = 3/2 subspace, and the ξar
and ξai swap states between these two subspaces. These
16 matrices are more convenient than the usual J = 3/2
multipole operator basis, because they naturally separate
the two doublets. See Appendix C for the change of basis
to multipole operators.

For the purposes of integrating out the excitons to
leading order, we only need the following terms from the
J = 3/2 interaction Hamiltonian:

VJ = J
(ηη)
ab ηaηb +

∑
s=r,i

K
(s)
ab

(
ηaξbs + ξbsη

a
)

+
∑
s,t=r,i

M
(st)
ab ξas ξ

b
t

(4)

These three terms correspond to processes that do not
excite an exciton, excite exactly one exciton, and excite
two excitons, respectively. Other terms would annihilate
states with no excitons, so they cannot contribute to the
physics of the lower doublet at second order in pertur-
bation theory (i.e. they would vanish when taking the
projection via P0 to the lower energy sector in Equation
1).

We are looking for an interaction matrix between the
pseudospin-1/2 moments, which we call Jeff . This should
be understood as the Hamiltonian

Heff = s̃T1 Jeff s̃2 (5)

where s̃ refers to the vector of spin operators in the
two dimensional pseudospin space, and the numbered
subscript indicates the site index. The second order per-
turbation calculation can be done according to Equation
(1), yielding:

Jeff = J (ηη) + δJK + δJM (6)

where

(δJK)ab = − 1

2∆

(
K

(r)
cd − iK

(i)
cd

)(
K

(r)
ef + iK

(i)
ef

)
× (λceaλdfb + λcebλdfa)

(7)

and

(δJM )ab = − 1

8∆

(
M

(rr)
cd −M (ii)

cd − iM
(ri)
cd − iM

(ir)
cd

)
×
(
M

(rr)
ef −M (ii)

ef + iM
(ri)
ef + iM

(ir)
ef

)
× λceaλdfb

(8)

Here we have defined the lambda symbol by σaσb =
λabcσc. Explicitly,

λabc =


δbc a = 0

δac b = 0

δab c = 0

iεabc a, b, c 6= 0

. (9)

It is clear from these equations that having K ∼√
J (ηη)∆ or M ∼

√
J (ηη)∆ could lead to changes on the

order of J (ηη). In Section IV, we will demonstrate some
toy examples where this occurs and completely changes
the physics of the resulting spin theory. For now we
test extended perturbation theory on physically realis-
tic models.

B. First application: Spin-3/2 with tetragonal
distortion

Let us consider a S̃ = 3/2 multiplet, where this large
‘spin’ might experience weak SOC, or arise as a strongly
spin-orbit coupled j = 3/2 or J = 3/2 moment. We as-
sume this is split into two Kramers doublets via a tetrag-
onal distortion encapsulated by the Hamiltonian

H0 = ∆ [τ0(r) + τ0(r′) + 2τ0(r)τ0(r′)] . (10)

Here, τ0 = (Qz2 + 1)/2 with Qz2 = S̃2
z − S̃(S̃ + 1)/3.

Let VJ contain Heisenberg spin exchange, as well as
quadrupole, and octupole interactions given by

VJ = JH S̃(r) · S̃(r′) + JQQxy(r)Qxy(r′)

+ JT Txyz(r)Txyz(r
′) (11)

where Qxy = (S̃xS̃y + S̃yS̃x)/
√

3 is the quadrupole op-

erator, and Txyz = 2Sym[S̃xS̃yS̃z]/3
√

3 is the Ising-like
octupole operator with “Sym” denoting symmetrization.
Let us denote pseudospin-1/2 operators acting on the low
energy doublet as s̃α = σα/2 where σ are Pauli matrices.
A simple projection of the spin-3/2 Hamiltonian into this
pseudospin-1/2 doublet leads to

H
[1]
eff,ex = JH

(
s̃1
xs̃

2
x + s̃1

y s̃
2
y

)
+

JH
4
s̃1
z s̃

2
z. (12)

which is completely devoid of any terms which include
the impact of higher multipole interactions. However,
using the extended perturbation theory result in Eq. (1),
we find

H
[2]
eff,ex =

(
JH −

3JH(JQ − JT )

4∆

)(
s̃1
xs̃

2
x + s̃1

y s̃
2
y

)
+

(
JH
4
− 39J2

H

16∆
− JQJT

∆

)
s̃1
z s̃

2
z

(13)

