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Simple route of engineering topological phases for any desired value of winding and Chern numbers
is found in the Su-Schrieffer-Heeger (SSH) model by adding a further neighbor hopping term of
varying distances. It is known that the standard SSH model yields a single topological phase
with winding number, ν = 1. In this study it is shown that how one can generate topological
phases with any values of winding numbers, for examples, ν = ±1,±2,±3, · · · , in the presence
of a single further neighbor term which preserves inversion, particle-hole and chiral symmetries.
Quench dynamics of the topological and trivial phases are studied in the presence of a specific
nonlinear term. Another version of SSH model with additional modulating nearest neighbor and
next-nearest-neighbor hopping parameters was introduced before which exhibit a single topological
phase characterized by Chern number, C = ±1. Standard form of inversion, particle-hole and chiral
symmetries are broken in this model. Here this model has been studied in the presence of several
types of parametrization among which, for a special case the system is found to yield a series of
phases with Chern numbers, C = ±1,±2,±3, · · · . In another parametrization, multiple crossings
within the edge states energy lines are found in both trivial and topological phases. Topological
phase diagrams are drawn for every case. Emergence of spurious topological phases is also reported.
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I. INTRODUCTION

Su-Schrieffer-Heeger (SSH) model is the most popular
representative of one-dimensional (1D) topological insu-
lator which paved the way for studying the topological
phases in the simplest manner1,2. Both trivial and topo-
logical insulating phases have been realized by tuning the
ratio of inter and intracell hopping amplitudes in this
staggered model composed by two-site unit cells. Non-
trivial phase is observed when this ratio exceeds unity
and it is characterized by a nonzero topological invari-
ant known as winding number (ν) which is connected to
the integral of Berry curvature over the Brillouin zone
(BZ) and known as Pancharatnam-Berry (PB) phase or
Zak phase. This nontrivial phase is at the same time as-
sociated with the emergence of symmetry protected zero
energy states which are found localized on both the edges
of the open chain. Transition between those two phases
with nonzero band gap is accompanied by vanishing band
gap found at the phase transition point.

SSH model is connected with the 1D Kitaev model by
unitary transformation, which opens up a new field of in-
vestigation known as topological superconductivity3. Im-
portance of topological matter lies in the fact that ad-
ditional topological robustness in the nontrivial phase
protects these systems from any kind of imperfections
present in the materials. This robustness enhances quan-
tum correlations4 and causes higher efficiency in elec-
tronic transport. As a result, topological materials are
expected to be more suitable in the development of quan-
tum processing devices5.

SSH model was introduced before in a totally differ-
ent context, as it was employed to understand the role
of solitonic excitations in conducting polymers, like poly-

acetylene, etc. The PB phase has been measured recently
by mimicking the 1D periodic potential of polyacetylene
using system of ultracold atoms in optical lattices6. Sig-
nature of topologically protected pair of bound states is
also detected by photonic quantum walk7. In addition,
properties of tight-binding SSH model have been experi-
mentally validated in photonic lattice composed of helical
waveguides8 and in phononic crystal composed of cylin-
drical waveguides9.

Existence of topological phase has been demonstrated
in various SSH-like dimerized models in numerous inves-
tigations. For example, in a non-Hermitian SSH model,
where intracell hopping term is turned imaginary keep-
ing the intercell hopping real, the same type of topological
behaviour is obtained10. The same topological phase ap-
pears again in another dimerized model constituted by
bigger unit cell comprising of four lattice points11,12. In
another study, existence of anomalous Floquet topolog-
ical π mode is successfully demonstrated in periodically
driven SSH model13. Topological properties of a hybrid
system comprised of SSH and Kitaev models are stud-
ied in order to find the role of particle-hole symmetry
embedded in the individual models14. Another type of
SSH-like staggered model, where particle number is not
conserved is employed before in order to study its quan-
tum phase transition along with to explain the nontrivial
quench during the transition15,16. However, most of these
models incorporate no further neighbor hopping term. At
the same time it is also true that no topological phase
with ν > 1 appears without further neighbor terms.

The topological phase in two-band SSH model is de-
fined uniquely by ν = 1 for each band. Besides, search of
new topological phases, preferably with higher values of
ν continues afterwards by adding further neighbor hop-
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ping terms. Collectively they are called extended SSH
(eSSH) models. Emergence of a new phase with ν = −1
has been demonstrated before by adding a single further
neighbor hopping term17. In another investigation, ad-
ditional phase with ν = 2 has been obtained simply by
adding a pair of staggered further neighbour terms11. By
invoking multiple further neighbor hopping terms new
phases with ν = 2, 3, 4 have been generated later18,19.
PB phase of eSSH model is determined with the Wannier
functions by taking into account the different postions
for two sites within the unit cell20. Emergence of mul-
tiple topological phases in Kitaev chain with long range
couplings is reported before21. In this work it is shown
that the eSSH model is capable to host indefinite number
of topological phases with a series of different winding
numbers as one wishes. And remarkably, in this series of
eSSH models only a single extra further neighbor hopping
term is sufficient for their realization.

Interestingly, demonstration of topological phases in
two-dimensional (2D) system has been started, long
before, with the discovery of integer quantum Hall
effect22,23. Subsequently, this phenomenon is observed
in other systems as well, when Haldane found its realiza-
tion on a tight-binding model with complex further neigh-
bor hopping terms formulated on honeycomb lattice24.
This finding gives birth to new area of research known as
quantum anomalous Hall (QAH) effect where the mag-
netic field is replaced by phase dependent hoppings. This
state of matter was experimentally realized in periodi-
cally modulated optical honeycomb lattice25. For the 2D
systems, Chern number C, is treated as the topological
invariant. In the two-band Haldane model, topological
phase is defined by C = ±1, values of opposite signs for
the two different energy bands. Realization of topological
phase for higher values of Cs continues thereafter by either
invoking further neighbour hopping terms26–28 or impos-
ing periodic drive29,30, etc. Experimental realization of
QAH phases tunable up to C = ±5 has been reported
recently31.

In another development, finding of QAH effect breaks
its dimensional barrier, as the realization of this phase is
possible in 1D eSSH model, where nearest neighbor (NN)
and next-nearest-neighbor (NNN) hopping amplitudes
are modulated by two independent cyclic variables32. Re-
markably, in this case, one of the cyclic variable can be
treated like an additional synthetic dimension. So as a
whole, this 1D model behaves like an effective 2D model
in the reciprocal space and at the same time, hosts non-
trivial topological phases.

Again, in this investigation, the eSSH models are stud-
ied in 2D reciprocal space by introducing different kind of
parametrization in terms of those two cyclic parameters.
And again, it is shown that these models are capable to
host indefinite number of topological phases with a se-
ries of different Chern numbers. Properties of these new
phases with higher values of Cs have been characterized
in details. Article has been organized in the following
manner.

Structure of these eSSH models are described in the
section II. Topological phases of eSSH models are char-
acterized in Sec. III. Four different eSSH models are in-

troduced here, whose topological properties are studied
in details in terms of winding numbers, edge states, and
quench dynamics. Models for phases of higher values of ν
will be generalized at the end of this section. Topological
phases in terms of Chern numbers are studied in Sec. IV.
Several types of parametrization are introduced and their
topological properties are characterized. Spurious topo-
logical phases are identified. Topological phase diagrams
have been drawn in very case and the symmetries of the
Hamiltonian are explained. A discussion based on these
results is available in Sec V.

II. SSH MODELS WITH FURTHER NEIGHBOR

TERMS

The standard SSH model1 is defined on a 1D bipar-
tite lattice where one primitive cell contains two different
sites, A and B. The corresponding Hamiltonian is de-
scribed as

Hvw =

N
∑

j=1

(

v c†
A,jcB,j + w c†

A,j+1cB,j

)

+ h.c., (1)

where cA,j and cB,j stand for the annihilation operators of
electron on sublattices A and B, respectively, in the jth
primitive cell. N is the total number of primitive cells
where v and w are the intracell and intercell hopping
amplitudes, respectively. These terms permit hopping
only between the adjacent sites. Energy spectrum of Hvw

is gapless when w = v, while there is a band gap when
w 6= v. Between the two gapful regions around the gapless
point, one is topologically trivial (ν = 0) when w < v,
and remarkably as long as w > v, this simple model hosts
a single nontrivial topological phase with ν = 1.

In 2019, Li and Miroshnichenko17 showed that a new
topological phase with ν = −1 appears on introducing
additional terms which allow hopping between sites of A
sublattice and nonadjacent sites of B sublattice but only
among the NN primitive cells as shown in Fig. 1. A
single pair of topological edge states is found to appear
associated with this new phase.

PSfrag replacements
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FIG. 1: Extended SSH model describing the hopping for the
total Hamiltonian, H , in Eq. 2.

The chiral symmetry of the resultant system is pre-
served by this specific choice of sites between which the
hopping is allowed. If z be the amplitude of this addi-
tional hopping, total Hamiltonian can be expressed as

H = Hvw +Hz,

Hz =

N
∑

j=1

z c†
A,jcB,j+1 + h.c., (2)
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and distribution of winding numbers in the parameter
space of the system is given by

ν =











0, |w + z| < v,

1, |w + z| > v and w > z,

−1, |w + z| > v and w < z.

