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Universal fault-tolerant quantum computation will require real-time decoding algorithms capable of quickly
extracting logical outcomes from the stream of data generated by noisy quantum hardware. We propose modular
decoding, an approach capable of addressing this challenge with minimal additional communication and with-
out sacrificing decoding accuracy. We introduce the edge-vertex decomposition, a concrete instance of modular
decoding for lattice-surgery style fault-tolerant blocks which is remarkably effective. This decomposition of the
global decoding problem into sub-tasks mirrors the logical-block-network structure of a fault-tolerant quantum
circuit. We identify the buffering condition as a key requirement controlling decoder quality; it demands a suffi-
ciently large separation (buffer) between a correction committed by a decoding sub-task and the data unavailable
to it. We prove that the fault distance of the protocol is preserved if the buffering condition is satisfied. Finally,
we implement edge-vertex modular decoding and apply it on a variety of quantum circuits, including the Clif-
ford component of the 15-to-1 magic-state distillation protocol. Monte Carlo simulations on a range of buffer
sizes provide quantitative evidence that buffers are both necessary and sufficient to guarantee decoder accuracy.
Our results show that modular decoding meets all the practical requirements necessary to support real-world
fault-tolerant quantum computers.

I. OVERVIEW OF RESULTS

In this article, we present and analyze modular decod-
ing, a general method for decomposing decoding problems
into smaller decoding sub-tasks. This decomposition allows
meeting the practical requirements of a fault-tolerant quantum
computer. Firstly, modular decoding allows concurrent execu-
tion by construction, which allows side-stepping throughput
limitations associated to any single processing core executing
the decoding algorithm. More importantly, modular decoding
is a real-time (live) approach to decoding, providing interme-
diate logical outcomes with minimal latency. This is an es-
sential, yet often overlooked, requirement to enable universal
fault-tolerant quantum computation.

We identify buffering as the key technique enabling mod-
ular decoding to produce high quality decoding results. The
buffering condition requires the input to each decoding task to
include a buffer of additional outcome data in directions where
previous decoding tasks have not set fixed boundary condi-
tion. The buffer for each decoding task can be determined by
a graph algorithm which works for arbitrary modular decod-
ing decompositions.

We prove a rigorous soundness theorem for modular de-
coding, which guarantees that decoding on a modular decom-
position can be as effective at catching errors as an offline de-
coder accessing the entire decoding problem. The only as-
sumptions are that each decoding sub-task is solved using a
sound decoder, and provided a sufficiently large buffer of out-
come data (termed the buffering condition).

We introduce edge-vertex decoding, a concrete instance of
modular decoding well suited to lattice-surgery style fault tol-
erance. This approach follows the quantum circuit structure
distinguishing two kinds of decoding sub-tasks. Each corre-
sponds to either an elementary logical block (vertex task) or
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to a connection among neighboring elementary blocks (edge
task). All edge decoding tasks can be solved in parallel and
only require a buffer of outcome data. Vertex decoding tasks
require boundary condition data from neighboring edge tasks
but can otherwise be solved independently and in parallel.
By design, the use of buffers guarantees maintaining decod-
ing quality (soundness), whereas the minimal size of decod-
ing sub-tasks and their data dependencies reduces logical out-
come latency.

We implement edge-vertex decoding decompositions and
numerically benchmark the decoding quality against offline
decoding via Monte Carlo simulations. We find evidence that
a buffer width commensurate with the protocol distance is
both necessary and sufficient to maintain the same decoding
performance as offline decoding. Our numerical simulations,
which include large-scale 15 to 1 magic state distillation, ac-
cess logical block networks significantly more complex than
current literature.

A. Outline and readers guide

The article is organized as follows. Sec. II provides gen-
eral background on quantum computing, fault-tolerance and
decoding. It also motivates the need for modular decoding
using unitary gate synthesis as an example, and present con-
nections with previous work. It can be safely skipped by an
expert reader who wishes to go directly to more technical ma-
terial. Sec. III establishes technical notation and concepts rel-
evant to decoding which will allow precise formulation of al-
gorithms and theorems in later sections. In Sec. IV, we intro-
duce the modular decoding problem, which involves decom-
posing the global problem into smaller, decoding sub-tasks
such that their results can be straightforwardly combined into
a global correction. We show naive modular decoding effec-
tively decreases the fault distance, and show how buffering
can be used to overcome this. Sec. V, we prove that buffer-
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ing is sufficient to maintain decoder soundness—that errors
with weight up to half the fault distance can still be corrected,
given a sufficient buffer. The proof may be skipped by read-
ers who are not mathematically inclined. Sec. VI we intro-
duce methods to schedule the various modular decoding sub-
tasks, and introduce the edge-vertex decoder which has very
low reaction time. Sec. VII presents extensive simulation data
for edge-vertex modular decoding, including complex logical
block networks in the fault-tolerant 15-to-1 magic-state distil-
lation protocol. We conclude in Sec. VIII, which summarizes
our work and discusses directions for further research.

II. BACKGROUND AND MOTIVATION

Universal quantum computers can efficiently solve prob-
lems which are otherwise intractable for their classical coun-
terparts. Noise, imperfections and errors have thus far hin-
dered scaling up from the realm of intermediate scale quan-
tum devices (NISQ) [1] to a regime of useful large scale quan-
tum computers. Fault tolerance (FT) prescribes how to over-
come this; scale up the number of quantum components while
maintaining individual error rates per physical operation be-
low threshold.

Quantum computers seek to answer otherwise inaccessible
computational problems. In fault-tolerant quantum comput-
ing, these answers are encoded in physical measurement out-
comes and can only be reliably extracted by compensating for
the diagnosed noise. Thus the logical outcome information
needs to be decoded from vast amounts of classical data. The
decoder subsystem is responsible for this task and may be im-
plemented by any combination of software, firmware or hard-
ware adequately processing the classical data.

A decoder is good if it produces reliable logical outcomes.
This allows comparing decoders operating under the same
fault-tolerant protocol and physical error model. A better de-
coder will boast consistently lower logical error rates (LER).

Modeling the decoder as a monolithic function or algorithm
implicitly assumes that all physical measurement data can si-
multaneously be made available as the decoder’s input. This
situation is often referred to as offline decoding, as it is com-
patible with storing all the physical outcome data produced
during of a fault-tolerant quantum computation and decoding
logical outcomes from it at a later time (i.e., offline). Most
academic literature assumes this offline decoding idealization;
this simplifies decoder implementation and allows comparing
LER and threshold performance among decoders.

However, decoded outcomes need to become available
throughout the computation. The decoding process must
quickly provide partial results on the logical outcomes in
terms of available physical outcomes. In general, the en-
tirety of the quantum circuit is not even defined as subsequent
quantum gates may be chosen depending on logical outcomes
obtained. This means that, in practice, decoding can not be
modeled as a monolithic offline process but rather online as
a streaming transformation of physical outcomes into logical
outcomes.

The time taken from the moment relevant physical mea-

surement outcomes become available to the time the decoded
logical outcomes can be used to control further logic is called
the reaction time. The reaction time should be kept short, as it
can potentially limit the rate of logic gates (such as T -gates),
as illustrated by the example of arbitrary angle rotations (see
Fig. 1). Contributions to the reaction time come from the clas-
sical processing time required for (partial) decoding as well as
communication latency.