From the above, we can see that while the form of the
couplings is the same, the coupling strengths have the
potential of being strongly renormalized by the presence
of the exciton if the multipole couplings JQ, JT ∼ ∆ or
JQJT /JH ∼∆. The right combination of the multipole
couplings can strongly suppress the zz interaction, giving
rise to a pure XY model, or even flip the sign of the XXZ
anisotropy.
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II. APPLICATION TO MICROSCOPIC
CALCULATIONS

Here we provide examples of how the above protocol
may be used in a typical microscopic calculation, and see
how it produces markedly different results compared to
the standard treatment outlined at the beginning of the
previous section. We consider two cases: a d1 honey-
comb system subject to trigonal distortion, and a d2 fcc
system that hosts higher order multipole moments in its
ground state. These cases both feature larger moments
that are split to give a (pseudo)spin-1/2 ground state,
are numerically tractable via an exact Schrieffer-Wolff
transformation (as outlined in Ref. [33]) in order to as-
sess the accuracy of the EPT approach. The microscopic
Hamiltonian for both of the cases is

Hloc = HCEF +HSOC +Hint (14)

which includes t2g-eg crystal field splitting, SOC, and
electronic interactions, written in the orbital basis
({yz, xz, xy}, {x2−y2, 3z2−r2}). The CEF term is given
by:

HCEF =
∑
α,β

∑
s

Aαβc
†
αscβs (15)

where A is the local crystal field matrix written in the
orbital basis, and s is the spin. The SOC term is of the
one-body form:

HSOC =
λ

2

∑
α,β

∑
s,s′

〈α|L |β〉 · 〈s|σσσ |s′〉 c†αscβs′ , (16)

where σσσ refers to the vector of Pauli matrices, and L are
orbital angular momentum matrices. The operators cαs,
c†αs and nαs destroy, create, and count the electrons with
spin s in orbital α. The Kanamori interaction is given by

Hint = U
∑
α

nα↑nα↓+

(
U ′ − JH

2

)∑
α>β

nαnβ (17)

−JH
∑
α6=β

Sα · Sβ + JH
∑
α6=β

c†α↑c
†
α↓cβ↓cβ↑

where U and U ′ are the intra- and inter-orbital Hub-
bard interactions, JH is the Hund’s coupling, and Sα =

(1/2)c†αsσσσs,s′cαs′ . The operator nα ≡ nα↑ + nα↓ counts
the total number of electrons in orbital α. The spherical
symmetry of the Coulomb interaction sets U ′ = U −2JH
[35].

A. d1 ions in a honeycomb lattice

A single-ion ground state of the Hamiltonian in Eq.
14 with a single electron restricted to the t2g sector, is
a four-fold degenerate J = 3/2 manifold. A typical sit-
uation that arises in 2D materials is when this ion is

in an octahedral cage, and the octahedra are used to
form a honeycomb lattice. A natural distortion axis for
such a lattice is that along the octahedral [111] direc-
tion, corresponding to the direction perpendicular to the
honeycomb plane. Such a distorted octahedron has, in
addition to the usual t2g-eg splitting, the following term
in the crystal field matrix:

δ

3
(Lx + Ly + Lz)

2

where δ is the distortion parameter. Restricting ourselves
to the t2g sector, the A matrix is given by 0 δ δ

δ 0 δ
δ δ 0

 . (18)

The effect of this distortion term is the split the J = 3/2
moment into two Kramers doublets, with |±1/2〉 as the
ground state doublet, and |±3/2〉 the ‘exciton’, higher
in energy by ∆, as shown in Fig. 1(a). To obtain the
pseudospin exchange, we consider a two site model of
such octahedra, connected via a hopping Hamiltonian of
the form

Hγ
T =

∑
αβs

(T γαβc
†
2βsc1αs + T γ†βαc

†
1αsc2βs) (19)

where T γ is the hopping matrix for the γ bond. We con-
sider a matrix for the z bond in the honeycomb inspired
by the 90 degree bonding geometry in Ref. [36]:

T z =

 0 t1 0
t1 0 0
0 0 t2

 . (20)

Here, t1, is the yz-zx hopping, and t2 is the xy-xy hop-
ping. The matrices for the x and y bonds can be ob-
tained via C3 rotation about the octahedral [111] axis.
For the illustrative case, we consider t1 = −100 meV,
and t2 = 50 meV, along with the single ion parameters
(λ, U, JH) = (0.1, 2.5, 0.3) eV. In the lab frame (see SI
for details), the low energy pseudospin exchange matrix
takes an XXZ form:

Hspin = JXY
(
s̃1
xs̃

2
x + s̃1

y s̃
2
y

)
+ JZZ s̃1

z s̃
2
z. (21)