(3)

In another study, Pérez-González et al showed that an ad-
ditional topological phase with ν = 2 emerges in the pres-
ence of more than one further neighbor hopping terms18.
Two distinct pairs of topological edge states are found
to appear. In the presence of multiple further neighbor
hopping terms, topological phases with higher winding
numbers, say, up to ν = 4 have been reported so far19.

In this study we are going to show that a single ad-
ditional hopping term is sufficient to produce the topo-
logical phases with any value of winding number as one
wishes. Topological phases with higher values of winding
numbers can be generated by systematically increasing
the separation between the sites over which hopping is
taken into account. Multiple pairs of edge states, consis-
tent with the value of ν, are found to appear.

III. TOPOLOGICAL PHASES IN TERMS OF

WINDING NUMBERS

In order to generate the topological phases with any
values of winding numbers in the most simple way, two
different types of eSSH models are introduced, however,
both of them include a single further neighbor hopping
term. Two different types of Hamiltonians are termed as
‘A-B’ and ‘B-A’ depending on the ordering of the sub-
lattice sites and they are noted as HA-B

z,n and HB-A
z,n , re-

spectively, where (n − 1) is the number of intermediate
primitive cells being covered under the hopping distance
and z is the amplitude of the further neighbour hopping.
In this nomenclature, Hamiltonian Hz in Eq. 2 can be
specified as HA-B

z,1 . However, hopping only between dif-
ferent sublattices is allowed in this case. This type of
hopping term preserves the particle-hole and inversion
symmetries. Conservation of these symmetries means the
preservation of chiral symmetry in addition. Now the
topological properties of four different eSSH models will
be studied in great details. Among them, two are of type
‘B-A’ and the remaining two are of type ‘A-B’.

A. Topological phases for H = Hvw +HB-A

z,2

Total Hamiltonian in this case is expressed as

H = Hvw +HB-A
z,2 ,

HB-A
z,2 =

N
∑

j=1

z c†
B,jcA,j+2 + h.c., (4)

where the hopping term extends over one intermediate
primitive cell, which is shown in Fig. 2. Under the

PSfrag replacements
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FIG. 2: Extended SSH model describing the hopping in HB-A
z,2 .

Fourier transformations,

cA,j =
1√
N

∑

k∈BZ

ak e
ikj,

cB,j =
1√
N

∑

k∈BZ

bk e
ikj,

where the summation extends over BZ, and assuming pe-
riodic boundary condition (PBC), the Hamiltonian in the
k-space becomes

H =
∑

k∈BZ

Ψ†
kH(k)ψk,

for which Ψ†
k = [a†

k b†
k], and H(k) = g(k) · σ. Here,

σ = (σx, σy, σz), are the Pauli matrices, and assuming
the unit lattice parameter, (a = 1),

g(k) ≡











gx = v + w cos(k) + z cos(2k),

gy = w sin(k) + z sin(2k),

gz = 0.

It can be shown that H(k) satisfies the following trans-
formation relations under the three different operators:











T H(k)T −1 = H(−k),

PH(k)P−1 = −H(−k),

σzH(k)σz = −H(k),

where T = K, P = Kσz and K is the complex conjuga-
tion operator. These relations correspond to the conser-
vation of time-reversal, particle-hole and chiral symme-
tries. As a consequence, inversion symmetry is preserved
as σxH(k)σx = H(−k).

g(k) can be spanned as a vector in the gx-gy

complex plane, due to the conservation of chiral
symmetry. As a result, the dispersion relation can
be expressed as E±(k) = ±|g(k)|, or, E±(k) =

±
√

v2 + w2 + z2 + 2[vw cos(k) + vz cos(2k) + wz cos(k)].
Dispersions are symmetric around the energy, E = 0,
since the Hamiltonian preserves particle-hole symmetry.
Variation of dispersion relation, E+(k), with w/|v + z|
for v = 1, z = 1/2 and v = 3/4, z = 1 are shown
in Fig. 3 (a) and (b), respectively. The lower band,
E−(k) is not drawn. The figures in (a) and (b) are
serving as prototype figures for v/z > 1 and v/z < 1,
respectively. Dispersions comprise of one broad peak
when w/|v + z| ≤ 1 for both the cases v/z > 1 and
v/z < 1. Band gap vanishes at the BZ boundaries,
k = ±π and k = 0, when w = |v + z|. As a result, ν is
undefined at the point when w = |v + z|.
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FIG. 3: Dispersion relation for H = Hvw +HA-B
z,2 when v/z >

1, (a) and v/z < 1, (b).

B. Winding number, ν

Tip of the vector g(k) traces out closed loops in the
gx-gy plane if k runs from −π to π on the BZ. Wind-
ing number is defined to enumerate the number of closed
loops around the origin of the plane. Mathematically it
is expressed as

ν =
1

2π

∫ π

−π

[

ĝ(k) × d

dk
ĝ(k)

]

z

dk,

where ĝ(k) = g(k)/|g(k)|. Two distinct topological
phases, with ν = 1, 2 are found for this case in the pa-
rameter space as

ν =











1, w > |z + v|,
0, w < |z + v|, and v > z,

2, w < |z + v|, and v < z,

(5)

and these are associated with a number of topological
phase transitions.

For examples, when v > z, a transition takes place at
w = |v + z|, separating trivial phase, ν = 0 for w <
|v + z| and topological phase, ν = 1 for w > |v + z|.
Whereas, transition occurs at the same point between two
topological phases when v < z. In this case, the phase for
w > |v+ z| is marked by ν = 1, while that for w < |v+ z|
is identified by ν = 2. In all cases transition takes place
between the phases with energy gap, and obviously, gap
closes at the transition point, w = |v + z|.

The parametric plot of winding diagrams in the gx-gy

complex plane are shown in Fig. 4. Four figures are
drawn for (a) v = 0.5, w = 1.2, z = 0.3, (b) v = 0.5,
w = 0.4, z = 0.3, (c) v = 0.3, w = 0.4, z = 0.5, and (c)
v = 0.3, w = 0.4, z = 0.3. Arrow head indicates the di-
rection of move of the the vector g(k) for an infinitesimal
increment of k. Tip of g(k) moves in counterclockwise di-
rection over all the closed contours. The contours in (a)
and (c) enclose the the origin, while that in (b) does not.
On the other hand, contour in (d) passes over the origin.
The curve passes around the origin once in (a) and twice
in (c). Those figures serve as the prototype windings for
the four different regions, w > |v + z|, v > z for ν = 1,
w < |v+z|, v > z for ν = 0, w < |v+z|, v < z, for ν = 2,
and w < |v + z|, v = z. There is gap for the first three
cases while the spectrum is gapless for the last.
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FIG. 4: Parametric winding diagrams in the gx-gy plane for
the Hamiltonian, HB-A

z,2 . Four figures are drawn for (a) v =
0.5, w = 1.2, z = 0.3, (b) v = 0.5, w = 0.4, z = 0.3, (c)
v = 0.3, w = 0.4, z = 0.5, and (c) v = 0.3, w = 0.4, z = 0.3.

Variation of bulk-edge state energies with respect to
w/|v + z| is shown in Fig. 5 as long as w/|v + z| ≤ ±2.
A single pair of zero energy edge states survives when
w > |v+z| as shown in (a). No edge state is there in this
system when w < |v+z| and and v > z. In contrast, zero
energy edge states are always there when w > |v+z| and
v < z which is shown in Fig. 5 (b). Actually, a single
pair of zero energy edge states survives when w > |v+z|,
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when v/z > 1, (a) for v = 0.7, z = 0.3, and v/z < 1, (b) for
v = 0.3, z = 0.7. Variation of energy with w/|v+z| are shown
for the lattice of 200 sites.
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FIG. 6: Probability density of edge states for HB-A

z,2 : (a) for
v = 0.25, w = 2.5, z = 0.25, one pair of edge states, (b) for
v = 0.25, w = 0.25, z = 2.5, two pairs of edge states. Figures
are drawn for the lattice of 142 sites.

and two pairs of edge states are there when w < |v+z|
and v < z. The figures are drawn for lattice of sites 200.
All these results are consistent with the bulk-boundary
correspondence rule.

In order to confirm the presence of zero energy edge
states, probability density of those states are drawn in
Fig. 6 for the lattice of 142 sites. Two figures are drawn
for two distinct topological phases. In the upper panel
(a), probability densities of two distinct edge states with
E = 0 are shown when v = 0.25, w = 2.5, z = 0.25,
as these values confirm to the conditions, w > |v+ z|.
Probability density of one edge state exhibits sharp peak
at site m = 1 and another one at site m = 142. This
corresponds to the topological phase with ν = 1. On the
other hand, for w < |v+z| and v < z, probability densities
of four distinct edge states with E = 0 are shown in
the lower panel (b) when v = 0.25, w = 0.25, z = 2.5,
as these values are in accordance to the last conditions.
Probability density of four orthogonal edge states exhibit
sharp peak at sitesm = 1, m = 3, m = 140, andm = 142.
It indicates that zero energy states near the left edge are
localized on the A sublattice, while those close to the
right edge are localized on the B sublattice. This result
is in accordance to the topological phase with ν = 2.

