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Abstract. We show that discrete stationary random subgroups of isometry
groups of Gromov hyperbolic spaces have full limit sets as well as critical
exponents bounded from below. This information is used to answer a question
of Gelander and show that a rank one locally symmetric space for which the
bottom of the spectrum of the Laplace–Beltrami operator is the same as that
of its universal cover has unbounded injectivity radius.

1. Introduction

Let G be a connected center-free simple rank one Lie group with associated
symmetric space X. In other words X is a real, complex or quaternionic hyperbolic
space or the Cayley plane and its group of isometries is G = Is(X).

A discrete subgroup Γ ≤ G is called confined if there exists a compact subset
Q ⊂ G such that Γg ∩ Q ̸= {e} for all elements g ∈ G. If the discrete subgroup Γ is
torsion-free then being confined is equivalent to the geometric condition saying that
the locally symmetric manifold MΓ = Γ\X has an upper bound on its injectivity
radius at all points. This says that the subgroup Γ is qualitatively “large”.

The critical exponent of a discrete subgroup Γ ≤ Is(X) is a quantitative measure
of the exponential growth rate of Γ-orbits in the space X. This is a real number δ(Γ)
taking values in the range [0, d(X)] where d(X) = dimHaus(∂X) is the Hausdorff
dimension of the visual boundary at infinity. For instance d(Hn) = n − 1 for the
real hyperbolic space Hn of dimension n. See §9 for the precise definitions.

Our main result relates these qualitative and quantitative notions.
Theorem 1.1. Let Γ be a discrete subgroup of the simple rank one Lie group G. If
the subgroup Γ satisfies δ(Γ) ≤ 1

2 d(X) then Γ is not confined.
This can be seen as a conditional rank one analogue of the recent breakthrough

by Fraczyk and Gelander [FG23] who showed that any infinite covolume discrete
subgroup of a higher rank simple Lie group is not confined. Indeed Theorem 1.1
has been conjectured and introduced to us by Gelander.

Assuming the discrete subgroup Γ is torsion-free its critical exponent δ(Γ) is
related to the bottom of the spectrum λ0(MΓ) of the Laplace–Beltrami operator on the
locally symmetric manifold MΓ. The Elstrodt formula [Els74, Pat76, Sul87, Cor90]
states that

(1.1) λ0(MΓ) =
{

1
4 d(X)2 if δ(Γ) ∈

[
0, 1

2 d(X)
]

,

δ(Γ)(d(X) − δ(Γ)) if δ(Γ) ∈
[ 1

2 d(X), d(X)
]

.

In particular the assumption δ(Γ) ≤ 1
2 d(X) is equivalent to λ0(MΓ) = λ0(X). Note

that δ(Γ) = d(X) if and only if the discrete subgroup Γ is co-amenable in the Lie
group G. For example every lattice subgroup Γ satisfies δ(Γ) = d(X).
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2 ILYA GEKHTMAN AND ARIE LEVIT

Our result is sharp, at least for the two-dimensional real hyperbolic plane H2.
Indeed consider any uniform lattice Γ in the group of isometries Is(H2) ∼= PSL2(R).
It turns out that Γ admits a sequence of infinite index normal subgroups Ni satisfying
δ(Ni) → 1

2 δ(Γ) = 1
2 [BTMT12, Theorem 3.8]. However every non-trivial normal

subgroup of the lattice Γ is confined [FG23, Example 1.2].
Interestingly the condition δ(Γ) ≤ 1

2 d(X) for a discrete subgroup Γ of the simple
rank one Lie group G is equivalent to saying that the unitary representation L2(G/Γ)
is tempered [EO23, Theorem 1.2]. Furthermore, if the discrete subgroup Γ is not
confined then the unitary representation L2(G) is weakly contained in the unitary
representation L2(G\Γ) [EO23, Proposition 8.4]. We obtain the following.

Corollary 1.2. Let Γ be a discrete subgroup of the simple rank one Lie group G. If
the unitary representation L2(G\Γ) is tempered then the two unitary representations
L2(G) and L2(G\Γ) are weakly equivalent.

Stationary random subgroups and critical exponents. While the statement
of Theorem 1.1 is purely geometric, the methods we use are probabilistic. Along
the way we prove a number of probabilistic results of independent interest. These
are considered in the more general setting of Gromov hyperbolic spaces.

Let X be a proper Gromov hyperbolic geodesic metric space with non-elementary
group of isometries Is(X). For example X could be a rank one symmetric space or
a Gromov hyperbolic group equipped with the word metric. Let Sub(Is(X)) denote
the Chabauty space of all closed subgroups of the group Is(X). The group Is(X)
admits a continuous action on this space by conjugation.

Fix a Borel probability measure µ on the group Is(X) whose support generates
as a semigroup a discrete subgroup of Is(X) acting cocompactly on the space X.
Associated to the measure µ are the classical parameters drift l(µ) and entropy
h(µ) discussed in some detail in §8. The assumption that Is(X) is non-elementary
implies that l(µ) > 0 as well as h(µ) > 0. It is convenient to denote δ(µ) = h(µ)

l(µ) .
A µ-stationary random subgroup of the group Is(X) is a Borel probability measure

ν on the space Sub(Is(X)) satisfying µ ∗ ν = ν with respect to the action by
conjugation. We establish a lower bound on the critical exponents of discrete
µ-stationary random subgroups in terms of the parameter δ(µ).

Theorem 1.3. Assume that the probability measure µ has finite first moment. Let
ν be a µ-stationary random subgroup of Is(X) such that ν-almost every subgroup Γ
is discrete and not contained in the elliptic radical1. Then

(1) δ(Γ) > δ(µ)
2 holds ν-almost surely, and

(2) if ν-almost every subgroup Γ is of divergence type2 then δ(Γ) ≥ δ(µ) holds
ν-almost surely.

If X is a rank one symmetric space then it is possible to choose a probability
measure µ as above with finite first moment and with δ(µ) = d(X). This fact
is discussed in §9. If X is the Cayley graph of a rank k free group then the
uniform probability measure µk on the standard symmetric generating set satisfies

1The elliptic radical of the group Is(X) is the maximal normal subgroup E(Is(X)) consisting
of elliptic elements. If X is rank one symmetric space or more generally a geodesically complete
CAT(−1)-space then the elliptic radical of Is(X) is trivial.

2Critical exponents as well as the notion of divergence type subgroups are discussed in §9.
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δ(µk) = d(X) = log(2k − 1). This provides a new proof of [GL19, Theorem 1.1] for
invariant random subgroups in those two special cases3.

More generally, if the group Is(X) is acting properly and cocompactly on the
space X and L is a uniform lattice in the group Is(X) then there is a sequence of
probability measures µi supported on finite generating sets of the lattice L satisfying
δ(µi) → δ(L) = dimHaus(∂X).

The study of invariant random subgroups of discrete groups and the spectral
radius of random walks on the associated Schreier graphs was initiated by Abert,
Glasner and Virag [AGV14]. Their work serves as the inspiration to ours.

On non-confined subgroups. Consider a rank one simple Lie group G with a
fixed Borel probability measure µ. Given any discrete subgroup Γ ≤ G let DΓ denote
the Dirac mass supported on the point Γ ∈ Sub(G). Then any accumulation point
ν of the Cesáro averages 1

n

∑n
i=1 µ∗i ∗ DΓ is a µ-stationary random subgroup of G.

At this point, the lower semi-continuity of the critical exponent with respect to
the Chabauty topology would in principle allow us to deduce Theorem 1.1 from
Theorem 1.3 along the lines of the strategy introduced in [FG23]. However, there
is an additional missing ingredient, namely we need to know that ν-almost every
subgroup is discrete. The actual proof is more involved. In particular we use the
key inequality for the injectivity radius function from [GLM22].

The above strategy showing that a discrete subgroup of the isometry group of
some Gromov hyperbolic space with a small critical exponent is not confined works
more generally. See Theorem 10.7 for a precise formulation of a general principle.
For example, in the case of free groups we recover [Fra20, Corollary 3.2]:

Theorem 1.4 (Fraczyk). Let Fk be a free group of rank k ∈ N and Xk be its
Cayley graph with respect to a standard basis. If H is any subgroup of Fk with
λ0(H\Xk) = λ0(Xk) then H is not confined.

Here λ0 denotes the bottom of the spectrum of the combinatorial Laplacian
defined on 2k-regular graphs [Lub94, §4.2]. In concrete terms, the conclusion of
Theorem 1.4 says that for any R > 0 there is some element g ∈ Fk such that the
conjugate Hg contains no non-trivial elements of word length less than R.

Limit sets. Let X be a proper Gromov hyperbolic geodesic metric space. Lattices
in the group of isometries Is(X) as well as normal subgroups of such lattices have
full limit sets. The same is true for invariant random subgroups of the group Is(X)
as was shown in [ABB+20, Proposition 11.3] and [Osi17]. It turns out that this fact
extends to discrete stationary random subgroups.

Theorem 1.5. Let µ be a Borel probability measure on the group Is(X). Assume
that the closed semigroup Gµ generated by supp(µ) is a group whose action on the
space X has general type.

Let ν be a discrete µ-stationary random subgroup of Is(X). If ν-almost every
subgroup is not contained in the elliptic radical E(Is(X)) then the action of ν-almost
every subgroup Γ has general type and its limit set Λ(Γ) contains the limit set Λ(Gµ).

In particular, if the group generated by the support of the measure µ has full
limit set Λ(Gµ) = ∂X then so does ν-almost every subgroup.

3More generally, this remark applies to any CAT(−1)-space admitting a uniform lattice, see §9.
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The discreteness assumption in Theorem 1.5 is necessary in general, as can be
seen by considering the stabilizer of a random point with respect to the G-action on
the boundary at infinity ∂X equipped with a µ-stationary probability measure.

Rich and detailed structural information on amenable non-elementary Gromov
hyperbolic locally compact groups was obtained in the work [CdCMT15]. These
are precisely the groups admitting a proper and cocompact focal action on a proper
Gromov hyperbolic space, see §3. Taking this work into account and relying on our
methods we study stationary random subgroups of such groups.
Theorem 1.6. Let G be an amenable non-elementary Gromov hyperbolic locally
compact group and µ a Borel probability measure on the group G. Assume that
the measure µ has finite first moment and is spread out4. Then every discrete
µ-stationary random subgroup of G is contained in the elliptic radical E(G).

Theorem 1.6 applies for example in the case where the group G is the stabilizer
of a boundary point at infinity in a rank one symmetric space or a regular tree. The
general case is much broader, as is manifested in [CdCMT15].

An immediate consequence of Theorem 1.6 is that amenable non-elementary
Gromov hyperbolic groups admit no discrete invariant random subgroups. This is a
natural generalization of the fact such groups admit no lattices as they are never
unimodular.

CAT(0)-spaces. Let X be a proper geodesically complete CAT(0)-space such that
the group of isometries Is(X) is acting cocompactly on X. A subgroup H of the
group Is(X) is called geometrically dense if H preserves no proper closed convex
subset of the space X and fixes no point of the visual boundary ∂X.

Let µ be a Borel probability measure on the group Is(X) such that the closed
semigroup generated by supp(µ) is a geometrically dense subgroup. Some of our
methods are applicable to study µ-stationary random subgroups of Is(X).
Proposition 1.7. Let ν be a µ-stationary random subgroup of Is(X). If ν-almost
every subgroup fixes no point of the boundary ∂X then ν-almost every subgroup is
geometrically dense.

This can be seen as a partial analogue of the work [DGLL15] for stationary
(rather than invariant) random subgroups, conditional on the extra assumption
of having no fixed points on the boundary. We expect that in future work this
assumption can be replaced by a discreteness assumption (as was successfully done
in the Gromov hyperbolic case in Theorem 1.5).

At present, we are able to combine our methods for Gromov hyperbolic spaces
and CAT(0)-spaces to study stationary random subgroups of direct products of
finitely many CAT(−1)-spaces.
Theorem 1.8. Let X1, . . . , Xk be a family of proper geodesically complete CAT(−1)-
spaces. Let µi be a Borel probability measure on the group Is(Xi) such that supp(µi)
generates Is(Xi) as a semigroup for each i. Consider the product CAT(0)-space
X = X1 × · · · × Xk and the measure µ = µ1 ⊗ · · · ⊗ µk on the group Is(X).

Let ν be a discrete µ-stationary random subgroup of
∏k

i=1 Is(Xi). If ν-almost
every subgroup projects non-trivially to each factor Is(Xi) then ν-almost every
subgroup is geometrically dense.

4A probability measure µ on a locally compact group G is called spread out is some convolution
power µ∗n is non singular with respect to the Haar measure on the group G.
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Much more precise information in the special case of the action of a semisimple
real Lie group on its symmetric space is given in [FG23, Theorem 6.5].

Lower bounds on critical exponents. As an illustration, we outline a proof
of the non-strict variant of Theorem 1.3 asserting that a µ-stationary random
subgroup satisfies the non-strict inequality δ(Γ) ≥ δ(µ)

2 almost surely. An analogue
of Theorem 1.3 for invariant rather than stationary random subgroups with the
bound δ(µ)

2 replaced by d(X) = dimHaus(∂X)
2 was the main result of [GL19]. In

turn, this is a generalization of a result of Matsuzaki, Yabuki and Jaerisch [MYJ20,
Theorem 1.4] about the exponential growth rate of orbits for a normal subgroup
N of some countable hyperbolic group Γ acting properly and cocompactly on a
Gromov hyperbolic space X.

The key idea of [MYJ20] is to bound the critical exponent δ(N) from below in
terms of the exponential growth rate of a single conjugacy class
(1.2) ClΓ(γ) = {γg : g ∈ Γ}

of some fixed arbitrary hyperbolic element γ ∈ N . Fix a basepoint x0 ∈ X and
denote ∥g∥ = dX(gx0, x0) for every element g ∈ Γ. The triangle inequality implies
∥gγg−1∥ ≤ 2∥g∥ + ∥γ∥ for every element g ∈ Γ. So

(1.3) {g ∈ Γ : ∥g∥ ≤ R − ∥γ∥
2 } ⊂ {g ∈ Γ : ∥gγg−1∥ ≤ R} ∀R > 0.

On the other hand, the hyperbolic element γ satisfies the following two properties:
its centralizer is virtually cyclic and lim 1

n ∥γn∥ > 0. This implies that

(1.4) |{h ∈ ClΓ(γ) : ∥h∥ ≤ R}| ≥ c

R
|{g ∈ Γ : ∥g∥ ≤ R − ∥γ∥

2 }∥ ∀R > 0

for some constant c > 0. As linear factors do not affect the exponential growth rate
we conclude from Equation (1.4) that δ(N) ≥ δ(ClΓ(γ)) ≥ δ(Γ)

2 .
Consider a more general situation where ν is a discrete invariant random subgroup

of the group of isometries Is(X) of some Gromov hyperbolic space X. Unlike normal
subgroups of lattices, there is a priori no reason for ν-generic subgroups to contain
an entire conjugacy class of any particular hyperbolic element. Instead, we show
in [GL19] that ν-almost every subgroup contains a positive proportion of some
hyperbolic “approximate conjugacy class”. More precisely, assume that the group
Is(X) admits some auxiliary discrete subgroup Γ acting cocompactly on the space
X. Then for any ε > 0 there exists an open relatively compact subset V ⊂ Is(X)
consisting of hyperbolic elements such that ν-almost every subgroup ∆ ∈ Sub(Is(X))
satisfies

(1.5) lim inf
R→∞

|{g ∈ Γ : ∥g∥ ≤ R and ∆ ∩ gV g−1 ̸= ∅}|
|{g ∈ Γ : ∥g∥ ≤ R}|

≥ 1 − ε.