Figure 1(b-c) shows the values of these exchange param-
eters when calculated using EPT, contrasted with the
conventional method of directly projecting down to the
lower manifold (SOPT). The two approaches are also
compared with the exact two site Schrieffer-Wolff cal-
culation. It can be seen that the EPT is much closer to
the exact calculation, and the methods give significantly
different coupling values. While the SOPT Hamiltonian
remains XXZ for all gap values, it can be seen that for
∆ ∼ 17 meV, the spin Hamiltonian is actually a pure
XY model. It can also be seen that for a small enough
gap value, we approach a point where JXY ≈ −JZZ . At
this point, performing a single sublattice spin rotation
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FIG. 1. (a) Level structure for a d1 ion with spin-orbit coupling and trigonal distortion. The lower |±1/2〉 states act as the
effective spin-1/2 moment. (b),(c) Exchange couplings for the spin Hamiltonian in Eq. (21), computed using SOPT and EPT,
and compared to the exact SW calculation.

such that (s̃x → s̃x, s̃y → −s̃y, s̃z → −s̃z) would con-
vert this into a pure Heisenberg antiferromagnet. Thus,
the addition of the exciton mixing terms reveals a much
richer class of spin Hamiltonians accessible via tuning the
trigonal distortion.

B. d2 ions in an fcc lattice

Another class of systems where this formalism is useful
is those where the pseudospin degree of freedom is made
up of non-Krammers states. These have recently been
studied in the context of d2 Double Perovskites, where a
J=2 moment, when placed in a cubic environment, splits
as 2(Eg)⊕3(T2g). The non-Kramers Eg ground state may
be treated as a pseudospin 1/2 degree of freedom, with
wavefunctions

|ψg,↑〉 =
1√
2

(|2〉+ | − 2〉); |ψg,↓〉 = |0〉. (22)

Within this non-Kramers doublet space, the Pauli ma-
trices τx, τy, τz are proportional to multipole operators,

and are given by τx ≡ (J2
x−J2

y )/2
√

3, τy ≡ JxJyJz/6
√

3,

and τz≡(3J2
z−J(J + 1))/6, with overline denoting sym-

metrization. Here, τx, τz are electric quadrupoles while
τy is a magnetic octupole. [32]. The form of the pseu-
dospin Hamiltonian has been shown to take the form

Hspin =
∑
〈i,j〉

[
Koτiyτjy+

(
K1 cos2φij+K2 sin2φij

)
τixτjx

+ (K1 −K2) sinφij cosφij (τixτjz + τizτjx)

+
(
K1 sin2 φij +K2 cos2 φij

)
τizτjz

]
(23)

where φij = {0, 2π/3, 4π/3} correspond to nearest neigh-
bors (i, j) in the {xy, yz, zx} planes. Ko and K1,2 re-
spectively correspond to the octupolar exchange and

quadrupolar couplings. An exact two-site calculation us-
ing a Schrieffer-Wolff transformation to obtain the effec-
tive low energy Hamiltonian indicated that the nearby
T2g triplet is able to strongly influence the exchange pa-
rameters of the Eg doublets. This system thus provides
with another testing ground for the EPT formalism. As
shown in Figure 2(b-d), it can be seen that the domi-
nant octupole-octupole exchange coupling shows a sig-
nificant increase in magnitude, while also showing that
the quadrupolar K1 coupling is has the opposite sign and
significantly higher magnitude compared to the SOPT
case.

III. SOME INTERESTING TOY EXAMPLES

In addition to the above physically motivated exam-
ples, it is important to note that this extended pertur-
bation theory can lead to wildly different physics from
the naive second order predictions. In the case of a two
doublet system, any conceivable change in spin models,
δJ , can be realized with time-reversal invariant couplings
between the doublets, with coupling coefficients in an in-
termediate scale between those of δJ and ∆. An explicit
proof of this is given in Appendix B in the form of an al-
gorithm that works backwards: taking any given δJ and
working out a set of time-reversal invariant couplings that
produce this δJ under perturbation theory. The system
of equations that the algorithm solves is underdetermined
meaning the results of this algorithm are not unique.

In the following subsections, we look at a few partic-
ularly striking cases with clean solutions. These demon-
strate the power of inter-doublet couplings in changing
the low energy physics.
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FIG. 2. (a) Level structure for a d2 ion within a double perovskite crystal. (b),(c),(d) Exchange couplings for the pseudospin
Hamiltonian in Eq. (23), computed using SOPT and EPT, and compared to the exact SW calculation.

