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Abstract

We study the impact of induced correlations and quasiparticle properties by immers-
ing two distinguishable impurities in a harmonically trapped bosonic medium. It is
found that when the impurities couple both either repulsively or attractively to their
host, the latter mediates a two-body correlated behavior between them. In the reverse
case, namely the impurities interact oppositely with the host, they feature anti-bunching.
Monitoring the impurities relative distance and constructing an effective two-body model
to be compared with the full many-body calculations, we are able to associate the induced
(anti-) correlated behavior of the impurities with the presence of attractive (repulsive)
induced interactions. Furthermore, we capture the formation of a bipolaron and trimer
state in the strongly attractive regime. The trimer refers to the correlated behavior of
two impurities and a representative atom of the bosonic medium and it is characterized
by an ellipsoidal shape of the three-body correlation function. Our results open the way
for controlling polaron induced correlations and creating relevant bound states.
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1 Introduction

Impurities embedded in a many-body medium, e.g. a Bose-Einstein condensate (BEC), are
dressed by its excitations and generate quasiparticles [1, 2]. In the case of a structureless
host these refer to polarons [3], while for instance, utilizing a magnetic environment or in
the presence of a cavity, magnetic polarons [4–6] and polaritons [7, 8] are formed respec-
tively. Polarons, which we will investigate herein, have been widely studied in cold-atom
settings owing to the enormous flexibility, e.g., in terms of controlling the spatial dimen-
sion [9–11], the interparticle interactions [12–14], as well as the trapping geometry and the
number of species [15–19] and atoms [20, 21]. Depending on the statistics of the medium
both Bose [11, 22–26] and Fermi [1, 27, 28] polarons have been experimentally realized,
while theoretically fundamental properties of these type of quasiparticles including effective
mass [29–31], residue [1,2], and bound state formation [1,2,32] emerging in two-component
systems have been discussed. Interestingly, by immersing at least two impurities into a quan-
tum gas the latter mediates interactions between the former [33–36], a phenomenon that
has been interpreted in terms of a Casimir-type interaction describing the induced interaction
between two objects in a fluctuating medium [37–39]. In particular, induced interactions be-
tween two impurities are solely attractive as long as they couple in the same way (i.e. in terms
of sign and strength) to the fluctuating medium [38–46]. The magnitude of this induced at-
traction, in general, increases for larger impurity-medium coupling strength and specifically
for sufficiently strong attractive ones the impurities assemble in a bound state that can be a
bipolaron [32,43,45,47–49] or a trimeron [50]. Notice that besides the above-discussed stud-
ies in a homogeneous BEC environment, the attractive nature of induced interactions has been
unveiled also for a harmonically confined [42,51,52] or a lattice trapped [53]medium. More-
over, in the context of open quantum systems where, e.g., two non-interacting particles are
coupled to a heat bath, a mediated induced entanglement between the particles has been pre-
dicted and its interplay with the inherent decoherence effects has been analyzed for instance
in terms of the interatomic distance and temperature [54–62].

Interestingly, it was predicted [37, 39] that there is also the possibility of mediating re-
pulsive impurity-impurity interactions when two impurities are coupled with different signs
to a bosonic bath. In this sense, the underlying experimentally relevant three-component sys-
tem [16, 18] allows to unravel additional polaronic properties as it has been also argued by
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immersing impurities into a two-component pseudospinor mixture [4–6, 63–66] in order to
create, for instance, spin-wave excitations and magnetic polarons [4, 5], impurities diffusive
response [64] or to facilitate the detection of the dressing cloud via interferometry [4]. How-
ever, quasiparticle formation in three-component systems is largely unexplored, besides the
few above-mentioned recent studies. An interesting direction is to exploit the tunability of
such mixtures, e.g. in terms of different intercomponent couplings, for devising the ground
state quasiparticle properties such as the impurities effective mass and induced interactions.
Here, it is important to understand the interplay of the latter properties and the underlying
impurities’ correlations. Also, the formation of relevant bound states either solely among the
impurities (bipolarons) or between the impurities and the host atoms (trimers) remains elu-
sive. To address these questions, we consider two distinguishable and non-interacting impu-
rities that are embedded into an one-dimensional bosonic gas. The impurities’ couplings with
the host are individually tuned spanning the regime from attractive to repulsive interactions.
Here, the effective interactions between the impurities can be only mediated in the presence
of impurity-medium entanglement and bound states require the involvement of strong corre-
lations. As such, to account for the relevant inter and intra-component correlations we employ
the variational multilayer multiconfiguration time-dependent Hartree method for atomic mix-
tures (ML-MCTDHX) approach [67–69] which is well established for investigating impurity
physics [36].

Inspecting the spatial two-body correlations between the two impurities we reveal that,
in general, they are correlated (anti-correlated) when the two impurity-medium coupling
strengths posses the same (opposite) sign. To shed more light on the impact of induced impu-
rities’ correlations we carefully monitor their relative distance [70], excluding all mean-field
type contributions, for varying coupling strengths. A central result of our work is that the
impurities’ correlated (anti-correlated) behavior is related to a decrease (increase) of their
relative distance, thus, indicating the presence of an induced attraction (repulsion) between
them. This observation is additionally confirmed by constructing an effective two-body model
in the weak impurity-medium coupling regime inspired from the case of indistinguishable im-
purities [36, 52]. It specifically allows to assign the impurities’ induced interaction strength
and sign but also other quasiparticle related properties such as their effective mass and trap
frequency.

For strong impurity-medium attractions, we identify the formation of a bipolaron state
involving the two distinguishable impurities. This bound quasi-particle state is characterized
by the so-called bipolaron energy [32], and the size of the impurities’ dimer state featuring an
exponential decrease for larger attractions. Proceeding a step further, we find that for such
strong attractive impurity-medium interactions the three-body correlation function features an
ellipsoidal shape indicating bunching and revealing the creation of a trimer state among the
two impurities and a corresponding bath atom. To further testify the existence of this trimer
state we employ the Jacobi relative distances of the three distinguishable atoms [71] showing
an exponentially decreasing trend for increasing impurity-medium attractions.

This work is organized as follows. In section 2, the three-component setup under consid-
eration is introduced and in Section 3 we explain the variational method used to obtain the
ground state properties of the many-body system. Section 4 elaborates on the possible ground
state density configurations upon varying the impurity-medium couplings. The emergence of
induced impurity-impurity correlation patterns is explicated in Section 5. The interrelation of
the aforementioned induced correlations with the induced attractive and repulsive impurity in-
teractions is provided in Section 6 through monitoring their relative distance and constructing
an effective two-body model. Delving into the strongly attractive impurity-medium interac-
tion regime, we demonstrate the formation of a bipolaron state among the two distinguishable
impurities in Section 7 and the generation of a trimer state among the impurities and a bath
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atom in Section 8. We summarize our findings and discuss future perspectives in Section 9.
The behavior of the logarithmic negativity in order to quantify the bipartite intercomponent
entanglement is discussed in Appendix A. Appendices B and C provide supplemental informa-
tion regarding the polaron characteristics and induced effective interactions. In Appendix D
we comment on the impact of the impurity mass and the number of bath particles on the
ground state properties of the system. Finally, in Appendix E we elaborate on the microscopic
excitation processes of the system via a number state analysis.

2 Two distinguishable impurities in a bosonic gas

We consider a one-dimensional harmonically trapped three component mixture. It contains a
bosonic medium A with NA = 15 atoms of mass mA and two distinguishable impurities B and
C , i.e., NB = NC = 1, having masses mB and mC , respectively. The many-body Hamiltonian of
this system reads

Ĥ =
∑

σ

Ĥσ +
∑

σ ̸=σ′
Ĥσσ′ , (1)

where Ĥσ denotes the Hamiltonian of each component σ and Ĥσσ′ represents the intercom-
ponent interaction contribution with σ,σ′ ∈ {A, B, C}. Specifically,

Ĥσ =
Nσ
∑

i=1

�

−
ħh2

2mσ

∂ 2

(∂ xσi )
2
+

1
2

mσω
2
σ(x

σ
i )

2 + gσσ
∑

i< j

δ(xσi − xσj )
�

, (2)

Ĥσσ′ = gσσ′
Nσ
∑

i=1

Nσ′
∑

j=1

δ(xσi − xσ
′

j ). (3)

Assuming that the system is at ultracold temperatures it dominantly experiences s-wave scat-
tering processes that can be described by two-body contact interactions between particles of
the same as well as of different species characterized by the generic strength gσσ′ [14]. The
latter depends on the respective three-dimensional scattering lengths a3D

σσ′
and the transversal

confinement frequency ω⊥ that are experimentally tunable via Feshbach resonances [13, 14]
and confinement induced resonances respectively [12]. The latter would allow the tuning of
interactions even in the absence of a Feshbach resonance.