If the decoder can not keep up with the outcome data rate
(also called throughput), the quantum computation may be
forced to idle (i.e., perform identity gates) until a conditional
follow-up operation can be determined, and in the process
generate more syndrome data to be processed. This approach
leads to a decoding back-log [2, 3] growing exponentially with
the depth of the logical adaptivity and the reaction-time grow-
ing exponentially as the quantum circuit progresses. Thus, the
decoders processing throughput must fully cover the outcome
data throughput to keep the reaction-time constant (and hope-
fully small).

Which outcomes are considered relevant for decoding a
logical outcome is a critical choice which impacts both the
reaction time and logical error rate. Our main contribution
is to provide a modular decoding algorithm, wherein sensi-
ble choices for relevant inputs can lead to logical error rates
which are close to optimal and a uniform reaction time which
is independent of the quantum algorithm being executed.

The overall decoder throughput (i.e. the speed at which
data is processed) can be increased by decomposing the global
decoding problem into independent decoding sub-tasks and
distributing these among multiple decoder units which oper-
ate in parallel. However, the decoding tasks can not be made
fully independent of each other, as their joint outcomes must
be consistent with the observed syndrome. In this article,
we show that it is possible to minimize the data dependency
among these decoding tasks in such a way that a reaction-time
independent of the quantum circuit size can be achieved. The
joint throughput of the decoder units only needs to exceed the
production rate of physical outcome data by a constant factor
as some outcome data may be processed by multiple decoder
units.

A. Motivating example: intermediate logical outcomes in gate
synthesis

To motivate the need for low-latency decoders (i.e., low re-
action time), we consider the problem of gate synthesis in sur-
face code fault-tolerance. This refers to approximating arbi-
trary single-qubit gates as products of T gates (π/8-rotations
in the Z basis) and Clifford operations. This decomposition
is representative and of widespread practical relevance. As
we will see, a natural implementation of this sub-routine in-
volves adaptive sequences of operations wherein each opera-
tion is conditioned on a logical measurement outcome from
the immediately preceding one. This motivates the need for
a decoding approach which can provide logical measurement
outcomes as soon as possible.

The Matsumoto and Amano normal form [4, 5] is presented
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FIG. 1. (a) (left) A T gate is applied via magic state injection and requires a Clifford correction S conditioned on the Z measurement outcome
on the second qubit. This measurement outcome requires the Pauli frame for Z ⊗Z on the inputs. (a) (right) The protocol can be generalized
to realize a generalized T gate TP := exp (iπ/8P ) by applying a generalized CNOT. (b) An isometric view of a 3D logical-block network
fragment corresponding to magic state injection of (a) for a T = TZ gate. The outcome dependent S gate correction is not included as it can
be efficiently tracked classically. The logical membrane highlighted in red closes to produce a logical outcome (the Z measurement outcome
of a). The interface between two logical-blocks is highlighted in green. Both membrane and interface are bookkeeping tools, neither having
a physical signature. (c) A 2D top-view schematic for the edge-vertex modular decoding decomposition for the fragment of logical-block
network presented in (b). The edge-vertex modular decoding decomposition first solves edge decoding tasks (c.1) using syndrome data from in
neighbouring buffer regions (yellow). After edge decoding tasks are complete, vertex decoding tasks (c.2) can be solved independently, each
task having boundary conditions set by neighbouring edge tasks. This scheme has very fast reaction times, as there is no significant chain of
dependencies between decoding tasks. (d) In gate synthesis, arbitrary single qubit unitaries may be approximated by a sequence of T gates
interspersed with {SH,H} Clifford gates and a final Clifford gate C or alternatively as a sequence of generalized T gates. (e) When T gates
are performed via magic state injection, each logical outcome bj obtained during injection may require an additional Sj correction. These
logical outcomes correspond to partially highlighted logical membranes represented in more detail in (b) or (c). Each of these membranes
continue and branch into the past but can be efficiently summarized by the logical Pauli frame which tracks their cumulative value. As an
alternative to physically implementing S corrections, these may be incorporated in a Clifford frame, modifying which generalized T gate is to
be performed next. Specifically, each P ′k is given by P ′k := CkPkC

†
k, with Ck := Sb1

P1
. . . S

bk−1

Pk−1
. Similarly C′′ := CnC

′C†n, which need not
be physically implemented. Colored arrows illustrate when and where the logical outcomes bj are needed to condition further logical blocks.

in the first line of Fig. 1 (d) and can be used to express arbi-
trary products of Clifford and T gates in a way that minimizes
the number of T gates. An operator HSbj , with bj ∈ {0, 1}
is applied between otherwise consecutive T gates. In particu-
lar, efficient (in number of T gates) approximations of single
qubit unitaries such as those used for gate synthesis can be
presented in this form. Selinger and Ross provide an efficient
algorithm to find the exponents bj best approximating rota-
tions around the Z axis [6].

As an alternative to the Matsumoto and Amano form, the
intermediate Clifford operators can be avoided by appropri-
ately conjugating each of the T gates involved in the se-
quence. This results in a sequence of n generalized T gates
TP := exp (iπ/8P ), followed by a single Clifford opera-
tor C ′ as shown in the second line of Fig. 1 (d). Valid se-
quences C ′TPn

. . . TP2
TP1

are characterized by two condi-
tions: i) Pi ∈ {X,Y, Z} (i.e., no minus signs on Paulis) and
ii) consecutive gates TPi

, TPi+1 are distinct (Pi 6= Pi+1).
Neither T gates nor generalized TP gates can be achieved

exclusively with lattice surgery. However, each T -gate can be
realized by injecting a distilled magic-state |T 〉, as shown in
Fig. 1 (a)(left), whereby a measurement is performed which
teleports the T gate into the data qubit up to a conditional S
gate correction. A generalized TP gate (instead of T ≡ TZ)
can also be realized in a similar manner as shown in Fig. 1
(a)(right). To do so, the CNOT and S unitary operations in
the injection protocol must be replaced by Clifford C con-
jugated versions (where C acts on the first qubit such that

P = CZC†). In other words, instead of a CNOT operator,
a generalized CPNOT = (II + PI + IX − PX)/2 is ap-
plied and the correction SP := exp (iπ/4P ) (instead of S) is
required conditional on the measurement outcome.

If generalized TP gates are performed via magic state injec-
tion, then each one will involve the measurement of a logical
outcome and the application of a SP correction conditioned
on the outcome of said measurement. Logical outcomes will
also be needed immediately if SP corrections are tracked as
a Clifford frame (i.e. conjugate all forthcoming operations)
rather than performing them explicitly. This is illustrated in
Fig. 1(e), where each logical outcome condition the choice of
the next generalized TP gate. The auto-corrected π/8 gates
introduced in [7] are a resource efficient alternative which
reaps the most benefit from the short reaction times which can
be achieved via modular decoding.

For concreteness, we illustrate fault-tolerant quantum com-
putations using surface codes and lattice surgery [7, 8], where
quantum algorithms are represented by 3D space-time net-
works of logical blocks [9], each element of which is a 3D
block representing a FT quantum instrument. Such blocks
have input/output ports which can be composed across to rep-
resent quantum circuit topology.

Logical measurement outcomes are obtained by combining
measurement outcomes of specific physical measurements.
We refer here to the set of physical measurement outcomes
making up a logical measurement as a logical membrane due
to the geometric shape of its support. For example, the logical
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outcome of measuring Z ⊗Z on |ψ〉⊗ |T 〉, is associated with
the schematically depicted (red) logical membrane in Fig. 1
(b). This is equivalent to the single qubit Z a measurement
on the second qubit which occurs after a CNOT operator in
Fig.. 1 (a). The membrane in Fig. 1 (b) continues towards
the past and depends on the history of the two qubits. For our
purpose, we may imagine that this history is summarized by
two bits which accumulate the parities of the two membrane
continuations.