A. Changing the Heisenberg coupling

To begin we consider the case where naive second
order perturbation theory gives a Heisenberg (anti-
)ferromagnet and the extended perturbation theory
changes the strength or even the sign of the interaction.
Hence, our starting spin model is

J =

J 0 0
0 J 0
0 0 J

 , (24)

with a correction of the form

δJ =

κ 0 0
0 κ 0
0 0 κ

 . (25)

Such a correction can be introduced using only K(i) cou-
plings. For κ > 0, this can be achieved by introducing

K(i) =


0 0 0 0

0
√

κ∆
2 0 0

0 0
√

κ∆
2 0

0 0 0
√

κ∆
2

 , (26)

and for κ < 0, this can be achieved by introducing

K(i) =



√
−2κ∆ 0 0 0

0
√
−κ∆

2 0 0

0 0
√
−κ∆

2 0

0 0 0
√
−κ∆

2

 . (27)

Notice here that to completely reverse the sign of the
interaction (and therefore change the physics from a fer-
romagnet to an antiferromagnet or vice versa), we need
κ = −2J , so the K(r) couplings introduced are on the
order of

√
|J |∆ which is the geometric mean of the spin

interaction scale J and the splitting scale ∆.

Figure 3 details the ∆ dependence of this toy model
for a particular choice of parameters. In particular, the
parameters are chosen so that simple projection gives a
ferromagnetic Heisenberg model, but extended perturba-
tion theory gives an antiferromagnetic Heisenberg model
with equal magnitude at ∆ = 36J . The figure contrasts
the standard projection with the extended perturbation
theory. It also shows the results of integrating out the
exciton with a Schreiffer-Wolff transformation. The full
Hamiltonian used for this Schreiffer-Wolff trasnformation
is the J = 3/2 toy model described above; therefore, un-
like Figures 1 and 2, it gives no information regarding
the agreement between EPT and an underlying micro-
scopic model. Instead, the similarity between the EPT
and SW results indicate that second order perturbation
theory is sufficient to reliably extract to physical effects
of the exciton from the J = 3/2 model.

B. Heisenberg to Kitaev

Consider a naive Heisenberg ferromagnet or antiferro-
magnet with second order spin model given by Equation
25. Such a material could have a significant Kitaev in-
teraction in the presence of some K(r) couplings. For
example, consider the couplings

K(i) =


0 0 0 0

0
√
K∆
2 0 0

0 0
√
K∆
2 0

0 0 0 −J
√

∆
2K

 (28)

with K > 0. The extended perturbation theory including
these couplings gives

δJ =

−J 0 0
0 −J 0
0 0 K

 . (29)
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FIG. 3. Comparison of the J = 1/2 spin models extracted from a split J = 3/2 model with various splittings. The plot shown
the ∆ dependence of the identical diagonal components of the matrix Jab in the Hamiltonian Heff =

∑
〈i,j〉 Jabs

a
i s

b
j . All off

diagonal components vanish. The J = 3/2 model was chosen such that Jab = diag(−1,−1,−1) under projection, with additional

coupling K(i) = diag(0, 6, 6, 6). All other couplings are taken to be 0. Notice that EPT at ∆ = 36|J | gives an antiferromagnetic
Heisenberg interaction with equal magnitude to the ferromagnetic Heisenberg interaction found via projection.

Thus, the true physical theory is

J =

0 0 0
0 0 0
0 0 J +K

 . (30)

The inter-doublet couplings generate Kitaev interactions.

The various approaches to extracting the effective J =
1/2 spin model from this J = 3/2 model are contrasted
in Figure 4, in a similar manner to Figure 3. The pa-
rameters are chosen such that the EPT methods results
in Equation 30 at ∆ = 36|J | with J < 0 and K = 2|J |.
Here again we see the agreement between the EPT and
SW approaches implying that the second order pertur-
bation theory is sufficient to reliably integrate out the
exciton.

C. Heisenberg to KΓ

Extended perturbation theory can also lead to the de-
velopment of off diagonal terms in the resulting spin the-
ory. To demonstrate this consider another naive Heisen-
berg model which will turn into a KΓ model with the
inclusion of some inter-doublet couplings.

To produce a the Γ interaction, we take the following
couplings

M (rr) =


0 0 0 0
0 0 0 0

0 0 0 2
√
|Γ|∆

0 0 2
√
|Γ|∆ 0

 (31)

and

M (ii) =


0 0 0 0

0 0 0 −2 sign (Γ)
√
|Γ|∆

0 0 0

0 −2 sign (Γ)
√
|Γ|∆ 0 0

 .