For simplicity, we focus on the mass-balanced case mσ ≡ m (unless stated otherwise) and
thus ωσ ≡ ω. Moreover, we rescale our Hamiltonian in harmonic oscillator units ħhω which
means that the length and interaction scales are given in

p

ħh/mω and
Æ

ħh3ω/m, respectively.
Such a three-component system could be experimentally realized [16, 18] e.g., by trapping
three different hyperfine states of 87Rb which can feature various Feshbach resonances. An al-
ternative candidate may be two isotopes of Rubidium atoms with 85Rb emulating the medium
and two-hyperfine states of 87Rb [72, 73] representing the impurities. Since our main find-
ings persist also for mass-imbalanced mixtures, see the discussion in Section D, corresponding
heteronuclear mixtures of different isotopes could also be used. We also note that the experi-
mental realization of three-component mixtures was reported in Refs. [16,18] and a proposal
for a corresponding impurity system was recently made in Ref. [74]. Since our aim is to un-
derstand the role of induced interactions between the impurities mediated by the medium, in
the ground state of the system, it is natural to consider two non-interacting impurities setting
gBC = 0, which could be realized, for instance, via magnetic Feshbach resonances [75].
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3 Variational wave function approach

The ground state of the three-component mixture, described by the Hamiltonian of Eq. (1),
is determined within the ML-MCTDHX method [67–69, 76]. A central aspect of this ab-initio
approach is based on the expansion of the many-body wave function on different layers using a
variationally optimized time-dependent many-body basis. This leads to an efficient truncation
of the underlying Hilbert space tailored to capture the relevant inter- and intracomponent
correlations. Specifically, the many-body wave function is first expressed in terms of three
different sets of Dσ species functions as follows

|ΨMB(t)〉=
DA
∑

i=1

DB
∑

j=1

DC
∑

k=1

Ci jk(t) |ΨA
i (t)〉 |Ψ

B
j (t)〉 |Ψ

C
k (t)〉 . (4)

The time-dependent coefficients Ci jk(t) bare information about the entanglement between the
involved components. For instance, the bipartite entanglement between two components can
be analyzed by tracing out the degrees of freedom of the third one and then apply the posi-
tive partial transpose criterion on the resulting mixed state [77] (see also Appendix A). Next,
the intracomponent correlations are included into the wave function ansatz by expanding
each species function as a superposition of permanents |n⃗(t)〉 weighted by time-dependent
expansion coefficients Cσi,n⃗(t). In this notation, n⃗ = (nσ1 , . . . , ndσ) represents the occupation
distribution of Nσ particles on dσ time-dependent single-particle functions. Additionally, the
single-particle functions are expanded into a time-independent discrete variable representa-
tion [78] consisting in our case of Mr = 300 evenly spaced grid points.

The number of utilized species functions Dσ dictates the degree of intercomponent entan-
glement. For instance, by providing only one species function for each component, i.e., by
setting DA = DB = DC = 1, the many-body wave function reduces on its top layer to a prod-
uct state, thereby, prohibiting any interspecies entanglement. Such a treatment is commonly
referred to as a species mean-field ansatz (sMF) [67]. For two-component mixtures the sMF
ansatz is unique, however, in three-component systems there are various sMF that could be
constructed. As an example, setting Dσ = 1 and Dσ′ , Dσ′′ > 1, we allow for entanglement gen-
eration only between the species σ′ and σ′′, whilst intercomponent correlations with species
σ are suppressed. To clearly distinguish among the different possible sMF ansatzes, in the
following, we abbreviate as sMFσ where σ ∈ {A, B, C} the ansatz that ignores intercomponent
correlations between species σ and the remaining ones. In this sense, the sMFC is written as

|ΨsMFC(t)〉=
DA
∑

i=1

DB
∑

j=1

Ci j1(t) |ΨA
i (t)〉 |Ψ

B
j (t)〉 |Ψ

C
1 (t)〉 , (5)

where only species A and B can become entangled while species C remains uncorrelated with
the other species.

The ground state of the three component mixture is obtained through the imaginary time
propagation method. The time-dependent coefficients of each layer, namely the species and
single-particle layers, are optimally adapted to the system, e.g. by following the Dirac-Frenkel
variational principle [79] in order to determine the underlying ML-MCTDHX equations of mo-
tion. The latter correspond to DADB DC linear differential equations of motion for the Ci jk(t)
coefficients coupled to

∑

σ=A,B,C Dσ
�Nσ+dσ−1

dσ−1

�

nonlinear integrodifferential equations for the
species functions and dA+dB+dC nonlinear integrodifferential equations for the single-particle
functions. This co-moving basis concept minimizes the number of required states for achiev-
ing numerical convergence. In this sense, it reduces the computational cost as compared to
methods relying on time-independent basis sets, while simultaneously allows to account for
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all relevant correlations. The truncation of the Hilbert space is determined by the number
of employed species- and single-particle functions defining the numerical configuration space
(DA, DB, DC ; dA, dB, dC). Utilizing this method, it is in principle possible to describe mix-
tures with mesoscopic particle numbers and strong interactions. However, as the number of
particles increases and correlations become enhanced a larger number of orbitals should be
taken into account in order to reach numerical convergence. The latter is carefully checked by
systematically increasing the numerical configuration space and ensuring that the observables
of interest remain unchanged within a desired level of accuracy. As expected, this process is
accompanied by a significant computational cost and in particular it is the interplay of intra-
and intercomponent correlations with the components atom number that limits the applica-
bility of the method due to numerical feasibility. Elaborated discussions on the ingredients,
applicability and benchmarks of this variational method to different multicomponent settings
can be found in the recent reviews [36,80].

For our system, the degree of correlations in the bosonic bath, e.g. as captured by its
depletion [81] 1−nA

0 with nA
0 representing the largest eigenvalue of the bath’s one-body reduced

density matrix is negligible within the considered interaction strength intervals. This allows
us to use only a few orbitals for the medium in order to ensure convergence. On the other
hand, the impurities depletion is in general larger, especially for strongly repulsive interactions,
and thus we need to use more orbitals. Herewith, we have checked that employing an orbital
configuration (6, 6, 6; 4, 6, 6) results in the convergence of the observables of interest, such as
the species densities and intercomponent two-body correlation functions, while the amount of
equations of motion are tractable. For completeness, let us note that stronger intercomponent
interactions than the ones to be reported below e.g. |gAC | < 10 require a larger number
of species functions and impurities orbitals which is still numerically feasible. Similarly, in
order to tackle systems with stronger intracomponent bath interactions the number of the
respective dA orbitals should be increased. This naturally entails more difficult convergence
issues than increasing the impurities orbitals (and thus considering stronger impurity-medium
interactions) since the number of the underlying equations of motion becomes larger in the
former case.

4 One-body density configurations of the three-component mix-
ture

To investigate the emergent spatial configurations of the three-component impurity setting
arising due to different combinations of the involved interactions, we initially employ the σ-
component one-body density being normalized to unity. Namely, ρ(1)σ (x) = 〈Ψ

MB| Ψ̂†
σ(x)Ψ̂σ(x)

|ΨMB〉 where Ψ̂(†)σ denotes the bosonic field operator which annihilates (creates) a σ-species
atom at position x . In an experiment, the density is routinely detected through in-situ ab-
sorption imaging [82–84]. Our understanding on the mixture spatial distributions at differ-
ent interactions is also corroborated by an effective potential picture, which has been proven
thus far successful in order to qualitative explicate various aspects of impurity physics in two-
component settings [70,85,86]. According to this, each σ component is subjected to an effec-
tive potential stemming from the superposition of its external harmonic trap and the density of
the complementary components σ′ weighted by the respective intercomponent interactions,
i.e.,

V eff
σ (x) = Vσ(x) +

∑

σ′ ̸=σ

Nσ′ gσσ′ρ
(1)
σ′
(x). (6)
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Figure 1: One-body σ-species density, ρ(1)σ (x), shown together with the effective po-
tentials [Eq. (6)] of the impurities (see legend). Two distinguishable non-interacting
impurities (B, C) are considered which are individually coupled to a bosonic medium
A with gAA = 0.2. The impurity-medium coupling strengths from left to right panels
refer to (gAB, gAC) = (−1.0,−0.2), (1.0,−0.2) and (1.0, 1.5). For attractive interac-
tions the medium atoms accumulate in the vicinity of the impurities and their effec-
tive potential is attractive. Turning to repulsive couplings a tendency for impurity-
medium phase-separation occurs for gAσ > gAA.

Naturally, this is a sMF framework since it ignores intercomponent correlations. Moreover, it
is more meaningful for the impurity subsystem since the impact of the impurity densities is
suppressed for the medium. Density profiles of all three components and the impurity effective
potentials are provided in Fig. 1 for characteristic impurity-medium interaction configurations,
namely (gAB, gAC) = (−1.0,−0.2), (1.0,−0.2) and (1.0,1.5). The impurities are considered to
be non-interacting among each other, i.e., gBC = 0, and the medium bosons feature throughout
gAA = 0.2.

As it can be seen, for an overall attractive impurity-medium coupling the bosons of the
medium are placed in the vicinity of the impurities which are naturally localized at the trap
center [cf. Figure 1(a)]. This distribution of the medium atoms can also be understood in
terms of the respective attractive impurity-medium interaction energy Eint

Aσ = 〈Ψ
MB|HAσ|ΨMB〉

for gAσ < 0 with σ = B, C . Also, for both gAB < 0 and gAC < 0 the effective potential of
each impurity corresponds to a dipped harmonic trap enforcing its localization whose degree
is, of course, enhanced for stronger attractions [cf. Figure 1(a)]. The value of the attractive
interaction determines the degree of spatial localization, i.e., the B impurity with gAB = −1.0
is more localized than the C impurity experiencing gAC = −0.2. For sufficiently large attractive
impurity-medium couplings (|gAσ| ≫ gAA) the impurities form a bipolaron, see for details the
discussion in Section 7.

On the other hand, tuning at least one of the impurity-medium couplings towards the
repulsive regime such that gAσ > gAA is satisfied leads to the phase-separation among these
components since Eint

Aσ > 0. In this case, the impurity forms a shell around the edges of the
bath residing around the trap center [65]. Such configurations can be readily observed, for
instance, in Figure 1(b) where solely the B impurity is strongly repulsively coupled with the
bath (gAB > gAA) and also in Figure 1(c) where both impurities phase separate with the bath
due to gAB > gAA and gAC > gAA. Notice that for strong repulsive impurity-medium couplings
the underlying effective potential of the impurity has the form of a double-well potential which
favors the phase-separation among the bath and the corresponding impurity [cf. Figures 1(b)
and (c)].