This statistical information is sufficient to conclude that δ(∆) ≥ δ(Γ)
2 along the same

lines as in [MYJ20].
To find such a neighborhood V ⊂ Is(X) with ν({∆ : ∆ ∩ V ̸= ∅}) > 1 − ε we first

show that ν-almost every subgroup admits hyperbolic elements, as a consequence of
the fact that it has a full limit set on the Gromov boundary. The maximal ergodic
theorem of Bowen and Nevo [BN15] applied to the probability measure preserving
action of the auxiliary lattice Γ on the Borel probability space (Sub(Is(X)), ν)
implies Equation (1.5) directly.
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On our methods. Several important aspects of this strategy need to be modified
when ν is a µ-stationary rather than an invariant discrete random subgroup. First,
the fact that ν-almost every subgroup has full limit set and hence contains hyperbolic
elements now follows from our Theorem 1.5. Second, the maximal ergodic theorem of
Bowen and Nevo does not apply to stationary actions. Instead, we rely on Kakutani’s
random ergodic theorem. Roughly speaking, it says that typical trajectories of the µ-
random walk become ν-equidistributed. This implies that µ⊗N-almost every sequence
of random elements (gi) ∈ ΓN and ν-almost every subgroup ∆ ∈ Sub(Is(X)) satisfy

(1.6) lim
n→∞

|{i ∈ {1, . . . , n} : ∆ ∩ V gi···g1 ̸= ∅}|
n

= ν({Λ : Λ ∩ V ̸= ∅}).

To get a lower bound on the critical exponent δ(∆) for ν-almost every subgroup
∆ we need to estimate the ratios appearing in Equation (1.5) for large R. In other
words, we need to show that the subset {g ∈ Γ : H ∩ V g ≠ ∅} is large from the
point of view of taking intersections with balls rather than from the point of view
of random walks. The connection between these two notions of “size” of subsets
of the group Γ is rather complicated (see for instance [Tan17, Theorem 6.2] for an
example of a “paradoxical” behaviour in this respect).

In the setting of finitely supported random walks and word metrics on hyperbolic
groups, Tanaka showed in [Tan17, §6] that a subset A ⊂ Γ satisfying

(1.7) lim inf
n

1
n

|{i ∈ {1, . . . , n} : gi . . . g1 ∈ A}| > 0

for µ⊗N-almost surely sequence (gi) ∈ ΓN has critical exponent δ(A) ≥ δ(µ) = h(µ)
l(µ) .

We prove and make use of Theorem 8.5 which is a vast generalization of Tanaka’s
result. For us the group Γ need not be hyperbolic, but merely non-amenable. The
random walk need not be finitely supported, but only to have finite first moment.
This improvement allows us to work with measures having δ(µ) = d(X), such as
the discretization of Brownian motion. The set A in question is assumed to contain
a positive proportion of each random walk trajectory, i.e. sample paths visit it
statistically rather deterministically. Finally, we conclude that the partial Poincare
series associated to the set A diverges at the exponent δ(µ).

We expect our results concerning critical exponents can be extended beyond
isometry groups of hyperbolic spaces, for instance to rank-one CAT(0)-spaces, Cayley
graphs of relatively hyperbolic groups, and products of rank one symmetric spaces.
The probabilistic framework for these generalizations is laid out in this paper; one
needs to modify a few geometric techniques from [GL19].

Organization of the paper. This work consists of two largely independent parts.
The first part §2–§7 deals with the softer questions of limit sets and fixed points

on the boundary. In §2 we introduce the basics of stationary measures and random
walks and state Kakutani’s ergodic theorem which plays a fundamental role in this
work. In §3 we recall the classification of group actions on Gromov hyperbolic
spaces, including the focal and the general type cases. In §4 we use boundary hitting
measures to study stationary closed subsets. This information is applied to study
limit sets. In §5 we show that discrete stationary subgroups cannot have a single
fixed point on the boundary, and apply this to study amenable hyperbolic groups.
Lastly §6 is dedicated to stationary random subgroups of products and §7 deals
with CAT(0)-spaces and geometric density.
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The second part §8–§10 deals with critical exponents and confined subgroups.
The core probabilistic argument takes place in §8. This is where we discuss entropy,
drift, Green’s functions and prove our variant of Tanaka’s argument. Next in §9
we use this probabilistic machinery to study the Poincare series and the critical
exponents of stationary random subgroups. Finally in §10 we consider confined
subgroups and implement our strategy towards Theorem 1.1 by observing that the
critical exponent is Chabauty semi-continuous.

Acknowledgements. The authors would like to thank Uri Bader, Mikolaj Fraczyk,
Sebastien Gouezel, Nir Lazarovich, Hee Oh, Yehuda Shalom, Ryokichi Tanaka and
Giulio Tiozzo for useful discussions, insightful comments and suggestions. We are
very grateful to Inhyeok Choi, Wenyuan Yang, and Tianyi Zheng for pointing out
several inaccuracies in an earlier draft of this paper. Special thanks are due to
Tsachik Gelander who conjectured Theorem 1.1 and brought it to our attention.

Notations.
• We denote [n] = {1, . . . , n} for every natural number n ∈ N.
• We will often fix a base point x0 ∈ X. With the base point being implicit

in the notation, it will be convenient to write
∥g∥ = dX(gx0, x0) ∀g ∈ Is(X).

• To avoid an overuse of the Greek letter δ we will use Dx to denote the Dirac
probability measure supported on the point x.

• For a pair of functions f and g the notation f ≈ g means that
C−1f ≤ g ≤ Cf

for some constant C > 1.
• All probability measures are assumed to be Borel.

2. Stationary measures and Kakutani’s ergodic theorem

We introduce some general definitions concerning stationary measures and random
walks, which are the main workhorse of this note. In addition we state Kakutani’s
ergodic theorem and summarize some of its implications.

Sample paths. Let G be a locally compact group. The product space GN equipped
with the Tychonoff topology will be regarded as describing increments. Given
a sequence of increments (gn) ∈ GN the associated sample path is the sequence
ω = (ωn) ∈ GN defined by
(2.1) ωn = g1g2 · · · gn ∀n ∈ N.

Let µ be a probability measure on the group G. The corresponding product
measure on the space of increments GN is denoted µ⊗N. Let Pµ be the pushforward
of the probability measure µ⊗N via the mapping (gn) 7→ (ωn). We will call (GN, Pµ)
the space of sample paths.

On certain occasions it will be useful to consider the probability measure µ̌ on
the group G given by µ̌(A) = µ(A−1) for every Borel subset A ⊂ G. We will use the
notation w̌ for sample paths distributed with respect to the measure Pµ̌. Note that

(2.2) ω̌n = g−1
1 g−1

2 · · · g−1
n = (gngn−1 · · · g1)−1 ∀n ∈ N.

The probability measure µ is symmetric if µ = µ̌.
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Stationary measures. Let (Z, ν) be a standard Borel probability space admitting
a Borel action of the group G. Assume that the measure ν is µ-stationary, i.e.
ν = µ ∗ ν where

(2.3) µ ∗ ν =
∫

G

g∗ν dµ(g).

Assume further that ν is ergodic, i.e. ν is an extreme point in the simplex of
µ-stationary probability measures.

The following ergodic theorem plays a central part in most of our arguments.

Theorem 2.1 (Kakutani’s ergodic theorem [Kak51]). Let f ∈ L1(Z, ν). Then
µ⊗N-almost every sequence of increments (gn) ∈ GN and ν-almost every point z ∈ Z
satisfy

(2.4) 1
N

N∑
n=1

f(gngn−1 · · · g1z) N→∞−−−−→
∫

f dν.

We will have occasion to apply Kakutani’s ergodic theorem in two ways, which
we record here for convenience. First, it can be used to estimate the proportion of
time a generic random walk spends inside some fixed subset of the space Y .

Corollary 2.2. Let Y ⊂ Z be a ν-measurable subset. Then µ⊗N-almost every
sequence of increments (gn) ∈ GN and ν-almost every point z ∈ Z satisfy

(2.5) lim
n→∞

|{i ∈ [n] : gign−1 · · · g1z ∈ Y }|
n

= ν(Y ).

Proof. The conclusion follows by applying Kakutani’s ergodic theorem (Theorem
2.1) to the characteristic function 1Y ∈ L1(Z, ν) of the subset Y . □

Second, Kakutani’s theorem implies that a generic random walk “does not escape
to infinity”, in the following sense.

Corollary 2.3. Let F : Z → [0, ∞) be a ν-measurable function. Then µ⊗N-almost
every sequence of increments (gn) ∈ GN and ν-almost every point z ∈ Z satisfy
(2.6) lim inf

n→∞
F (gngn−1 · · · g1z) < ∞.

Proof. Take D > 0 to be sufficiently large so that
(2.7) ν(ZD) > 0 where ZD = {z ∈ Z : F (z) ≤ D}.

The desired conclusion follows at once by applying Corollary 2.2 with respect to the
ν-measurable subset D. □

Stationary measures are quasi-invariant. Let H denote the closure in G of
the semigroup generated by the support of µ. It will be useful to keep in mind the
following well-known elementary fact. We include a brief proof for completeness.

Lemma 2.4. Assume that the topological group G is second countable. Then any
µ-stationary measure ν is H-quasi-invariant, i.e. if a Borel subset E ⊂ Z has
ν(E) = 0 then ν(h−1E) = 0 for any element h ∈ H.

Proof. Consider any µ-stationary measure ν on the space Z. By induction µ∗n∗ν = ν
for all n ∈ N. Let E ⊂ Z be any ν-null subset. Then

(2.8) 0 = ν(E) =
∫

G

ν(g−1E) dµ∗n(g) ∀n ∈ N.
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As ν is probability measure it must satisfy ν(h−1E) = 0 for µ∗n-almost every element
h ∈ G where n ∈ N is arbitrary. The second countability assumption implies that
for every n ∈ N there is a dense subset Sn ⊂ supp(µ∗n) such that ν(h−1E) = 0 for
all elements h ∈ Sn. Denote H0 =

⋃
n Sn so that H0 = H. The conclusion follows

from that fact that the subset of H consisting of all elements h with ν(h−1E) = 0
is closed by [Zim13, Theorem B.3] applied to the Koopman representation. □

In particular, if Z is a topological space and ν is a µ-stationary Borel measure
then supp(ν) is an H-invariant closed subset of Z.

3. Group actions on hyperbolic spaces

Let X be a Gromov hyperbolic geodesic metric space5. We recall various features
of groups acting on X. In addition we discuss several relevant notions, namely
quasi-stabilizers and the elliptic radical.

Classification of actions. The Gromov boundary ∂X is the collection of geodesic
rays in the space X up to the equivalence relation of being within bounded Hausdorff
distance. The group Is(X) is acting on the boundary ∂X by homeomorphisms. The
space X ∪ ∂X is a natural compactification of the space X.

Let G be a group admitting a continuous action on the space X by isometries.
Equivalently we are given a continuous homomorphism f : G → Is(X). The limit
set Λ(G) is the set ∂X ∩ Gx0 for any choice of base point x0 ∈ X.

Recall our standing notation ∥g∥ = dX(gx0, x0) where x0 ∈ X is any fixed base
point. The action of any single element g ∈ G on the space X can be classified as

• elliptic if g has bounded orbits.
• parabolic if g has unbounded orbits and limn→∞

1
n ∥gn∥ = 0.

• hyperbolic if limn→∞
1
n ∥gn∥ > 0.

In terms of the limit set of the cyclic group generated by an element g ∈ G we can
say that

• g is elliptic if and only if Λ(⟨g⟩) = ∅.
• g is parabolic if and only if |Λ(⟨g⟩)| = 1.
• g is hyperbolic if and only if |Λ(⟨g⟩)| = 2.

In addition parabolic and hyperbolic elements satisfy Λ(⟨g⟩) = Fix∂X(g).
Any action of a group on the space X can be classified as follows [Gro87, §8].

• The action is called elementary if it is
– bounded: orbits are bounded,
– horocyclic: it is not bounded but has no hyperbolic isometries, or
– lineal: it has an hyperbolic isometry and any two hyperbolic isometries

have the same limit set.
• The action is called non-elementary if it is

– focal: it has a hyperbolic isometry, is not lineal and the limit sets of
any two hyperbolic isometries are not disjoint.

– of general type: it has two hyperbolic isometries with disjoint limit sets.

5In this section we do not require the metric space X to be proper (unless explicitly stated
otherwise).



10 ILYA GEKHTMAN AND ARIE LEVIT

We refer to [CdCMT15, Proposition 3.1] for a list of equivalent conditions for each
of the above types of actions in terms of the limit set. For instance, a locally
compact group is focal hyperbolic with respect to the word metric coming from some
compact generating set if and only if it is amenable and non-elementary hyperbolic
[CdCMT15, Theorem 7.3].

The elliptic radical. Let G be a group admitting a continuous non-elementary
action on the space X by isometries. The elliptic radical E(G) of the group G is
the kernel of its action on its limit set, namely it is the closed normal subgroup

(3.1) E(G) = {g ∈ G : gζ = ζ ∀ζ ∈ Λ(G)}.

Alternatively, the elliptic radical E(G) can be characterized as the maximal normal
subgroup of G whose action on the space X is bounded [CdCMT15, Lemma 3.6].
See also [Osi17, Proposition 3.4].

Quasi-stabilizers. Let Γ be a discrete group admitting an action by isometries on
the Gromov hyperbolic space X.

Definition 3.1. Given a point x ∈ X and a radius R > 0 the corresponding
quasi-stabilizer is given by

(3.2) Γx,R = {γ ∈ Γ : dX(γx, x) ≤ R}.

Note that the actual stabilizer Γx = {γ ∈ Γ : γx = x} is contained in the
quasi-stabilizer Γx,R for all R > 0. The quasi-stabilizer is not a subgroup in general.
In the situation where the metric space X is proper, we know that the action of the
group Γ on the metric space X is proper if and only if all quasi-stabilizers are finite.

Lemma 3.2. There is some sufficiently large R > 0 such that if γ ∈ Γ is any
elliptic or parabolic element then Γx,R ̸= ∅ for some point x ∈ X.

The lemma is certainly well-known, we include it for the sake of completeness. It is
immediate from the definitions if the space X is CAT(−1) rather than δ-hyperbolic.

Proof of Lemma 3.2. If the element γ under consideration is parabolic then this
fact is discussed in [Gro87, 8.1.C]. If the element γ is elliptic we argue as follows. Let
O be any orbit of the isometry γ in the space X. The orbit O is bounded. Denote

(3.3) rO = inf{r > 0 : O ⊂ Bx(r) for some x ∈ X}

and

(3.4) C1(O) = {x ∈ X : O ⊂ Bx(rO + 1)}.

The points of C1(O) are called the quasi-centers of the subset O. The subset C1(O)
is clearly γ-invariant and has diameter less than 4δ + 2, see [BH13, III.Γ.3.3]. The
claim follows by taking an arbitrary point x ∈ C1(O). □

4. Stationary closed subsets

Let X be a complete separable Gromov hyperbolic geodesic metric space with
fixed base point x0 ∈ X and equipped with the metric dX . For example X could be
a proper Gromov hyperbolic length space (see [BH13, §I.3]). Generally speaking,
and with some applications in mind, we do not want to assume X is proper.
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Boundary measures for random walks. Let G be a locally compact group
admitting a continuous action by isometries on the space X. Fix a probability
measure µ on the group G. Assume that the closed semigroup Gµ generated by
the support of the measure µ is in fact a group. Consider the associated space of
sample paths (GN, Pµ) discussed in §2. The following fundamental object plays a
key role in our work.