An extensive phase diagram of the total Hamiltonian
including HB-A

z,2 is shown in Fig 7. Here contour plot for
ν is drawn in the v-w/|v + z| space. Presence of two
distinct topological phases, ν = 1 and 2 along with the
trivial phase, ν = 0 are shown in green, blue and red,
respectively. The horizontal line is drawn at v = 1 or
v/z = 1 since this diagram is drawn for v + z = 2. The

line segment within the points w/(v + z) = ±1 separates
the trivial phase from the topological phase with ν =
2. Hence phase transition occurs around this segment.
Another topological phase with ν = 1 appears beyond
the two vertical lines drawn at w/(v + z) = ±1. They
separate topological phases with ν = 1 and 2 when v/z <
1 and topological (ν = 1) and trivial phase when v/z > 1.
So the system undergoes phase transition around those
straight lines. Band gap vanishes over those lines as well
as on the line segment.
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FIG. 7: Topological phase diagram for the Hamiltonian,
HB-A

z,2 . Trivial phase is shown by red (ν = 0) while two dis-
tinct topological phases are shown by green (ν = 1) and blue
(ν = 2). This diagram is drawn for v + z = 2. The horizontal
line indicates the value v = 1 or v/z = 1.

C. Quenched dynamics in the presence of nonlinear

terms

Now the effect of nonlinearity on the topological
phase will be studied following the method developed by
Ezawa33. Schrödinger equation for a Hamiltonian ma-
trix, M , spanned on a lattice composed of L sites can be
written as (~ = 1),

i
∂ψl

∂t
+

L
∑

m=1

Mlm ψl = 0. (6)

It actually comprises L coupled linear equations and gov-
erns the time evolution of the system where Mlm is rec-
ognized as the element of hopping matrix in case of tight-
binding model. This system hosts the topological as well
as trivial phases for different parameter regime.

The eigenvalue equation for the hopping matrix, M is
written as

Mφ̄q = Eqφ̄q, 1 ≤ q ≤ L, (7)
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FIG. 8: Quench dynamics for HB-A
z,2 when ζ = 0.5, (a) for v = 0.25, w = 2.5, z = 0.25, (b) for v = 2.5, w = 0.25, z = 0.25, (c)

for v = 0.25, w = 0.25, z = 2.5. Figures are drawn for lattice with 20 sites.

where q serves as the quantum index. Hence, time evo-
lution of the model is governed by the solution of Eq. 6
as

φ̄q(t) = e−itEq φ̄q(t), (8)

since the Schrödinger equation eventually turns into a set
of decoupled equations

i
∂φ̄q

∂t
+

L
∑

m=1

Mlm φ̄q = 0. (9)

The variation of energies Eq with w/|v + z| for two dif-
ferent topological phases have been shown in the Fig. 5,
when the hopping matrix is constituted for the Hamil-
tonian defined in Eq. 4 for the lattice of sites L = 200.
Topological phases are always protected by the zero en-
ergy edge states by virtue of particle-hole symmetry of
the system. As a result, no time evolution of those lo-
calized states is permissible according to the Eq. 8. In
light of this fact, time evolution of the edge states in the
presence of additional nonlinear term will be studied.

The Schrödinger equation in the presence of nonlin-
ear term for the one-dimensional tight-binding model of
hopping matrix Mlm is defined by

i
∂ψl

∂t
+

L
∑

m

Mlmψl + ζ|ψl|2ψl = 0, (10)

where the effect of nonlinearity is controlled by the pa-
rameter ζ. Explicit form of the set of coupled nonlin-
ear first order differential equation for finite chain of L
sites and for the Hamiltonian defined in Eq. 4 with open
boundary condition (OBC) is given by

i
∂ψ2j−1

∂t
= v(ψ2j − ψ2j−1) + w(ψ2j−2 − ψ2j−1)

+z(ψ2j−4 − ψ2j−1) − ζ|ψ2j−1|2ψ2j−1,

... =
... (11)

i
∂ψ2j

∂t
= w(ψ2j+1 − ψ2j) + v(ψ2j−1 − ψ2j)

+z(ψ2j+3 − ψ2j) − ζ|ψ2j |2ψ2j ,

where j denotes the cell index which ultimately gener-
ates L number of coupled equations each one for every
site. So, j = 1, 2, 3, · · · , N/2. Differential equations for
odd and even sites are different since the translational
symmetry of one lattice unit is broken.

The fate of the topological state when ζ 6= 0 will be
studied in terms of the time evolution of the nonlinear
system by imposing an initial condition,

ψl(t) = δl,m when t = 0.

It means a delta-function like pulse at the m-th site is
given initially. Henceforth dynamics of the resulting non-
linear system will be examined by maintaining the con-
servation rule imposed by the equation,

L
∑

l=1

|ψl(t)|2 = constant. (12)

Value of the constant may be fixed depending on the
choice of the initial conditions. The initial conditions
in turn depend on the value of winding number for a par-
ticular topological phase. It is shown that topological
phase defined in the linear system is robust against the
introduction of the nonlinear term as long as ζ < 1, as a
result, quenching of the edge states are observed.

As the general solution of the Eq. 10 can be expanded
as

ψl(t) =
∑

q

cq(t)φ̄q(t),

the initial state can be expressed as

ψl(0) = δl,m =
∑

q

cqφ̄q(0). (13)

The topological phase of the linear system is always pro-
tected by the presence of zero energy edge (localized)
states. So keeping in mind the position of edge states,
initial condition is imposed either by l = 1 or l = L,
when ν = 1. Here l = 1 (l = L) denotes the leftmost
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(rightmost) site of the lattice. Now for l = 1, initial con-
dition turns out as ψl(0) = δl,1. Right hand side of the
Eq. 13 may be simplified by labeling the zero energy state
by φ̄1 with E1 = 0 in Eq. 7. So, at t = 0,

ψ1(0) = c1φ̄1(0). (14)

As E1 = 0, φ̄q(t) = φ̄q(0), which leads to the fact that

ψ1(t) = c1φ̄1(0).

It means no time evolution of the edge states is there or in
other words a non-zero probability amplitude at the edge
site remains at any time. It corresponds to the quenching
of the edge states. No such quenching is possible for the
bulk states by virtue of their non-zero energy, (Eq 6= 0).

In contrast, zero-energy localized states are absent in
the trivial phase, and all the states are found to extend
within the bulk. As a result, quenching dynamics of edge
states may serve as an alternative numerical tool to dis-
tinguish the topological and trivial phases by investigat-
ing the effect of nonlinear component on the initial condi-
tion. At the same time, investigation of quench dynamics
for systems under PBC is meaningless, since no edge state
is there.

Quenching of edge states for the nonlinear system is
shown in Fig. 8, by solving the set of Eq. 11, for L = 20
when ζ = 0.5. Contour plot for the time evolution of the
absolute value of complex amplitude, |ψl(t)|, is drawn for
every site, l = 1, 2, 3, · · · , 20, which is shown along the
horizontal axis. Three contour plots are shown (a) for
v = 0.25, w = 2.5, z = 0.25, (b) for v = 2.5, w = 0.25,
z = 0.25, (c) for v = 0.25, w = 0.25, z = 2.5, where (b)
indicates trivial phase while (a) and (c) for the topological
phases of ν = 1 and ν = 2. Initial condition is set by
ψl(0) = δl,m, where m = 1, 3, 18, 20. Which means the
initial pulse is given only at those sites. As a result,

conservation rule follows the relation,
∑L

l=1 |ψl(t)|2 = 4.

Time evolution is explored for the span, 0 ≤ t ≤ 20,
which is plotted along the vertical axis. The diagram
clearly indicates that probability amplitudes for l = 1, 20,
i. e., |ψ1(t)| and |ψ20(t)| survive with time in (a). So the
edge states bound to the topological phase with ν = 1
exhibit their quenching. No such quenching is found for
the trivial phase as shown in (b). Quenching of four edge
states, |ψl(t)|, l = 1, 3, 18, 20 are found in (c) which cor-
respond to the topological phase with ν = 2. So for the
lattice with L sites, quenching are found for the ampli-
tude with sites l = 1, 3, L−2, L. It is true that the dia-
gram exhibiting the quenching of edge states will be dif-
ferent if the initial conditions are made different from this
set. However, this particular choice of initial conditions
is considered from the previous knowledge of locations of
the peaks of probability density of edge states as shown
in Fig. 6. Hence the quench dynamics provide another
route for distinguishing topological and trivial phases for
a system.

D. Topological phases for H = Hvw +HA-B

z,2

Total Hamiltonian in this case is

H = Hvw +HA-B
z,2 ,

HA-B
z,2 =

N
∑

j=1

z c†
A,jcB,j+2 + h.c., (15)

where the hopping term once again extends over one in-
termediate primitive cell, which is shown in Fig. 9. As a
result,

g(k) ≡











gx = v + w cos(k) + z cos(2k),

gy = w sin(k) − z sin(2k),

gz = 0.

Dispersion relation in this case is E±(k) =

PSfrag replacements

A B v w z

FIG. 9: Extended SSH model describing the hopping in HA-B
z,2 .