(32)
With these couplings, we generate the following correc-
tion to the effective spin model

δJ =

− |Γ| Γ 0
Γ − |Γ| 0
0 0 0

 . (33)

This generates the Γ interaction. One can then use the
K(i) to make the appropriate changes to the diagonal
elements as in the previous subsection. Explicitly, the
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FIG. 4. Comparison of the J = 1/2 spin models extracted from a split J = 3/2 model with various splittings. The subplots
show the different elements of the matrix Jab in the Hamiltonian Heff =

∑
〈i,j〉 Jabs

a
i s

b
j . (a) ∆ dependence of the xx-component,

which is identical to the yy-component. (b) ∆ dependence of the zz-component. All other components vanish. The J = 3/2

model was chosen such that Jab = diag(−1,−1,−1) under projection, with additional coupling K(i) = diag(0, 6, 6, 3). All other
couplings are taken to be 0. Notice that EPT gives a pure Kitaev interaction at ∆ = 36|J |.

following coupling matrix does the trick

K(i) =


0 0 0 0

0
√
K∆
2 0 0

0 0
√
K∆
2 0

0 0 0 − (J − |Γ|)
√

∆
2K

 . (34)

With these couplings, the physical spin model as given
by the extended perturbation theory, is

J =

0 Γ 0
Γ 0 0
0 0 J +K

 . (35)

In the spirit of Figures 3 and 4, we plot the results of
various methods of integrating out the exciton in Figure
5. The parameters were chosen such that EPT results
in Equation 35 at ∆ = 36|J | with J < 0, K = 2|J |,
and Γ = |J |. The similarity between the EPT and SW
lines demonstrate once again that second order pertur-
bation theory is sufficient to integrate out the excitons
for the range of ∆ we consider. However, in this case,
as shown in Figure 6, the Jxz and Jyz components in
the SW calculation do not vanish. While these effects
are small compared to the other components, it indicates
that at low ∆ there is some other effect, likely involving
mixing between the M and K terms. Since this mixing
cannot occur at second order, this suggests that higher
order terms will be necessary to consider at lower values
of ∆. We are only concerned with intermediate values
of ∆ where J � ∆ still holds, so we are satisfied with
the performance of second order perturbation theory and
leave the study of higher order effects for future work.

IV. CONCLUSION

The extended perturbation theory described here is
a simple and accurate technique for improving effective
spin-1/2 models derived from second order perturbation
theory in electron hoppings. By including the first ex-
cited multiplet on each site then integrating it out via a
second perturbation step, the leading fourth order effects
are included in the resulting Hamiltonian.

The effectiveness of this approach was demonstrated
clearly in Section ?? for the case of d1 and d2 sys-
tems where it accurately followed the results of non-
perturbative Schreiffer-Wolff tranformations.

In addition, the results of our toy models in Section
III demonstrate that this method can produce a wide
variety of effects that are not included in the ordinary
second order approach.

In principle, one could take either perturbation step
to higher order. If we call the approach presented here
as a 2 + 2 extended perturbation theory (owing to the
fact that we take the second order results of each step),
we could also consider a general n+m extended pertur-
bation theory. The examples above indicate that this is
not necessary for either the realistic systems or the toy
models we considered. In general, we suspect that 2 + 2
is sufficient for most systems. More involved discussions
of higher orders are left for future studies.

Based on the fact that this approach is simple to im-
plement, is accurate in describing the physics, and can
produce drastic results, it should be considered for fu-
ture effective Hamiltonian searches in a wider setting,
especially when the ordinary second order perturbation
theory does not accurately describe the observed physics.
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FIG. 5. Comparison of the J = 1/2 spin models extracted from a split J = 3/2 model with various splittings. The subplots
represent different elements of the matrix Jab in the Hamiltonian Heff =

∑
〈i,j〉 Jabs

a
i s

b
j . (a) ∆ dependence of the xx-element,

which is identical to the yy element. (b) ∆ dependence of the zz-element. (c) ∆ dependence of the xy-element, which is identical
to the yx-element. The remain elements have significantly smaller changes and may be seen in Figure 6. The J = 3/2 model was

chosen such that Jab = diag(−1,−1,−1) under projection, with additional coupling K(i) = diag(0, 6, 6, 6), M
(rr)
23 = M

(rr)
32 = 12,

and M
(ii)
13 = M

(ii)
31 = −12. All other couplings are taken to be 0. Notice that EPT gives a pure KΓ interaction at ∆ = 36|J |.