Theorem 4.1 (The boundary measure). Assume that the action of the group Gµ

on the space X is non-elementary. In the focal case assume in addition that
• the measure µ has finite first moment6 and is spread out7,
• the Poisson boundary of the pair (G, µ) is non trivial, and
• the space X is proper and the group G is acting cocompactly on X.

In the general type case no additional assumption is required. Then
(1) the trajectory ωnx0 converges to some point ζω ∈ ∂X for Pµ-almost every

sample path ω ∈ GN, and
(2) the pushforward νX of the measure Pµ via the mapping ω 7→ ζω is the

unique µ-stationary probability measure on the boundary ∂X satisfying
νX(Fix∂X(Gµ)) = 0.

Note that the limit of a sequence such as ωnx0 is independent of the base point.
The condition saying that νX(Fix∂X(Gµ)) = 0 is clearly relevant only in the focal
case, for a general type action fixes no points on the boundary at infinity.

Proof of Theorem 4.1. Assume to begin with that the action of the group Gµ on
the metric space X has general type. The case of a random walk on a Gromov
hyperbolic group is [Kai94]. The general case for a proper metric space X is treated
in [BQ16a]. The case where the group G is countable but the space X may be
non-proper is [MT18]. However, as noted by Dussaule and Gouezel, the countability
assumption may be dropped. Indeed, the only place where it was used in [MT18] was
in their Proposition 4.4, which Dussaule and Gouezel generalized to the uncountable
setting, see [Dus, Appendix].

In the focal case, the extended set of assumptions implies that the Poisson
boundary of the pair (G, µ) can be identified with the Gromov boundary ∂X equipped
with the µ-stationary hitting measure νX , see [FT22, Theorem 1.4]. See [Kai96]
for a closely related survey of the identification problem for Poisson boundaries.
The argument of [BQ16a, Proposition 3.1] shows that νX is the unique non-atomic
µ-stationary probability measure on the boundary ∂X. On the other hand, the only
atomic such measure is the Dirac measure Dζ where Fix∂X(Gµ) = {ζ} ⊂ Λ(Gµ). □

We will assume throughout §4 and §5 that the assumptions of Theorem 4.1 are
satisfied so that the µ-stationary boundary measure νX satisfying both statements
(1) and (2) of Theorem 4.1 does exist.

For the sake of completeness we include the proof of the following elementary
consequence of Theorem 4.1.

6The probability measure µ has finite first moment if
∑

g∈G
µ(g)∥g∥ < ∞.

7A measure µ is called spread out if some convolution power µ∗n is non singular with respect
to the Haar measure on the group G.
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Lemma 4.2. The probability measures µ∗n ∗Dx0 converge to the µ-stationary bound-
ary measure νX in the weak-∗ topology of probability measures on the compactification
X = X ∪ ∂X.

Proof. It follows from Theorem 4.1 that
(4.1) νX(E) = Pµ({ω : lim

n
ωnx0 ∈ E})

holds true for any νX -measurable subset E ⊂ ∂X. Take U to be any open subset
of the compactification X. If limn ωnx0 ∈ U ∩ ∂X then ωnx0 ∈ U for all indices n
sufficiently large. Fatou’s lemma gives

νX(U) = νX(U ∩ ∂X) ≤
∫

GN
lim inf

n
1U (ωnx0) dPµ(ω) ≤

≤ lim inf
n

∫
X

1U d(µ∗n ∗ Dx0) = lim inf
n

µ∗n ∗ Dx0(U).
(4.2)

The desired conclusion follows from the Portmanteau theorem. □

Proposition 4.3. The boundary measure νX has supp(νX) = Λ(Gµ).

Proof. The construction of the boundary measure νX in Theorem 4.1 shows that
supp(νX) ⊂ Λ(Gµ). The subset supp(νX) is closed and Gµ-invariant by Lemma 2.4.
This concludes the proof since Λ(Gµ) is the minimal Gµ-invariant closed subset of
the boundary ∂X not contained in Fix∂X(Gµ) [DSU17, Corollary 7.4.3]. □

Effros space of closed subsets. Let Cl(X) denote the space of all closed subsets
of the space X. The space Cl(X) is a standard Borel space with respect to the
Effros Borel structure given by the σ-algebra generated by all subsets of the form
(4.3) O(U) = {F ∈ Cl(X) : F ∩ U = ∅}
for some open subset U ⊂ X [Kec12, Theorem 12.6]. In the special case where
the metric space X is proper the Effros Borel structure coincides with the Borel
structure for the Chabauty topology on Cl(X). For our purposes in §4 it will suffice
to regard Cl(X) as a Borel rather than a topological space.

The action of the group Is(X) on the space X by isometries is continuous. It
determines a Borel action of the group G on the Effros space Cl(X).

Proposition 4.4. Let Y ∈ Cl(X) be a closed subset satisfying Λ(Gµ) \ ∂Y ≠ ∅.
Then there is a subset of sample paths Ω ⊂ GN with Pµ(Ω) > 0 so that
(4.4) lim inf

n
dX(ωnx0, Y ) = ∞

holds true for every sample path ω ∈ Ω.

Proof. The open subset U = Λ(Gµ) \ ∂Y satisfies νX(U) > 0 by Proposition 4.3.
Let Ω = {ω ∈ GN : ζω ∈ U} so that Pµ(Ω) > 0. Note that Pµ-almost every sample
path ω ∈ Ω satisfies ωnx0 → ζω for some point ζω /∈ ∂Y . Every such sample path ω
must in paticular satisfy Equation (4.4). □

Stationary closed subsets. Denote Λµ = Λ(Gµ). We use the above information
to deduce that µ-stationary random closed subsets of the space X have large limit
sets.

Proposition 4.5. Let ν be a µ-stationary probability measure on Cl(X). Then
ν-almost every non-empty closed subset Y ∈ Cl(X) satisfies Λµ ⊂ ∂Y .
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Proof. Consider the Borel function
(4.5) Y 7→ dX(x0, Y ), Cl(X) \ {∅} → [0, ∞)
defined on the space of closed non-empty subsets of X. Corollary 2.3 says that
(4.6) lim inf

n
dX(x0, gn · · · g1Y ) < ∞

for µ⊗N-almost every sample sequence of increments (gn) ∈ G⊗N and ν-almost every
closed non-empty subset Y ⊂ X. The desired conclusion follows from Equation
(4.6) combined with Proposition 4.4 applied with respect to the probability measure
µ̌ given by µ̌(A) = µ(A−1). □

Limit sets and fixed points on the boundary. Given an arbitrary closed subset
A ⊂ ∂X we let WH(A) denote the union of all bi-infinite geodesics in X with both
endpoints belonging to A. In particular WH(A) ∈ Cl(X). Note that WH(A) ̸= ∅ if
and only if |A| ≥ 2.

Proposition 4.6. Let ν be a µ-stationary random subgroup of G. If ν-almost every
subgroup H of G satisfies |Λ(H)| ≥ 2 then Λµ ⊂ Λ(H) holds ν-almost surely.

The assumption that a subgroup H ≤ G satisfies |Λ(H)| ≥ 2 is equivalent to
saying that H contains an element acting on the space X via a loxodromic isometry.

Proof of Proposition 4.6. Consider the G-equivariant map F1 : Sub(G) → Cl(X)
given by
(4.7) F1(H) = WH(Λ(H)).
The assumption |Λ(H)| ≥ 2 implies that F1(H) ̸= ∅. Note that if Λ(H) ∩ Λµ ⊊ Λµ

then ∂WH(H) ∩ Λµ ⊊ Λµ. The result follows from Proposition 4.5. □

Proposition 4.7. Let ν be a µ-stationary random subgroup of G. If ν-almost every
subgroup H is not contained in the elliptic radical E(Gµ) then |FixΛµ

(H)| ≤ 1 holds
true ν-almost surely.

Proof. Consider the G-equivariant map F2 : Sub(G) → Cl(X) given by
(4.8) F2(H) = WH(FixΛµ

(H)).
If the subgroup H is ν-almost surely not contained in the elliptic radical E(Gµ)
then FixΛµ

(H) is ν-almost surely a proper subset of the limit set Λµ. In that case
it follows from the contrapositive direction of Proposition 4.5 that F2(H) = ∅ must
hold ν-almost surely. In other words |FixΛµ

(H)| ≤ 1 holds ν-almost surely. □

Proposition 4.8. Let ν be a µ-stationary random subgroup of G. If ν-almost every
subgroup H is not contained in the elliptic radical E(Gµ) then Λ(H) ̸= ∅ holds true
ν-almost surely.

Proof. Assume towards contradiction that the condition Λ(H) = ∅ is not ν-null.
Every subgroup H with Λ(H) = ∅ has bounded orbits [CdCMT15, Proposition 3.1].
Fix some radius R > 0 and consider the function F3 : Sub(G) → Cl(X) given by
(4.9) F3(H) = {x ∈ X : sup

h∈H
dX(hx, h) ≤ R}.

Provided that the radius R is taken to be sufficiently large we have
(4.10) ν({H ∈ Sub(G) : F3(H) ̸= ∅}) > 0
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According to Proposition 4.5 we deduce that ν-almost every subgroup H with
F3(H) ̸= ∅ satisfies Λµ ⊂ ∂F3(H). Every such subgroup must be contained in the
elliptic radical E(Gµ). We arrive at a contradiction. □

Putting together the above information we obtain the following.

Corollary 4.9. Let ν be a µ-stationary random subgroup of G. If ν-almost every
subgroup H is not contained in the elliptic radical E(Gµ) then either Λµ ⊂ Λ(H) or
|Λ(H)| = 1 holds true ν-almost surely.

Essential freeness of the boundary action. We conclude this section with a
nice application to be used in §6 below. Recall that Λµ = Λ(Gµ) is the limit set
and E(Gµ) is the elliptic radical of the group G.

Corollary 4.10. Let ν be a µ-stationary random subgroup of G. Assume that
|FixΛµ

(H)| = 1 holds true for ν-almost every subgroup H ∈ Sub(G). Then for
ν-almost every subgroup H ∈ Sub(G) the quotient group H/(H ∩ E(Gµ)) acts
essentially freely on the measure space (Λµ, νX).

Proof. Let (Sub(G)×Λµ, η) be the µ-join8 of the two µ-stationary spaces (Sub(G), ν)
and (Λµ, νX). This means that the probability measure η is µ-stationary and its
marginals on the two factors Sub(G) and Λµ are ν and νX , respectively. There is a
G-equivariant η-measurable map Ψ : Sub(G)×Λµ → Sub(G) given by Ψ(H, ζ) = Hζ

where Hζ = stabH(ζ) for all subgroups H ∈ Sub(G) and boundary points ζ ∈ ∂X.
The pushforward measure Ψ∗η is therefore a µ-stationary random subgroup of G.
Note that |FixΛµ

(H)| ≥ 2 is true Ψ∗η-almost surely. So Ψ∗η-almost every stabilizer
subgroup Hζ belongs to the elliptic radical E(Gµ) according to Proposition 4.7. The
desired conclusion follows. □

5. Geometric density for discrete stationary random subgroups

We have seen in the previous §4 that the limit set of a µ-stationary random
subgroup is either the entire boundary ∂X or a singleton. It is easy to see that both
possibilities may occur in general. Our current goal is to exclude the singleton case
for discrete µ-stationary random subgroups.

We maintain the notations and assumptions of §4. In particular G is a locally
compact group admitting a continuous action by isometries on a proper Gromov
hyperbolic space X and µ is a probability measure on the group G. The semigroup
Gµ generated by supp(µ) is a non-elementary group and there exists a µ-stationary
boundary measure as in Theorem 4.1. In addition we assume that the group Gµ

has full limit set, namely Λ(Gµ) = ∂X.

Theorem 5.1. Let ν be a µ-stationary random subgroup of G. Assume that ν-almost
every subgroup Γ acts properly on X and is not contained in the elliptic radical
E(Gµ). Then Λ(Γ) = ∂X holds true ν-almost surely.

The proof of Theorem 5.1 will be given towards the end of §5 below, after we
develop some more machinery.

8The reason to use the notion of µ-join is that the direct product of two µ-stationary spaces
may not be µ-stationary with respect to the diagonal action. See [FG10, §3] for details.
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Quasi-stabilizers and fixed points on the boundary. The notion of quasi-
stabilizers Γx,R was introduced in Definition 3.1. For every radius R > 0 and every
B ∈ N we denote

(5.1) Q(Γ; R, B) = {x ∈ X : |Γx,R| > B}

so that Q(Γ; R, B) ∈ Cl(X). Roughly speaking, if the group Γ fixes a point on the
boundary at infinity then the sets Q(Γ; R, B) are coarse analogues of horoballs.

Lemma 5.2. Let Γ be a subgroup of G acting on the space X without loxodromic
isometries. There is some constant R > 0 such that

(5.2) Fix∂X(Γ) ⊂ ∂Q(Γ; R, B)

for every B ∈ N with B < |Γ|.

The constant R in Lemma 5.2 depends only on the space X and is independent
of the particular subgroup Γ.

Proof of Lemma 5.2. Consider an arbitrary boundary point ζ ∈ Fix∂X(Γ) fixed by
the action of the group Γ. Let R0 be the constant provided by Lemma 3.2.

Fix some B ∈ N with B < |Γ| as well as an arbitrary subset {γ1, . . . , γB+1} ⊂ Γ.
Since every element of the group Γ is acting on the space X via a parabolic or an
elliptic isometry there are points x1, . . . , xB+1 ∈ X satisfying γi ∈ Γxi,R0 for all
i ∈ {1, . . . , B + 1}. Take a geodesic ray li from the point xi to the boundary point
ζ for each i ∈ {1, . . . , B + 1}. There is some constant R1 = R1(R0, δ) such that any
point y ∈ li satisfies γi ∈ Γy,R1 .

There is some point zB ∈ X within a distance of 5δ from all of the geodesic
rays l1, . . . , lB+1 [BH13, III.H.3.3.(2)]. The previous paragraph implies that γi ∈
ΓzB ,R for all indices i ∈ {1, . . . , B + 1} provided that R is a constant satisfying
R > 10δ + R1. In other words zB ∈ Q(Γ; R, B). In particular the subset in question
Q(Γ; R, B) is non-empty. Lastly note that the point zB can be taken in an arbitrary
small neighborhood of the boundary point ζ. It follows that ζ ∈ ∂Q(Γ; R, B) as
required. □

Lemma 5.3. Let Γ be a subgroup of G acting on the space X without loxodromic
isometries and fixing the point ζ0 ∈ ∂X. Let xn ∈ X be a sequence of points
converging to some boundary point ζ ∈ ∂X distinct from ζ0. Then for each R > 0
there is a point z ∈ X and some S > 0 such that Γxn,R ⊂ Γz,S for all n ∈ N.

Proof. Let R > 0 be arbitrary. For each n ∈ N take a geodesic ray ln from the
point xn to the fixed boundary point ζ0. The sequence of geodesic rays ln converges
uniformly on compact sets to a bi-infinite geodesic line l from the point ζ0 to the
point ζ. Let z ∈ l be an arbitrary point on the bi-infinite geodesic l. There is a
sufficiently large constant S > 0 depending on the sequence xn, on the constant R
and on the hyperbolicity constant of the space X such that Γxn,R ⊂ Γz,S for all
n ∈ N. □

Lemma 5.4. Let Γ be a subgroup of G acting on the space X without loxodromic
isometries and satisfying Fix∂X(Γ) ̸= ∅. Fix some constants R > 0 as well as B ∈ N
with B < |Γ|. Then

(5.3) ∂Q(Γ; R, B) ⊂ {ζ ∈ ∂X : |Γζ | > B}.
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Proof. Consider a point ζ ∈ ∂Q(Γ; R, B). We wish to show that |Γζ | > B. Let
ζ0 ∈ Fix∂X(Γ) be an arbitrary boundary point fixed by the action of Γ. We may
assume without loss of generality that ζ ≠ ζ0 for otherwise |Γζ | = |Γ| > B in which
case we are done.