±
√

v2 + w2 + z2 + 2[vw cos(k) + vz cos(2k) + wz cos(3k)].
Variation of dispersion relation, E+(k), with w/|v + z|
for v = 1, z = 1/2 and v = 1/2, z = 1 are shown in
Fig. 10 (a) and (b), respectively. Those are serving as
prototype figures for v/z > 1 and v/z < 1, respectively.
Dispersions comprise of three peaks for any values of the
parameters, v, w and z. Like the previous case, band
gap vanishes at k = ±π, and k = 0, when w = |v + z|,
for both the cases v/z > 1 and v/z < 1. As a result, ν is
undefined again at the point when w = |v + z|. But in
the region, w < |v + z|, for v < z, the system undergoes
an additional phase transition at the point defined by

the set of equations, E±(k) = 0, and dE±(k)
dk = 0, which

will be discussed later.
Also, in this case, two different topological phases ap-

pear in the parameter space as given below which are
separated by phase transition lines.

ν =











1, w > |z + v|,
0, w < |z + v|, and v > z,

−2, 0 w < |z + v|, and v < z.

(16)

Topological phase with ν = 1 exists as along as the rela-
tion w > |z + v| holds irrespective of individual values of
v and z. Another nontrivial phase with ν = −2 appears
in a limited region for w < |z + v| and v < z, separated
by trivial phase. The equation of phase transition line
can be obtained by satisfying the conditions, E±(k) = 0,

and dE±(k)
dk = 0. Anyway, this model hosts the new topo-

logical phase with ν = −2.
The parametric plot of winding by the tip of the vector,

g(k) in the gx-gy complex plane is shown in Fig. 11. Four
figures are drawn for (a) v = 0.5, w = 1.2, z = 0.3, (b)
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FIG. 10: Dispersion relation for HA-B
z,2 when v/z > 1, (a) and

v/z < 1, (b).

v = 0.5, w = 0.5, z = 0.3, (c) v = 0.3, w = 0.2, z = 0.5,
and (d) v = 0.45, w = 0.6, z = 0.5. Those figures serve
as the prototype contours for the four different regions,
w > |v + z|, for ν = 1, w < |v + z|, v > z for ν =
0, w < |v + z|, v < z, for ν = −2 and ν = 0. g(k)
traces the closed contour in counter clockwise direction
for (a) and (b) while it is clockwise for (c) and (d). Curve
encloses the origin once in (a) and twice in (c) but in
opposite direction which corresponds to winding numbers
of opposite sign. Nonzero band gap is there for all the
cases.

Variation of bulk-edge state energies with respect to
w/|v+z| is shown in Fig. 12 for the regime −2 ≤ (w/|v+
z|) ≤ 2. A single pair of zero energy edge states is there
when w > |v + z| as shown in (a). No edge state is there
in this system when w < |v+z| and and v > z. However,
two pairs of zero energy edge states appear in a region
around the point w/|v + z| = 0 when w < |v + z| and
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FIG. 11: Parametric winding diagrams in the gx-gy plane for
the Hamiltonian, HA-B

z,2 . Four figures are drawn for (a) v =
0.5, w = 1.2, z = 0.3, (b) v = 0.5, w = 0.5, z = 0.3, (c)
v = 0.3, w = 0.2, z = 0.5, and (c) v = 0.45, w = 0.6, z = 0.5.

v < z which is shown in Fig. 12 (b). This particular
region is surrounded by a trivial phase as long as −1 ≤
(w/|v+ z|) ≤ 1. The figures are drawn for lattice of sites
200, and the results confirm the existence of edge states
in the topological phases.
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FIG. 12: Bulk and edge state energies for H = Hvw + HA-B
z,2

when v/z > 1, (a) for v = 0.7, z = 0.3, and v/z < 1, (b) for
v = 0.3, z = 0.7.

To make sure the presence of zero energy edge states,
probability densities of those states are drawn in Fig. 13
for the lattice of 150 sites. Two figures are drawn for
two distinct topological phases. In the upper panel (a),
probability densities of two distinct edge states with E =
0 are shown when v = 0.25, w = 2.5, z = 0.25. Those
values are selected for satisfying the conditions, w > |v+
z|. Probability density of one edge state exhibits sharp
peak at site m = 1 and another one at site m = 150.
This corresponds to the topological phase with ν = 1.
On the other hand, for w < |v+z| and v < z, probability
density of four distinct zero energy edge states are shown
in the lower panel (b) when v = 0.25, w = 0.25, z = 2.5.
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Probability density of four orthogonal edge states exhibits
sharp peak at sitesm = 2, m = 4, m = 147, andm = 149.
In this case zero energy states close to the left edge are
localized on the B sublattice, while those close to the right
edge are localized on the A sublattice. The difference on
localization with respect to the previous case attributes
to the change in the sign of the winding number, as the
new topological phase of ν = −2, appears with opposite
sign with respect to previous case.
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FIG. 13: Probability density of edge states for H = Hvw +
HA-B

z,2 : (a) for v = 0.25, w = 2.5, z = 0.25, one pair of edge
state, (b) for v = 0.25, w = 0.25, z = 2.5, two pairs of edge
states. Figures are drawn for the lattice of 150 sites.
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z,2 . Two distinct topological phases are shown by
blue (ν = 1) and red (ν = −2). The remaining portion is
trivial (ν = 0). This diagram is drawn for v + z = 2. The
horizontal line indicates the value v = 1 or v/z = 1.

A comprehensive phase diagram for this model is shown
in Fig 14 where contour plot for ν is drawn in the v-
w/|v + z| space. Variation of the parameters is made by
maintaining the constraint v + z = 2. Existence of two
different topological phases, ν = 1 and −2, along with the
trivial phase, ν = 0 are shown in three different colours.
The horizontal line is drawn at v/z = 1, above which
topological phase with ν = −2 does not survive. This
phase exists over the line segment, −1 ≤ w/(v+z) ≤ +1,
when v = 0. However the length of this segment re-
duces symmetrically around w/(v + z) = 0 and van-

ishes at the point v = z. The boundary lines of these
phases can be obtained by simultaneously solving the

Eqs. E±(k) = 0, and dE±(k)
dk = 0. As a result, the transi-

tion lines are given by the two solutions of quadratic equa-
tion, v2+w2+z2+2{vwp+vz(2p2−1)+wzp(4p2−3)} = 0,

where p = cos−1

(

−vz±
√

v2z2−3w2z(v−3z)

6wz

)

, along with

the constraint, v + z = 2. These curved lines are sym-
metric around the straight line w/(v + z) = 0 and meet
at the point, w/(v + z) = 0, v = 1. Another topological
phase with ν = 1 appears beyond the two vertical lines
drawn at w/(v + z) = ±1. They separate topological
phase with ν = 1 from the trivial phase. So the system
undergoes phase transition around those straight lines.

As the quenching of edge states provides their exact
location more clearly, dynamics of the edge states in the
presence of nonlinear terms for the topological phases of
this model will be discussed. The set of coupled nonlinear
first order differential equation for finite chain of L sites
and for the Hamiltonian defined in Eq. 15 with OBC is
explicitly given by

i
∂ψ2j−1

∂t
= v(ψ2j − ψ2j−1) + w(ψ2j−2 − ψ2j−1)

+z(ψ2j+4 − ψ2j−1) − ζ|ψ2j−1|2ψ2j−1,

... =
... (17)

i
∂ψ2j

∂t
= w(ψ2j+1 − ψ2j) + v(ψ2j−1 − ψ2j)

+z(ψ2j−5 − ψ2j) − ζ|ψ2j |2ψ2j .

Quenching of edge states for the nonlinear system is
shown in Fig. 15, by solving the set of Eq. 17, for L = 20,
when ζ = 0.5. Contour plot for the time evolution of
|ψl(t)|, is drawn for every site which is shown along the
horizontal axis. Three contour plots are shown (a) for
v = 0.25, w = 2.5, z = 0.25, (b) for v = 2.5, w = 0.25,
z = 0.25, (c) for v = 0.25, w = 0.25, z = 2.5, where (b)
indicates trivial phase as before while (a) and (c) for the
topological phases of ν = 1 and ν = −2, respectively. In
this case, initial condition is set by ψl(0) = δl,m, where
m = 2, 4, 17, 19. As a result, conservation rule follows the

same equation as before,
∑L

l=1 |ψl(t)|2 = 4.
Evolution of the system is explored for the time span,

0 ≤ t ≤ 20, where the time is plotted along the vertical
axis. The diagram in (a) clearly indicates that proba-
bility amplitudes for l = 1, 20, i. e., |ψ1(t)| and |ψ20(t)|
survive with time. So the edge states bound to the topo-
logical phase with ν = 1 exhibit their quenching. No such
quenching is found for the trivial phase as shown in (b).
Those results are similar to the previous case, although
the respective figures are qualitatively different. Quench-
ing of four edge states, |ψl(t)|, when l = 2, 4, 17, 19 are
found in (c) which correspond to the topological phase
with ν = −2. In contrast to this result, quenching of
four edge states, for l = 1, 3, 18, 20 are found when ν = 2,
as discussed in the previous model. It means quenching
over A and B sublattices interchange their edges with the
change in sign of ν. Thus, quenching are found for the
amplitude on sites, l = 2, 4, L−3, L−1, for any arbitrary
length of lattice.
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FIG. 15: Quench dynamics for H = Hvw +HA-B
z,2 when ζ = 0.5, (a) for v = 0.25, w = 2.5, z = 0.25, (b) for v = 2.5, w = 0.25,

z = 0.25, (c) for v = 0.25, w = 0.25, z = 2.5. Figures are drawn for lattice with 20 sites.