Another interesting phenomenon reflecting the richness of three-component systems arises
upon considering distinct interactions between each impurity and the bath. Indeed, varying
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Figure 2: Two-body correlation function (in units of mω/ħh) between (a1)-(c1) one
bath particle and the B impurity as well as (a2)-(c2) among the two non-interacting
impurities [see Eq. (7)]. Each column corresponds to the same interaction con-
figuration which is from left to right (gAB, gAC) = (−1.0,−0.2), (1.0,−0.2) and
(1.0, 1.5). We consider two distinguishable non-interacting impurities and an in-
teracting medium with gAA = 0.2. Impurity B is correlated (anti-correlated) with a
bath particle at the same location in the case of attractive (repulsive) gAB, see panel
(a1) [(b1), (c1)]. The impurities experience induced correlations when they both
couple either repulsively or attractively to the bath [panels (a2), (c2)], while they
are anti-correlated when each impurity couples with an opposite sign to the majority
species [panel (b2)].

the impurity-medium coupling for a specific impurity affects the shape of the bath accordingly
and, in turn, impacts the distribution of the other impurity. This is visualized in Figures 1(a)
and (b) where gAC is the same while gAB is modified from attractive to repulsive values ul-
timately altering the spatial localization of impurity C , see in particular the peak of ρ(1)C (x).
Therefore, it is possible to implicitly manipulate the distribution of one impurity by adjust-
ing the coupling of the other impurity with the bath and importantly in the absence of direct
impurity-impurity interaction. This property, as it will be discussed below, can be proved cru-
cial for controlling impurity-impurity induced interactions.

5 Intercomponent (induced) correlations and entanglement

Next, we shed light on the associated intercomponent correlation patterns with a particular
emphasis on the existence of induced correlations between the impurities mediated by the
bosonic gas. The intercomponent two-body spatial correlations, or two-body coherence, can
be quantified through [84],

G(2)
σσ′
(xσ1 , xσ

′

2 ) = ρ
(2)
σσ′
(xσ1 , xσ

′

2 )−ρ
(1)
σ (x

σ
1 )ρ

(1)
σ′
(xσ

′

2 ). (7)

Here, we subtract the probability of independently detecting a σ and a σ′ atom at positions
xσ1 and xσ

′

2 from the probability to simultaneously measure one at xσ1 and the other at xσ
′

2 .
The latter is provided by the reduced two-body density

ρ
(2)
σσ′
(xσ1 , xσ

′

2 ) = 〈Ψ
MB| Ψ̂†

σ(x
σ
1 )Ψ̂

†
σ′
(xσ

′

2 )Ψ̂σ′(x
σ′

2 )Ψ̂σ(x
σ
1 ) |Ψ

MB〉 , (8)

which is normalized to unity. In this sense, the two particles are correlated or bunched (anti-
correlated or antibunched) if G(2)

σσ′
(xσ1 , xσ

′

2 ) is positive (negative); otherwise, they are referred
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to as two-body un-correlated [84, 87]. Experimentally the two-body correlation function is
accessible through analyzing the respective single-shot images, see e.g. Refs. [88–92].

5.1 Characteristic correlation patterns

First, we study the emergent two-body correlation patterns between the B impurity and the
medium for different intercomponent interactions [Figures 2(a1)-(c1)]. For attractive gAB < 0
and gAC < 0 the B impurity is correlated with a bath atom at the same position, see the
diagonal of G(2)AB (x

A
1 , xB

2 )> 0, while these two particles are anti-correlated when symmetrically

placed with respect to the trap center as it is shown from the anti-diagonal of G(2)AB (x
A
1 , xB

2 )< 0
[Figure 2(a1)]. In this sense, the B impurity prefers to occupy the same spatial region with
the bath. Turning to repulsive gAB > 0 and independently of gAC ≶ 0, the above-discussed
two-body correlation distributions are inverted and the B impurity features an anti-bunched
(bunched) behavior at the same (different) location with a bath particle as can be deduced by
the diagonal (anti-diagonal) of G(2)AB (x

A
1 , xB

2 ) [cf. Figures 2(b1) and (c1)]. This trend reflects
the impurity-medium phase-separation identified on the density level [Figures 1(b) and (c)].

Let us now discuss the induced correlations among the non-interacting impurities. When
both impurities are attractively coupled to their bath they exhibit a bunching tendency which
is, of course, mediated by the bosonic gas, see the diagonal of G(2)BC (x

B
1 , xC

2 ) depicted in Fig-
ure 2(a2). Otherwise, the impurities are anti-bunched when residing at different locations
with respect to x = 0. This two-body configuration of the impurities manifests the presence of
their attractive induced interactions regulated by the impurity-medium attractive interactions
as we will discuss in Section 6. Note also that a further increase of the impurity-bath attraction
can result in the formation of a bipolaron state which we analyze in detail within Section 7. A
similar two-body impurities correlation pattern occurs when they both repulsively couple with
their bath [Figure 2(c2)]. However, in this case the impurities cluster either at the left or the
right side of the bath, while the probability to reside at opposite sides is suppressed [cf. Fig-
ure 2(c2)]. This trend which is inherently related to the impurity-medium phase-separation
has also been observed for two indistinguishable impurities and it is known as their coales-
cence [42]. In sharp contrast, if one impurity couples repulsively and the other attractively
to the bath the reverse to the above-described correlation behavior is observed. Namely, the
impurities anti-bunch (bunch) at the same (different) location in terms of the trap center,
see Figure 2(b2). This scenario manifests the flexibility offered by three component mixtures
and it is connected to the emergence of repulsive impurity-impurity induced interactions, a
phenomenon that can not occur in two-component systems and we analyze in Section 6.

5.2 Emergent correlation regimes

To provide an overview of the two-body correlation behavior stemming from the interplay of
the distinct impurity-medium couplings, we inspect the spatially integrated over [−∞, 0 ]
(due to symmetry) correlation function

Cσσ′ =
∫ 0

−∞
d xσ1

∫ 0

−∞
d xσ

′

2 G(2)
σσ′
(xσ1 , xσ

′

2 ). (9)

It quantifies the amount of intercomponent correlations or anti-correlations by means that it
is positive (negative) when the particles prefer (avoid) to occupy the same region with respect
to the trap center1. The phase diagrams of the impurity-medium CAB and impurity-impurity
CBC integrated correlations as a function of gAB and gAC are depicted in Figure 3(a) and (b)

1Due to parity symmetry the maximum (minimum) value of Cσσ′ is 0.25 (-0.25) denoting strong bunching
(anti-bunching).
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Figure 3: (a)-(b) Phase diagram of the intercomponent (see legends) spatially inte-
grated correlation functions Cσσ′ [Eq. (9)] in the parametric plane of the impurity-
medium interaction strengths (gAB, gAC). A value of Cσσ′ < 0 (Cσσ′ > 0) indicates an
anti-correlated (correlated) behavior between the atoms of species σ and σ′, while
Cσσ′ = 0 denotes the absence of two-body correlations (see also main text). The gray
circles correspond to the interaction combinations (gAB, gAC) depicted in Figures 1
and 2. The regions enclosed by the dashed lines in panel (b) indicate the interaction
regions where the impurities do not overlap but are still two-body anti-correlated.
The harmonically trapped three component system consists of two non-interacting
but distinguishable impurities immersed in a bosonic gas of NA = 15 atoms with
gAA = 0.2.

respectively. Recall that since gBC = 0 all emerging impurity correlations are induced by their
coupling to the bath.

An anti-correlated (correlated) behavior between the B impurity and the bath occurs for
gAB > 0 (gAB < 0) and varying gAC , see also Figures 2(a1)-(c1). Notice also the un-correlated
tendency for strongly attractive gAC and repulsive gAB [Figures 3(a), (b)]. Indeed, due to the
large gAC < 0 both the bath A and the C impurity localize at the trap center minimizing their
spatial overlap with the B impurity since gAB > 0 and thus CAB is suppressed. Naturally, a
less attractive gAC enhances the overlap between impurity B and the bath leading to an anti-
correlated behavior. The largest degree of anti-correlation as captured by CAB is reached when
gAB > gAA and gAC > gAA where both impurities form a shell around the bath and coalesce [cf.
corresponding region in Figure 3(a)].

Turning to the impurities’ correlations, we observe that as long as they both couple either
repulsively or attractively to the bath it holds that CBC > 0, implying that they are correlated
[see also Figures 2(a1) and (c1)]. However, when the couplings gAB and gAC have opposite
signs, with one lying in the weak and the other in the strong interaction regime, then mostly
CBC < 0, i.e., the impurities are anti-correlated [cf. Figure 2(b1)]. A notable exception takes
place if one of the impurities couples strongly repulsively to the bath (e.g. gAB > gAA) and the
other strongly attractively (e.g. |gAC |> gAA). This leads to a suppressed spatial overlap among
the bath and the repulsively interacting impurity2 and thus the bath is only correlated with the
attractively coupled impurity, see also the discussion above. Together with the fact that the
impurities are spatially separated in this interaction region, if mediated impurity correlations
occur they have to be nonlocal. This is indeed the case since the impurities are found to be

2Notice here that since the impurity B is neither entangled with the bath nor with the impurity C , it is sufficient
to consider the sMFB ansatz. We have checked that |〈ΨsMFB|ΨMB〉|2 ≈ 1 holds, see also Appendix E for a detailed
number state analysis of the many-body wave function.
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anti-correlated, CBC < 0, see the two parameter regimes in Figure 3(b) enclosed by the dashed
lines.

6 Quantification of impurities induced interactions

Below, we examine how the mediated correlations among the distinguishable impurities al-
ter their relative distance and, subsequently, relate the induced impurity-impurity correlation
patterns with an effective induced interaction strength. The latter as it will be argued can be
either attractive or repulsive due to the genuine three-component nature of the system and it
is further quantified via an effective two-body model.