Take a sequence of points xn ∈ Q(Γ; R, B) converging to the boundary point ζ.
According to Lemma 5.3 there is some point z ∈ X and some constant S > 0 such
that Γxn,R ⊂ Γz,S for all n ∈ N. In other words, the subsets Γxn,R are all contained
in the finite subset Γz,S and satisfy |Γxn,R| > B. Therefore
(5.4) | lim sup

n
Γxn,S | > B and lim sup

n
Γxn,S ⊂ Γζ .

We conclude that |Γζ | > B as required. □

Note that in the three previous lemmas (unlike the next lemma) the action of
the subgroup Γ on the space X was not assumed to be proper.

Lemma 5.5. Let Γ be a subgroup of G acting on the space X properly and without
loxodromic isometries. If ζ0 ∈ Fix∂X(Γ) then |Γζ | < ∞ for every ζ ∈ ∂X \ {ζ0}.

Proof. This statement follows immediately from [CdCMT15, Lemma 3.5]. □

Stationary random subgroups acting properly. We have previously established
in §4 that a µ-stationary random subgroup ν not contained in the elliptic radical
E(Gµ) satisfies |Fix∂X(H)| ≤ 1 for ν-almost every subgroup H. We now refine this
result under the additional assumption of discreteness.

Proposition 5.6. Let ν be a µ-stationary random subgroup of G. If ν-almost every
subgroup Γ is acting properly on the space X and is not contained in the elliptic
radical E(Gµ) then |Fix∂X(Γ)| ≠ 1 holds true ν-almost surely.

Proof. Throughout the proof it will be easier to assume without loss of generality
that the measure ν is ergodic.

Assume towards contradiction that ν-almost every subgroup Γ acts properly on
X and satisfies Fix∂X(Γ) = {ζΓ} for some boundary point ζΓ ∈ ∂X. The point ζΓ
depends on the subgroup Γ in a ν-measurable manner.

We know from Proposition 4.8 that Λ(Γ) ̸= ∅ holds ν-almost surely. In particular
ν-almost every subgroup Γ is infinite. By Gromov’s classification of actions on
hyperbolic spaces, the action of ν-almost every subgroup Γ is either horocyclic or
focal (see §3). In the horocyclic case the action of the group Γ has no loxodromic
isometries, and we may proceed with the proof as is.

In the focal case we first argue as follows. Consider the map θ : Sub(G) → Sub(G)
given by θ(Γ) = [Γ, Γ]. The push-forward measure ν1 = θ∗ν is a µ-stationary
subgroup of G. The action of ν′-almost every subgroup is proper, horocyclic and
fixes at least one point on the boundary (see [CdCMT15, Corollary 3.9]). Proposition
4.7 says that ν′-almost every subgroup Γ′ = θ(Γ) is either contained in the elliptic
radical E(Gµ) or satisfies Fix∂X(Γ′) = Fix∂X(Γ) = {ζΓ}. The first possibility is
eliminated by the fact that a focal action admits a pair of loxodoromic isometries
γ1, γ2 with γ+

1 = γ+
2 = ζΓ but γ−

1 ̸= γ−
2 . Up to replacing the µ-stationary random

subgroup ν by ν1 = θ∗ν in the focal case, we may assume for the remainder of the
proof that ν-almost every subgroup Γ acts without loxodromic isometries.

For every subgroup Γ ∈ Sub(G) consider the stabilizer sizes |Γζ | as a function
from the boundary ∂X to the countable set N ∪ {∞}. Clearly |ΓζΓ | = ∞ holds true
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ν-almost surely. On the other hand |Γζ | < ∞ for every ζ ∈ ∂X with ζ ̸= ζΓ and for
ν-almost every subgroup Γ, see Lemma 5.5. The Baire category theorem implies
that there is some minimal B ∈ N such that the subset {ζ ∈ ∂X : |Γζ | = B} of the
boundary ∂X has non-empty interior. As the measure ν was assumed to be ergodic
the same B works for ν-almost every subgroup Γ. In fact, it is ν × νX -almost surely
the case that the pair (Γ, ζ) satisfies {ζ ∈ ∂X : |Γζ | = B} = ∂X, for otherwise the
convex hull of the complementary subset of the boundary can be used to reach a
contradiction to Proposition 4.5.

Consider the ν-measurable mapping
(5.5) Φ : Γ 7→ Q(Γ; R, B), Φ : Sub(G) → Cl(X)
where B ∈ N is the constant determined in the previous paragraph and R > 0
is sufficiently large as in Lemma 5.2. On the one hand ζΓ ∈ ∂Q(Γ; R, B) holds
ν-almost surely according to Lemma 5.2. On the other hand ∂Q(Γ; R, B) ⊊ ∂X
occurs ν-almost surely because of the particular choice of B and of Lemma 5.4.
Therefore Φ∗ν-almost every closed subset is non-empty and has proper boundary at
infinity. We arrive at a contradiction to Proposition 4.5. □

We are ready to conclude the following proof as a consequence of Proposition 5.6.

Proof of Theorem 5.1. Let ν be a µ-stationary random subgroup of G such that ν-
almost every subgroup Γ acts properly on X and is not contained in the elliptic radical
E(Gµ). We know that Λ(Γ) = ∂X or |Λ(Γ)| = 1 holds ν-almost surely, see Corollary
4.9. In the first case we are done. In the second case Λ(Γ) ⊂ Fix∂X(Γ) so that
|Fix∂X(Γ)| ≥ 1 holds ν-almost surely. On the other hand |Fix∂X(Γ)| ≤ 1 according
to Proposition 4.7. Putting everything together implies that |Fix∂X(Γ)| = 1 holds
ν-almost surely. This contradicts Proposition 5.6. □

Corollary 5.7. Assume that the action of the subgroup Gµ on the space X is of
general type. Let ν be a µ-stationary random subgroup of G. If ν-almost every
subgroup acts properly on the space X and is not contained in the elliptic radical
E(Gµ) then the action of ν-almost every subgroup is of general type.

Amenable hyperbolic groups. Caprace, de Cornulier, Monod and Tessera
[CdCMT15] developed a rich and detailed structure theory for amenable non-
elementary Gromov hyperbolic locally compact groups. The action of a hyperbolic
group on itself is focal if and only if the group is amenable and non-elementary
hyperbolic. Every such group can be written as R⋉α H or Z⋉α H where α = α(1)
is a compacting automorphism of the locally compact group H, namely there is
some compact subset V ⊂ H such that every element g ∈ H satisfies αn(g) ∈ V for
all sufficiently large n. Moreover such a group acts properly and cocompactly by
isometries on some proper geodesically complete CAT(−1)-space.

Theorem 5.8. Let G be an amenable non-elementary hyperbolic locally compact
group and µ a probability measure on the group G. Assume that the measure µ has
finite first moment and is spread out. Then every discrete µ-stationary random
subgroup of G is contained in the elliptic radical E(Gµ).

Proof. First consider the case where the Poisson boundary of the pair (G, µ) is not
trivial. This means that the action of the group G on itself by isometries gives rise to
a µ-stationary boundary measure νG supported on the limit set Λ(Gµ) ⊂ ∂G by the
focal case of Theorem 4.1. Unless ν-almost every discrete subgroup Γ is contained
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in the elliptic radical E(G), we get that Fix∂G(Γ) = ∅ for ν-almost every discrete
subgroup Γ according to the two Propositions 4.7 and 5.6. This is a contradiction
to the fact that this action is focal.

Alternatively, consider the case where the Poisson boundary of the pair (G, µ) is
trivial. This means that any µ-stationary probability measure is in fact G-invariant,
see e.g. [Fur02]. In particular the probability measure ν is a discrete invariant
random subgroup. We may find some compactly supported spread out probability
measure µ′ on the group G such that the Poisson boundary of the pair (G, µ′) is non
trivial. This is possible by [Jaw95, Theorem 3.16] and by taking into account the
fact that the locally compact group G is non-elementary Gromov hyperbolic and as
such has exponential growth. The invariant random subgroup ν can be regarded as
a µ′-stationary random subgroup. At this point we may conclude the proof exactly
as in the previous paragraph. □

Remark 5.9. The stabilizer of a point at infinity for a general type action of a
locally compact group is a special case of an amenable non-elementary hyperbolic
group. For such groups Theorem 5.8 can be proved directly by inducing stationary
random subgroups. The proof given above is much more general however.

Remark 5.10. If G is any locally compact group with modular function ∆G and
ν is a discrete invariant random subgroup of G then ν-almost every subgroup is
contained in ker ∆G [BT17, Corollary 1.2]. In the context of amenable hyperbolic
groups ker ∆G = H. This can be used to get a weaker conclusion.

6. Discrete stationary random subgroups of products

Let X be a proper Gromov hyperbolic geodesic metric space for which the action
of Is(X) is of general type. Let Y be any proper metric space. Fix a pair of arbitrary
base points x0 ∈ X and y0 ∈ Y . Regard the product X × Y as a proper metric
space with the L2-product metric. Consider the group G of isometries of the space
X × Y preserving each factor, namely

(6.1) G = Is(X) × Is(Y ).

Let pX and pY denote the projection homomorphisms from the group G to its
coordinates Is(X) and Is(Y ) respectively. The group G is acting by isometries on
each factor X and Y via the projections pX and pY .

Let DSub(G) denote the Chabauty space of all discrete subgroups of the group
G. Given a discrete subgroup Γ ∈ DSub(G) it will be convenient to introduce the
shorthand notation

(6.2) FX(Γ) = Fix∂X(Γ)

where the group Γ is understood to act on the space X via the projection pX .
Fix a probability measure µX on the group Is(X). Assume that supp(µX)

generates as a semigroup a dense subgroup of Is(X).

Theorem 6.1. Let ν be a µX-stationary probability measure on the space DSub(G).
Then either FX(Γ) = ∅ or pX(Γ) is contained in the elliptic radical E(Is(X)) for
ν-almost every subgroup Γ.

Proof. We assume for the sake of convenience and without loss of generality that
the measure ν is ergodic.
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Assume that the projection pX(Γ) is ν-almost surely not contained in the elliptic
radical E(Is(X)). In this case we know by Proposition 4.7 that |FX(Γ)| ≤ 1 holds
true ν-almost surely. Our goal is to show that in fact FX(Γ) = ∅ holds ν-almost
surely.

There are two cases to consider, depending on whether the action of ν-almost
every subgroup Γ on the factor X is proper or not. In the proper case FX(Γ) = ∅
holds true ν-almost surely by Proposition 5.6 and we are done. For the remainder of
the proof assume that we are in the non-proper case, namely the projection pX(Γ)
is ν-almost surely a non-discrete subgroup of Is(X), and that FX(Γ) = {ζΓ} for
some point ζΓ ∈ ∂X (depending measurably on the subgroup Γ). We will arrive at
a contradiction.

To begin with, and up to replacing the random subgroup ν by its pushforward
with respect to the commutator closure map Γ 7→ [Γ, Γ], we may assume that
ν-almost every subgroup admits no loxodromic elements in its action on the factor
X via the projection pX . See the proof of Proposition 5.6 for more details concerning
this argument.

Fix an arbitrary radius R > 0. For each discrete subgroup Γ ∈ DSub(G) consider
the quasi-stabilizer
(6.3) Γx0,R = {γ ∈ Γ : dX(pX(γ)x0, x0) ≤ R}

corresponding to the action of the subgroup Γ on the factor X via the projection
map pX . This quasi-stabilizer is ν-almost surely infinite as the projection pX(Γ) is
non-discrete.

Let ω ∈ Is(X)N be a PµX
-random sample path. We claim that

(6.4) lim sup
n

pX(Γωnx0,R) ⊂ E(Is(X)).

Indeed the sequence of points ωnx0 converges PµX
-almost surely to the boundary

point ζω ∈ ∂X satisfying moreover ζω ̸= ζΓ. We rely on the fact that any element
γ ∈ Γ such that pX(γ) is not contained in the elliptic radical E(Is(X)) is acting
essentially freely on (∂X, νX), see Corollary 4.10. Therefore
(6.5) lim inf

n
dX (pX(γ)ωnx0, ωnx0) = ∞

PµX
-almost surely and for any element γ ∈ Γ with pX(γ) /∈ E(Is(X)). In particular

any such element γ must satisfy
(6.6) γ /∈ lim sup

n
Γωnx0,R.

The claim follows.
The discreteness of the subgroup Γ implies that pY (Γx,R) is ν-almost surely a

discrete subset of Is(Y ) for any point x ∈ X. We define the Borel function
(6.7) f : DSub(G) → [0, ∞) , f(Γ) = inf

γ∈Γx0,R

γ /∈E(G)

dY (pY (γ)y0, y0).

Given an element g ∈ Is(X) ≤ G we obviously have that pY (g)y0 = y0 and so
(6.8) f(Γg) = inf

γ∈Γg
x0,R

γ /∈E(G)

dY (pY (γ)y0, y0) = inf
γ∈Γg−1x0,R

γ /∈E(G)

dY (pY (γ)y0, y0).

We remark that for Pµ-almost every sample path ω there is some point z ∈ X and
some constant S > 0 such that the subsets pY (Γωnx0,R) are all contained in the
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discrete subset pY (Γz,S) ⊂ Is(Y ), see Lemma 5.3. This remark, combined with the
preceding claim applied for each fixed value R > 0 and with Equation (6.8), show
that

(6.9) lim inf
n

f(Γgngn−1···g1) = ∞

for ν-almost every subgroup Γ and µ⊗N
X -almost every sequence of increments (gn) ∈

Is(X)N. We emphasize that the sample path positions ωn all belong to the factor
Is(X). We arrive at a contradiction in light of Kakutani’s ergodic theorem, see
Corollary 2.3 specifically.

We conclude that FX(Γ) = ∅ holds ν-almost surely, as required. □

Products of hyperbolic spaces. Fix some k ∈ N. Let X1, . . . , Xk be a collection
of proper Gromov hyperbolic geodesic metric spaces. Assume that the action of the
group Is(Xi) on the space Xi has general type for each i. Let X denote the product
space

(6.10) X = X1 × · · · × Xn

endowed with the product metric.
Let G denote the finite index subgroup of the full group of isometries Is(X) con-

sisting of these isometries that preserve each individual factor Xi for i ∈ {1, . . . , k}.
In other words

(6.11) G = Is(X1) × · · · × Is(Xk).

Let pi denote the projection homomorphism from the group G to the coordinate
Is(Xi) for each i ∈ {1, . . . , k}. The group G is acting on each factor Xi via the
projection pi.

Fix a probability measure µi on the group Is(Xi) for each i ∈ {1, . . . , k}. Assume
that supp(µi) generates as a semigroup a dense subgroup of Is(Xi). Finally denote

(6.12) µ = µ1 ⊗ · · · ⊗ µk.

Corollary 6.2. Let ν be a discrete µ-stationary random subgroup of G. If the
projection pi(Γ) is ν-almost surely not contained in the elliptic radical E(Is(Xi)) for
each i then the action of ν-almost every subgroup Γ on the factor Xi has general
type.