E. Topological phases for H = Hvw +HB-A
z,3

Now the total Hamiltonian is

H = Hvw +HB-A
z,3 ,

HB-A
z,3 =

N
∑

j=1

z c†
B,jcA,j+3 + h.c., (18)

where the hopping term extends over two intermediate
primitive cell, which is shown in Fig. 16. In this model

PSfrag replacements
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FIG. 16: Extended SSH model describing the hopping in
HB-A

z,3 .

every cell is connected to the third NN cell by the hopping
parameter z. The g(k) vector assumes the form,

g(k) ≡











gx = v + w cos(k) + z cos(3k),

gy = w sin(k) + z sin(3k),

gz = 0.

Dispersion relation in this case is E±(k) =

±
√

v2 + w2 + z2 + 2[vw cos(k) + vz cos(3k) + wz cos(2k)].
Variation of dispersion relation, E+(k), with v/|w+z| for
w = 1, z = 1/2 and w = 1/2, z = 1 are shown in Fig. 17
(a) and (b), respectively. Those are serving as prototype
figures for w > z and w < z, respectively. Dispersions
comprise of three broad peaks when v/|w + z| ≤ 1,
for both the cases w/z > 1 and w/z < 1. Band gap
vanishes at the BZ boundaries, k = ±π, and k = 0 when
v = |w+z|. As a result, ν is undefined at the point when
v = |w + z|. The dispersions plotted in Figs. 10 and
17 look alike although they are different in a sense that

they are plotted with respect to different parameters,
say, w/|v + z| in Fig. 10 and v/|w + z| in Fig. 17. This
similarity attributes to the fact that dispersions for the
Hamiltonians in Eqs. 15 and 18 are interchangeable
upon interchange of v and w.

In this case also two different types of topological
phases with ν = 1 and 3 appear in the parameter space as
given below and they are separated by phase transition
lines.

ν =











0, v > |w + z|,
1, v < |w + z|, and w > z,

3, 1, v < |w + z|, and w < z.

(19)

The system is trivial as long as v > |w + z|, irrespective
of the values of w and z. Topological phase with ν = 1
exists when the relations v < |w + z| and w > z do
hold. Another nontrivial phase with ν = 3 appears in a
limited region for v < |w+z| and w < z, separated by the
topological phase with ν = 1. It means the phase with
ν = 1 emerges for v < |w+ z| for both w > z and w < z.
The equation of phase transition lines can be obtained by

satisfying the conditions, E±(k) = 0, and dE±(k)
dk = 0. So,

this model hosts the new topological phase with ν = 3.
The parametric plot of winding by the tip of the vector,

g(k) in the gx-gy complex plane are shown in Fig. 18.
Four figures are drawn for (a) v = 1.1, w = 0.6, z =
0.4, (b) v = 0.7, w = 0.6, z = 0.4, (c) v = 0.2, w =
0.4, z = 0.6, and (d) v = 0.7, w = 0.4, z = 0.6. All
the curves traverse in the counter clockwise direction, as
a result of which, all the winding numbers are positive.
Those figures serve as the prototype contours for the four
different regions, v > |w+z|, for ν = 0, v < |w+z|, w > z
for ν = 1, v < |w + z|, w < z, for ν = 3 and ν = 1. g(k).
Nonzero band gap is there for all the cases.

Variation of bulk-edge state energies with respect to
v/|w+z| is shown in Fig. 19 for the regime −2 ≤ (v/|w+
z|) ≤ 2. No zero energy edge states is there when v >
|w+ z| as shown in (a). Single pair of edge state is there
in this system when v < |w+z| and and w > z. However,
three pairs of zero energy edge states appear in a region
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FIG. 17: Dispersion relation for HB-A
z,3 when w/z > 1, (a) and

w/z < 1, (b).

around the point v/|w + z| = 0 when v < |w + z| and
w < z which is shown in Fig. 19 (b). This particular
region is surrounded by a single pair of edge states as
long as −1 ≤ (v/|w + z|) ≤ 1. The figures are drawn for
lattice of sites 200, and the results confirm the existence
of edge states in the topological phases.

In order to confirm the existence of zero energy edge
states, probability densities of those states are drawn in
Fig. 20 for the lattice of 200 sites. Two figures are drawn
for two distinct topological phases. In the upper panel
(a), probability densities of two distinct edge states with
E = 0 are shown when v = 0.25, w = 2.5, z = 0.25.
Those values are selected for satisfying the conditions,
v < |w + z| and w > z. Probability density of one edge
state exhibits sharp peak at sitem = 1 and another one at
site m = 200. This corresponds to the topological phase
with ν = 1. On the other hand, for v < |w+z| and w < z,
probability density of four distinct zero energy edge states
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are shown in the lower panel (b) when v = 0.25, w = 0.25,
z = 2.5. Probability density of six orthonormal edge
states exhibit sharp peak at sites m = 1, 3, 5, 196, 198
and 200. This result is in accordance to the topological
phase of ν = 3. Here localization of zero energy states
are found on A sublattice near left edge and B sublattice
near right edge.

A rigorous phase diagram for this model is shown in Fig
21 where contour plot for ν is drawn in the w-v/|w + z|
space. Variation of the parameters is made by maintain-
ing the constraint w + z = 2. Existence of two different
topological phases, ν = 1 and 3 along with the trivial
phase, ν = 0 are shown in yellow, blue and red. The
horizontal line is drawn at w/z = 1, above which topo-
logical phase with ν = 3 does not survive. This phase
exists over the line segment, −1 ≤ v/(w + z) ≤ +1,
when w = 0. However the length of this segment re-
duces symmetrically around v/(w + z) = 0 and vanishes
at the point w = z. The boundary lines of separation
of those phases can be obtained as before by solving
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the Eqs. E±(k) = 0, and dE±(k)
dk = 0. Combination

of those two equations leads to a quadratic equation,
v2 +w2 + z2 + 2{vwp+wz(2p2 − 1) + vzp(4p2 − 3)} = 0,

where p = cos−1

(

−wz±
√

w2z2−3v2z(w−3z)

6vz

)

. Two solu-

tions of this equation along with the constraint, w+z = 2,
yield the equation of phase transition lines. Those curved
lines are symmetric around the straight line v/(w+z) = 0.

Trivial phase (ν = 0) appears beyond the two vertical
lines drawn at v/(w+z) = ±1. They separate topological
phases with ν = 1 and 3 from the trivial phase. So the
system undergoes phase transition around those straight
lines. The structure of this phase diagram looks similar
to that shown in Fig. 14. However, a closer scrutiny
will reveal that the positions of topological phases are
different. At the same time parameters plotted along
the two axes are also different. Topological phase with
ν = −2 is replaced by that of ν = 3 and the trivial
phase (ν = 0) and another topological phase with ν = 1
interchange their positions.

According to the formalism for quenching of edge states

as discussed before, dynamics of the edge states in the
presence of the same nonlinear terms for the topological
phases of this model has been studied. The set of coupled
nonlinear equation for chain of L/2 unit cells and for the
Hamiltonian defined in Eq. 18 with OBC is given by

i
∂ψ2j−1

∂t
= v(ψ2j − ψ2j−1) + w(ψ2j−2 − ψ2j−1)

+z(ψ2j−6 − ψ2j−1) − ζ|ψ2j−1|2ψ2j−1,

... =
... (20)

i
∂ψ2j

∂t
= w(ψ2j+1 − ψ2j) + v(ψ2j−1 − ψ2j)

+z(ψ2j+5 − ψ2j) − ζ|ψ2j |2ψ2j .

Evolution of edge states for the nonlinear system is
shown in Fig. 22, by solving the set of Eq. 20, for L = 20
when ζ = 0.5. Contour plot for the time evolution of
|ψl(t)|, is drawn for every site which is shown along the
horizontal axis. Three contour plots are shown (a) for
v = 2.5, w = 0.25, z = 0.25, (b) for v = 0.25, w = 2.5,
z = 0.25, (c) for v = 0.25, w = 0.25, z = 2.5, where (a)
indicates trivial phase as before while (b) and (c) for the
topological phases of ν = 1 and ν = 3, respectively. In
this case, initial condition is set by ψl(0) = δl,m, where
m = 1, 3, 5, 16, 18, 20. As a result, conservation rule is

modified by the equation,
∑L

l=1 |ψl(t)|2 = 6 for every
case.