6.1 Effect of the induced impurity-impurity correlations on their relative dis-
tance

A reliable measure for this purpose, that has also been utilized in two-component settings [70,
87] and can be experimentally monitored via in-situ spin-resolved single-shot measurements
[93], is the relative distance between the impurities

〈rBC〉=
1

NBNC

∫

dxB
1 dxC

2

�

�xB
1 − xC

2

�

�ρ
(2)
BC(x

B
1 , xC

2 ). (10)

Specifically, in order to extract the contribution stemming from genuine impurity-medium cor-
relations we estimate the modified relative distance at different correlation levels as dictated
by the respective truncation of the many-body (MB) wave function (see also Section 3), namely

∆〈rBC〉= 〈rMB
BC 〉 −
�

〈rsMF
BC 〉+
�

〈rsMFB
BC 〉 − 〈r

sMF
BC 〉
�

+
�

〈rsMFC
BC 〉 − 〈r

sMF
BC 〉
��

. (11)

Here, sMF stands for the general species mean-field case where all intercomponent correlations
are neglected, while sMFB (sMFC) refers to the case at which only intercomponent correlations
between the B (C) impurity and the medium are ignored [36,65]. Excluding the sMF contri-
bution as well as the ones corresponding to the entanglement between the bath and impurity
C or B [cf. last four terms of Eq. (11)] from the relative distance where all correlations are
included, i.e., 〈rMB

BC 〉, we are able to distill the effects originating from the mutual correlation
among the impurities and the bosonic gas by tracking ∆〈rBC〉. As such, ∆〈rBC〉 captures the
genuine effects of the induced correlations as described by CBC [Figure 3(b)]. We interpret a
value of ∆〈rBC〉 which is positive (negative) as the signal of emergent repulsive (attractive)
impurities’ induced interactions.

The modified relative distance, ∆〈rBC〉, is presented in Figure 4(a) with respect to the
gAC coupling and for characteristic fixed gAB values. In general, we find an induced attrac-
tion between the impurities when they both couple either attractively or repulsively to the
medium, while they feature a mediated repulsion if one of them couples attractively and the
other repulsively to the bosonic gas. Since∆〈rBC〉 is closely related to CBC , an induced correla-
tion (anti-correlation) between the impurities can be associated to their attractive (repulsive)
induced interaction and vice versa [cf. Figures 3(b) and 4(a)]. For instance, considering re-
pulsive gAB and tuning gAC to weak attractions, ∆〈rBC〉 becomes positive denoting an induced
repulsion between the impurities. However, for stronger repulsive gAC ∆〈rBC〉 is negative and
thus attractive induced interactions occur maximizing in the coalescence regime where gAB
and gAC are both strongly repulsive, see also the inset of Figure 3(a). Furthermore, in the case
of suppressed mediated correlations between the impurities (CBC ≈ 0), i.e., in the trivial case
where gAB = 0 or for strong attractive gAC and repulsive gAB [cf. Figure 3(b)], also ∆〈rBC〉
vanishes (see Figure 4(a) for strong attractive gAC and gAB = 0.2,1.0). In the last scenario, the
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Figure 4: (a) and its inset: Modified relative distance [Eq. (11)] reflecting the ef-
fects on 〈rMB

BC 〉 which are exclusively caused by the induced impurities correlation
as a function of gAC and for different fixed gAB. (b) Induced interaction strength
between the two Bose polarons estimated by maximizing the overlap between the
two-body correlation functions G(2),eff

BC obtained from the effective two-body model

and G(2)BC predicted within the many-body approach (see main text). (c) Fidelity FBC
of the impurities wave function as found in the many-body method and the effective
two-body model with respect to the impurity-medium couplings gAB and gAC . We
consider two non-interacting but distinguishable impurities immersed in a bosonic
gas of NA = 15 atoms with gAA = 0.2.

gradually increasing gAC attraction leads to a reduction (enhancement) of the correlation be-
tween the bath and the B (C) impurity whose interplay impedes the development of mediated
impurity correlations and therefore induced interactions.

In the case of an attractively coupled impurity B, e.g. gAB = −1.0,−0.2, ∆〈rBC〉 decreases
when gAB is tuned to strong attractive values, a phenomenon also occurring for CBC [Fig-
ure 3(b)]. Here, increasing the attraction between impurity C and the bath enhances their
correlation, while at sufficiently strong attractive gAC the correlation between the bath and
the impurity B begins to slightly decrease for constant attractive gAB (cf. Figure 3). This com-
petition between the different impurity-medium correlations suggests an interesting interplay
between the individual intercomponent correlations and could in principle hinder the bath to
mediate correlations between the impurities leading eventually to the observed reduction of
the induced impurity-impurity correlation/interaction. Such an interplay of intercomponent
correlations is indicative of a more intricate and generic correlation transfer process among
the species [36], that is an exciting future perspective but lies beyond the focus of our study.
However, note that for decreasing gAB = gAC results in a saturation of the impurity-impurity
correlation, a fact that will also become important later in the discussion regarding the bipo-
laron formation in Section 7.

Finally, notice that a similar qualitative behavior of the intercomponent correlations and
thus also of ∆〈rBC〉 takes place for either increasing the number of atoms of the bosonic
medium or the bare mass of one of the impurities, see Appendix D. In fact, both scenarios
lead for repulsive gAB and gAC to an amplified impurities entanglement and to a stronger at-
tractive induced interaction.
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6.2 Effective two-body model

To determine the strength of induced impurity-impurity interactions, we reduce the three-
component many-body system to an effective two-body model consisting of two interacting
quasi-particles. This is a common approach to identify polaron properties from many-body
simulations and has been successfully applied to two indistinguishable impurities [52] but not
to distinguishable ones. Here, the effective two-body model employs the effective potential
V eff
σ (x

σ) [defined in Eq. (6)] for each impurity and thus neglects impurity-medium correla-
tions. Also, the underlying impurities induced interactions are represented by a contact po-
tential of strength geff

BC (a treatment with finite range interactions leads to similar results as it is
demonstrated in Appendix C). Specifically, the corresponding effective two-body Hamiltonian
reads

H(2),eff =
∑

σ=B,C

�

−
ħh2

2mσ

∂ 2

(∂ xσ)2
+ V eff

σ (x
σ)

�

+ geff
BCδ(x

B − xC). (12)

The effective potential accounts for the effective mass and frequency of each impurity [94].
These effective parameters originate from the polaron picture where the impurity becomes
dressed by the excitations of the bath, see Appendix B for a more detailed discussion.

In order to deduce the effective interaction strength geff
BC , we minimize ∆G(2)BC =

∫

dxBdxC
�

�

�G(2)BC − G
(2),eff
BC

�

�

�

2
, where G(2)BC and G(2),eff

BC are the impurities’ two-body correlation functions cal-

culated from the many-body three-component mixture and the effective two-body model, re-
spectively 3. By estimating the value of geff

BC which minimizes ∆G(2)BC , we are able to associate
the emergent induced correlation pattern between the impurities described in Fig. 3(b) with
a corresponding induced interaction strength geff

BC . The resultant behavior of geff
BC provided in

Figure 4(b) for fixed gAB and varying gAC agrees qualitatively with the observations made for
∆〈rBC〉. The impurities experience an induced attraction when they both couple either at-
tractively or repulsively to the bath, corresponding to an induced correlation, otherwise they
feature an induced repulsion related to their anti-correlated tendency 4. To testify the validity
range of the effective two-body model [Eq. (12)] for describing the impurities, we calculate
the fidelity FBC of their ground state wave function as obtained from H(2),eff (|ΦBC

eff 〉) and the
full three-component mixture (|Ψ̃BC

i 〉)
5. The fidelity is provided in Figure 4(c) as a func-

tion of gAC and for different fixed values of gAB. It becomes apparent that H(2),eff is not valid
for gAA < gAσ where the respective impurity phase separates with the bath. We further note
that especially in the regime where the impurities are anti-correlated and share no significant
spatial overlap, an effective treatment considering a contact interaction potential fails to de-
scribe the full many-body calculations. Instead, in this interaction regime, due to the presence
of non-local correlations, a more appropriate choice to model effective impurity-impurity in-
teractions would be a long-range interaction potential, such as the one used in Appendix C.
Still, within this effective two-body model different observables for the impurities such as their
residue and correlation functions can be extracted and shown to exhibit a qualitative correct
behavior. Deviations from the full many-body results are mostly traced back to the absence of
intracomponent correlations of the bath and impurity-medium ones.

3We find ∆G(2)BC ≲ 10−5 for all considered interaction strengths gAB and gAC .
4Note that geff

BC = 0 if one of the impurities does not interact with the bath which further confirms the validity
of the effective model predictions since in this case no correlations are mediated.

5For this reason we use the Schmidt decomposition |ΨMB〉 =
∑

i

p

λi |Ψ̃A
i 〉 ⊗ |Ψ̃

BC
i 〉 where the λi correspond to

the Schmidt coefficients [95,96]. As such the fidelity is expressed as FBC =
∑

i λi

�

�〈Ψ̃BC
i |Φ

BC
eff 〉
�

�

2
.
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Figure 5: (a) Bipolaron energy, Ebip, as a function of the intercomponent coupling
strengths gAB and gAC . The dashed lines represent contours along which the size
of the dimer state σ remains fixed and in particular from bottom left to top right
correspond to
p

σ/σ0 ≈ 0.18, 0.29,0.65. (b), (c) Reduced two-body impurities’
density ρ(2)BC(x

B
1 , xC

2 ) for (gAB, gAC) = (−0.5,−0.5) and (−1.5,−1.5), respectively, in
units of mω/ħh [see also corresponding gray dots in panel (a)]. The region where
ρ
(2)
BC(x

B
1 , xC

2 ) = ρ
(2)
σσ′
(0, 0)/2 is fitted to an ellipse (white dotted line) and shown

together with the semi-minor and semi-major axis (black lines). The correspond-
ing eccentricity is depicted in panel (d) assuming gAB = gAC . The transition to a
bipolaron state where the eccentricity saturates for increasing impurity-medium at-
tractions and the size of the dimer state is

p

σ/σ0 ≈ 0.29 occurs at gAC = −1.5
(gray dashed line). We consider two non-interacting but distinguishable impurities
immersed in a bosonic gas of NA = 15 atoms with gAA = 0.2.