We can decompose the lattice surgery into smaller con-
stituent blocks which extend ≈ d in each direction. This is
the decomposition is referred to as a logical-block network
decomposition. The connectivity structure of this network is
succinctly conveyed by a graph, with elementary blocks and
their connected ports interpreted as vertices and edges respec-
tively.

The two connected logical blocks in Fig. 1 (b) are only a
fragment of the larger network for a full quantum algorithm or
sub-routine. In order to provide a logical outcome, informa-
tion from a set of logical blocks supporting the corresponding
membrane will need to be decoded. Fig. 1 (e) partially illus-
trates how the support could look in terms of elementary cir-
cuit components for the example of gate synthesis using magic
state injection. Fig. 1 (e) also emphasizes how quickly logical
outcomes are needed to condition subsequent quantum opera-
tions. Quantum sub-routines will, in general, require classical
control [10], i.e. using available logical outcomes to control
subsequent quantum logic.

The example in Fig. 1 (e) and other quantum algorithms and
subroutines involve decoding on large logical block networks
with stringent requirements to enable classical control. Our
modular-decoding framework allows decomposing the decod-
ing problem into sub-tasks with the goal of enabling quick ex-
traction of logical outcomes (i.e. fast reaction time) while re-
taining the low logical error rates (LER) of off-line decoders.
Edge-vertex decoding, illustrated in Fig. 1 (c), is a concrete
modular decoding decomposition which achieves these goals
for general lattice surgery style circuits.

B. Prior work

The back-log issue was highlighted in Ref. [2], whereby
decoding the entire history of the computation is impractical.
They show it is possible to divide the global decoding prob-
lem into sub-decoding problems in order to get up-to-date in-
formation about the correction, even when syndrome histories
involve many logical qubits. In Ref. [11], the use of paral-
lelization is proposed to decrease the decoding time complex-
ity. In Ref. [12], proposed using multiple decoders in parallel
with message passing to reduce the reaction time.

More recently, in Refs. [13, 14], a parallel approach to de-
coding is proposed and numerically benchmarked, showing
that decoding can be parallelized without significant impact
on accuracy (LER). We note that parallel decoders for some
(non-topological) quantum LDPC codes have previously been
proposed [15].

Our work was developed independently, but we note partial

overlap with the recently published results in Refs. [13, 14].
Furthermore, this article makes several contributions beyond
existing literature. First of all, our edge-vertex modular
decomposition can be generally applied to arbitrary com-
putations implemented through topological stabilizer fault-
tolerance. Furthermore, the statement of modular decoding
is sufficiently careful to be applicable to all known flavors of
topological stabilizer computation [16], such as circuit based
quantum computation, measurement-based quantum compu-
tation [17–20], fusion-based quantum computation [12] and
floquet-based quantum computation [21, 22]. Finally, we
prove a soundness theorem for modular decoding whose hy-
potheses give sufficient conditions for a sound decomposition
of the decoding problem.

III. PRELIMINARIES

Classical outcomes provide the only classical window onto
the quantum evolution which takes place in the computer. It
is the combination of these outcomes and a physical model
for operations and errors on them which will guide the fault-
tolerant control and interpretation of the computation. Decod-
ing deals with raw classical data produced during a quantum
computation. These are all the outcomes from measurements
performed throughout the computation, or more generally the
outcomes from quantum instruments [9, 16]. We index the
collection of physical outcomes of a computation by the set
O. For simplicity, and in anticipation of the stabilizer formal-
ism, we will assume that outcomes take binary values denoted
by v : O → Z2 (with Z2 = {0, 1}).

Parity checks are constraints among the measurement out-
comes reflecting the redundancy among them under ideal op-
erations (i.e., in the absence of errors). In stabilizer fault toler-
ance, a check σ is characterized by a sub-set of outcomes with
a fixed joint parity (which we will assume to be 0 without loss
of generality). By abuse of notation, extending the definition
of v linearly over subsets of O, we will denote this as con-
straint as, v(σ) = 0. A value of v(σ) other than 0 indicates
the presence of errors. We are interested in the context of sta-
bilizer fault tolerance, where the set of all checks 〈Σ〉 has the
structure of a linear space generated by a given set of check
generators Σ (i.e., 〈Σ〉 = span(Σ)). In turn, 〈Σ〉 is a linear
subspace of the power-set P(O) of O, the set of all possi-
ble subsets of O which can be interpreted as the linear space
Z
O
2 (the space of functions from O to Z2). In other words,
〈Σ〉 is closed under exclusive or (XOR) of its elements (i.e.,
σ1 ∈ 〈Σ〉 and σ2 ∈ 〈Σ〉 implies σ1 ⊕ σ2 ∈ 〈Σ〉). All the
information which is relevant for the decoder to identify an
error is contained in v|〈Σ〉 (i.e., the restriction of v to elements
in 〈Σ〉). This information can be succinctly encoded in the
resulting parities for the, possibly over-complete, generating
set of checks Σ. We will assume that the decoder has access
to a convenient generating set of checks Σ as well as their
syndrome outcome v : Σ→ Z2 as they become available.

Although 〈Σ〉 encapsulates fundamental, decoder indepen-
dent properties, the choice of Σ has practical importance.
Check generators in Σ impact the performance of the decoder
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and imprints a notion of locality which guide the decomposi-
tion of the decoding task. Some ambiguity arises when there
are multiple levels (hierarchy) of encoding involved. In this
situation, it is possible for check generators at a higher level to
be treated as logical outcomes by a lower level fault-tolerance
scheme. Magic state distillation is a practically relevant exam-
ple of such a situation; there, physical injected states are un-
protected by the underlying low level surface code style fault
tolerance. However, the distilled magic states are nevertheless
protected by higher level distillation checks.

Logical outcomes are the final product of fault-tolerant
quantum computation. In the desired regime of operation,
these outcomes reproduce the same value distribution as a
noiseless quantum computer. Logical outcomes M are de-
rived from physical outcomes in O. For stabilizer fault toler-
ance, logical outcomes M ∈ M take bit values. Moreover,
in the absence of errors their value v(M) is the joint parity
of a corresponding subset of outcomes M ⊂ O, which gives
the ideal logical outcome distribution taken as reference. The
choice of letter, M, is intended to convey membrane, which
correspond to the 2D arrangement of physical outcomes asso-
ciated to logical outcomes in flavours of surface-code based
fault tolerance [16].

In surface-code based flavours of fault-tolerance, logical
outcomes correspond to relatively closed membranes. A
membrane is relatively closed if (at some point in the com-
putation) its support is fully contained within the set of avail-
able outcomes (i.e., it will have no support on outcomes to
be generated in the future). In general, the entirety of a logi-
cal membrane is an unwieldy object, spanning and branching
through (potentially the entirety of) the computation. The log-
ical Pauli frame is a convenient way to tame this complexity.
The Pauli frame summarizes the parity accumulated by par-
tial logical membranes which may or may not, in the future,
be completed into a logical outcome ofM. In a snapshot of
the computation, there would be one partial logical membrane
per element of the instantaneous n-qubit logical Pauli group
(with n equal to the number of logical qubits at that instant
in time); these are the bits of the Pauli frame. This approach
provides the flexibility of defining the logical circuit on the
go. When, completing a logical measurement (i.e., by clos-
ing a membrane M ), the outcome v(M) can be obtained by
taking a joint parity of the historic parity of M , as given by
a corresponding Pauli frame element with a recent term asso-
ciated to the closure of M . Partition of historic and recent is
arbitrary but serves a practical purpose.