Evolution of the system is explored for the time range
0 ≤ t ≤ 20, as shown along the vertical axis. The diagram
in (b) clearly indicates that probability amplitudes for
l = 1, 20, i. e., |ψ1(t)| and |ψ20(t)| survive with time. So
the edge states bound to the topological phase with ν = 1
exhibit their quenching. Obviously, no such quenching
is found for any site in the trivial phase as shown in
(a). Quenching of amplitudes of wave function for six
sites, |ψl(t)|, when l = 1, 3, 5, 16, 18, 20 are found in (c)
which correspond to the topological phase with ν = 3.
So, quenching will be found for the amplitude with sites
l = 1, 3, 5, L−4, L−2, L, in case of chain of length L. The
number of quenched sites increases with the increase of
ν.

F. Topological phases for H = Hvw +HA-B
z,3

Total Hamiltonian now is

H = Hvw +HA-B
z,3 ,

HA-B
z,3 =

N
∑

j=1

z c†
A,jcB,j+3 + h.c., (21)

where the hopping term extends over two intermediate
primitive cells, as shown in Fig. 23. The components of
g(k) in this case are

g(k) ≡











gx = v + w cos(k) + z cos(3k),

gy = w sin(k) − z sin(3k),

gz = 0.
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Hvw +HA-B

z,3 .

The corresponding dispersion relation is E±(k) =

±
√

v2 + w2 + z2 + 2[vw cos(k) + vz cos(3k) + wz cos(4k)].
Variation of dispersion relation, E+(k), with v/|w + z|
for w = 1, z = 1/2 and w = 1/2, z = 1 are shown
in Fig. 24 (a) and (b), respectively for the region
−2 ≤ v/|w + z| ≤ +2. Figures for w > z and w < z will
be of similar shape as shown in (a) and (b). Dispersions
exhibits three broad peaks in the regions away from
the point v/|w + z| = 1 for both the cases w/z > 1
and w/z < 1. Again the band gap vanishes at the BZ
boundaries, k = ±π, and k = 0 when v = |w + z|. As a
result, ν is undefined at the point when v = |w + z|.

This time, three different nontrivial phases with ν =
+1,−1 and −3 appear in the parameter space as given
below which are separated by distinct phase transition
lines.

ν =











0, v > |w + z|,
1,−1 v < |w + z|, and w > z,

−3,−1, v < |w + z|, and w < z.

(22)

Trivial phase exists when v > |w + z|. A pair of distinct
topological phase with ν = ±1 emerges when v < |w+ z|
and w > z. Another pair of nontrivial phase with ν = −3
and −1 appears v < |w + z| when w < z. It means the
phase with ν = −1 emerges in two different regions when
v < |w+z| but for both w > z and w < z. The location of
this transition point can be determined by satisfying the

conditions, E±(k) = 0, and dE±(k)
dk = 0. So, this model is

capable to host a new topological phase with ν = −3.

The parametric plot of winding by the tip of the vector,
g(k) in the gx-gy plane are shown in Fig. 25. Four figures
are drawn for (a) v = 1.0, w = 0.5, z = 0.4, (b) v = 0.3,
w = 0.6, z = 0.5, (c) v = 0.2, w = 0.3, z = 0.6, and
(d) v = 0.5, w = 0.4, z = 0.3. Curves shown in (a) and
(d) traverse along the counter clockwise direction, while
those in (b) and (c) traverse along the clockwise direc-
tion. As a result the winding number for (d) is positive,
but that for (b) and (c) is negative. Those figures can
be regarded as prototype contours for the four different
regions. For example, the phase is trivial (ν = 0), for
any values of v, w and z as long as v > |w + z|. On
the other hand, four different regions are identified when
v < |w + z|, where distinct topological phases appear.
A pair of phases appear for w > z and another pair for
w < z. Nonzero band gap exists for all the cases.

Variation of bulk-edge state energies with respect to
v/|w + z| is shown in Fig. 26 for the regime −2 ≤
(v/|w + z|) ≤ 2. Zero energy edge states emerges as
long as −1 ≤ (v/|w + z|) ≤ 1, which is consistent to
the previous observation. So, no edge state is there in
this system when v > |w + z|. However, three pairs of
zero energy edge states appear in a region around the
point v/|w + z| = 0 when v < |w + z| and w < z which
is shown in Fig. 26 (b). This particular region is sur-
rounded by another topological phase with ν = −1 as
long as −1 ≤ (v/|w + z|) ≤ 1. The figures are drawn
for lattice of sites 200, and the results conform to the
bulk-edge correspondence rule in the topological phases.

In order to confirm the existence of zero energy edge
states, probability density of those states are drawn in
Fig. 27 for the lattice of 200 sites. Two figures are drawn
for two distinct topological phases. In the upper panel
(a), probability densities of two distinct edge states with
E = 0 are shown when v = 0.25, w = 2.5, z = 0.25.
Those values are selected for satisfying the conditions,
v < |w + z| and w > z. Probability density of one edge
state exhibits sharp peak at sitem = 1 and another one at
site m = 200. This corresponds to the topological phase
with ν = 1. On the other hand, for v < |w+z| and w < z,
probability density of six distinct zero energy edge states
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FIG. 24: Dispersion relation for H = Hvw+HA-B
z,3 when w/z >

1, (a) and w/z < 1, (b).

are shown in the lower panel (b) when v = 0.25, w = 0.25,
z = 2.5. Probability density of six orthonormal edge
states exhibit sharp peak at sites m = 2, 4, 6, 195, 197
and 199. This result is in accordance to the topological
phase of ν = −3. Localization of zero energy states are
found on B sublattice near left edge and A sublattice near
right edge.

A rigorous phase diagram for this model is shown in Fig
28, where contour plot for ν is drawn in the w-v/|w + z|
space. Variation of the parameters is made by maintain-
ing the constraint w + z = 2. The existence of three
different topological phases, ν = ±1 and −3 along with
the trivial phase, ν = 0 is shown in four different col-
ors. The horizontal line is drawn at w/z = 1, which
separates the topological phase with ν = 1 from that
with ν = −3. Three topolgical phases meet at the point,
v/(w + z) = 0, w = 1. All the topological phases remain
within the region bounded by the vertical lines drawn at
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FIG. 26: Edge states for H = Hvw +HA-B
z,3 when w/z > 1, (a)

for w = 0.6, z = 0.4, and w/z < 1, (b) for w = 0.3, z = 0.7.

v/(w + z) = ±1. So the trivial phase lies beyond the
region −1 ≤ v/(w + z) ≤ +1 for any value of w. The
curved boundary lines separating the nontrivial phases
can be obtained from the solutions of the Eqs. E±(k) = 0,

and dE±(k)
dk = 0. Those equations yield a cubic equation,

whose solutions along with the constraint, w + z = 2,
provides the equation of transition lines.

According to the formalism for quenching of edge states
as discussed before, dynamics of the edge states in the
presence of nonlinear terms for the topological phases of
this model will be discussed. The set of coupled non-
linear equation for chain of L lattice sites and for the
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Hamiltonian defined in Eq. 21 with OBC is given by

i
∂ψ2j−1

∂t
= v(ψ2j − ψ2j−1) + w(ψ2j−2 − ψ2j−1)

+z(ψ2j+6 − ψ2j−1) − ζ|ψ2j−1|2ψ2j−1,

... =
... (23)

i
∂ψ2j

∂t
= w(ψ2j+1 − ψ2j) + v(ψ2j−1 − ψ2j)

+z(ψ2j−7 − ψ2j) − ζ|ψ2j |2ψ2j .

Evolution of edge states for the nonlinear system is
shown in Fig. 29, by solving the set of Eq. 23, for L = 20
when ζ = 0.5. Contour plot for the time evolution of
|ψl(t)|, is drawn for every site which is shown along the
horizontal axis. Three contour plots are shown (a) for
v = 2.5, w = 0.25, z = 0.25, (b) for v = 0.25, w = 2.5,
z = 0.25, (c) for v = 0.25, w = 0.25, z = 2.5, where (a)

indicates trivial phase as before while (b) and (c) for the
topological phases of ν = −1 and ν = −3, respectively. In
this case, initial condition is set by ψl(0) = δl,m, where
m = 2, 4, 6, 16, 18, 20. As a result, conservation rule is

modified by the equation,
∑L

l=1 |ψl(t)|2 = 6, for every
case.

Evolution of the system is explored for the time range
0 ≤ t ≤ 20, as shown along the vertical axis. The diagram
in (b) clearly indicates that probability amplitudes for
l = 1, 20, i. e., |ψ1(t)| and |ψ20(t)| survive with time. So,
the edge states bound to the topological phase with ν = 1
exhibit their quenching. Obviously, no such quenching is
found for any site in the trivial phase as shown in (a).
Quenching of amplitudes of wave function for six sites,
|ψl(t)|, when l = 2, 4, 6, 15, 17, 19 is found in (c) which
correspond to the topological phase with ν = −3. There-
fore, quenching will be found in general for the amplitudes
on sites l = 2, 4, 6, L−5, L−3, L−1, if a chain of length
L is considered. Again, the quenched sites for A and B
sublattices interchange the edges with respect to the last
case. So the phase with higher values of ν can be studied
where the quenching of absolute value of the probability
amplitude for higher number of sites close to the ends of
the lattice is observed.