7 Bipolaron formation

Strong attractive induced interactions between two dressed impurities, commonly occurring
for strong attractive impurity-medium direct interactions, eventually lead to the formation of
a bound dimer quasi-particle state, the so-called bipolaron [32, 45]. In order to probe the
presence of such a dimer impurity bound state in our setup, we study the bipolaron energy,

Ebip(gAB, gAC) = E(gAB, gAC)− E1(gAB)− E1(gAC) + E0. (13)

Here, E(gAB, gAC) denotes the total energy of the system including the two distinguishable im-
purities, E0 is the energy of the bosonic gas in the absence of impurities and E1(gAB), E1(gAC)
is the energy of one impurity coupled to the bath. The bipolaron energy is presented in Fig-
ure 5(a) covering a wide range of attractive and repulsive impurity-medium interactions, gAB
and gAC . It features a rapid decrease when both impurities couple attractively to the medium,
thereby, evincing the formation of a bound state6.

A complementary observable used for the identification of the bipolaron is the spatial size of
this dimer state. This is naturally captured by σ ∼

q

〈r2
BC〉, where 〈r2

BC〉 is the squared relative
distance [cf. Eq. (10)] between the impurities B and C [32]. Specifically, in the following, we
track
p

σ/σ0 with σ0 being the distance in the uncoupled scenario, i.e., at gAB = gAC = 0,
such that we explicitly estimate the impact of the impurity-medium interactions on the dimer

6The bipolaron energy decreases exponentially if both impurity-medium couplings (gAB , gAC ) are equally varied
from the non-interacting limit to the strongly attractive regime, i.e., along the diagonal in Figure 5(a).
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size. This is depicted in Figure 5(a) as contour dashed lines along which
p

σ/σ0 is constant
in the gAB-gAC plane on top of the bipolaron energy. It can be readily seen that for increasing
magnitude of the attractive impurity-medium couplings, i.e., gAB and gAC , the size of the dimer
state shrinks further, see in particular the dashed lines in Figure 5 which from bottom left to
top right correspond to

p

σ/σ0 ≈ 0.18, 0.29,0.65.
The bipolaron dimer state refers to the bunching behavior of the impurities at the same

spatial region which manifests in the elongated shape of their two-body density ρ(2)BC(x
B
1 , xC

2 )
along the diagonal. In the non-interacting case, i.e., gAB = gAC = 0, ρ(2)BC(x

B
1 , xC

2 ) is circu-
larly symmetric in the xB

1 − xC
2 plane and becomes gradually elongated for larger attractions

due to the mediated attraction between the impurities, see e.g. Figures 5(b) and (c) for the
cases (gAB, gAC) = (−0.5,−0.5) and (−1.5,−1.5), respectively, also marked as gray dots in Fig-
ure 5(a). To quantify the degree of the aforementioned elongation, we fit the half maximum
of the impurities’ two-body density7, i.e. ρ(2)BC(0,0)/2 to a rotated ellipse [see white dotted
lines in Figures 5(b) and (c)] and determine the corresponding eccentricity e =

p

1− b2/a2

where a (b) denotes the semi-major (semi-minor) axis marked by the black lines of the el-
lipse8. Apparently for e = 0, ρ(2)BC(x

B
1 , xC

2 ) is circularly symmetric while in the case of e < 1 it
is elongated having the shape of an ellipse.

The eccentricity of the impurities’ two-body density is depicted in Figure 5(d) for gAB = gAC .
By tuning the impurity-medium coupling from the non-interacting limit towards strong attrac-
tions, e increases from e ≈ 0 at gAB = gAC = 0 to finite positive values until it saturates at
around gAB ≈ −1.5. A larger attraction leads only to an additional shrinking of the dimer
size, see in particular the exponential decrease of

p

σ/σ0 in Figure 5(d), leaving the shape of
ρ
(2)
BC(x

B
1 , xC

2 ) almost unchanged. In this sense, we deduce that the bipolaron state is formed at
gAB = gAC ≈ −1.5 corresponding to

p

σ/σ0 ≈ 0.29 [vertical gray dashed line in Figure 5(d)].
This observation allows us to generalize our conclusions for the bipolaron formation also in
the case of gAB ̸= gAC from the critical size of the dimer state being

p

σ/σ0 ≲ 0.29, which
corresponds to the central contour dashed line in Figure 5(a).

We remark that the above-described behavior of both Ebip(gAB, gAC) and σ/σ0 is in ac-
cordance with previously studied two-component systems containing two indistinguishable
bosonic impurities that form a bipolaron9 in the strongly attractive coupling regime [32].
However, our results generalize these findings demonstrating the existence of a bipolaron
in the case of two distinguishable impurities and suggesting that this bound state is robust
to individual variations of gAB or gAC as indicated by the contour lines in Figure 5. Another
aspect that we have addressed is that increasing the mass of one impurity, e.g. considering
mB = 2, leads to a faster reduction of the dimer state size as well as the bipolaron energy for
decreasing gAB = gAC while the eccentricity saturates at smaller impurity-medium attractions
as compared to the mass-balanced case. This suggests, as expected, that a heavier impurity
facilitates bipolaron formation.

8 Three-body correlations and trimer state

In the following, we aim to shed light on the existence of three-body correlations appearing
in the ground state of the two distinguishable impurities embedded into the bosonic gas. For

7We remark that choosing ρ(2)BC (0,0)/2 for the fitting is employed for convenience. Indeed, also other density
values were used, e.g. ρ(2)BC (0,0)/4, verifying the same behavior of the eccentricity.

8For the fitting we use the general ellipse equation αx2
1 +β x1 x2+γx2

2 +δx1+εx2+φ = 0, which in the frame
of the ellipse reduces to x̃1

2/a2 + x̃2
2/b2 = 1.

9We have also verified that upon considering two indistinguishable bosonic impurities our results regarding the
bipolaron energy, dimer size and eccentricity coincide with those of the three-component setup with gAB = gAC .
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Figure 6: (a)-(c) Reduced three-body correlation function G(3)ABC(x
A
1 , xB

2 , xC
3 ) for

(gAB, gAC) = (1.0,−0.2), (1.0, 0.2) and (−1.5,−1.5), respectively and (d) reduced
three-body density ρ(3)ABC(x

A
1 , xB

2 , xC
3 ) for (gAB, gAC) = (−1.5,−1.5). In each panel,

the contours of either (a)-(c) the two-body correlation functions, i.e., G(2)AB , G(2)AC ,

G(2)BC , or (d) the two-body density functions, i.e., ρ(2)AB , ρ(2)AC , ρ(2)BC , are provided in
the xA

1 − xB
2 -, xA

1 − xC
3 -, xB

2 − xC
3 -planes. The spatial coordinates xσ are expressed

in units of
p

ħh/mω, whereas ρ(3)ABC and G(3)ABC are presented in units of (mω/ħh)3/2.
For visualization purposes we only show the data whose correlation or density value
is larger than 0.2 of the respective maximum value. The region corresponding to
ρ
(3)
ABC(x

A
1 , xB

2 , xC
3 ) = ρ

(3)
ABC(0, 0,0)/2 is fitted to an ellipsoid rotated in space (part of

the fitted ellipsoid is marked by the white dashed lines). The three semi-axis are
denoted by the green lines in panel (d). (e) Eccentricities calculated from the semi-
axis (see main text) for attractive gAB = gAC . (f) Jacobi relative distances 〈r(3)AB−C〉
and 〈r(3)BC−A〉 [Eq. (17)] as well as the hyperspherical radius 〈r(3)A−B−C〉 [Eq. (16)] for
gAB = gAC . We mark the transition to a trimer state at gAC = −1.5 [gray dashed line
in panels (e) and (f)]. For the three-component setup two non-interacting but dis-
tinguishable impurities immersed in a bosonic gas of NA = 15 atoms with gAA = 0.2
are considered.

this purpose, we construct as a first step the normalized reduced three-body density

ρ
(3)
ABC(x

A
1 , xB

2 , xC
3 ) = 〈Ψ

MB| Ψ̂†
A(x

A
1)Ψ̂

†
B(x

B
2 )Ψ̂

†
C(x

C
3 )Ψ̂C(x

C
3 )Ψ̂B(x

B
2 )Ψ̂A(x

A
1) |Ψ

MB〉 , (14)

which represents the spatially resolved probability of finding at the same time a representative
atom of the medium at position xA

1 and the impurities B and C at positions xB
2 and xC

3 [97,
98]. Experimentally, the three-body density could be obtained by detecting simultaneously
the positions of the three particles of interest, here, the two impurities and one bath atom,
and then average over a sample of experimental absorption images [99]. Having defined the
three-body density, we construct the spatially resolved three-body correlation function as a
straightforward extension of the two-body one defined in Eq. (7), i.e.,

G(3)ABC(x
A
1 , xB

2 , xC
3 ) = ρ

(3)
ABC(x

A
1 , xB

2 , xC
3 )−ρ

(1)
A (x

A
1)ρ

(1)
B (x

B
2 )ρ

(1)
C (x

C
3 ). (15)

According to this measure, the three participating particles are correlated (anti-correlated) if
G(3)ABC(x

A
1 , xB

2 , xC
3 ) > 0 (G(3)ABC(x

A
1 , xB

2 , xC
3 ) < 0), whilst a vanishing G(3)ABC(x

A
1 , xB

2 , xC
3 ) = 0 implies
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that they are uncorrelated. Note, that this measure still contains two-body correlation effects
since only the product of one-body densities has been subtracted from the three-body density.