FIG. 6. (a) Comparison of the xz-component of the model in Figure 5, which is identical to the zx-component. (b) Comparison
of the yz-component of the model in Figure 5, which is identical to the zy-component.
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Appendix A: Extended Perturbation Theory Details

In this appendix, we fill in the details in the derivation
of Eqns. (7) and (8). As mentioned in the main text, we
assume that we have an interaction matrix 16×16 matrix
H3/2 that contains all second order in HT contributions
to the interactions between pseusodpins and excitons on
the two sites. We split up the terms of H3/2 as follows:

H3/2 =H0 + VJ
=H0 + V(ηη)

J + V(ηξ)
J + V(ξξ)

J

+ V(ητ)
J + V(ττ)

J + V(τξ)
J

(A1)

Here H0 is the matrix that splits the spectrum on each
site, namely

H0 = ∆
(
τ0 ⊗ η0 + η0 ⊗ τ0 + 2 τ0 ⊗ τ0

)
. (A2)

Each V(st)
J denotes the collection of terms that couple s

and t operators on each site. For completeness, we write
each one out fully, but as stated in the main text only

V(ηη)
J , V(ηξ)

J , and V(ξξ)
J can contribute to the effective J =

1/2 Hamiltonian at second order. By our conventions,

V(ηη)
J = J

(ηη)
ab ηa ⊗ ηb, (A3)

V(ηξ)
J = K

(r)
ab

(
ηa ⊗ ξbr + ξbr ⊗ ηa

)
+K

(i)
ab

(
ηa ⊗ ξbi + ξbi ⊗ ηa

)
,

(A4)

V(ξξ)
J = M

(rr)
ab ξar ⊗ ξbr +M

(ii)
ab ξai ⊗ ξbi

+M
(ri)
ab

(
ξar ⊗ ξbi + ξbi ⊗ ξar

)
,

(A5)

V(ητ)
J = J

(ητ)
ab

(
ηa ⊗ τ b + τ b ⊗ ηa

)
, (A6)

V(ττ)
J = J

(ττ)
ab τa ⊗ τ b, (A7)

and

V(τξ)
J = N

(r)
ab

(
τa ⊗ ξbr + ξbr ⊗ τa

)
+N

(i)
ab

(
τa ⊗ ξbi + ξbi ⊗ τa

)
.

(A8)

Here the J , K, M , and N symbols represent 4 × 4 ma-
trices of real-valued coefficients that determine the in-
teraction strengths of all the possible interactions. The
indices a and b are meant to be summed over {0, 1, 2, 3}
according to Einstein summation notation, whereas r and
i are merely labels for the ξr and ξi operators and should
not be summed over. We assume inversion symmetry
between the sites, making Jηη, Jττ , M (rr), and M (ii)

symmetric matrices. We will assume for the sake of per-
turbation theory that J,K,M,N � ∆.

With just H0, the |Jz| = 1/2 subspace is entirely triv-
ial; no interactions occur between sites and on each site
the two states are perfectly degenerate. Therefore, our
use of degenerate perturbation theory is justified. Let
P0 = η0 ⊗ η0 denote the projector onto the subspace
with |Jz| = 1/2 on both sites, and P1 = I − P0. At first
order, we get

H
[1]
eff =P0VJP0

=V(ηη)
J .

(A9)

At this order, only V(ηη)
J can contributes. This re-

produces the standard interaction Hamiltonian obtained
through merely projecting to the lower doublet.

To get our extended perturbation theory result, we
look at the second order correction given by Eqn. (1),

H
[2]
eff = −P0VJP1

1

H0
P1VJP0 (A10)

With a little algebra one can show that this splits into

two terms H
[2]
eff = H

[2]
K +H

[2]
M with

H
[2]
K = −P0V(ηξ)P1

1

H0
P1V(ηξ)P0 (A11)

and

H
[2]
M = −P0V(ξξ)P1

1

H0
P1V(ξξ)P0. (A12)

Notice that P0V(ηξ)P1 = P0V(ηξ) vanishes on all states
except for those that have |Jz| = 1/2 on one site and
|Jz| = 3/2 on the other. Hence, the only non-vanishing
contribution sees 1/H0 as 1/∆. Using this we can sim-
plify our equation greatly,

H
[2]
K = − 1

∆
P0

(
V(ηξ)

)2

P0. (A13)

Similarly, P0V(ξξ)P1 = P0V(ηξ) kills all states except for
those with |Jz| = 3/2 on both sites, allowing the simpli-
fication

H
[2]
M = − 1

2∆
P0

(
V(ξξ)

)2

P0. (A14)

By writing the ξ operators explicitly as tensor prod-
ucts of Pauli matrices and recalling that we defined

lambda through σaσb = λabcσc, we can rewrite H
[2]
K =

https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1103/PhysRevLett.102.017205
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(δJK)ab σ
a ⊗ σb and H