Proof. Note that the measure ν is µi-stationary for each i by [BS06, Lemma 3.1].
Applying Theorem 6.1 with respect to each factor Xi individually implies that
Fi(Γ) = Fix∂Xi(Γ) = ∅ for each index i ∈ {1, . . . , k}. We may now argue exactly as
in the proof of Theorem 5.1 with respect to the action of ν-almost every subgroup Γ
on each factor Xi via the projection map pi. The only difference is that Proposition
5.6 preventing the possibility of admitting a single fixed point on the boundary in
the case of a single hyperbolic space is replaced by the information obtained from
Theorem 6.1. □

Product of CAT(−1)-spaces. Fix some k ∈ N. Let X1, . . . , Xk be a collection
of proper CAT(−1)-spaces. Let X denote the product space X = X1 × · · · × Xn

regarded with the product CAT(0) metric [BH13, p. 168].
The boundary at infinity ∂X is a CAT(1)-space with respect to the angular

metric [BH13, Theorem II.9.13]. It is isometric to the spherical join of the individual
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boundaries [BH13, §II.8.11], i.e.
(6.13) ∂X = ∂X1 ∗ ∂X2 ∗ · · · ∗ ∂Xk.

The boundary ∂X is realized as follows. Let Σ be a topological realization of the
combinatorial (k − 1)-simplex with vertex set V = {1, . . . , k}. Then
(6.14) ∂X = ∂X1 × ∂X2 × · · · × ∂Xk × Σ/ ∼
where ∼ is the equivalence relation defined in terms of the quotient map taking
points lying over some face F of the simplex Σ to the sub-product of these factors
∂Xi’s for which i ∈ F . The fiber of the natural continuous map σ : ∂X → Σ over
every interior point of the simplex Σ is homeomorphic to the direct product of
the individual boundaries ∂Xi’s. More generally, the fiber of the map σ over a
point lying on the face F of the simplex Σ is homeomorphic to the product of these
factors Xi for which i ∈ F . A boundary point ζ ∈ ∂X is called regular if σ(ζ) ∈ ∆̊.
Otherwise the boundary point ζ is called singular.

With the additional standing assumption that the spaces Xi are CAT(−1) rather
than Gromov hyperbolic, it is possible to extend Theorem 6.1 with respect to all
points at infinity of the product CAT(0)-space X, regular as well as singular ones.
Corollary 6.3. Let ν be a discrete µ-stationary random subgroup of the product∏k

i=1 Is(Xi). If ν-almost every subgroup projects non-trivially to each factor Is(Xi)
then ν-almost every subgroup Γ has Fix∂X(Γ) = ∅.
Proof. Note that the elliptic radical of Is(Z) is trivial for any CAT(−1)-space Z.
For each discrete subgroup Γ ∈ DSub(G) denote
(6.15) Fi(Γ) = Fix∂Xi

(Γ) ⊂ ∂Xi for each i ∈ {1, . . . , k}.

The spherical join
(6.16) F (Γ) = F1(Γ) ∗ · · · ∗ Fk(Γ)
can be naturally identified with a closed subset of the boundary ∂X. It can be
seen from the above explicit realization of the boundary ∂X that F (Γ) = Fix∂X(Γ).
In particular F (Γ) = ∅ if and only if Fi(Γ) = ∅ for each i ∈ {1, . . . , k}. With this
information at hand the corollary follows immediately from Theorem 6.1 applied
with respect to each factor X individually. We recall that the measure ν is in fact
µi-stationary for each i by [BS06, Lemma 3.1]. □

7. CAT(0)-spaces and geometric density

Let X be a proper geodesically complete CAT(0)-space with a fixed base point
x0 ∈ X. We assume that the group of isometries Is(X) is acting on the space X
cocompactly and without fixed points at infinity.
Definition 7.1. A subgroup Γ of the isometry group Is(X) is acting

• minimally if there are no proper closed convex Γ-invariant subsets, and
• geometrically densely if it acts minimally on X and without fixed points on

the boundary ∂X.
Our standing assumptions imply that the space X is boundary minimal, i.e every

closed convex subset Y ⊊ X has ∂Y ⊊ ∂X [CM09b, Proposition 1.5]. In particular
a subgroup Γ of Is(X) acts geometrically densely provided it admits no proper
closed invariant subsets on the boundary ∂X. Some information about the converse
direction of this statement is provided by the following result.
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Lemma 7.2. Let G be a subgroup of Is(X) acting geometrically densely on the
space X and ∅ ⊊ B ⊂ ∂X be a G-invariant closed subset. Then no proper closed
convex subset Y ⊊ X has B ⊂ ∂Y .

Proof. Assume towards contradiction that the family
(7.1) F = {Y ⊊ X is a closed convex subset such that B ⊂ ∂Y }
if non-empty. Consider the intersection

(7.2) Z =
⋂

Y ∈F
Y

so that Z is proper G-invariant closed convex subset of X. The minimality of the
G-action implies that Z = ∅. This means that the boundary subset C =

⋂
Y ∈F ∂Y

has an intrinsic circumradius of at most π/2 with respect to the Tits angle9 on
the boundary ∂X [CM09b, Proposition 3.2]. Additionally B ⊂ C so that C ̸= ∅.
Therefore the subset C has a unique circumcentre z ∈ ∂Y [CM09b, Proposition 3.2].
The G-action fixes the point z. This is a contradiction. □

Random walks and boundary measures. Let µ be a probability measure on
the group Is(X). Assume that the semigroup Gµ generated by the support of µ is a
group acting geometrically densely on the space X. We further assume that the
measure µ has positive drift, in the sense that the parameter A given by

(7.3) A = lim
n→∞

1
n

∥ωn∥ = lim
n→∞

1
n

dX(ωnx0, x0)

for Pµ-almost every sample path ω ∈ GN satisfies A > 0, see [KM99, Theorem 2.1].

Theorem 7.3 (Karlsson–Margulis [KM99]). For Pµ-almost every sample path
ω ∈ GN the sequence ωnx0 converges to a boundary point ζω ∈ ∂X depending on ω.

Let νX be the probability measure on the boundary ∂X obtained by pushing
forward the measure Pµ via the map ω 7→ ζω. The measure νX is µ-stationary.

The following result in the context of general CAT(0)-spaces is to be compared
with e.g. [BQ16b, Proposition 9.1.b] in the context of symmetric spaces.

Proposition 7.4. Any proper closed convex subset Y ⊊ X has supp(νX) ̸⊂ ∂Y .

Proof. The probability measure νX is quasi-invariant by Lemma 2.4. In particular
supp(νX) is a G-invariant subset of the boundary ∂X. The desired statement follows
immediately from Lemma 7.2. □

Stationary random convex subsets. Assume that the group Is(X) is acting
geometrically densely on the space X. We are ready to formulate a CAT(0)-space
variant of Proposition 4.5.

Proposition 7.5. Let ν be a µ-stationary probability measure on Cl(X) such that
ν-almost every closed subset is convex. Then supp(ν) ⊂ {∅, X}.

Proof. It will be convenient to assume that the measure ν is ergodic. Say towards
contradiction that ν-almost every closed convex subset Y has ∅ ⊊ Y ⊊ X. Consider
the ν-measurable function
(7.4) Φ : Cl(X) \ {∅} → [0, ∞) , Φ : Y 7→ dX(x0, Y ).

9The Tits angle is called angular metric in [BH13, II.9]
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We know that ν-almost every closed convex subset Y ⊂ X satisfies supp(νX) ⊊ ∂Y ,
see Proposition 7.4. This means that a sample path (ωn) ∈ GN with ωn = g1...gn

satisfies ωnx0 → ζ for some ζ /∈ ∂Y with positive Pµ-probability. In particular

(7.5) Φ(g−1
n · · · g−1

1 Y ) = dX(ωnx0, Y ) n→∞−−−−→ ∞.

This is a contradiction to Corollary 2.3 applied with respect to the function Φ defined
in Equation (7.4) and the probability measure µ̌ given by µ̌(A) = µ(A−1). □

Corollary 7.6. Let ν be a µ-stationary random subgroup of Is(X). If ν-almost
every subgroup fixes no point of the boundary ∂X then ν-almost every subgroup is
acting minimally, and is in particular geometrically dense.

Proof. Our standing assumptions on the space X imply that its Tits boundary
∂X is finite dimensional [Kle99]. This fact combined with the assumption that
µ-almost every subgroup has no fixed points on the boundary rules out case (A)
of the dichotomy presented in [CM09b, Theorem 4.3]. We deduce that ν-almost
every subgroup H admits a canonical minimal closed convex non-empty invariant
subset M(H) ∈ Cl(X), see case (B.iii) of [CM09b, Theorem 4.3]. Consider the
µ-stationary pushforward probability measure M∗ν on the space of closed subsets
Cl(X). According to Proposition 7.5 it must be the case that M∗ν = DX . In other
words ν-almost every subgroup is acting minimally. □

As an application of our results on ν-stationary subgroups of the isometry group
Is(X) we obtain the following. This can be seen as a stationary random subgroup
variant of the geometric Borel density theorem, see [CM09a, Theorem 2.4] as well
as the invariant random subgroup version [DGLL15].

Theorem 7.7. Assume that the CAT(0)-space X is given by X1 × · · · × Xk where
each Xi is a proper CAT(−1)-space with Is(Xi) acting geometrically densely. Let ν

be a discrete µ-stationary random subgroup of the product
∏k

i=1 Is(Xi). If ν-almost
every subgroup projects non-trivially to each factor then ν-almost every subgroup is
acting geometrically densely.

Proof. We know that ν-almost every subgroup has no fixed points on the boundary
∂X by Corollary 6.3. Therefore ν-almost every subgroup is geometrically dense by
Corollary 7.6. □

Finally we have the following CAT(0)-space variant of Proposition 4.8.

Proposition 7.8. Let ν be a µ-stationary random subgroup of Is(X) such that
ν-almost every subgroup is non-trivial. Then ν-almost every subgroup has unbounded
orbits in X.

Proof. Let Φ : Sub(G) → Cl(X) be the G-equivariant ν-measurable function taking
a closed subgroup H ∈ Sub(G) to its closed convex fixed point set Fix(H) ∈ Cl(X).
Consider the µ-stationary pushforward probability measure Φ∗ν on the space of
closed subsets Cl(X). It follows from Proposition 7.5 that Φ∗ν = αD∅ + (1 − α)DX

for some real number α ∈ [0, 1]. The only subgroup H ∈ Sub(G) with Φ(H) = X
is the trivial subgroup. On the other hand, recall that any bounded subset of a
CAT(0)-space has a unique circumcentre [BH13, II.2]. Therefore any subgroup
H ∈ Sub(G) having bounded orbits in X satisfies Φ(H) ̸= ∅. The desired conclusion
follows by combining these facts. □
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8. Random walks and Poincare series

The main result of this section is Theorem 8.8. It is stated below after we
introduce some relevant notions concerning random walks.

Let X be a proper unbounded metric space with a fixed base point x0 ∈ X. Let
Γ be a discrete group acting properly and cocompactly by isometries on the metric
space X. Following our standing notation, we will write

(8.1) ∥g∥ = dX(gx0, x0)

for every element g ∈ Γ, with the chosen base point x0 implicit in the notation.
We emphasize that the space X or (what is equivalent) the group Γ are not

required to be Gromov hyperbolic.

Green’s function. Let µ be a probability measure on the group Γ. Assume that
• the support of the measure µ generates the group Γ as a semigroup,
• the random walk determined by the measure µ is transient, and
• the measure µ has finite first moment, namely

∑
g∈Γ µ(g)∥g∥ < ∞.

Note that the random walk determined by µ will be transient provided the group Γ
is not virtually Z or Z2. Consider the Green’s function associated to the probability
measure µ

(8.2) G(g, h) =
∞∑

n=0
µ∗n(g−1h)

as well as the first return Green’s function

(8.3) F(g, h) = G(g, h)
G(e, e)

defined for all elements g, h ∈ Γ. The transience assumption implies that the
quantities F(g, h) and G(g, h) are finite for any pair of elements g, h ∈ Γ. The first
return Green’s function satisfies

(8.4) F(g, h) = Pµ({ω : g−1h = ωn for some n ∈ N})

for all elements g, h ∈ Γ.
The expression dµ = − log F defines a (possibly asymmetric) distance function

on the group Γ called the Green metric. The Green metric dµ is quasi-isometric to a
word metric on the group Γ (see [BHM11, Proposition 3.6] for symmetric measures
and [GT20, Proposition 7.8] in general).

Proposition 8.1. If the group Γ has exponential growth then the expression

(8.5)
∑
g∈Γ

∥g∥≤n

F(e, g)

grows subexponentially in n.

Proof. By the Harnack inequality there are constants k > 0 and 0 < t < ∞
depending the group Γ and the measure µ so that

(8.6) G(g, h) ≥ kt∥g−1h∥
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for all elements g, h ∈ Γ, see e.g. [Woe00, (25.1)]. In particular there is a constant
c > 0 so that dµ(e, g) ≤ c∥g∥ for all elements g ∈ Γ. Therefore

(8.7)
∑
g∈Γ

∥g∥≤n

F(e, g) ≤
∑
g∈Γ

dµ(e,g)≤cn

e−dµ(e,g) ≤ b

⌈cn⌉∑
i=1

e−i|{g ∈ Γ : dµ(e, g) ≤ i}|

for some constant b > 0 which depends on the group Γ and the measure µ. The
exponential growth condition implies that |{g ∈ Γ : dµ(e, g) ≤ i}| ≤ φ(i)ei for some
subexponentially growing function φ : N → N [BHM08, Proposition 3.1]. This
completes the proof. □

Entropy and drift. Recall that µ is a probability measure on the group Γ such
that supp(µ) generates Γ as a semigroup.

The drift of the measure µ is

(8.8) l(µ) = lim
n→∞

1
n

∥ωn∥.

The first moment assumption implies that this limit exists for Pµ-almost every
sample path ω and is independent of ω. We have l(µ) > 0 whenever the group Γ is
non-amenable, see e.g. [Woe00, Corollary 8.15].

The entropy of the measure µ is

(8.9) h(µ) = lim
n→∞

1
n

H(µ∗n)

where H(·) denotes Shannon entropy. This limit exists and is finite by the finite first
moment condition. Again, we have h(µ) > 0 whenever the group Γ is non-amenable
[KV83]. The entropy h(µ) coincides with the drift with respect to the Green metric
[BHM08, Theorem 1.1].

The fundamental inequality of Guivarch relates entropy and drift [Gui80]. It
states that

(8.10) h(µ) ≤ l(µ)δ(Γ)

where δ(Γ) is the critical exponent10 of the group Γ with respect to its action on
the metric space X. See also [Ver00, BHM08].

From now on we will assume that the group Γ is non-amenable (so that in
particular h(µ) > 0 and l(µ) > 0). For our purposes it will be convenient to
introduce the notation

(8.11) δ(µ) = h(µ)
l(µ) .

Annuli and hitting measures. For each i ∈ N consider the annulus given by

(8.12) Ai = {g ∈ Γ : i − 1 ≤ ∥g∥ < i}.

Assume that µ is a probability measure on the infinite group Γ with finite first
moment. Given a sample path ω ∈ ΓN and for each i ∈ N there is a first hitting time

(8.13) τi(ω) = inf{n ∈ N : ωn ∈ Ai}.

10The notion of critical exponent is discussed in §9 below.
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The first hitting time τi(ω) may be infinite11 in the situation where ωn /∈ Ai for all
n ∈ N. We define

θ(ω) = {i ∈ N : τi(ω) < ∞} ⊂ N.