The three-body correlation function is depicted in Figures 6(a) and (b) for the case of
strong repulsions between impurity B and the bath (gAB = 1) and either weak attractive or
repulsive couplings between the bath and the C impurity, namely gAC = −0.2 and 0.2, respec-
tively. Moreover, for visualization and completeness issues, we additionally showcase within
the xA

1-xB
2 , xA

1-xC
3 and xB

2 -xC
3 planes the underlying two-body correlation functions G(2)AB (x

A
1 , xB

2 ),
G(2)AC (x

A
1 , xC

3 ) and G(2)BC (x
B
2 , xC

3 ), respectively10. Focusing on gAC = −0.2, it becomes evident that

G(3)ABC(x
A
1 , xB

2 , xC
3 ) fragments into two correlated and two anti-correlated parts. The correlated

segments indicate that it is likely for one bath atom and the C impurity to reside at the same
side with respect to the trap center while the repulsively coupled impurity B favors to be on the
opposite side. On the other hand, the anti-correlated fragments suggest that a configuration
where the impurities and a bath atom are at the same location is not favorable. The spatial
arrangement of these fragments is altered in the three-dimensional space if the sign of gAC
is inverted, in a sense that the correlated and anti-correlated regions are rotated by roughly
90◦ around the xB

2 direction. In such a configuration the impurities are located at the same
side in terms of the trap center and a bath atom lies on the opposite side. The correspond-
ing two-body correlation functions G(2)AC (x

A
1 , xC

3 ) and G(2)BC (x
B
2 , xC

3 ) become inverted, whereas

G(2)AB (x
A
1 , xB

2 ) preserves its pattern, see the contours in Figures 6(a) and (b).
Subsequently, we turn to strongly attractive impurity-medium interactions with gAB = gAC .

Here, the three-body density ρ(3)ABC(x
A
1 , xB

2 , xC
3 ) becomes elongated exhibiting an ellipsoidal

shape, see e.g. Figure 6(d) for (gAB, gAC) = (−1.5,−1.5). Thereby, the three-body density is
stretched along the (xA

1 , xB
2 , xC

3 )-direction, i.e., the diagonal of the coordinate system, demon-
strating a bunching behavior of the two impurities and a representative atom of the bath
species. In particular, the corresponding three-body correlation function, presented in Fig-
ure 6(c), features a correlated pattern along the diagonal around which a shell-like structure
consisting of anti-correlated fragments is formed.

To quantify the deformation of the three-body density, we fit its half maximum, i.e., ρ(3)ABC(0,
0,0)/2, to a rotated ellipsoid (see white dashed lines in Figure 6(d) corresponding to a pro-
file of the ellipsoid). Specifically, we fit the ellipsoid equation x̃1

2/a2 + x̃2
2/b2 + x̃3

2/c2 = 1,
where x̃ i refers to the coordinate system of the ellipsoid spanned by its semi-axis with lengths
a, b and c [green lines in Figure 6(d)]. From the semi-axis we determine three eccentrici-
ties, namely eab =

p

1− b2/a2, eac =
p

1− c2/a2 and ebc =
p

1− c2/b2 with a ≥ b ≥ c.
These eccentricities are depicted in Figure 6(e) together with the relative deviation, er r, from
the ellipsoid function for varying gAB and assuming gAB = gAC . In the non-interacting case,
i.e., gAB = gAC = 0, the eccentricities are already finite indicating a deviation from a spherical
shape, which is in contrast to the bipolaron [cf. Figure 5(d)]. This is attributed to the presence
of finite intraspecies interactions among the bath particles causing the observed spatial defor-
mation. Importantly, the eccentricities show an increasing tendency for stronger attractive
values of gAB = gAC , meaning that the elongation of the ellipsoid is enhanced until it saturates
at around gAB = gAC ≈ −1.5.

A further characterization of the size of the three-body cluster at strong attractions is
achieved by inspecting the hyperspherical radius 〈r(3)

σ−σ′−σ′′〉 and the Jacobi relative distance

〈r(3)
σ′σ′′−σ〉. The latter denotes the distance between the atom σ and the center-of-mass of the

10As an example, notice that the contours in the xA
1 -xB

2 and xB
2 -xC

3 planes of Figure 6(c) correspond to the
G(2)AB (x

A
1 , xB

2 ) and G(2)AB (x
B
1 , xC

2 ) illustrated in Figures 2(b1) and (b2), respectively.
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particles σ′ and σ′′ [71,100,101]. These observables are defined as

〈r(3)A−B−C〉=
1

NANBNC

∫

dxA
1dxB

2 dxC
3

q

(xA
1)2 + (x

B
2 )2 + (x

C
3 )2ρ

(3)
ABC(x

A
1 , xB

2 , xC
3 ), (16)

〈r(3)
σ′σ′′−σ〉=

1
NANBNC

∫

dxA
1dxB

2 dxC
3

�

�

�

�

xσ −
1
2

�

xσ
′
+ xσ

′′�
�

�

�

�

ρ
(3)
ABC(x

A
1 , xB

2 , xC
3 ), (17)

with σ,σ′,σ′′ ∈ {A, B, C} and σ ̸= σ′, σ ̸= σ′′, σ′ ̸= σ′′. Note that in the present case
〈r(3)AB−C〉= 〈r

(3)
AC−B〉, since impurity B and C have identical mass and are coupled with the same

strength to the bath. Figure 6(f) reveals that for stronger impurity-medium attractions the
hyperspherical radius decreases exponentially implying an exponential shrinking of the size of
the three-body cluster. The same exponential decrease is also captured by the expectation val-
ues of the Jacobi relative distances where we find 〈r(3)BC−A〉< 〈r

(3)
AB−C〉 reflecting the fact that the

bath atoms extend over a larger spatial region than the impurities due to the repulsive gAA. The
above properties imply the formation of a bound trimer state for couplings gAB = gAC ≤ −1.5
corresponding to values where the ellipsoidal structure of the three-body density saturates. In
this sense, the formation of a bipolaron is accompanied by the development of a bound trimer
state.

9 Conclusions and perspectives

We have studied the correlation properties in the ground state of two non-interacting dis-
tinguishable impurities immersed in a bosonic bath with the entire three-component system
being harmonically trapped. The impurities become dressed by the excitations of the bosonic
gas generating quasiparticle states, herein Bose polarons, having characteristic properties such
as effective mass and featuring induced correlations. In order to appreciate the impact of inter-
and intracomponent correlations we rely on the variational ML-MCTDHX method whose flex-
ible wave function truncation ansatz allows to operate at different correlation orders. An
emphasis is placed on the high tunability of the three-component setting unveiling rich den-
sity and correlation patterns, the manipulation of both the sign and the strength of impurities
induced interactions as well as the formation of bound impurity states.

Specifically, we demonstrate that upon varying the involved impurity-medium couplings,
both impurities can either localize at the trap center (attractive intercomponent interactions),
form a shell around the bosonic gas (repulsive interactions), i.e., phase-separate, or one of
them localize and the other phase-separate (alternating signs of impurity-medium couplings).
These density configurations can be understood at least qualitatively in terms of an effective
potential picture for the impurities which refers to a dipped harmonic oscillator (double-well)
for attractive (repulsive) intercomponent interactions.

A detailed characterization of the induced correlations is provided in a wide range of
impurity-medium interactions aiming to expose their intricate role. Inspecting the two-body
intercomponent correlation functions we find that the bosonic gas mediates anti-correlations
among the impurities if one of them couples repulsively and the other attractively to it. In
contrast, induced two-body correlations occur as long as both impurities couple either attrac-
tively or repulsively to their medium. The origin of the aforementioned correlation patterns
is traced back to the spatial configurations of each component. This means that if the im-
purities have a finite spatial overlap with the bath the latter mediates two-body correlations
between them. Interestingly, there is also the possibility that the impurities are not overlap-
ping but can be still correlated implying that non-local correlations are in play. To quantify
the strength and sign of the induced interactions we employ the relative two-body distance
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among the impurities extracting all contributions stemming from mean-field effects. In this
sense, it is demonstrated that induced two-body correlations (anti-correlations) are related to
mediated attractive (repulsive) impurity interactions. These findings are further supported by
an effective two-body model containing the impurities effective trapping potential and their
induced interactions. Importantly, this approach allows to determine the strength and sign of
the effective interactions mediated between the impurities through a comparison with the full
many-body results. Moreover, by constructing an effective one-body Hamiltonian enables us to
estimate the effective mass and trapping frequency of each distinguishable impurity (polaron),
see Appendix B.

Evidences regarding bipolaron formation are provided, when both impurities are strongly
attractively coupled to the bosonic gas, by means that the bipolaron energy and the size of the
underlying dimer state rapidly decrease for stronger attraction. Interestingly, we determine the
intercomponent three-body correlation function according to which overall weak three-body
correlations exist and become enhanced for strongly attractive impurity-medium interactions
signaling the formation of trimers among the impurities and an atom of the medium.