[2]
M = (δJM )ab σ

a ⊗ σb. Following
this procedure gives

(δJK)ab = − 1

2∆

(
K

(r)
cd − iK

(i)
cd

)(
K

(r)
ef + iK

(i)
ef

)
× (λceaλdfb + λcebλdfa)

(A15)

and

(δJM )ab = − 1

8∆

(
M

(rr)
cd −M (ii)

cd − iM
(ri)
cd − iM

(ri)
cd

)
×
(
M

(rr)
ef −M (ii)

ef + iM
(ri)
ef + iM

(ri)
ef

)
λceaλdfb

(A16)

as presented in the main text. Therefore, we can describe
our effective Hamiltonian as

Heff = (Jeff)ab σ
a ⊗ σb

=
(
J (ηη) + δJK + δJM

)
ab
σa ⊗ σb.

(A17)

Appendix B: Proof of surjectivity of the extended
perturbation theory equations

In this section, we prove the claim made in Section
III that the extended perturbation theory can create any
change in the spin model. In other words, Equations (7)
and (8), which determine δJ , are surjective onto the set
of symmetric 3 × 3 matrices. We will prove this claim
by starting with an arbitrary δJ and constructing K(i),
M (rr), and M (ii) couplings that produce δJ . An im-
portant feature of this construction is that it will only
involve non-zero coefficients for couplings which preserve
the time-reversal and exchange symmetries. Hence, there
are no symmetry restrictions to finding these couplings
in nature.

Consider an arbitrary symmetric 3×3 matrix, δJ . For
concreteness, we label the elements of this matrix as

δJ =

 k1 m3 m2
m3 k2 m1
m2 m1 k3

 . (B1)

Here we have been intentionally suggestive with our la-
bels. Indeed the off-diagonal mi elements will be set by
our choice of M (rr) and M (ii), then the diagonal will be
set by our choice of K(i).

Starting with the off-diagonal elements, the simplest
case is that m1 = m2 = m3 = 0. In this case, we can
set M (rr) = M (ii) = 0 and move on to dealing with the
diagonal elements. Otherwise, suppose mi 6= 0 for some
i ∈ {1, 2, 3}. It will be useful to define the following

matrix-valued functions

M1(a, b) =

0 0 0 0
0 b 0 0
0 0 0 −a
0 0 −a 0



M2(a, b) =

0 0 0 0
0 0 0 −a
0 0 b 0
0 −a 0 0



M3(a, b) =

0 0 0 0
0 0 −a 0
0 −a 0 0
0 0 0 b

 ,

(B2)

where a and b are real numbers. In what follows, all
arithmetic involving indices is modulo 3.

Consider setting M (rr) = Mi+1(a, b), M (ii) =
Mi+2(c, d), M (ri) = 0, and M (ir) = 0, for some real
numbers a, b, c, and d. Plugging these into Equation
A16 and equating the off-diagonal elements to the off-
diagonal components of δJ , one finds the following sys-
tem of equations

mi =− ac

4∆

mi+1 =
ab

4∆

mi+2 =
cd

4∆
.

(B3)

A solution to this system of equations is given by

a =− 2sign(mi)
√
|mi|∆

b =− 2sign(mi)mi+1

√
∆

|mi|

c =2
√
|mi|∆

d =2mi+2

√
∆

|mi|
.

(B4)

Hence, to have δJM have the desired off-diagonal ele-
ments, define

M (rr) =

Mi+1

(
−2sign(mi)

√
|mi|∆,−2sign(mi)mi+1

√
∆

|mi|

)
(B5)

and

M (ii) = Mi+2

(
2
√
|mi|∆, 2mi+2

√
∆

|mi|

)
. (B6)

In general, the resulting δJM will have non-zero diag-
onal elements[37], so to fully reproduce the desired δJ ,
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we need to find K(r) and K(i) such that

δJK =

k1 − δJM,11 0 0
0 k2 − δJM,22 0
0 0 k3 − δJM,33

 .

(B7)

For simplicity of notation, we define k̃i = ki − δJM,ii.

Consider setting K(r) = 0 and

K(i) =

a0 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a3

 , (B8)

with a0, a1, a2, a3 ∈ R. Evaluating δJK and equating
with the desired form gives the following system of equa-
tions

a0a1 − a2a3 =− 2

∆
k̃1 ≡ κ1

a0a2 − a3a1 =− 2

∆
k̃2 ≡ κ2

a0a3 − a1a2 =− 2

∆
k̃3 ≡ κ3.