The positivity of the drift l(µ) implies that the set θ(ω) is infinite for Pµ-almost
every sample path ω ∈ ΓN.

Let νi be the first hitting measure on the annulus Ai determined at the first
hitting time τi for each i ∈ N. Formally this means
(8.14) νi(E) = Pµ({ω : i ∈ θ(ω) and ωτi(ω) ∈ E})
for each subset E ⊂ Ai. Formally νi is a positive measure on the annulus Ai

satisfying 0 ≤ νi(Ai) ≤ 1.

Lemma 8.2. There is a constant ζ(µ) > 0 such that Pµ-almost every sample path
ω ∈ ΓN satisfies

(8.15) lim inf
n→∞

|θ(ω) ∩ [n] |
n

> ζ(µ).

Proof. For each given sample path ω ∈ ΓN and each n ∈ N consider the closed
interval

(8.16) In(ω) =
[
0, max

i∈[n]
∥ωi∥

]
⊂ R.

Further, for each K > 0, let Ln,K(ω) denote the total length of the open subintervals
of In(ω) of length ≥ K not containing any of the n-many points {∥ω1∥, . . . , ∥ωn∥}.
By the triangle inequality
(8.17) |∥ωi∥ − ∥ωi−1∥| ≤ ∥ω−1

i−1ωi∥ = ∥gi∥

where (gi) ∈ ΓN is the sequence of increments corresponding to the sample path ω.
It follows that Ln,K(ω) is upper bounded by the quantity Mn,K(ω) given by

(8.18) Mn,K(ω) =
∑

{i∈[n] : ∥gi∥≥K}

∥gi∥.

The strong law of large numbers implies for Pµ-almost every sample path ω ∈ ΓN

that

(8.19) lim
n→∞

1
n

Mn,K(ω) =
∑
g∈Γ

∥g∥≥K

µ(g)∥g∥.

Finally, the finite first moment assumption means that the right hand side in
Equation (8.19) tends to 0 as K tends to infinity. In follows that

(8.20) lim
K→∞

lim sup
n→∞

1
n

Ln,K(ω) = 0.

On the other hand, recall that by definition limn→∞
∥ωn∥

n = l(µ) > 0. Therefore,
provided the parameter K > 0 is sufficiently large, a positive proposition of the
points in the interval In(ω) are within distance at most K from some point of the
form ∥ωi∥. This is equivalent to the desired conclusion, for a suitable choice of the
constant ζ(µ) > 0. □

11This is precisely the technical challenge that comes up when working with infinitely supported
probability measures.



STATIONARY RANDOM SUBGROUPS IN NEGATIVE CURVATURE 27

Notation 8.3. limi∈θ(ω) is a limit taken over all indices i from the set θ(ω) in
ascending order. This makes sense for Pµ-almost every sample path ω where the
subset θ(ω) is infinite.

The following is stated inside the proof of [Tan17, Theorem 6.1] for finitely
supported random walks on hyperbolic groups. For the sake of the completeness
we include the proof, communicated to us by Tanaka. It works identically in our
setting.

Lemma 8.4. Pµ-almost every sample path ω ∈ ΓN satisfies

(8.21) lim
i∈θ(ω)

τi(ω)
i

→ 1
l(µ) .

Proof. Clearly Pµ-almost every sample path ω is such that the times τi(ω) with
i ∈ θ(ω) are pairwise distinct. In particular τi(ω) → ∞ as i → ∞. Moreover,
Pµ-almost every sample path ω has

(8.22) lim
i∈θ(ω)

∥ωτi(ω)∥
τi(ω) → l(µ)

by definition of the drift l(µ). Furthermore ∥ωτi(ω)∥ ∈ [i − 1, i) for all i ∈ N by
definition of the first hitting time τi. The result follows. □

An estimate on first hitting measures. Roughly speaking, we show that the
first hitting measure νi of “most points” in the i-th annulus Ai decays as e−iδ(µ).
Here is the precise statement.

Theorem 8.5. For every a > 0 we have

(8.23) lim
i→∞

νi

(
{g ∈ Ai : e−δ(µ)(i+a) ≤ νi({g}) ≤ e−δ(µ)(i−a)}

)
= 1.

The special case of Theorem 8.5 where the measure µ is finitely supported and
the group in question Γ is hyperbolic is Tanaka’s [Tan17, Theorem 6.1.2]. We
provide a detailed proof in the infinitely supported non-amenable case by using our
Proposition 8.1. In any case, Theorem 8.5 follows immediately by integrating the
statement of the following Proposition 8.6 with respect to the measure Pµ on the
space of sample paths.

Proposition 8.6. Pµ-almost every sample path ω satisfies

(8.24) lim
i∈θ(ω)

−
log νi({ωτi(ω)})

i
= δ(µ).

Proof. We follow Tanaka’s argument in [Tan17, Theorem 6.1] very closely. Observe
that using first hitting measures which are not probability measures as well as the
fact that the sum of the Green function over an annulus grows subexponentially
instead of being bounded does not complicate things much.

We argue by establishing an inequality in both directions of Equation (8.24). We
have already mentioned the fact that the entropy h(µ) is equal to the drift with
respect to the Green metric [BHM08, Theorem 1.1]. By definition, this means that
Pµ-almost every sample path ω satisfies

(8.25) lim
n→∞

− log F(e, ωn)
n

= h(µ).
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By the definition of the first return Green’s function and the first hitting time
measure it is immediate that

(8.26) νi(ωτi(ω)) ≤ F(e, ωτi(ω))

Pµ-almost surely and for all i ∈ θ(ω). Moreover τi(ω)/i → 1/l(µ) for i ∈ θ(ω)
by Lemma 8.4. Equations (8.25) and (8.26) together imply that Pµ-almost every
sample path ω has

(8.27) lim inf
i∈θ(ω)

−
log νi({ωτi(ω)})

i
≥ δ(µ).

We now establish the inequality in the other direction. For every choice of the
two parameters s > δ(µ) and 0 < t < (s − δ(µ))/2 consider the set

(8.28) Pi = {g ∈ Ai : νi(g) ≤ e−i(s−t) and F(e, g) ≥ e−i(δ(µ)+t)}.

Proposition 8.1 implies that

(8.29)
∑

g∈Ai

F(e, g) ≤ φ(i)

for some subexponentially growing function φ : N → N. We deduce that

(8.30) |Pi| ≤ φ(i)ei(δ(µ)+t)

and so

(8.31) νi(Pi) ≤ φ(i)ei(δ(µ)+2t−s)

for all i ∈ N. The Borel–Cantelli lemma implies that for Pµ-almost every sample
path ω there exists an Nω ∈ N such that ωτi(ω) /∈ Pi for all i ≥ Nω with i ∈ θ(ω).
On the other hand, Equation (8.25) combined with the fact that entropy is the
drift with respect to the Green metric implies that Pµ-almost every sample path ω
satisfies

(8.32) F(e, ωτi(ω)) ≥ e−h(µ)τi(ω)− t
2 ≥ e−i(δ(µ)+t)

for all sufficiently large i ∈ θ(ω). The above facts combined with the definition of
the sets Pi imply that

(8.33) lim sup
i∈θ(ω)

−
log νi({ωτi(ω)})

i
< s − t

for Pµ-almost every sample path ω. Taking the parameter s to be arbitrary close to
δ(µ) and the parameter t to be arbitrary small completes the proof. □

The following immediate corollary of Theorem 8.5 can be regarded as a sharpened
form of [Tan17, Theorem 6.1.3].

Corollary 8.7. For every ε > 0 there are constants C > 0 and N > 0 such that
provided i > N any subset E ⊂ Ai with νi(E) ≥ ε has cardinality |E| ≥ Ceiδ(µ).
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Divergence of Poincare series. The following theorem is the main result of §8.
Roughly speaking, it says that if a certain subset W of the group Γ is “large” in the
statistical sense of being frequently visited by the random walk, then it must also
be “large” in the sense that the partial Poincare series evaluated over W diverges.

Theorem 8.8. Assume that the group Γ is non-amenable and that the probability
measure µ whose supported generates Γ as a semigroup has finite first moment, i.e.

(8.34)
∑
g∈Γ

µ(g)∥g∥ < ∞.

Let W ⊂ Γ be a subset. If Pµ-almost every sample path ω satisfies

(8.35) lim inf
n→∞

|{i ∈ [n] : ωi ∈ W}|
n

> 1 − ζ(µ)

where ζ(µ) > 0 is as in Lemma 8.2 then

(8.36)
∑

γ∈W

e−δ(µ)∥γ∥ = ∞.

While the arguments of §8 are influenced by Tanaka’s work [Tan17], we differ
from Tanaka in several aspects. First, we do not require the group Γ (or the space
X it acts on) to be hyperbolic, and instead work with arbitrarily cocompact actions
of non-amenable groups. Furthermore, we assume that the measure µ has finite first
moment rather than finite support. In addition, we assume that sample paths enter
the subset W statistically, rather than deterministically. Lastly, the divergence of
the series in Equation (8.36) with exponent δ(µ) is a stronger statement than the
rate of growth estimate in [Tan17].

Proof of Theorem 8.8. We know By Lemma 8.2 that Pµ-almost every sample path
ω ∈ ΓN satisfies

(8.37) lim inf
n→∞

|{i ∈ [n] : i = τj(ω) for some j}|
n

≥ ζ > 0.

Let W ⊂ Γ be a subset taken so that Equation (8.35) holds. This assumption
together with Corollary 2.2 of Kakutani’s ergodic theorem give that

(8.38) ε = lim inf
n→∞

1
n

∑
i∈θ(ω)∩[n]

1W (ωτi(ω)) > 0

for Pµ-almost every sample path ω. The definition of the first hitting measures νi

gives that

(8.39) lim inf
n→∞

|{i ∈ [n] : νi(W ) > ε}|
n

> 0

for Pµ-almost every sample path ω. By Corollary 8.7 this implies

(8.40) lim inf
n→∞

|{i ∈ [n] : |W ∩ Ai| > Ceiδ(µ)}|
n

> 0

for some constant C > 0. Therefore

(8.41) lim inf
n→∞

1
n

n∑
i=1

e−iδ(µ)|W ∩ Ai| > 0.
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So

(8.42)
∞∑

i=0
e−iδ(µ)|W ∩ Ai| = ∞.

This equation is equivalent to the desired conclusion. □

Divergence of Poincare series weighted by a function. Lastly we consider a
certain modification of Theorem 8.8 allowing for a weight function. It will be used
below to study discrete stationary random subgroups of divergence type, see e.g.
Proposition 9.6 and the discussion surrounding it.

Proposition 8.9. Assume that the group Γ is non-amenable. Let
• µ be a probability measure on the group Γ with finite first moment whose

support generates Γ as a semigroup.
• S : Γ → R>0 be a function satisfying limn→∞ S(ωn) 1

n → 1 for Pµ-almost
every sample path ω.

• W ⊂ Γ be a subset such that Pµ-almost every sample path ω has

(8.43) lim inf
n→∞

|{i ∈ [n] : ωi ∈ W}|
n

> 1 − ζ

where ζ > 0 is the constant as in Lemma 8.2.
Then for any a > 0 we have that

(8.44) lim sup
i→∞

e−(δ(µ)−a)i
∑

g∈W ∩Ai

S(g) > 0.

Proof. It follows from Lemma 8.4 that Pµ-almost every sample path ω satisfies

(8.45) lim
i∈θ(ω)

S(ωτi(ω))1/i = lim
i∈θ(ω)

(
S(ωτi(ω))

1
τi(ω)

) τi(ω)
i = 1.

Together with Theorem 8.5 this implies that for every a > 0 we have
(8.46)

lim
i→∞

νi

(
{g ∈ Ai : eδ(µ)(i−a) ≤ νi({g}) ≤ eδ(µ)(i+a) and e−ai ≤ S(g) ≤ eai}

)
= 1.

Consequently for every choice of a > 0 and ε > 0 there are some constants C > 0
and N ∈ N such that whenever i > N any subset W ⊂ Ai with νi(W ) ≥ ε has

(8.47)
∑

g∈W ∩Ai

S(g) ≥ cei(δ(µ)−a).

By Equation (8.39) appearing in the proof of Theorem 8.8 we have

(8.48) lim inf
n→∞

|{i ∈ [n] : νi(W ) > ε}|
n

> 0

for Pµ-almost every sample path ω. The desired conclusion follows by putting
together Equations and (8.47) and (8.48). □
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9. Critical exponents of stationary random subgroups

Let X be a proper Gromov hyperbolic geodesic metric space with a fixed base
point x0 ∈ X. Assume that the group Is(X) is non-elementary. For every element
g ∈ Is(X) denote
(9.1) ∥g∥ = dX(gx0, x0)
with the chosen base point x0 implicit in the notation.

Definition 9.1. Given a discrete subgroup Γ of the group of isometries Is(X):
• The Poincare series of the subgroup Γ at the exponent s ≥ 0 is

PΓ(s) =
∑
γ∈Γ

e−s∥γ∥.

• The critical exponent of the subgroup Γ is the number
δ(Γ) = sup{s ≥ 0 : PΓ(s) < ∞} = inf{s ≥ 0 : PΓ(s) = ∞}.

• The subgroup Γ is of divergence type if PΓ(δ(Γ)) = ∞.
• The subgroup Γ is of convergence type if PΓ(δ(Γ)) < ∞.

The following is the main result of this work.

Theorem 9.2. Let µ be a probability measure on the group Is(X). Assume that
• the measure µ has finite first moment, and
• the semigroup generated by the support of µ is a discrete subgroup acting

properly and cocompactly on the metric space X.
Let ν be a discrete µ-stationary random subgroup of Is(X). If ν-almost every
subgroup is not contained in the elliptic radical E(Is(X)) then the strict lower bound

(9.2) δ(∆) >
δ(µ)

2
holds for ν-almost every discrete subgroup ∆. In particular

(9.3) P∆

(
δ(µ)

2

)
= ∞

holds ν-almost surely. Moreover if ν-almost every subgroup is of divergence type
then δ(∆) ≥ δ(µ) holds true ν-almost surely.

The remainder of this section is dedicated to giving a proof of Theorem 9.2. Note
that the assumption that the group Is(X) contains a uniform lattice implies that it
is of general type.

Divergence of Poincare series. The following uses the core arguments of [GL19]
adapted to work in the context of random walks. The idea is to relate the critical
exponents of ν-almost every discrete subgroup with the quantity δ(µ)

2 .

Proposition 9.3. Let V be an open and relatively compact subset of Is(X) consisting
of loxodromic elements. Let ∆ ∈ DSub(Is(X)) be a discrete subgroup. If

(9.4) lim inf
n→∞

|{i ∈ [n] : ∆ωi ∩ V ̸= ∅}|
n

> 1 − ζ(µ)

for Pµ-almost every sample path ω where ζ(µ) > 0 is as provided by Lemma 8.2
then P∆( δ(µ)

2 ) = ∞.
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Proof. To simplify notations write δ = δ(µ). Let Γ be the uniform lattice in the
group Is(X) generated by the support of the measure µ. Write

(9.5) P∆(δ/2) =
∑
h∈∆

e− δ
2 ∥h∥ so that P∆(δ/2) ≥

∑
h∈∆

hΓ∩V ̸=∅

e− δ
2 ∥h∥.