Summarizing the results of above findings it is con-
cluded that the method proposed in this work by con-
structing series of Hamiltonians, H = Hvw + HB-A

z,m , and

H = Hvw + HA-B
z,m , with m = 1, 2, 3, · · · , topological

phases with ν = ±1,±2,±3, · · · , can be realized. Only
one further neighbour hopping term of strength z is in-
troduced within the standard SSH model, whose extent is
determined by the integer m. In this formulation, m de-
notes the extent of further neighbor hopping which passes
over (m − 1) intermediate cells. With the increase of
m, topological phases of higher values of ν will be real-
ized. Hamiltonians of the type H = Hvw + HB-A

z,m , yield
phases of positive winding number only, while that of
type H = Hvw + HA-B

z,m , yield those of negative winding
numbers along with ν = 0 and ν = +1. A list of Hamilto-
nians along with the winding numbers of accompanying
phases are given in Tab. 1.

m H = Hvw +HB-A
z,m H = Hvw +HA-B

z,m

1 ν = 0, 1 ν = −1, 0, 1

2 ν = 0, 1, 2 ν = −2, 0, 1

3 ν = 0, 1, 3 ν = −3 − 1, 0, 1

4 ν = 0, 1, 2, 4 ν = −4,−2, 0, 1

5 ν = 0, 1, 3, 5 ν = −5,−3,−1, 0, 1

...
...

...

2p ν = 0, 1, 2, · · ·, 2p ν = −2p,−2p+2, · · ·,−2, 0, 1

2p+1 ν=0, 1, 3, · · ·, 2p+1 ν=−2p−1,−2p+1, · · ·,−1, 0, 1

TABLE I: Distribution of winding numbers with the value of
m for the Hamiltonians H = Hvw + HB-A

z,m and H = Hvw +

HA-B
z,m . Here p is integer.

From this table, it is evident that, the topological phase
with ν = 1 and the trivial phase are present in every
case. Apart from these common phases, an ‘odd-even’
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FIG. 29: Quench dynamics for H = Hvw +HA-B
z,3 when ζ = 0.5, (a) for v = 2.5, w = 0.25, z = 0.25, (b) for v = 0.25, w = 2.5,

z = 0.25, (c) for v = 0.25, w = 0.25, z = 2.5. Figures are drawn for lattice of 20 sites.

effect for the values of ν is found with respect to m. In
addition to ν = 0, 1 only even (odd) values of ν appear
when m is even (odd). This is true for both ‘B-A’ and
‘A-B’ types of Hamiltonians. Also, number of nontrivial
phases increases with the value of m for both types of
Hamiltonians. The result is generalized in the last two
rows of the table, which refer to even, (m = 2p) and odd
(m = 2p + 1) values of m, where p is an integer. More
precisely, the number of nontrivial phase is equal to the
value of (p + 1) and (p + 2), respectively, for ‘B-A’ and
‘A-B’ types of Hamiltonians when m = (2p + 1) (odd).
For even m = 2p, both ‘B-A’ and ‘A-B’ types yield (p+1)
number of topological phase.

Another interesting finding is that, in order to real-
ize the topological phase of the largest possible values of
winding numbers from a specific Hamiltonian, value of z
is to be made larger than the individual values of v and
w. More elaborately, it is known that maximum value of
ν for the topological phase host by H = Hvw + HB-A

z,m is

+m, while that host by H = Hvw + HA-B
z,m is −m. How-

ever, this particular phase cannot be generated from the
relevant Hamiltonian by substituting any value of v/z
and w/z. By examining the phase diagrams as depicted
in the Figs. 7, 14, 21, and 28, it can be concluded that
the phase of the maximum value of ν can be achieved
easily by choosing the values of the parameters in such a
way that they must satisfy the relations: v/z → 0, and
w/z → 0. These limiting values indicate that phase with
the maximum value of ν emerges when both the inter and
intracell hopping strength are much weaker than that of
the further neighbour cells.

Figs. (b) in 6, 13, 20 and 27 indicate that localization
of symmetry-protected zero energy states are found on A
and B sublattices in a different way for phases with +ve
and −ve values of ν. For ν > 0, localization are found
on A sublattice for left edge and on B sublattice for right
edge. But the localization occurs in the opposite fashion
when ν < 0.

IV. TOPOLOGICAL PHASES IN TERMS OF

CHERN NUMBERS

In this case, further neighbour hoppings are allowed
within the same types of sublattice, means between A-A
and B-B types of sites. In addition, further neighbour
hoppings are limited between the NN cells. The simplest
model which exhibits topological phases with any values
of Chern numbers is defined by the Hamiltonian,

H = Hvw +Ht,

Ht =

N
∑

j=1

(

ta c
†
A,jcA,j+1 + tb c

†
B,jcB,j+1

)

+ h.c., (24)

where ta and tb denote respectively the hopping param-

PSfrag replacements

A B v w ta tb

FIG. 30: Extended SSH model describing the hopping for the
Hamiltonian in Eq. 24.

eters between A-A and B-B types of sites belonging to
the NN cells. The model is described in the Fig. 30.
Assuming PBC, the Hamiltonian in the k-space becomes
H(k) = gI(k)I + g(k) · σ, where I is the 2 × 2 identity
matrix, gI(k) = (ta + tb) cos(k), and

g(k) ≡















gx = v + w cos(k),

gy = w sin(k),

gz = (ta − tb) cos(k).

Since g(k) is a three-component vector, chiral symme-
try is not preserved for this model. In addition particle-
hole and inversion symmetries are not preserved. The
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standard forms of those symmetries for 1D system now
satisfy















PH(k)P−1 6= −H(−k),

σxH(k)σx 6= H(−k),

σzH(k)σz 6= −H(k).

However, those symmetries in the k-θ space can be re-
stored by choosing the hopping terms accordingly. No
topological phase in terms of nonzero winding number is
present in this case. However, this model is capable to
behave like an effective 2D model in the virtual momen-
tum space if the amplitude of hopping parameters are
modulated cyclically in terms of two additional angular
parameters θ and φ. Li et al introduced this model and
reported the emergence of topological phases character-
ized by the Chern numbers of Haldane like two-band 2D
system32. Parametrization behind the realization of this
phase is























v = t[1 + δ cos(θ)],

w = t[1 − δ cos(θ)],

ta = h cos(θ + φ),

tb = h cos(θ − φ).

(25)

Investigation on this model has been carried out un-
der periodic drive in order to find Floquet topological
phase30.

The Hamiltonian with this parametrization preserve
the inversion symmetry in terms of two variables k and
θ, since

σxH(k, θ)σx = H(−k,−θ),

for any values of φ, as long as θ 6= 0. In addition,
Hamiltonian preserves the mirror symmetry with respect
to θ, when φ = 0,±mπ, where m is integer. Let Mθ

be the operator for mirror symmetry and it acts as,

Mθg(θ) = g(−θ), where g(θ) is an arbitrary function
of θ. Hamiltonian obeys the relation,

MθH(k, θ)M−1
θ = H(k, θ),

only for φ = 0,±mπ. Anyway, this symmetry is not rele-
vant to the topological properties in this case. However,
Hamiltonian preserves the mirror symmetry with respect
to both θ, and φ. It means, if Mθ,φ be the operator of
that symmetry, Hamiltonian holds the relation:

Mθ,φH(k, θ)M−1
θ,φ = H(k, θ).

It occurs due to the fact that hopping parameters,
v, w, ta and tb do not change sign upon simultaneous
sign reversal of angular variables θ and φ.

Interestingly, topological phase of 2D system is real-
ized in this 1D model when θ is allowed to vary from
−π to π, for a specific value of another angular variable
φ. For example, C = ±1 is realized when 0 < φ < π,
while C = ∓1 when −π < φ < 0. Mirror symmetry
with respect to Mθ is broken in this entire regime, but
that with respect to Mθ,φ is preserved. Band gap van-
ishes for φ = 0, as well as band inversion occurs around
this point. Hence these two distinct topological phases
are realized in this model. No other phase is realized if
the further neighbour hopping extends beyond the NN
primitive cells for the parametrization defined in Eq. 25.
However, band inversion is found to take place if further
neighbor hopping between NN cells is replaced by NNN
cells and this phenomenon occurs recursively if the fur-
ther neighbor hopping terms extend beyond NNN cells
successively in addition.

Chern number can be defined in this virtual reciprocal
space as

C =
1

2π

x

BZ

dkdθ (∂θAk − ∂kAθ), (26)

where the Berry phase, Aν = i〈kθ|∂ν |kθ〉, with ν = k, θ
and |kθ〉 is the Bloch state. Integration is performed over
the BZ in the 2D reciprocal space. The reciprocal space
is called virtual in a sense that no parameter in the real
space can be connected to the angular variable θ, as on
contrary the wave number k corresponds to the reciprocal
of the lattice parameter for the real space. In order to find
the Chern number the integral in Eq 26 is numerically
evaluated37.