In this investigation we have restricted ourselves to the ground state of the three-component
mixture. Further understanding on the character of the impurities induced interactions and
in particular their nonlocal character and their dependence on the statistics of the medium
are interesting perspectives. In this context, a systematic finite size scaling analysis with re-
spect to the number of bath particles in order to infer the persistence of our findings e.g. in
terms of the crossover of the impurities induced interactions (see also Appendix D) and in
general the build-up of intercomponent correlations would be desirable as well. Also, the
emulation of spectroscopic schemes that will allow the identification of the ensuing polaron
states and excitations [24, 102] constitutes an intriguing direction. Furthermore, studying
the behavior of impurities induced interactions and bound states in different external trap-
ping potentials is also an interesting direction. Here, a setup of immediate interest would be
to load the bath atoms in a ring potential and investigate the formation of impurities bound
states in both the attractive and the repulsive impurities-medium interaction regimes. An-
other straightforward extension would be to explore the nonequilibrium impurities dynamics
in order to understand the build-up of induced correlations. An additional fruitful research
direction is to understand the Bose polaron formation when indistinguishable impurities are
immersed in an attractive two-component gas forming a droplet. Certainly, studying corre-
lation effects in particle-balanced three component settings with an emphasis on the few- to
many-body crossover and in particular close to the pair immiscibility threshold is worth to be
pursued.
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A Behavior of the bipartite entanglement

A standard measure to estimate the bipartite entanglement of mixed states that exist in a
multi-component system11 is encapsulated in the logarithmic negativity [56–59,62,104,105].

11Notice that, for instance, the von-Neumann entropy as an entanglement measure is well-defined in a two
species but it is not applicable in multi-component ones [103].
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Figure 7: (a)-(b) Diagram of the intercomponent (see legends) logarithmic negativity
Eσσ′ [Eq. (18)] as a function of the impurity-medium couplings (gAB, gAC). The
harmonically trapped three component system consists of two non-interacting but
distinguishable impurities immersed in a bosonic gas of N = 15 atoms with gAA = 0.2.

It is based on the partial transpose of the two-body species reduced density matrix12 , which,
e.g. referring to species σ and σ′, is obtained by integrating out the degrees of freedom of
species σ′′ leading to ρ(2),spec

σσ′
= Trσ′′
�

|ΨMB〉〈ΨMB|
�

=
∑

i jlm

∑

k Ci jkC∗lmk|Ψ
σ
i 〉|Ψ

σ′

j 〉〈Ψ
σ
l |〈Ψ

σ′

m |
[54,55,77].

Its partial transpose Tσ with respect to species σ is calculated by exchanging the indices

i and l associated with species σ, i.e.,
�

ρ
(2),spec
σσ′

|i jlm

�Tσ
= ρ(2),spec

σσ′
|l jim. Calculating the eigen-

values of
�

ρ
(2),spec
σσ′

�Tσ
and in particular summing up its negative eigenvalues µi yields the

so-called negativity, Nσσ′ =
∑

i |µi|. Subsequently, the logarithmic negativity reads

Eσσ′ = log2 (1+ 2Nσσ′) . (18)

This measure exploits the fact that for a separable mixture, e.g. ρ(2),spec
σσ′

=
∑

i piρ̃
(1),spec
σ,i ⊗ρ̃(1),spec

σ′,i ,

the partial transpose does not alter the spectrum of ρ(2),spec
σσ′

and, hence, all eigenvalues remain
positive. In this sense, the presence of negative eigenvalues guarantees the existence of entan-
glement. However, this statement can not be inverted, i.e., even if the logarithmic negativity
is zero the species σ and σ′ can still be entangled [103].

The logarithmic negativity between the bath and the B impurity, EAB, as well as among the
impurities, EBC , is illustrated in Figures 7(a) and (b) respectively within the gAB-gAC plane. As
expected it overall captures the main features of the integrated correlation functions shown
in Figures 3(a) and (b). For instance, EAB vanishes for strongly attractive gAC and strongly
repulsive gAB [Figure 7(a)], while the parameter region referring to the impurities coalescence
is in a similar way pronounced in EBC as it has been observed for CBC , compare Figures 3(a) and
(b) for repulsive gAB and gAC . Recall that while Eσσ′ provides only a quantitative diagnostic for
the bipartite entanglement and does not describe the correlated or anti-correlated behavior as
Cσσ′ it still gives insight into the entanglement content of the many-body system. As such, for
large gAB < 0 the logarithmic negativity uncovers that the bath and the B impurity are strongly
entangled especially so in the repulsive gAC > 0 region, while varying gAB towards the weakly
attractive regime and for |gAC | > 1 entanglement is reduced [Figure 7(a)]. This is attributed
to the simultaneous increase of EAC

13, unveiling a competition between the intercomponent
entanglement of individual impurities with the medium. Finally, in line with the predictions

12This is completely different from the two-body density matrix of two particles given by Eq. (8).
13Since the impurities are in this case physically identical, i.e., mA = mB ≡ m and ωA = ωB ≡ ω, the phase

diagram of EAC corresponds to the one of EAB but reflected along the diagonal gAB = gAC .
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Figure 8: One-body density of the B impurity obtained within different approaches
(see legend) for the interaction configurations (a) (gAB, gAC) = (−0.2, 0.1) and (b)
(0.2, 0.1). Specifically, ρ(1)MB denotes the one-body distribution of the full three-

component many-body system, whereas ρ(1),eff
B and ρ(1),ho−eff

B are calculated using
the effective one-body Hamiltonians composed of either an effective harmonic oscil-
lator with an effective mass and frequency [cf. Eq. (19)] or the effective potential
defined in Eq. (6), respectively. Effective mass and trapping frequency of the dressed
(b) B and (c) C impurity, respectively, as deduced from the effective polaron model
defined of Eq. (19).

of CBC , EBC demonstrates that entanglement is finite when both impurities are either weakly
attractive or strongly repulsively coupled to the medium, see Figure 3(d).

B Effective mass and trap frequency of a single impurity

In the following, we approach the three-component impurity setting as a polaron problem
since each individual impurity via its coupling to the bosonic gas is dressed by the excitations
of the latter. In this sense, we aim to capture the effective behavior of the B and C impurity
with the effective one-body model [94],

Ĥ(1),ho−eff
σ = −

ħh2

2meff
σ

∂ 2

(∂ xσ)2
+

1
2

meff
σ (ω

eff
σ )

2 x2, (19)
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where meff
σ andωeff

σ denote the polaron effective mass and trapping frequency withσ ∈ {B, C}14.
To identify the values of the effective mass and frequency, we minimize the cost function

Lσ =∆ρ(1)σ +∆Eσ. (20)

In this expression, the first term refers to ∆ρ(1)σ =
∫

dxσ
�

�ρ(1),MB
σ (xσ)−ρ(1),ho−eff

σ (xσ)
�

�

2
with

ρ(1),MB
σ and ρ(1),ho−eff

σ being the one-body density as predicted from the full three-component
system and the effective one-body model, respectively. The second contribution of the right-
hand side in Eq. (20) designates the energy difference ∆Eσ =

�

�EMB
σ − Eho−eff

σ

�

�

2
, where EMB

σ =
〈ΨMB|Ĥσ|ΨMB〉 is the σ impurity energy and Eho−eff

σ = 〈φ|Ĥ(1),ho−eff
σ |φ〉 = 1

2ω
eff
σ is the energy

of the effective one-body model and |φ〉 the corresponding ground state. Note that in order
to uniquely estimate meff

σ and ωeff
σ one needs to adequately describe both the density and the

energy of the impurity.
Figures 8(a) and (b) showcase the one-body densities ρ(1),MB

B and ρ(1)ho−eff
B for the charac-

teristic interaction configurations (gAB, gAC) = (−0.2, 0.1) and (0.2,0.1), respectively. For com-
parison we additionally provide the one-body densityρ(1),eff

B obtained from Ĥ(1),eff
B = − ħh

2

2mB

∂ 2

(∂ xB)2

+V eff
B . As it can be readily seen, the one-body densities predicted by the two effective one-body

models are in excellent agreement with the one corresponding to the full three-component
many-body system. Deviations start to become evident for strong repulsive impurity-medium
couplings (not shown) where the impurity and the medium phase separate [36, 94]. Recall
that the effective model is by definition valid for weak intercomponent repulsions where the
impurity does not probe the edges of the bosonic cloud.

The effective masses and frequencies of the B and C impurities after minimization of the
cost function given by Eq. (20) are represented in Figures 8(c) and (d) with respect to the
impurity-medium couplings. It is important to point out that both the effective mass and
frequency of a specific impurity, e.g. the B one, primarily depend on its coupling with the bath
gAB. The interaction strength of the other impurity (C) with the bath, e.g. gAC , has almost no
impact on the effective parameters of impurity B. For instance, this conclusion can be drawn
from the nearly constant behavior of meff

B andωeff
B for varying gAC shown in Figure 8(c), or the

fact that meff
C and ωeff

C remain almost intact for fixed gAC and different gAB, see Figure 8(d).
For an attractively coupled impurity with the bosonic gas, the effective mass and frequency

become larger than their bare values [gray dashed lines in Figures 8(c) and (d)], see in par-
ticular meff

B , ωeff
B when gAB = −0.2 in Figure 8(c) and meff

C , ωeff
C for gAC < 0 in Figure 8(d). As

such, the emergent Bose polaron experiences a narrower trapping potential, thereby, reflecting
the localization of the impurity at the trap center [cf. ρ(1),ho−eff

B and V ho−eff
B in Figure 8(a)].

On the other hand, in the case of a repulsively coupled impurity the effective trapping fre-
quency is still tighter than the original value, but the effective mass becomes smaller than its
bare value [cf. meff

B , ωeff
B for gAB = 0.2 in Figure 8(c) as well as meff

C , ωeff
C for gAC > 0 in

Figure 8(d)]. In particular, the effective mass is small enough to compensate the increased
effective frequency meaning that the underlying harmonic trap is eventually broadened [cf.
V ho−eff

B in Figure 8(b)]. Additionally, the comparatively smaller effective mass is related to
a spatial delocalization of the impurity cloud15. In this way, the effective one-body model
captures the effects imprinted on the impurity in the three-component system.