For ideal noiseless operations, each bit of the Pauli frame
simply accumulates the partial outcome parity for some par-
tial membrane M . In noisy fault-tolerant computation, this
parity may require adjusting in order to compensate the effect
of diagnosed errors on the logical Pauli frame.

Error model. In a real-world device, operations are not
perfect, and so the observed outcome distribution differs from
the ideal one. Fault-tolerant schemes can deal with such im-
perfections contingent on an adequately benign noise model.
Soundness proofs and numerical simulations in this and other
articles assume such noise models, which are themselves an
idealization. While in this way, we gain confidence that fault-

tolerance is capable of producing robust computational out-
comes, the final validation will only come with an actual fault-
tolerant computation.

As in most stabilizer fault-tolerance literature, we assume
an error model defined in terms of a set of elementary errors
or faults e ∈ E which are Pauli (product) operators acting
on the qubits at different times throughout the computation.
This choice is motivated by the fact that for stabilizer fault-
tolerance, wherein the (Pauli) measurements used to generate
the parity checks collapse many coherent errors into Pauli er-
rors, and thus the effects of a wide range of errors can be mod-
eled in this way. The choice of elementary errors E is model
specific and should aim to represent the physics and imperfec-
tions of the device(s) being modeled.

A common choice of error generators E , is to have a one to
one relation between physical measurement outcomes o ∈ O
and each error generator e ∈ E , with each element e flipping
a single outcome o. While this can be an adequate model cer-
tain implementations of MBQC or FBQC, it actually conflates
two distinct objects and can not accurately model many other
scenarios. To comply with the format accepted by a concrete
decoding algorithm (e.g., syndrome graph structure, i.i.d. er-
ror model), the internal decoder error model may in turn be an
approximation of the mathematical error model. For simplic-
ity, we do not distinguish them here.

We denote by 〈E〉, the possible combinations of elementary
errors in E , and will use ε ∈ 〈E〉 to denote the unknown error
combination occurring on the quantum system. We further as-
sume that the probability of different errors ε ∈ 〈E〉 occurring
can be described by an independent probability distribution
(or possibly a low correlation distribution) on elementary er-
ror generators e ∈ E .

In a quantum instrument network (QIN), composed of sta-
bilizer instruments (a generalization of Clifford maps includ-
ing measurement) [9], the effect of inserting Pauli errors be-
tween instruments is to flip a set of outcomes. Specifically,
there is a linear relation which determines which checks σ ∈
〈Σ〉 and logical membranes M ∈ M are flipped by a given
error ε ∈ 〈E〉. We denote this relation by the bi-linear map ∂,
with ∂ε : 〈Σ〉 → Z2, along with εM : M → Z2, which are
themselves linear in ε ∈ 〈E〉. Thus, a specific error ε flips a
well defined set of logical outcomes specified by the indica-
tor function εM; the problem we are faced with is to identify
which these are without knowing ε.

Decoding consist of accurately inferring εM by using the
prior distribution of ε as well as its signature over the available
syndrome information ∂ε = v|Σ. In practice, decoders ap-
proach this problem by inferring a recovery operator κ which
also belongs to 〈E〉. As such, it also has associated linear
maps ∂κ and κM. The decoder will be successful if it can
identify a correction κ such that κM = εM. Note that this is
a much weaker requirement than κ = ε, which is not neces-
sary for successful decoding. However, since decoders do not
have access to εM they pick a recovery operator κ with rel-
atively high likelihood such that ∂κ = ∂ε (i.e., the recovery
operator κ has exactly the same syndrome as the error ε). In
other words, applying the combination of error ε and recovery
κ leads to all parity checks in Σ being satisfied (i.e., the trivial
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syndrome). Note however, that only κM and not the entirety
of κ is the relevant information produced by the decoder. In a
real-time decoding process, this allows efficiently summariz-
ing partial decoding progress by keeping track of the effect of
κ on partial membranes with an error-corrected Pauli frame.

ε: the physical error configuration.

κ: the global correction chosen by the decoder.

Fault distance is an important quantity characterizing the
noise resilience of a fault-tolerant protocol. It depends only
on the error generators E and its relationship with the logical
outcomesM and the space of checks Σ but is independent of
the decoder.

We say that an error ε ∈ 〈E〉 is undetectable, if it has a triv-
ial syndrome (i.e., ∂ε = 0). The weight of an error operator
ε ∈ 〈E〉, denoted by |ε|, is the smallest number of elementary
faults e ∈ E needed to express ε (i.e., as ε = e1e2 . . . e|ε|).
The fault distance d of a protocol, is the weight of the small-
est non-trivial undetectable error (i.e., the smallest |ε| such
that ∂ε = 0 but εM 6= 0). In other words, it is the weight
of the smallest undetectable error giving rise to a change in a
logical measurement outcome.

Note that the weight is dependent on the error model of
interest through the set of elementary error generators E . If a
decoder with effective fault distance of d over a fault-tolerance
protocol, can detect any error of weight up to d − 1 and can
correct any error with weight up to bd−1

2 c. A decoder is
sound w.r.t. a fault-tolerant protocol with fault distance d, iff
the decoder also has an effective fault distance d.

Definition 1. [Decoder soundness] The decoder produces a
minimum weight correction κ for any (physical) error ε with
|ε| < d/2, where d is the fault distance of the protocol.

This means that a decoder satisfying the soundness condi-
tion will correctly recover from any physical error configura-
tion ε ∈ 〈E〉 with |ε| < d/2. MWPM [2, 23] and UF [24] are
sound decoders w.r.t. any fault tolerant protocol as long as the
relation ∂ between error generators E and check generators Σ
is accurately captured by a syndrome graph.

Syndrome graphs are a useful data structure to represent
the decoding problem whenever each elementary error e ∈ E
flips at-most two parity checks σ ∈ Σ. This leads to a graph
structure with check generators Σ corresponding to vertices
of the graph and elementary errors e ∈ E flipping a given pair
of check generators corresponding to edges between corre-
sponding the vertices of the graph. One can define syndrome
graphs for simple i.i.d. Pauli and measurement error mod-
els for circuit-based quantum computation (CBQC) with the
surface code [2, 25–28], measurement-based quantum com-
putation (MBQC) with topological cluster states [17–20], or
fusion-based quantum computation (FBQC) with the 6-ring
fusion network [9, 12, 29]). While our numerical implemen-
tation and simulation results (Sec. VII) make use of the syn-
drome graph structure, our modular decoding decomposition
approach and proof (Sec. V) are applicable more broadly to
Tanner graphs with locality structure.

FIG. 2. Logical blocks and logical-block network. From left to right,
there are the 3-port block, identity, and lattice surgery logical blocks.
By matching the ports (colored surfaces) of these blocks, we arrive
at a logical-block network.

Connected error clusters: The check generators Σ and
error generators E together with their anti-commutation rela-
tions ∂ define a Tanner graph. This is a bipartite graph with
each node representing either a check generator σ ∈ Σ or an
error generator e ∈ E and edges between them used to repre-
sent the relation ∂e(σ) = 1. We will say that two error gener-
ators e1 and e2 are directly connected if they are distance 2 in
the Tanner graph (i.e., there is at least one check generator σ
s.t. ∂e1(σ) = 1 and ∂e2(σ) = 1).