(B9)

A useful trick for finding a general solution to these equa-

tions is to set

a0 =b− c
a1 =b+ c

a2 =f + e

a3 =f − e

(B10)

for some real numbers b, c, e, and f . This changes the
Equations B9 to

b2 − c2 − e2 + f2 =κ1

−2ce+ 2bf =κ2

−2ce− 2bf =κ3

(B11)

The last two equations imply that

ce =− 1

4
(κ2 + κ3) ≡ κ+

bf =
1

4
(κ2 − κ3) ≡ κ−.

(B12)

We are free to choose our solution such that e, f 6= 0, in
which case we may combine Equations B12 with the first
equation of B11 to find

f2 +
κ2

+

f2
− e2 −

κ2
−
e2

= κ1. (B13)

This equation can be solved with

f =


√
κ1 + |κ+|+ |κ−|+

√
(κ1 + |κ+|+ |κ−|)2 − 4κ2

− κ1 ≥ 0√
|κ1|

2 + |κ+|+ |κ−|+
√(

|κ1|
2 + |κ+|+ |κ−|

)2

− 4κ2
− κ1 < 0

(B14)

and

e =


√

κ1

2 + |κ+|+ |κ−|+
√(

κ1

2 + |κ+|+ |κ−|
)2 − 4κ2

+ κ1 ≥ 0√
|κ1|+ |κ+|+ |κ−|+

√
(|κ1|+ |κ+|+ |κ−|)2 − 4κ2

+ κ1 < 0

. (B15)

These solutions can then be used to find b = κ−/f and
c = κ+/e, and subsequently a0 = b − c, a1 = b + c,
a2 = e+ f , and a3 = e− f . The resulting K(i) gives the
desired δJK , completing the proof.

Appendix C: Relations between operators

Here we provide useful details about the operators used
in the main text to describe J = 3/2 degrees of free-
dom. The definition of the multipole basis in terms of
the dipole operators, which form a J = 3/2 representa-
tion of the su(2) algebra, is presented in Table I. These
definitions are well-known; we include them for the sake
of completeness and transparency with our conventions.
The relationship between this basis and the basis defined
in Equations (2) and (3) is given in Table II.
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Moment Symmetry Symbol Expression

Dipole T1

Jx

Jy

Jz

Quadrupole

T2

Qyz
1√
3
JyJz

Qzx
1√
3
JzJx

Qxy
1√
3
JxJy

E

Qx2−y2
1√
3

(
J2
x − J2

y

)
Qz2

1

3

(
3J2

z − J2
)

Octupole

A2 Txyz
2

3
√

3
JxJyJz

T1

T a
x

2

3
(Jx)3 − 1

3

(
Jx (Jy)2 + (Jz)2 Jx

)
T a
y

2

3
(Jy)3 − 1

3

(
Jy (Jz)2 + (Jx)2 Jy

)
T a
z

2

3
(Jz)3 − 1

3

(
Jz (Jx)2 + (Jy)2 Jz

)

T2

T b
x

2

3
√

3

(
Jx (Jy)2 − (Jz)2 Jx

)
T b
y

2

3
√

3

(
Jy (Jz)2 − (Jx)2 Jy

)
T b
z

2

3
√

3

(
Jz (Jx)2 − (Jy)2 Jz

)
TABLE I. The definition of the various multipole operators for a J = 3/2 system in terms of the dipole operators. These
operators form a useful basis of su(4).
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Type Symbol Expression

Lower Doublet

η0 −1

2
Qz2 +

1

2

ηx
2

5
Jx +

3

10
T a
x +

√
3

4
T b
x

ηy
2

5
Jy +

3

10
T a
y −
√

3

4
T b
y

ηz
1

5
Jz +

3

5
T a
z

Upper Doublet

τ0 1

2
Qz2 +

1

2

τx
1

2
T a
x −
√

3

4
T b
x

τy −1

2
T a
y −
√

3

4
T b
y

τz −3

5
Jz +

1

5
T a
z

Mixing Between Doublets

ξ0
r

√
6

5
Jx −

√
3

5
√

2
T a
x −

1

2
√

2
T b
x

ξxr
1√
2
Qx2−y2

ξyr
1√
2
Qxy

ξzr
1√
2
Qzx

ξ0
i − 1√

2
Qyz

ξxi − 1√
2
Txyz

ξyi
1√
2
T b
z

ξzi −
√

6

5
Jy +

√
3

5
√

2
T a
y −

1

2
√

2
T b
y

TABLE II. The relation between the magnetic multipole operator basis for a J = 3/2 system and the basis introduced in
Equations (2) and (3). Here we have included the identity operator with the multipole basis, so these basis describe the
16-dimensional space, u(4).
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