In this study, new topological phases other than C =
±1 and ∓1 have been obtained in a very simple way in
which the angular variable θ is replaced by (fθ) where
f may assume any values. Another cyclic parameter φ
also depends on f as shown below. Higher values of f
lead to phases with higher values of C. In other words for
the realization of phases with C = ±n and ∓n, with n =
1, 2, 3, · · · , sequentially, the following parametrization is
implemented,























v = t[1 + δ cos(fθ)],

w = t[1 − δ cos(fθ)],

ta = h cos(fθ + φ),

tb = h cos(fθ − φ),

(27)
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FIG. 32: Variation of energy with θ for the Hamiltonian defined in Eq. 24 and the parametrization defined in Eq. 27 are drawn
in the upper panel. Figures are drawn for t = 1, δ = 0.5, h = 0.2, φ = (n+ 1

2
)π and n = 2 in (a), n = 3 in (b), n = 4 in (c).

Figures are drawn for lattice of 100 sites. Probability density of the corresponding edge states are shown in the lower panel.
θ = π/2 when n = 2 in (d), θ = (π − 1)/2 when n = 3 in (e), and θ = π/4 when n = 4 in (f).
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FIG. 34: Variation of energy with θ for the Hamiltonian defined in Eq. 24 and the parametrization defined in Eq. 28 are drawn
in the upper panel. Figures are drawn for t = 1, δ = 0.5, h = 0.2, φ = π/2 and n = 2 in (a), n = 3 in (b), n = 4 in (c). Figures
are drawn for lattice of 100 sites. Probability density of the corresponding edge states when θ = π are shown in the lower panel
for n = 2 in (d), n = 3 in (e), and n = 4 in (f).
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where φ = (f ± 1
2 )π. The mirror symmetry with re-

spect to the operator, Mθ is preserved only when f =
± 1

2 ,± 3
2 ,± 5

2 , · · · . Because at those points all the hopping
parameters, v, w, ta and tb do not change sign upon the
sign reversal of angular variable θ. So, the Hamiltonian
remains invariant under the transformation. In contrast,
the particle-hole symmetry is preserved in the k-θ space
only when f is integer, since the relation,

PH(k, θ)P−1 = −H(−k,−θ),

is satisfied at those points. But the chiral symmetry is
not preserved anymore.

The system is found to host nontrivial phases with

C =

{

±n, (n− 1
2 )<f <(n+ 1

2 ), when n = 1, 3, 5, · · · ,
∓n, (n− 1

2 )<f <(n+ 1
2 ), when n = 2, 4, 6, · · · ,

when φ = (f + 1
2 )π. On the other hand, it yields

C =

{

∓n, (n− 1
2 )<f <(n+ 1

2 ), when n = 1, 3, 5, · · · ,
±n, (n− 1

2 )<f <(n+ 1
2 ), when n = 2, 4, 6, · · · ,

when φ = (f− 1
2 )π. C is undefined when f = 1

2 ,
3
2 ,

5
2 , · · · ,

as band gap closes at those points when φ = (f± 1
2 )π. At

these points the system preserves the mirror symmetry,
Mθ. Which means topological phase emerges when this
mirror symmetry is broken.

Appearance of topological phases with increasing
Chern numbers with the increase of f is shown in Fig.
31. Topological phases C = ±1,±2,±3,±4 and ±5 are
shown here. New phases with higher values of Cs may ap-
pear with the increase of f . Chern number is undefined
at the intermediate points when f = 1

2 ,
3
2 ,

5
2 , · · · . This

phase diagram is independent of the value of t, δ and h.
In order to visualize the edge states, variation of energy

with θ is shown in the upper panel of Fig. 32. A chain
of 100 sites is considered. Figures are drawn for t = 1,
δ = 0.5, h = 0.2, φ = (n + 1

2 )π and n = 2 in (a), n =
3 in (b), n = 4 in (c). n pairs of edge state lines are
found for each case when C = ±n. Those results are
consistent with the ‘bulk-boundary correspondence’ rule
which states that: chern number is equal to the number of
pair of edge states in the gap for the two-band model34–36.
Probability density of a specific pair edge states for a
definite value of θ is shown in the respective lower panels.
For example, θ = π/2 when n = 2 in (d), θ = (π − 1)/2
when n = 3 in (e), and θ = π/4 when n = 4 in (f).
Variation of energy with θ is shown Fig. 33 when φ = 0
for t = 1, δ = 0.5, h = 0.2. Value of C is undefined as
there is no band gap when φ = 0. Particle-hole symmetry
is not preserved in this case.

For another type of parametrization, where























v = t[1 + δ cos(θ)],

w = t[1 − δ cos(θ)],

ta = h cos(nθ + φ),

tb = h cos(nθ − φ),

(28)

a single topological phase with C = ±1 always appear
when n = 1, 3, 5, · · · . C is undefined when n = 2, 4, 6, · · ·

as band gap closes for the even n. Interestingly edge
states appear for the trivial phases instead. Not only
that, multiple crossing of the edge state energy lines are
found for both trivial and topological phases where the
number of crossing points are exactly equal to the value
of n. Bulk-edge energy dispersion and probability density
of the edge states for this parametrization are shown in
Fig. 34. In the upper panel bulk-edge energy variation
with θ is shown for n = 2 in (a), n = 3 in (b), and
n = 4 in (c). Values of the fixed parameters are t = 1,
δ = 0.5, h = 0.2, and φ = π/2. Lower panel shows the
probability densities of edge states in (d), (e) and (f) for
the respective cases. Figures are drawn for lattice of 100
sites.
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FIG. 35: Variation of C in the f -φ phase space for the Hamil-
tonian defined in Eq. 24 with the parameters in Eq. 27 is
shown but when −π < φ < π.

Variation of C in the f -φ phase space for the Hamilto-
nian defined in Eq. 24 with the parameters in Eq. 27 is
shown in Fig. 35 but when −π < φ < π. In this partic-
ular case φ does not depend on the parameter f . Phases
with different values of C will appear with the increase
of f along the vertical axis. However, in this case phases
with different Cs are not separated by band gap closing.
The Hamiltonian remains invariant under the transfor-
mation of Mθ,φ for any value of f . In contast, symmetry
with respect to Mθ, is preserved only when f = 0, ±π.
The states shown in Fig. 35 are no more topological in
nature since they are not separated by vanishing band
gap. In contrast, phases across the line φ = 0 are sepa-
rated by zero band gap.

V. DISCUSSION

In this investigation, emergence of two different se-
ries of topological phases with ν = ±1,±2,±3, · · · , and
C = ±1,±2,±3, · · · , has been successfully demonstrated
using the 1D eSSH models. The manuscript is composed
of two main parts, say Sec IV and III, where the major
results are presented. In the first case, a single further
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neighbor hopping term beyond NN is found enough for
the realization of the series of new phase where particle-
hole and inversion symmetries are preserved. Those
phases can be realized by adding multiple further neigh-
bor terms as well. In the second case, a single pair of
NNN hopping terms is found sufficient for the realiza-
tion of the series of new phases where the standard forms
of particle-hole and inversion symmetries for 1D are not
preserved.

Four different eSSH models in the first case have been
considered in which extend of further neighbor hopping is
limited by m = 2, 3, and their properties have been stud-
ied rigorously. Topological properties have been char-
acterized in terms of winding number, edge states and
quench dynamics in the presence of an additional nonlin-
ear term. Finally, the results are generalized for m > 2,
where phases with higher values of ν appear. Compre-
hensive phase diagrams are drawn, where the equations
of phase transition lines are obtained. It is also expected
that a pair of further neighbor staggered hopping terms
with varying extent can yield series of topological phases
with different ν, however, this case is not addressed here.

It is known that topological interface states emerge
when two lattices with different topological phases are
joined. Nowadays, study on these interface states in
phononic crystals have been initiated9. So, the results ob-
tained for these tight-binding models will become helpful
for constructing the phononic model in order to realize
the topological phase of any desired winding number, as
well as to study the properties of interface states. In ad-
dition, the most simple route for the demonstration of
topological phase of higher winding numbers using sys-
tems of ultracold atoms in optical lattice can be obtained
by mimicking the structure of these tight-binding models.

In the second case, emergence of topological phase with
any value of C is discussed when the NN and NNN hop-
ping terms in the two-band eSSH model are expressed

in terms of two angular variables, θ and φ. Particle-
hole and inversion symmetries are preserved in the k-θ
space. Three different types of parametrization are em-
ployed when θ and φ depend on another parameter f in
three different ways. A specific parametrization gives rise
to a nontrivial phase of any value of C which is controlled
by the parameter f . Phase transition points are marked
on the phase diagram where the band gap vanishes. Ex-
perimental realization of these phases using systems of
ultracold atoms in optical lattice is possible, as discussed
here32.

The system hosts topological phases with C = ±1,∓1,
for another parameterization, but with peculiar types of
edge states. Here, multiple crossing between the edge
states lines is found within the band gap. This particular
phenomenon of multiply-crossed edge states as shown in
Fig 34 is not reported before. In addition, fake topological
phases with series of different Cs appear in the third kind
of parametrization. They are spurious because of the fact
that the band gap does not vanish at the transition points
in this case. All the results obtained in this study are
insensitive to the external magnetic field. This is because
of the fact that there is no spin dependent term in the
Hamiltonians. Magnetic field will be registered here as
an additional constant in the diagonal element of (2 × 2)
H(k) matrix in every case. As a result, symmetry of this
matrix does not change in the presence of magnetic field
and all the results remain valid.
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