Given an error configuration ε we may use this notion of
connectedness to partition it into connected components. We
will call each of these components a connected error clus-
ter. In the case of syndrome graphs, this notion coincides
with viewing ε as a sub-graph (subset of edges) of the syn-
drome graph and identifying its connected components. The
rationale behind this definition is that if ∂ε = 0 and ε has
connected components εi, then ∂εi = 0. In other words, an
error configuration ε is undetectable, if and only if, all of its
connected components are undetectable. For this reason, low-
est weight undetectable logical errors will always consist of a
single connected error cluster.

Surface code fault-tolerant protocols. Our primary inter-
est, is on fault-tolerant protocols based on the surface-code.
In this case, a quantum computation is expressed as a network
of logical operations, which we call a logical block network
following Ref. [9]. Each element in the network is a logical
block—an encoded, logical operation realized by a quantum
instrument network (QIN) along with some input and output
ports for the logical information. Specifics depends on the
operations being implemented, as well as the model of com-
putation (CBQC, MBQC, or FBQC) [16]. The native physical
instruments used: unitary gates, single qubit measurements,
two-qubit parity measurements, resource state generation, and
any other operations depend on which model of computation
is best suited to the underlying physical hardware. Blocks are
composed along ports to generate larger computations, with
a schematic example depicted in Fig. 2. Regardless of the
model, the connectivity structure of surface code QINs locally
follow a 3-dimensional network representing the space-time
history, and both outcomes and topological checks are local-
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ized in this structure. For example, surface code computations
using lattice surgery [7–9], or ZX-spider networks [9, 30, 31]
generate 3D networks like those depicted in Fig. 2. We ex-
plain these logical blocks in more detail in Sec. VI.

IV. MODULAR DECODING METHODS

A logical block network defines a class of decoding prob-
lems (Σ,M, E), with their relation ∂ and possibly a probabil-
ity distribution over 〈E〉. A specific problem instance, is given
by the syndrome configuration ∂ε corresponding to a physi-
cal error ε ∈ 〈E〉. In this section, we show how to divide the
decoding problem of a network (or part of one) into smaller
decoding sub-tasks, which can be solved separately—some in
parallel—and then combined to solve the global problem.

A. Decomposing the decoding problem

Modular decoding acknowledges that the entirety of the de-
coding problem will only be available once the quantum al-
gorithm is completed. It addresses the problem of providing
logical outcomes throughout the computation by splitting the
monolithic problem into decoding sub-tasks of manageable
size. The solution to each sub-task includes a portion of the
global recovery κ. Crucially, these tasks can begin as soon
as their input data is available. Furthermore, as soon as the
necessary outcomes and portions of κ are available error cor-
rected logical outcomes v̄(M) := v(M) ⊕ κM(M) can be
computed. This allows the quantum computation to perform
feed-forward classical control wherein the logical block struc-
ture of the computation changes depending on the extracted
classical outcomes.

A recovery-based decoder proceeds by finding a recovery
operator κ ∈ 〈E〉, with the property ∂κ = ∂ε. The approach
taken by modular decoding is to split this problem into decod-
ing sub-tasks indexed by i ∈ T , with each task committing a
portion κi of the global correction κ

κ :=
∑
i∈T

κi. (1)

How is each component κi obtained? Each decoding task
i ∈ T is defined by its own set of check generators Σi ⊆
Σ, and error generators Ei ⊆ E . The check generators Σi
and error generators Ei defining different decoding tasks can
partially overlap in general.

εi ∈ 〈Ei〉: the portion of the physical error configuration
relevant to decoding task i ∈ T .

µi ∈ 〈Ei〉: a correction estimate produced by task i ∈ T .

κi ∈ 〈Ci〉: the portion of the correction estimate µi com-
mitted as part of the global correction κ by task i ∈ T .

The result of each decoding task i is a recovery estimate
µi ∈ 〈Ei〉. Crucially, not all of the correction operator µi is

taken at face value and committed into the final correction κ.
Only the restrictions of recovery estimate µi to the smaller
commit region Ci are used to determine the final correction κ.
Having a sufficient buffer is essential to maintaining good de-
coding performance, as otherwise the low-weight errors may
lead to logical faults. We refer to this problem as a reduction
in the effective fault distance. Examples of how the effective
decoding distance may be halved in the absence of buffers are
shown in Fig. 3.

Commit Future

Error Future correctionFirst correction

Buffer

FIG. 3. (upper panel) Distance reduction of vanilla modular decod-
ing with no buffer. In a first stage, an error with weight ≈ d/4 (red)
results in an miss-leading partial correction (green line). This leaves
an updated syndrome which leads further decoding to complete a
logical error (blue line). (lower panel) The same error configuration
is presented. In this case, the first decoder is aware of additional
buffer of syndrome information (yellow region). A similarly mis-
leading correction (green) is no longer viable for the local decoder as
it has higher weight than the actual error.

The global recovery operator κ is obtained by taking por-
tions κi of these recovery estimates µi (i.e. κ|Ci

= κi :=
µi|Ci

).1 The commit regions Ci partition the full set of error
generators E into disjoint subsets

E =
⋃
i∈T

Ci. (2)

In turn, each commit region Ci ⊆ Ei ⊆ E is a subset of the
error generators Ei relevant to decoding task i, with

Ei = Ci ∪Bi. (3)

The remaining set of error generators Bi := Ei \ Ci relevant
to each decoding task is called the buffer region for task i and
improves the quality of κi.

1 Here, the operator | denotes the restriction operator with respect to a spe-
cific subset of error generators and assumes a unique representation of the
original element being restricted in terms of error generators.
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B. Data dependency among sub-tasks

In order to obtain a consistent recovery operation κ such
that ∂κ = ∂ε decoding tasks will need to communicate. In
particular, there are check generators σ ∈ Σ which straddle
two (or more) commit regions Ci, Cj (i.e., there exists error
generators ei ∈ Ci and ej ∈ Cj such that ∂ei(σ) = 1 and
∂ej(σ) = 1). Decoding of these tasks will need to coordinate
to guarantee ∂ (κi + κj + ε) (σ) = 0. We call decoding tasks
i, j ∈ T sharing such a check neighbours and must somehow
communicate. 2

We assume that communication between tasks is exclu-
sively achieved by adapting the input instance of some tasks
based on the outputs/solutions obtained for other tasks. This
preserves the functional input-output signature assumed from
off-the-shelf decoding algorithms. This precludes neighbour-
ing decoding tasks from being solved in parallel (otherwise
their combined recovery may not satisfy checks straddling
both commit regions). As such, a sequential causal order is
introduced between all neighboring decoding tasks; the order
of which is a design choice we study in section VI.

The assumed causal order between decoding tasks can be
modelled with a scheduling graph Gsch := (T ,≺). This
is a directed, acyclic graph (DAG), with vertex set given by
T (i.e., one vertex per decoding task). A directed edge is
placed between each pair of neighboring tasks i ≺ j with
the direction denoting the dependence of the input of j on
the output of i. Tasks can only be consistently ordered if the
graph is acyclic (i.e., not have directed cycles). The schedul-
ing graph can partly determine the reaction time—the compu-
tational contribution to the reaction time is upper bounded by
the depth of the scheduling graph multiplied by the (maximal)
time taken for a sub-decoder to return a recovery. We will
discuss scheduling schemes in Sec. VI.