It was shown in [GL19, Lemma 3.3] that there is a constant β > 0 depending only
on the space X and the subset V such that

(9.6) e− δ
2 ∥h∥ ≥ 1

β
e−δ∥γ∥

for any element γ ∈ Γ with hγ ∈ V . Likewise, according to [GL19, Proposition 3.5]
there is a constant α > 0 depending only on the space X and the subset V such
that, if hΓ ∩ V ̸= ∅ then there is an element γh ∈ Γ with

(9.7) e−δ∥γh∥ ≥ 1
α

∑
γ∈Γ

hγ ∈V

e−δ∥γ∥.

Putting the above three equations together gives

(9.8) P∆(δ/2) ≥ 1
β

∑
h∈∆

hΓ∩V ̸=∅

e−δ∥γh∥ ≥ 1
αβ

∑
h∈∆

∑
γ∈Γ

hγ ∈V

e−δ∥γ∥ ≥ 1
αβ

∑
γ∈Γ

∆γ ∩V ̸=∅

e−δ∥γ∥.

To conclude apply Theorem 8.8 with the subset W = {γ ∈ Γ : ∆γ ∩ V ̸= ∅}. □

Our strategy towards Theorem 9.2 is to start by showing divergence at the
exponent δ(µ)

2 .

Proof of P∆(δ(µ)/2) = ∞ part in Theorem 9.2. Let ν be a discrete µ-stationary
subgroup not contained in the elliptic radical E(Is(X)). The action of the subgroup
generated by the support of the measure µ has general type. We know from
Corollary 5.7 that ν-almost every subgroup is of general type and in particular
admits loxodromic elements. By exhaustion it is possible to choose a sufficiently large
open and relatively compact subset V of Is(X) consisting of loxodromic elements so
that

(9.9) ν({∆ ∈ DSub(Is(X)) : ∆ ∩ V ̸= ∅}) > 1 − ζ(µ)

where ζ(µ) > 0 is as provided by Lemma 8.2.
We know from Corollary 2.2 of Kakutani’s ergodic theorem that Pµ-almost every

sample path ω and ν-almost every discrete subgroup ∆ satisfy

(9.10) lim inf
n→∞

|{i ∈ [n] : ∆ωi ∩ V ̸= ∅}|
n

> 1 − ζ(µ).

At this point we conclude that P∆(δ(µ)/2) = ∞ by Proposition 9.3. □

By regarding an invariant random subgroup as a stationary one it is now possible
to recover the non-strict inequality in the main result of [GL19].

Corollary 9.4. Assume that the group Is(X) admits a discrete subgroup acting
cocompactly on the space X. Let ν be a discrete invariant random subgroup of Is(X)
not contained in the elliptic radical E(Is(X)). Then ν-almost every discrete subgroup
∆ has δ(∆) ≥ 1

2 dim(∂X).
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Proof. Fix any uniform lattice Γ in the group Is(X). The construction of [GMM18,
Theorem 1.4] exhibits a sequence µi of probability measures supported on finite sub-
sets of the lattice Γ and satisfying δ(µi) → 1

2 dimHaus(∂X). The desired conclusion
now follows from Theorem 9.2. □

Stationary random subgroups of divergence type. Let Γ be a discrete sub-
group of Is(X) having divergence type. There exists a Γ-quasi-conformal density ηΓ

of dimension δ(Γ). By definition, this is a map assigning to every point x ∈ X a
positive measure ηΓ

x on the boundary ∂X satisfying certain axioms. Such a map is
unique up to a multiplicative constant. See e.g. [Nic89], [Coo93] or [GL19, Definition
6.6] for more detailed information.

Normalize ηΓ
x0

to be a probability measure. For discrete subgroups of divergence
type, the total measure ∥ηΓ

x ∥ = ηΓ
x (∂X) can be characterized in terms of a certain

Poincare series. Namely, for each pair of points x, y ∈ X denote

(9.11) PΓ(s; x, y) =
∑
γ∈Γ

e−sd(x,γy).

We get as a special case PΓ(s) = PΓ(s; x0, x0). Note that PΓ(s; x, y) = PΓ(s; y, x).
For any pair of points x, y ∈ X we have according to [MYJ20, Lemmas 6.1 and 6.2]
that

(9.12) ∥ηΓ
x ∥ ≈ lim

s↘δ(Γ)

PΓ(s; x, y)
PΓ(s; x0, y) .

We emphasize at this point that the multiplicative constant implicit in all our
formulas involving the notation ≈ depends only on the metric space X, and not on
anything else.

Let M(∂X) denote the space of all positive Borel measures on the boundary at
infinity ∂X. In fact, if ν is a discrete µ-stationary random subgroup of divergence
type then there is a ν-measurable mapping
(9.13) η : DSub(Is(X)) × X → M(∂X), η : (Γ, x) 7→ ηΓ

x

defined for all discrete subgroups Γ and all points x ∈ X in such a way that the
assignment x 7→ ηΓ

x is a Γ-quasi-conformal density of dimension δ(Γ). Consider the
expression
(9.14) πν : Is(X) × DSub(Is(X)) → R>0, πν(g, Γ) = ∥ηΓ

g−1x0
∥

for all elements g ∈ Is(X) and all subgroups Γ ∈ DSub(Is(X)). The function πν is
a multiplicative quasi-cocycle, i.e.
(9.15) πν(gh, Γ) ≈ πν(g, Γh)πν(h, Γ).
For all this see [GL19, §5 and §6].

By combining the definition of the quasi-cocycle πν in Equation (9.14) with the
characterization of the total mass of the conformal density in Equation (9.12) we
obtain the formula

(9.16) πν(g, Γ) ≈ lim
s↘δ(ν)

PΓ(s; g−1x0, g−1x0)
PΓ(s; g−1x0, x0) ≈ lim

s↘δ(ν)

PΓ(s; g−1x0, x0)
PΓ(s; x0, x0) .

One consequence of the above is that

(9.17) πν(g, Γ)2 ≈ lim
s↘δ(ν)

PΓ(s; g−1x0, g−1x0)
PΓ(s; x0, x0) = lim

s↘δ(ν)

PΓg (s)
PΓ(s) .
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The triangle inequality gives for each s > δ(Γ) that

(9.18) −2s∥g∥ ≤ log PΓ(s; g−1x0, g−1x0)
PΓ(s; g−1x0, x0) ≤ 2s∥g∥.

In particular |πν(g, Γ)| ≤ 2δ(Γ)∥g∥ for all g ∈ Is(X) and Γ ∈ DSub(Is(X)).

Remark 9.5. We have allowed for a slight abuse of notation; the above limits as
s ↘ δ(Γ) might not exist in the strict sense. The correct statement is that the limits
only exist along some subsequence, and the limit is independent of the choice of this
subsequence up to a uniform multiplicative constant.

Proposition 9.6. Let µ be a probability measure on the group Is(X) satisfying
the requirements stated in Theorem 9.2. Let ν be a discrete µ-stationary random
subgroup of Is(X) such that ν-almost every subgroup has divergence type. Then
Pµ-almost every sample path ω ∈ ΓN and ν-almost every subgroup ∆ ∈ DSub(Is(X))
satisfy

(9.19) lim
n→∞

πν(ωn, ∆) 1
n = 1.

Proof. To simplify notation write G = Is(X). For each s > δ(Γ) consider the
following double integral

(9.20)
∫

G×DSub(G)
log PΓg (s)

PΓ(s) d(µ ⊗ ν)(g, Γ).

The function in question is L1 by the finite first moment assumption together with
Equation (9.18). We may apply Fubini’s theorem and use the fact that µ ∗ ν = ν to
evaluate the double integral in Equation (9.20) as being equal to

(9.21)
∫

DSub(G)

(∫
G

log PΓg (s) µ(g) − log PΓ(s)
)

dν(Γ) = 0.

Thus, the dominated convergence theorem combined with the limit in Equation 9.17
imply that the function log πν is (µ × ν)-integrable. More precisely, it satisfies

(9.22)

∣∣∣∣∣
∫

G×DSub(G)
log πν(g, Γ) d(µ ⊗ ν)(g, Γ)

∣∣∣∣∣ ≤ C0

for some constant C0 > 0 depending only on the metric space X. In particular, the
constant C0 is independent of the measure µ, so that Equation 9.22 continues to
hold, say, if µ is replaced by any of its convolution powers µ∗n.

We proceed with establishing Equation (9.19). Consider the sequence of functions
fn : GN × DSub(G) → R>0 given by
(9.23) fn((gi), ∆) = log πν(g1...gn, ∆) ∀(gi) ∈ GN, ∆ ∈ DSub(G)
and for all indices n ∈ N. Define the transformation
(9.24) T : GN × DSub(G) → GN × DSub(G)
by
(9.25) T ((gi)∞

i=1, ∆) = ((gi+1)∞
i=1, ∆g1).

The transformation T preserves the product probability measure µN × ν and acts
ergodically. Since πµ is a multiplicative quasi-cocycle we get
(9.26) fn ◦ T m + fm − C1 ≤ fn+m ≤ fn ◦ T m + fm + C1
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for all n, m ∈ N where C1 > 0 is some constant depending only on the metric space
X. Denote f ′

n = fn + C1. Since log πv belongs to L1(µ × ν), so do the functions fn

and f ′
n for all n ∈ N. The sequence of functions f ′

n satisfies the inequalities

(9.27) f ′
n+m ≤ f ′

n ◦ T m + f ′
m

for all n, m ∈ N. Kingman’s subadditive ergodic theorem implies that

(9.28) lim
n→∞

fn

n
= lim

n→∞

f ′
n

n
= lim

n→∞

∫
f ′

n

n
d(µN × ν) = lim

n→∞

∫
fn

n
d(µN × ν)

in the sense of pointwise convergence at (µN × ν)-almost all points. Note that

(9.29)

∣∣∣∣∣
∫

G×DSub(G)
fn d(µ∗n × ν)

∣∣∣∣∣ =

∣∣∣∣∣
∫

G×DSub(G)
log πν d(µ∗n × ν)

∣∣∣∣∣ ≤ C1

independently of n, as we have explained above, Therefore, we conclude that fn

n → 0
pointwise at (µN × ν)-almost all points as n → ∞. This is equivalent to the desired
conclusion in Equation (9.19). □

Proof of the divergence type case in Theorem 9.2. Write G = Is(X) to simplify no-
tations. Let ν be a discrete divergence type µ-stationary random subgroup of the
group G. Consider the multiplicative cocycle πν : G × DSub(G) → R>0 associated
to the random subgroup ν.

Assume without loss of generality that the measure ν is ergodic. Therefore
the critical exponent regarded as a ν-measurable function δ : DSub(G) → R≥0 is
ν-almost everywhere constant [GL19, p. 424]. Denote this constant by δ(ν). So
δ(∆) = δ(ν) for ν-almost every subgroup ∆. In this terminology, our goal is to
prove that δ(ν) ≥ δ(µ).

Take a Borel subset Y ⊂ DSub(G) with ν(Y ) > 1 − ζ(µ) with the properties
provided by [GL19, Proposition 7.2]. Here ζ(µ) > 0 is the constant provided by
Lemma 8.2. For each discrete subgroup ∆ denote

(9.30) W∆ = {γ ∈ Γ : ∆γ ∈ Y }.

There is some k ∈ N such that ν-almost every discrete subgroup ∆ ∈ Y satisfies

(9.31)
∑

γ∈W∆
i−k≤∥γ∥≤i

πν(γ, ∆) ≤ c1eδ(ν)i

for some constant c1 > 0 and for all i ∈ N, see [GL19, Proposition 7.3]. We remark
that these two propositions from [GL19] were proved in the context of invariant
random subgroups but their proofs don’t use the invariance of the measure ν in any
way. They are valid for any probability measure on the space DSub(G) whatsoever.
Changing summation from annuli to spheres gives

(9.32)
∑

γ∈W∆
∥γ∥≤j

πν(γ, ∆) ≤
j∑

i=1

∑
γ∈W∆

i−k≤∥γ∥≤i

πν(γ, ∆) ≤ c1

j∑
i=1

eδ(ν)i ≤ c2eδ(ν)j

for all indices j ∈ N where c2 = c1
1−e−δ(ν) .

We contrast the previous paragraph with the fact that limn πν(ωn, ∆) 1
n = 1 holds

true for Pν-almost every sample path ω and ν-almost every discrete subgroup ∆. Fix
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an arbitrary parameter a > 0. Proposition 8.9 shows that ν-almost every subgroup
∆ satisfies

(9.33) lim sup
j→∞

e−(δ(µ)−a)j
∑

γ∈W∆
∥γ∥≤j

πν(γ, ∆) > 0.

Equation (9.33) is only possible if δ(µ) − a ≤ δ(ν). Taking the parameter a to be
arbitrary small we get δ(µ) ≤ δ(ν) as required. □

The following strategy is taken from [GL19].

Proof of the strict inequality in Theorem 9.2. Let be ν be a discrete µ-stationary
random subgroup on Is(X). We have already proved that P∆

(
δ(µ)

2

)
= ∞ so that

in particular δ(ν) ≥ δ(µ)
2 . Assume towards contradiction that δ(ν) = δ(µ)

2 . This
means that the µ-stationary random subgroup ν is almost surely of divergence
type. It follows from the above proof that δ(ν) ≥ δ(µ). This is a contradiction as
δ(µ) > 0. □

The above paragraphs complete the proof of Theorem 9.2.

A probability measure µ maximizing δ(µ). The exact lower bound on the
critical exponent of discrete stationary random subgroups obtained in Theorem 9.2
depends on the parameter δ(µ) = h(µ)/l(µ) of the probability measure µ. In this
sense, our results are stronger, the greater is the value of δ(µ). We now discuss
a particular construction maximizing the parameter δ(µ) following Connell and
Muchnik [CM07].

Recall that X is a proper Gromov hyperbolic geodesic metric space with a
non-elementary group of isometries Is(X) and a fixed arbitrary base point x0 ∈ X.
Assume that Is(X) admits a uniform lattice denoted by Γ.

Let ηΓ be a Γ-quasi-conformal density of dimension δ(Γ). Normalize so that
ηΓ

x0
(∂X) = 1. The main result of [CM07] asserts that there is a probability measure

µΓ supported12 on the lattice Γ such that the probability measure ηΓ
x0

on the
boundary ∂X is µ-stationary. Now, on the one hand, the Hausdorff dimension
of a µ-stationary probability measure on the boundary equals h(µ)/l(µ) [Tan19,
Theorem 1.1]. On the other hand, the Hausdorff dimension of δ(Γ)-dimensional
Γ-quasi-conformal measures equals δ(Γ) = dimHaus(∂X) [Coo93, Theorem 7.7]. We
deduce that the measure µΓ constructed by the Connell and Muchnik satisfies

(9.34) δ(µΓ) = δ(Γ) = dimHaus(∂X).

Recall that δ(Γ) is the maximal possible such value for δ(µ) by the fundamental
inequality of Guivarch [Gui80].

In the special case where the space X is assumed to be CAT(−1), the measure µΓ
constructed in [CM07] can be chosen to have finite first moment. The analogous fact
for symmetric spaces of rank one (or more generally, universal covers of closed pinched
negatively curved Riemannian manifolds) follows by the method of discretization
of Brownian motion, see [Fur71, LS84, Led90, Mar91, BL, BHM11]. For symmetric
spaces, the µΓ-stationary probability measure on the boundary ∂X coincides with
the unique K-invariant one, where K = stabIs(X)(x0).