14Recall that within the effective two-body model described by Eq. (12) we implicitly account for the effective
mass and frequency via the effective potential V eff

B,C Eq. (6)]. Indeed, beyond mean-field corrections imprinted on

ρ
(1)
A and, thus appearing in V eff

B,C , affect the effective mass and frequency [94].
15Indeed, the kinetic energy of, e.g., the impurity C increases for increasing gAC while the potential energy

remains nearly constant.
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Figure 9: (a) Relative deviation between the fidelities Fexp
BC and F contact

BC , which corre-
spond to the overlap of the impurities two-body wave function obtained from the full
many-body approach and the effective model of Eq. (12) containing either an expo-
nential or a contact-type interaction potential, respectively. (b) Difference between
∆G(2),exp

BC and∆G(2),contact
BC , referring to the variance of the two-body correlation func-

tion calculated within the effective two-body model using either the contact or the
exponential interaction potential with respect to the full three-component system.
For both quantities the relative deviations are minor, testifying the validity of both
effective interaction potentials.

C Modelling the effective impurity interactions with an exponen-
tial potential

To verify the validity of the contact interaction potential for describing the induced impurity
interactions between the impurities [Eq. (12)], we next exemplify that our results do not
change if one instead uses an exponential potential. The latter has been derived in Refs. [38,
39] and holds in the homogeneous case and for immobile impurities residing at distances

satisfying l = |xB − xC | ≪ ξA, with ξA ≈ 1/
Ç

2mAgAANAρ
(1)
A (0)≈ 0.6 being the healing length

of the bath. In particular, we replace the interaction term in Eq. (12) with

U(l) = −
gAB gAC mAp

γ
e−2l/ξA, (21)

where γ = mAgAA

NAρ
(1)
A (0)

16. As discussed in Section 6.2, we judge the quality of the effective two-

body model by estimating the fidelity, FBC , between the impurities two-body wave function as
extracted from the full many-body system and the effective two-body model containing either
a contact or an exponential interaction potential. Subsequently, we determine the difference
Fexp

BC −F contact
BC which as shown in Figure 9(a) testifies deviations at most of the order 10−4.

Proceeding one step further, we determine the overlap between the respective two-body
correlation functions of the impurities determined within the full three-component system

and the effective two-body model. Namely, we track ∆G(2),exp
BC =
∫

dxBdxC

�

�

�G(2)BC − G
(2),exp
BC

�

�

�

2
,

where G(2),exp
BC denotes the two-body correlation function obtained within the effective two-

body model (see also Section 6.2) with an exponential interaction. To infer the deviations
among the exponential and contact effective interactions at the two-body correlation level,

16We model the exponential potential with the so-called POTFIT method [106,107].
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Figure 10: Integrated two-body correlation function [Eq. (9)] among (a) the B im-
purity and the medium, (b) the C impurity and the medium and (c) between the
impurities as a function of the intercomponent interaction strength gAC . In all pan-
els, we consider fixed gAB = −0.2, 0.2 as well different masses of the B impurity
(simultaneously settingωB =

p

mA/mB) and atom numbers of the medium (see leg-
end), while keeping constant the mean-field interaction NAgAA. The gray dashed line
in panel (c) marks ∆ 〈rBC〉= 0.

we calculate the difference ∆G(2),exp
BC − ∆G(2),contact

BC , see Figure 9(b). Also here, only small
deviations of the order 10−5 are identified.

Therefore, the contact and exponential effective interaction potentials lead essentially to
the same description regarding the impurities properties. This outcome was not a-priori ex-
pected since the exponential potential is originally derived in the homogeneous case.

D Impact of mass-imbalanced impurities and the atom number of
the bosonic gas

Let us demonstrate the generalization of our results in the main text when the impurities
are mass-imbalanced or the bosonic medium contains a larger number of particles. For this
purpose, we focus on the behavior of the intercomponent correlations which can be quantified
through the integrated correlation function [Eq. (9)] presented in Figure 10 for different
system parameters.

In general, increasing the mass of an impurity disturbs the cloud of the bosonic gas to a
larger degree which should eventually lead to an enhanced impurity-medium correlation. This
is indeed evident in Figure 10(a) where the integrated correlation function, CAB, is increased
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as compared to the mass-balanced case, thus testifying an overall larger degree of entangle-
ment. Furthermore, since the correlation between the C impurity and the bath is not affected
by the change of mB [Figure 10(b)], the larger CAB leads to a stronger mediated correlation
between the impurities, see e.g. CBC in Figure 10(c). The latter naturally leads to an ampli-
fied impurities’ induced interaction for increasing mB. In particular, for gAB = 0.2 and strong
repulsive gAC , where CBC features the largest increase.

Next, we concentrate on the mass-balanced system but consider a larger number of bath
particles and in particular NA = 30, while maintaining the same mean-field interaction, i.e.,
NAgAA = const. As it can be seen, the impurity-medium correlations, as captured by CAB and
CAC , are reduced compared to the reference case NA = 15, gAA = 0.2 [Figure 10(a), (b)]. This
is attributed to the smaller intra-species coupling strength gAA = 0.1 resulting in a decrease
of the respective intra-species correlations among the bath particles. However, the mediated
correlations among the impurities B and C are clearly enhanced when gAB and gAC are both
repulsive, see Figure 10(c). In this sense, a larger number of bath particles featuring a decreas-
ing intraspecies interaction is associated to a reduction of intraspecies correlations of the bath
and impurity-medium ones but enhances to a certain degree the mediated correlation between
the impurities. This behavior hints towards a complicated correlation transfer mechanism to
the impurity-impurity subsystem which deserves further future investigations. Nevertheless,
a systematic finite size scaling analysis in terms of the atom number in the bath is required
in order to deduce the robustness of our findings. However, we expect that the main features
of the impurities dressing, e.g. the crossover from a correlated to an anti-correlated behavior
(associated to attractive and repulsive induced interactions as discussed in Sections 5 and 6),
and the existence of the impurities bound states for attractive interactions are retained for
larger number of bath atoms.

E Estimating the importance of correlations on the many-body
wave function

To expose the impact of intercomponent correlations at different interaction regimes on the
level of the many-body wave function we analyze the fidelity

�

�〈ΨsMF|ΨMB〉
�

�

2
, see Figure 11(a).

Here, |ΨMB〉 denotes the full many-body wave function where all emergent inter- and intracom-
ponent correlations are taken into account, while |ΨsMF〉 refers to the species mean-field wave
function which ignores all intercomponent correlations. Naturally, the fidelity is unity when
the species are non-interacting, i.e., gAB = gAC = 0, since in this scenario intercomponent cor-
relations are a-priori prohibited. However, the fidelity decays for increasing impurity-medium
coupling strengths as intercomponent correlations are triggered in this case. The largest devi-
ation between the many-body and species mean-field wave functions occurs in the parameter
region corresponding to the coalescence of the impurities, i.e., for strongly repulsive gAB and
gAC .

Further understanding of the respective correlation mechanisms can be delivered by iden-
tifying the participating microscopic configurations. For this reason we construct the species
function eigenbasis |ψA

i 〉|ψ
B
j 〉|ψ

C
k 〉 obtained by calculating the eigenfunctions of an effective

species Hamiltonian [cf. Eq. (2)] characterized by the effective potential defined in Eq. (6)17.
As basis for the bath we take the ground and the energetically two lowest excited states of the
effective potential into account, while for the two impurities we consider the corresponding
energetically lowest six eigenstates leading to a total number of 108 three-component basis

17The impurities eigenstates are found by solving the corresponding one-body Hamiltonian, while the eigenstates
of the effective bath Hamiltonian, consisting of NA particles, are determined via improved relaxation [108].
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Figure 11: (a) Fidelity between the many-body wave function, |ΨMB〉 (including all
emerging intra- and intercomponent correlations) and the species mean-field wave
function |ΨsMF〉 where intercomponent correlations are neglected. The reduction of
the overlap from unity for finite interactions evinces the participation of intercom-
ponent correlations. (b) Probability amplitude Pi jk denoting the overlap of a three-
component time-independent basis |ψA

i 〉|ψ
B
j 〉|ψ

C
k 〉, constructed from the eigenstates

of an effective species Hamiltonian (see main text), with the many-body wave func-
tion |ΨMB〉. Apparently, energetically higher-lying excited states possess substantial
contribution. Probability amplitudes which remain below 0.02 within the interaction
range −2.0 ≤ gAC ≤ 2.0 are shown as gray lines. The harmonically trapped three
component system consists of two non-interacting but distinguishable impurities im-
mersed in a bosonic gas of NA = 15 atoms with gAA = 0.2.

states |ψA
i 〉|ψ

B
j 〉|ψ

C
k 〉.

The respective probability amplitudes Pi jk =
�

�

�

�

〈ψA
i |〈ψ

B
j |〈ψ

C
k |
�

ΨMB〉
�

�

�

2
, with |ΨMB〉 being

the full many-body wave function, are presented in Figure 11(b) for gAB = 1.0 and varying
gAC . Notice that the state |ψA

0〉|ψ
B
0 〉|ψ

C
0 〉, denoting the case in which each species occupies

the ground state of the effective species Hamiltonian, represents the three-body ground state
obtained with a sMF ansatz. Consequently, P000 =

�

�〈ΨsMF|ΨMB〉
�

�

2
(cf. Figures 11(a) and (b) for

gAB = 1.0). In general, it is observed that finite interactions yield a non-negligible population
of energetically higher-lying excited states. Importantly, this behavior becomes enhanced in
the coalescence regime, i.e., for strong repulsive gAB and gAC . This means that there are several
macroscopically occupied basis states reflecting the significant intercompoment entanglement
(cf. Figures 2 and 7).
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