The set of visible syndromes, provided as input for a de-
coding task j, may be altered based on the output from other
decoding tasks i preceding it (i ≺ j). In particular, instead of
the syndrome ∂ε which only includes the effect of the physi-
cal errors ε, the input instance to decoder j will consist of the
syndrome ∂(ε + κPj

), where κPj
:=
∑
i≺j κi includes the

corrections committed by all prior decoders. In practice, Σj
will not include check generators which are already guaran-
teed to be trivial for κPj

+ ε and only a small number of check
generators in Σj will be affected by corrections in neighbor-
ing tasks and will need to have their syndrome updated in the
input to task j. As illustrated in Fig. 4, this can be viewed as
setting a boundary condition for task j.

2 Note that this notion is dependent on the specific choice of check generators
Σ and error generators E . For topological fault-tolerant schemes, there is
often a natural set of low-weight generators which involve a small number
of outcomes and detect a small number of error generators.

Commit

Future

Raw syndrome

Updated syndrome

Error

Second correction
First correction

FIG. 4. The square lattice represents a syndrome graph, with ver-
tices as check generators Σ and edges as error generators E that flip
the checks they are incident to. The green and grey shading illus-
trates a partitioning of the decoding problem into two sub-tasks L
(left) and R (right). Errors ε (red lines) can span multiple compo-
nents with the syndromes ∂ε (red dots) possibly spread accordingly.
Error generators at the interface, represented by arrow edges, affect
checks in both ΣL and ΣR. They are included in CL, a subset of the
error generators EL for the component which is decoded first. Do-
ing so guarantees satisfying all check generators σ ∈ ΣL (vertices
in the green shaded region) regardless of the future corrections κF .
However, the committed correction κL (green line) also produces an
updated syndrome ∂(ε+ κL) which may be different from ∂ε along
the interface, as illustrated by the green dot. The second decoding
sub-task takes this updated syndrome ∂(ε+ κL) as input to produce
a second correction component κR (represented by the blue line).
Buffers are not illustrated as they are not necessary to illustrate the
notion of residual syndrome and data dependency.

C. Logical outcomes from partial membranes and corrections

For each commit region Ci a sub-decoder commits a frag-
ment κi of the global recovery κ ≡

∑
i∈T κi. In particu-

lar, the recovery’s effect on logical membrane M is given by
the map κM(M) =

∑
i∈T κiM(M). A specific membrane

M ∈ M can only have a finite subset of tasks T (M) ⊆ T
which can ever contribute to this sum (an intuitive reason
for this is that outcomes are not affected by later errors).
We call this subset the relevant tasks to M and denote it by
T (M) := {i ∈ T |∃e ∈ Ci : eM(M) 6= 0}. Once all out-
comes for M are available and relevant decoding tasks com-
pleted, the corrected logical outcome forM can be determined
by the (mod 2) sum of all partial membranes across the com-
mit regions,

v̄(M) := v(M) +
∑

i∈T (M)

κiM(M), (4)

where v̄(M) denotes the error corrected outcome for M . We
will in general assume that the uncorrected outcome v(M)
can also be decomposed into partial membrane contributions
along a similar partition.
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D. Buffer growth

To keep the decoding tasks small and reaction time as low
as possible, the size of the decoding sub-tasks must be as small
as possible without impacting decoding quality. However, the
theorem proved in section V as well as the numerical result of
section VII support the qualitative conclusion drawn from Fig.
3 and other examples. Namely, a buffer region of width b ≥ d
(or close to it) is needed to maintain the decoding quality of
monolithic decoding in a modular decoding approach. In this
section, we describe how minimal buffer regionsBi := Ei\Ci
as well as the set of relevant check generators Σi for each
decoding task i ∈ T can be obtained extracted automatically.
The only input needed is the partition of E into commit regions
Ci, the desired buffer distance b and the partial order≺ among
decoding tasks.

From each commit region Ci, a graph traversal (breadth
first search) is performed into other error generators of E . The
graph structure used is the neighbor relation induced by the
check generators Σ. However, error generators in Pi are not
included in the growth phase. This graph traversal collects all
error generators at a graph-distance smaller or equal than a
predefined buffer size b and adds them to Bi if they don’t al-
ready belong to Ci. Since Pi does not participate in the graph
traversal, past commits act as a barrier to the buffer growth.
As such, error generators which are a short distance from Ci
in the full syndrome graph (or Tanner graph), may end up be-
ing excluded due to past commits in Pi.

The same growth process can also be used to identify the
check generators Σi, which should be actively considered in
the decoding task. The check generators in Σi are those whose
syndrome is fully determined by Pi∪Ci∪Bi and not fully de-
termined by Pi. Note that by definition, the growth phase does
not proceed into Pi and check generators whose syndromes
are fully determined by Pi should already be neutralized by
previous commits κPi

.

E. Summary: modular decoding anatomy

We now summarize the various components of a modular
decoding problem. A global decoding problem can be divided
into several, modular decoding sub-tasks, each of which will
in general only have access to partial information. From the
perspective of each sub-task i ∈ T , the global set of error
generators E is partitioned into four distinct regions.

Pi : The subset of errors generators (Pi ⊆ E) for which a
correction has already been commited in the past.

Ci: The subset of error generators (Ci ⊆ E) for which the
current decoder will commit the final correction κi.

Bi: The current decoder will solve the decoding problem
with respect to a larger subset of error generators Ei ≡
Ci∪Bi. The subsetBi is treated as a buffer to improve
the decoding quality in Ci. The Bi component of the

correction estimate µi will be discarded or revised later.

Fi: The subset of error generators (Fi ⊆ E) from the fu-
ture, which have no influence on visible check genera-
tors.

The decomposition into these components is central in the
soundness proof of modular decoding provided in section V.
Our approach to specifying the decomposition of modular de-
coding into sub-tasks will be to start from a partition of the
error generators E into commit subsets Ci. To do so, we will
mirror the logical block decomposition of the circuit. At this
point one of a few sensible schedules Gsch discussed in sec-
tion VI can be chosen to provide a data dependency structure
among decoding tasks. Finally, the Pi, and the buffer regions
Bi can be obtained algorithmically given a target buffer size b
(see IV D), which should be chosen as b ≈ d.

In addition to this partition of the error generators, it is
sometimes necessary to connect to the actual set of physical
measurement outcomes Vi, which are in principle available to
a given decoding task.

Vi: The visible subset of outcomes (Vi ⊆ O) which are in
principle available to the current decoder task i. These
typically includes past outcomes which are no longer
directly relevant to the current decoding task.

In practice, the input to a decoding task instance is based on
syndromes and syndromes are based on outcomes. It will be
sufficient to assume that Vi is the smallest subset of outcomes
O supporting the check generators in Σi and any Σj with j ≺
i. In practice however, many of the check generators in ΣVi

are already guaranteed by κPi
and are not influenced by error

generators in Bi ∪ Ci so it is sufficient for the local decoding
task to focus on Σi.

When we are dealing with a setting where there is a one to
one correspondence between error generators and outcomes,
the visible region is specified by Vi = Pi ∪ Ci ∪ Bi. Based
on our algorithmic construction of Bi and Σi from Sec. IV D,
we may interpret ΣVi

to be a maximal subset of check gener-
ators unaffected by error generators in Fi, and Vi the minimal
subset of outcomes supporting said checks. The practical im-
portance of Vi, is that the decoder unit responsible for task i
needs to wait for said outcomes to be available before it can
begin solving its task.