12In fact µΓ can be taken so that supp(µΓ) = Γ, see [CM07, Remark 0.6].
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For general Gromov hyperbolic spaces which are not CAT(−1), it is not known
whether one can find such a measure µΓ supported on the lattice Γ with δ(µΓ) = δ(Γ)
and with finite first moment. However, the construction of Gouezel–Matheus–
Maucourant [GMM18, Theorem 1.4] exhibits a sequence of probability measures
µi supported on finite subsets of the lattice Γ and satisfying δ(µi) → δ(Γ). In fact,
each such µi can be taken to be the uniform probability measure supported on the
annulus given by {γ ∈ Γ : k ≤ ∥γ∥ < k + 1}.

It is interesting to specialize Theorem 9.2 to the situation when we know of an
explicit measure µΓ satisfying δ(µΓ) = dimHaus(∂X). In that case, we immediately
obtain the following.
Corollary 9.7. Let X be a CAT(−1) space. Assume that Is(X) admits a uniform
lattice Γ. Fix13 a probability measure µΓ whose support generates Γ as a semigroup,
of finite first moment and satisfying δ(µΓ) = dimHaus(∂X). Let ν be a non-trivial
discrete µ-stationary random subgroup on Is(X). Then

• δ(∆) > 1
2 dimHaus(∂X) for ν-almost every subgroup ∆, and

• if ν-almost every subgroup ∆ has divergence type then δ(∆) = dimHaus(∂X).
Corollary 9.7 certainly applies to all rank one symmetric spaces and Bruhat–Tits

buildings. Lastly we consider stationary random subgroups of free groups.
Corollary 9.8. Let Fk be the free group on k generators. Let µk be the uniform
measure on the standard symmetric generating set. Then any µk-stationary random
subgroup of Fk has

• δ(H) > log(2k−1)
2 for ν-almost every subgroup ∆, and

• if ν-almost every subgroup H has divergence type then δ(H) = log(2k − 1).
Proof. The finitely supported measure µk satisfies

(9.35) δ(µ) = l(µ)
h(µ) = dimHaus(∂X) = log(2k − 1)

by [Led01]. The desired conclusion follows from this and from Theorem 9.2. □

10. Random walks and confined subgroups

In this section, we apply our results on critical exponents of stationary random
subgroups to show that subgroups of small critical exponent are not confined.

Confined subgroups. Let G be a second countable locally compact group.
Definition 10.1. A subgroup H of the group G is called confined if there is a
compact subset K ⊂ G so that (Hg ∩ K) \ {e} ≠ ∅ for every element g ∈ G.

The notion of confined subgroups admits an equivalent characterization in terms
of the Chabauty topology.
Proposition 10.2. If the trivial subgroup {e} does not belong to the Chabauty
closure {Hg : g ∈ G} then the subgroup H ≤ G is confined. The converse direction
holds provided that the group G has no small subgroups14.

13Such a probability measure µΓ always exists for any CAT(−1)-space admitting a uniform
lattice; see the preceding discussion relying on the work of [CM07].

14A topological group G has no small subgroups if it admits a neighborhood of the identity
containing no non-trivial subgroups. For example, Lie groups as well as discrete groups have no
small subgroups.
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Proof. Assume that the trivial subgroup is not in the Chabauty closure of the family
of all subgroups conjugate to H. So, there is some Chabauty neighborhood Ω with
{e} ∈ Ω but Hg /∈ Ω for all elements g ∈ G. The description of the standard
sub-basis for the Chabauty topology given in [Gel15, §1] shows that Ω contains a
subset of the form {L ∈ Sub(G) : L ∩ K = ∅} for some compact subset K ⊂ G.
The desired conclusion follows.

For the converse direction assume that the group G has no small subgroups
and that H is a confined subgroup. In particular, there is some compact subset
K ⊂ G so that (Hg ∩ K) \ {e} ≠ ∅ for every element g ∈ G. Let V be a symmetric
relatively compact identity neighborhood in the group G containing no non-trivial
subgroups. Then the compact subset K can be replaced with K1 = (K ∪ V

2) \ V
to exhibit that the subgroup H is confined. This means that any subgroup in the
Chabauty closure {Hg : g ∈ G} intersects the compact set K1 non-trivially and is
in particular non-trivial. □

Example 10.3. Let G be a rank one simple Lie group with associated symmetric
space X. A discrete torsion-free subgroup Γ of the Lie group G is confined if and
only if there is an upper bound on the injectivity radius at all points of the locally
symmetric space MΓ = Γ\X.

Continuity of the critical exponent. Our method relies on the fact that the
critical exponent is lower semi-continuous with respect to the Chabauty topology.

Proposition 10.4. Let ∆n → ∆ be a Chabauty converging sequence of discrete
subgroups. Assume that the subgroup ∆ is discrete. Then

(10.1) lim inf
n

δ(∆n) ≥ δ(∆).

This statement is well-known to experts. See for instance [McM99, Theorem 7.7]
for the case of Kleinian groups or [MYJ20, Proposition 7.2] for general Gromov
hyperbolic spaces (but with an additional assumption that the groups Γn are of
divergence type). As we could not locate a reference for the general statement
(without this additional assumption) we provide a proof for the readers’ convenience.

Proof of Proposition 10.4. Fix an arbitrary base point x0 ∈ X. Denote δ0 =
lim inf δ(∆n). Up to passing to a subsequence we may assume that limn δ(∆n) = δ0.
Let M(∂X) denote the space of all positive measures on the boundary ∂X. For
each n let ηn : X → M(∂X) be some ∆n-quasi-conformal density of exponent δ(∆n)
normalized so that (ηn)x0(∂X) = 1, in other words so that (ηn)x0 is a probability
measure. Let η be any weak-∗ accumulation point of the probability measures
(ηn)x0 so that η is a probability measure on the boundary ∂X. Enrich η to a
quasi-conformal density by setting

(10.2) ηx(ζ) = eδ0βX (x0,x)η(ζ) ∀x ∈ X, ζ ∈ ∂X.

Then η satisfies the axioms of a ∆-quasi-conformal density of exponent δ0. Note
that a quasi-conformal measure is not required to have its support coincide with the
limit set. Since ∆ admits such a quasi-conformal measure we infer that δ(∆) ≤ δ0,
see [Coo93, Corollaire 6.6] or [MYJ20, Theorem 2.6]. □
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Subgroups of small critical exponent are not confined. We consider discrete
subgroups of simple rank one analytic groups and show that small critical exponent
implies that the subgroup in question is not confined. The Archimedean and the
non-Archimedean cases will be treated in parallel.

In the real analytic case let G be a rank one simple Lie group with associated
symmetric space X. Fix an arbitrary base point x ∈ X.

In the non-Archimedean case let k be a non-Archimedean local field. Let G be a
connected simply-connected semisimple k-algebraic linear group with rankk(G) = 1
and without k-anisotropic factors. Take G = G(k) so that G is a k-analytic group.
Let X be the Bruhat–Tits building associated to the group G. This means that
X is a (pe1 + 1, pe2 + 1)-biregular tree for some e1, e2 ∈ N [Car01] where p is the
characteristic of the residue field of k. Fix an arbitrary vertex x ∈ X.

In either case the metric space X is Gromov hyperbolic and the analytic group
G is acting on the space X by isometries. To simplify the situation we will find
it convenient to pass to the quotient by the finite kernel Z(G) of the action of the
analytic group G on the metric space X and to assume in effect that G ≤ Is(X).

Denote K = stabG(x) so that K is a maximal compact subgroup of the analytic
group G. The compact subgroup K is acting transitively on the visual boundary ∂X
of the Gromov hyperbolic space X. Let m denote the unique K-invariant probability
measure15 on the visual boundary ∂X. Note that the measure m depends on the
the choice of the point x ∈ X.

Let µ0 be the explicit bi-K-invariant probability measure on the analytic group
G constructed in the work [GLM22] for the Archimedean as well as for the non-
Archimedean case. The measure µ0 has the following useful property — for every
discrete group Γ of the analytic group G, any weak-∗ accumulation point of the
sequence of probability measures 1

n

∑n
i=1 µ∗i

0 ∗DΓ is a discrete µ0-stationary random
subgroup [FG23, Theorem 1.6].

We remark that in the zero characteristic non-Archimedean case there is no need
to consider the measure µ0 at all, since the analytic group G has no small discrete
subgroups [Ser09, Part II, Chapter V.9, Theorem 5].

Let ν0 be the µ0-stationary boundary measure ν0 on the visual boundary ∂X
provided by Theorem 4.1. The measure ν0 is K-invariant. This follows from the
equation ν0 = µ0 ∗ ν0 and using the fact that the measure µ0 is bi-K-invariant.
Since the visual boundary ∂X admits a unique K-invariant probability measure m
it must be the case that ν0 = m.

Consider the probability measure µ1 on the group Is(X) as follows. Recall that
we are regarding the analytic group G as a subgroup of Is(X).

(1) The real case. Any connected non-compact semisimple Lie group admits
uniform (as well as non-uniform) lattices [Bor63]. Fix an arbitrary uniform
lattice Γ in the Lie group G. Take µ1 to be either the probability measure µΓ
constructed by Connell–Muchnik [CM07] or the discretization of Brownian
motion on the Lie group G, supported on the lattice Γ and with respect to
the base point x. It is a property of these classes of measures (discussed
in §9) that the µ1-stationary boundary measure ν1 on the visual boundary
∂X is the unique K-invariant one.

15The probability measure m can be identified with the Haar measure on the coset space K/M
where the closed subgroup M is the stabilizer of some boundary point ∞ ∈ ∂X.
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(2) The non-Archimedean case. The fundamental domain for the action of the
full group of isometries Is(X) on the Bruhat–Tits tree X is a single edge. In
particular, the group Is(X) admits a uniform lattice Γ of the form Γ = A∗B
where A and B respectively are finite groups acting simply transitively on
the link of two adjacent vertices vA and vB of the tree X. Let µA and µB

be the uniform probability measures on the two sets A \ {e} and B \ {e}
respectively. Let µ1 be the probability measure supported on the uniform
lattice Γ given by

(10.3) µ = |A| − 1
|A| − 1 + ρ

µA + |B| − 1
|B| − 1 + ρ

µB

where ρ > 0 is the unique positive real number satisfying

(10.4) |A| − 1
|A| − 1 + ρ

+ |B| − 1
|B| − 1 + ρ

= 1.

The probability measure µ1 satisfies δ(µ1) = h(µ1)
l(µ1) = δ(Γ). Furthermore the

µ1-stationary boundary stationary measure ν1 on the visual boundary ∂X
is K-invariant. See [MM07, Proposition 5.2] for both facts. Alternatively,
for a less explicit but more uniform treatment, one may take µ1 to be
the measure µΓ constructed in [CM07] with respect to this (or any other)
uniform lattice.

In either case µ1 is a probability measure supported on a uniform lattice Γ in
the group Is(X) and the µ1-stationary boundary measure ν1 satisfies ν1 = m.

We conclude that the stationary boundary measures ν0 and ν1 for the two
probability measures µ0 and µ1 on the analytic group G coincide. These stationary
boundary measures on the visual boundary ∂X provide a topological model for
the Poisson boundary. It follows that a given random subgroup ν of the analytic
group G is µ0-stationary if and only if it is µ1-stationary (see e.g. the discussion on
[GLM22, p. 428]).
Theorem 10.5. Let G be a simple analytic group16 of rank one. Let X be the
associated symmetric space or Bruhat–Tits tree. Let ∆ be a discrete subgroup of the
analytic group G. If δ(∆) ≤ dimHaus(∂X)

2 then {e} ∈ {∆g : g ∈ G}.
Recall that if G is a Lie group then the statement of Theorem 10.5 can be

reformulated to say that ∆ is not confined, see Proposition 10.2 for details.

Proof of Theorem 10.5. Let µ1 be the probability measure supported on some fixed
uniform lattice in the analytic group G as constructed above, e.g. the one constructed
in [CM07]. It satisfies δ(µ1) = δ(Γ) = dimHaus(∂X)

2 .
Consider a discrete subgroup ∆ of the Lie group G and assume that δ(∆) ≤ δ(µ1)

2 .
Let ν be any weak-∗ accumulation point of the sequence of probability measures
νn = 1

n

∑n
i=1 µ∗i

0 ∗ D∆. The key property of the probability measure µ0 implies that
the resulting random subgroup ν is discrete and µ0-stationary [FG23, Theorem 1.6].
The last paragraph of the preceding discussion shows that the random subgroup ν
is at the same time µ1-stationary.

We remark that in the zero characteristic non-Archimedean case there is no need
to consider the measure µ0 at all and we may work with the measure µ1 directly.

16Here G is understood to be either a simple rank one Lie group or a non-Archimedean analytic
group of the form G(k) considered above.
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We know from Theorem 9.2 that ν-almost every non-trivial subgroup Λ satisfies
δ(Λ) > δ(µ1)

2 . One the other hand, the critical exponent is a conjugation invariant
and a lower semi-continuous function on the Chabauty space of discrete subgroups
by Proposition 10.4. So δ(Λ) ≤ δ(∆) must hold ν-almost surely. We conclude that
ν = D{e} where {e} is the trivial subgroup of the Lie group G. In the particular
the trivial subgroup {e} lies is the Chabauty closure of the conjugacy class of the
subgroup ∆ by the Portmanteau theorem. □

General Gromov hyperbolic groups. In the case of free groups we recover the
result of [Fra20, Corollary 3.2].

Theorem 10.6. Let Fk be the free group of rank k ∈ N and Xk be the Cayley graph
of Fk with respect to the standard generating set. Let H be a subgroup of Fk with
δ(H) ≤ log(2k−1)

2 . Then H is not confined.

Proof. The proof follows the same strategy as the proof of Theorem 10.5. This time
we use the uniform probability measure µk supported on the standard symmetric
generating set for the group Fk. It is shown in [MM07] that the measure µk satisfies

(10.5) δ(µk) = δ(Γ) = dimHaus(∂Xk) = log(2k − 1).

The proof is simpler in this case as there is no need to worry about discreteness of
the limiting stationary random subgroup (for the group Fk itself is discrete). □

Finally we state a weaker analogue of Theorems 10.5 and 10.6 that applies more
generally to all Gromov hyperbolic metric spaces.

Theorem 10.7. Let X be a proper Gromov hyperbolic geodesic metric space with
isometry group Is(X). Assume that the group Is(X) admits a discrete subgroup Γ
which acts properly and cocompactly and which intersects the elliptic radical E(Is(X))
trivially. If ∆ is any subgroup of Γ with δ(∆) < δ(Γ)

2 then ∆ is not confined.

The above result applies in particular in the case where the group Is(X) itself is
discrete.

Proof of Theorem 10.7. Let µk be the uniform probability measure supported on
the finite set

(10.6) {γ ∈ Γ : k ≤ ∥γ∥ < k + 1}

for every k ∈ N. The sequence of probability measures µk satisfies δ(µk) k→∞−−−−→ δ(Γ)
[GMM18, Theorem 1.4]. In particular δ(∆) ≤ δ(µk0 )

2 holds for some fixed sufficiently
large k0 ∈ N. Let ν be any weak-∗ accumulation point of the sequence of probability
measures νn = 1

n

∑n
i=1 µ∗i

k0
∗ D∆. Since the convolution powers µ∗i

k0
are all supported

on the discrete subgroup Γ and as ∆ ≤ Γ, the resulting µk0-stationary random
subgroup ν is almost surely contained in the discrete subgroup Γ. From this point
we may conclude exactly as in the proof of Theorem 10.5. □

Lastly, if the proper space X in Theorem 10.7 is CAT(−1) rather than simply
Gromov hyperbolic, then the strict inequality can be replaced by a non-strict
inequality. Namely, any subgroup ∆ ≤ Γ with δ(∆) ≤ δ(Γ)

2 is not confined.
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