V. MODULAR DECODING WITH BUFFERS: PROOF OF
DECODER SOUNDNESS

In this section, we prove that modular decoding is sound.
Namely, we show that, under two assumptions, it can achieve
an effective fault distance d equal to the fault distance of the
original decoding problem.

The first assumption, is local decoder soundness, which is
a requirement on the base decoding algorithm used to obtain
corrections for individual decoding sub-tasks, as was defined
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in Def. 1. We recall that some decoders in the literature such
as MWPM [2, 23] and UF [24] satisfy this property; these are
good candidates to use as local decoders.

The second assumption, constrains the size/shape of the
commit and buffer regions used to define individual decod-
ing sub-tasks. It goes by the name of buffering condition, and
is stated as follows:

Definition 2. [Buffering condition] For a decoding sub-task
with buffer, any connected errors ε satisfying the following
conditions will have weight d or larger.

• ε is supported on C ∪B

• ε is undetectable in the visible region (∂V ε = ∅).

• ε has support in the commit region (εC 6= ∅).

• ε is detectable globally (∂ε 6= ∅).

See Fig. 5 for examples of error clusters which satisfy (or
not) the itemized buffering conditions.

Note that throughout this section, the index i ∈ T for the
current decoding task is kept implicit throughout the induc-
tive proof. We nevertheless use the labels P , C, B and F as
in section IV, to refer to the partition of error generators E
into past, commit, buffer and future from the perspective of i.
The decoder in charge of a decoding task has access to out-
comes in V ⊆ O at best. Consequently, instead of the full
syndrome ∂ it only has access to a partial syndrome ∂V corre-
sponding to those check generators supported exclusively on
visible outcomes V . We will assume that V is the minimal set
of outcomes supporting all check generators which are unaf-
fected by errors in F . In other words, V supports all check
generators σ ∈ Σ whose syndrome is fully determined by the
error restriction to P ∪ C ∪B.

Past Commit Buffer Future

Satisfies itemized buffering conditions => (weight > d)
Violates itemized buffering condition

FIG. 5. The figure illustrates a collection of error strings (connected
error clusters) supported on B ∪C. The buffering condition (Def. 2)
states that low weight error clusters satisfying certain itemized re-
quirements should not exists. Error clusters which satisfy itemized
conditions (dashed green black), must have weight larger than d for
the buffering condition to be satisfied. The ones that do not satisfy
itemized conditions (dashed red black) may have lower weight. For
these, formulas identify which of the three itemized requirements is
not fulfilled.

While the buffering condition is expressed in terms of an
arbitrary error ε, in the soundness proof the condition is ap-
plied to specific combinations of errors and corrections. These

combinations are constructed to be “locally neutral” as they
combine a decoder-generated recovery operation with its in-
stigating error.

The buffer growth method in Sec. IV D (with b := d) gener-
ates decoding regions which satisfy the buffering condition. If
we use d as the buffer depth, then no error cluster with weight
smaller than d can have support on both the commit C and
future F , because errors from these two regions have graph-
distance larger than d. This is guaranteed by the graph traver-
sal approach use to determine B.3

Theorem 1 (Modular decoding theorem). If at every step
of modular decoding (i.e., for every decoding sub-task) the
buffering condition and local decoder soundness are satis-
fied, then the overall modular decoding procedure satisfies the
soundness condition.

Informal argument: Intuitively, the buffering condi-
tion means that any connected error cluster with weight
smaller than d/2 which is partially supported on the commit
region, (C) must be fully supported on commit + buffer
(C ∪ B). Because otherwise a “round trip” of this string
that is undetectable in commit + buffer, has two open ends
in the (non-buffered) future, and has weight smaller than d
– violating the buffering condition. As a result, the local
decoder will provide the correct recovery (say, a string from
points x to z), but only apply the component in the commit
region (a string from points x to y). The missing part (a string
from y to z) will be completed by the following sub-decoders,
because if the minimum weight path from x to z is through
y, then the minimum weight path from y to z has the same
weight as the yz-segment on the xy-path.

We will continue to use Greek letters to describe error
strings and correction candidates. These will further prolif-
erate in the proof of modular decoding soundness so we pre-
emptively summarize their interpretations in table I.

TABLE I. Symbol key: errors and recovery operators

ε: the physical error configuration.

κ: the global correction the modular decoder commits to.

µ: the correction estimate proposed for the current decoding task
C ∪B. (µ ≡ µCB). (κC ≡ µC ).

τ : a processed portion of the errors ε reliably addressed by the
previous correction estimates. (τ ⊆ ε). (τP ≡ εP ).

ν: a viable low-weight correction candidate for τ compatible
with previous commits (ignores τ̄ ).

τ̄ : an unprocessed portion τ̄ := ε− τ of the errors ε.

Whereas the proof applies generally, to stabilizer fault-
tolerance with some notion of locality, our intuition is derived

3 The graph structure used is derived from the elementary error generators
of E \ P and the elementary check generators Σ.
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from syndrome graph type decoding problems, for which Fig.
6 can further illustrate the elements involved in the proof.

Past Commit Buffer Future

Error ( not known ) Possible future errors

Old commited recovery
New commited recovery

Discarded recovery estimate
Tentative recovery estimate

FIG. 6. An illustrative configuration of the different regions as
well as error and correction chains. Errors and corrections are la-
beled by Greek letters following Sec. I Here, the decoding causal
order is presented from left to right whereas in general the order is
decoupled from the particular geometric coordinates of the decoding
problem. The error ε (red lines) is partitioned into a processed com-
ponent τ , which can be compensated by a lower weight correction
ν = νP + νCB , and the unprocessed error τ̄ = ε − τ . The unpro-
cessed error τ̄ affecting visible outcomes can be decomposed into
connected components, some of which will share support with the
current commit region C. The recovery estimate µ produced for the
current decoding task contains µCS , the parts which the proof deems
as necessarily trustworthy, including the correction µC := µCS ∩C
to be committed. Sub-optimal correction estimates in parts of µ dis-
connected from C are less harmful to the global decoding quality,
as these will be revised with the benefit of future information. Note
after this step, the past region P grows to include the current commit
C, and the committed correction κP will be extended with µC .

In the context of the current decoding task, κP is already
defined and corresponds to past committed error estimates.
The available syndromes of the error are given by ∂V ε. The
decoder returns a correction estimate µ with

µCB ≡ µ, ∂V µ = ∂V (κP + εV ).

The global correction is committed for regionC as κC := µC .
Notice that the decoder might need to abort if there is no

error estimate µ which is local to C ∪ B, µ ≡ µCB , and is
compatible with the error ε and previously committed estimate
κP , ∂V µ = ∂V (κP + ε). This is also a decoding failure, and
is taken into account below.4

Proof. The strategy is to show inductively that, assuming
|ε| < d/2, at every step there exist τ and ν such that the fol-
lowing condition is satisfied5 ,

τ ⊆ ε, τP = εP , νP = κP , |ν| ≤ |τ |, ∂ν = ∂τ.

Within the inductive proof, τ can be considered as a frag-
ment of the error ε already dealt with. Conversely, ν is a viable

4 In practice, the syndrome for Σi ⊆ ΣV , which excludes checks generators
already guaranteed by κP is enough (see Sec. IV). Since i ∈ T is kept
implicit here, we use ΣV to distinguish from Σ.

5 Notation: binary vectors are identified with set through indicator vectors.

extension of the committed correction κP into a viable global
correction for ε. Neither of these have a physical (or program-
matic) counterpart, and only play a role in the proof.

This is enough because when it holds after the last step then
|κ| ≤ |ε|. Each inductive step corresponds to a decoding task
which is performed, and the order in which such steps are
taken in the proof can be any complete order compatible with
the causality relation ≺ imposed on decoding tasks.

For the base case of the induction, it suffices to take τ =
ν = 0. For the inductive step, assume that indeed we have
such ν, τ . The aim is to construct some ν′, τ ′ satisfying the
required conditions after the modular decoding step (i.e., P 7→
P ∪ C). Let

τ̄ := ε− τ.

The modular decoding step produces some µ = µCB satisfy-
ing

∂V µ =∂V (κP + εV ) = ∂V (νP + τP + εCB)

=∂V (νCB + τCB + εCB) = ∂V (νCB + τ̄CB).

(The existence of µ is a consequence of the rightmost expres-
sion.) The correction µ has minimal weight by virtue of de-
coder soundness, since

|τ̄CB + νCB | ≤ |τ̄ |+ |ν| ≤ |τ̄ |+ |τ | = |ε| ≤ d/2.

Consider a region S obtained as the union of the support of
those connected components of

α := µ+ τ̄CB + νCB

that contain some element of the commit region C. Since
∂V α = 0 we have ∂V αS = 0, that is

∂V µS = ∂V (τ̄S + νS).

and µS has to be optimal itself, so that

|µS | ≤ |τ̄S |+ |νS |,

The buffering condition applies to each connected component
of αS and thus ∂αS = 0, i.e.,

∂µS = ∂(τ̄S + νS).

Let C ∪S be the region obtained as the union of S and region
C. Clearly αS = αCS and thus

|µCS | ≤ |τ̄CS |+ |νCS |, ∂µCS = ∂(τ̄CS + νCS).

We take

ν′ := ν + νCS + µCS , τ ′ := τ + τ̄CS

and it suffices to check that

τ ′ ⊆ ε, τ ′C = εC , ν′C = κC ,

|ν′| ≤ |τ ′|, ∂ν′ = ∂τ ′.
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Indeed:

τ ′ = τ + τ̄CS ⊆ τ ∪ τ̄ = ε,

τ ′C = τC + (τ̄CS)C = τC + τ̄C = εC ,

ν′C = νC + (νCS)C + (µCS)C

= νC + νC + µC = µC = κC ,

|ν′| ≤ |ν| − |νCS |+ |µCS | ≤ |τ |+ |τ̄CS | = |τ ′|,
∂ν′ = ∂(ν + νCS + µCS) = ∂τ + ∂τ̄CS = ∂τ ′.

A. Modular decoding with erasures

In a Pauli noise model each error in 〈E〉 occurs according
to a certain probability distribution (usually described by an
i.i.d. model over the generators E). The control software must
get any information about which error actually happened from
the extracted syndrome. In contrast, for an error model includ-
ing erasures, there is additional information available. Rather
than having an outcome be flipped with some probability and
only be able to infer whether the outcome was flipped or not
from syndrome information, some outcome may be flagged
as erased. This information is provided by herald outcomes,
which go beyond the Z2 linear structure of checks and logical
outcomes. Rather than a probability distributions over Pauli
faults, a noise model including erasure can be seen as a condi-
tional distributions of Pauli faults conditioned on the sample
drawn from a probability distribution of erasures.

Traditionally, each erasure correspond to a missing mea-
surement outcome. An outcome o which is flagged as erased
may be assigned an arbitrary guess value v(o). This corre-
sponds to having an error generator eo ∈ E , which corre-
sponds to a measurement error on o and is modeled to occur
with 50% probability whenever the erasure is heralded for o.

A decoder which is aware of an erasure flag on o, will not
take the value v(o) seriously. In fact, this value may be miss-
ing from the input and can be generated at random by the de-
coder itself, and reassign its value if the initial guess is other-
wise deemed incompatible with the most likely error configu-
ration.

In this sense, erasure is a more benign form of noise than
flip noise since an outcome flip probability p/2 is equivalent
to an outcome erasure probability of p where the herald in-
formation (i.e., which outcomes were erased) is ignored. Fur-
thermore, if erasures are the only form of noise, exact decod-
ing can be performed wherein logical outcomes are either cor-
rectly recovered or lost in a heralded way. A fault tolerant sta-
bilizer protocol which has fault distance d w.r.t. a Pauli error
model will also be able to perfectly recover from up to d − 1
erasures w.r.t. the same error generators.

We may apply the soundness proof of modular decoding
to a post-erasure fault-tolerance protocol. In other words, we
can seek to partition a decoding problem on which erasures
have already been taken into account. Once the erasures are
taken into account one is left with a decoding problem with
distance d′ ≤ d the conditional Pauli error distribution over
a subset of the remaining error generators. The modular de-
coding theorem need only be applied to distance d′, requiring

less buffering. However, the decoding problem resulting from
including the erasure instance will also be less local. Check
generators affected by a shared erasure will be considered as
being at distance zero from each other.

Applying the modular decoding theorem to a decoding
problem where the erasures have already been fixed (sampled)
suggest that the partitioning into sub-tasks may also be taken
to depend on the observed erasures. Constructing the buffer
regions in a way which depends on the specific erasure config-
uration drawn makes intuitive sense. Buffer regions in parts
of the protocol with an atypically high proportion of erasures
will need to be bigger due to the faster buffer growth through
erasure clusters. Conversely, buffer regions with a low pro-
portion of erasure can be kept smaller, possibly reducing to a
buffer width of d′ for a fragment with no erasures. This sug-
gest a heuristic by which to minimize the size of the needed
buffers (or increase the effectiveness of fixed size ones). One
should attempt to partition the decoding problem along cuts
such that the immediate buffer regions have the smallest den-
sity of erasures.

VI. SCHEDULING DECODING TASKS

In this section we define several approaches to modular de-
coding. In particular, we define a schedule of commit regions
and their associated buffers, that determine the set of sub-
tasks and their communication requirements. We include a
schematic for the system-level data flow requirements of these
implementations in App. A.

Logical blocks, ports, and membranes. To specify our
schemes, we first need to carefully define the constituents of
a surface-code logical space-time network, known as logical
blocks [9]. A logical block is a set of instructions to implement
a logical (i.e., encoded) quantum instrument based on surface
codes. These specify the physical instructions that must be
implemented to manipulate topological defects of the code,
such as primal and dual boundaries [17, 27, 32, 33], trans-
parent domain walls, twists and corners [34–38] in order to
realize the desired logical operation. In addition to these topo-
logical features, logical-blocks have a set of ports, which cor-
respond to the inputs or outputs of the (logical) quantum in-
strument and carry information encoded using surface-codes.
Logical blocks can be composed along ports to build larger
logical networks describing fault-tolerant quantum computa-
tions.

The connectivity of a logical block network can be de-
scribed in a simplified way by a directed-acyclic graph (DAG)
Glog in which (i) vertices are logical blocks describing a logi-
cal quantum instrument and (ii) edges are ports representing a
logical quantum system (here, a single logical qubit in a sur-
face code).

The directed edges of Glog define the order in which the
logical blocks are performed. In particular, one can label the
vertices with integers such that edges point from the vertex
with the smallest label to that with the largest. Applying the
(logical) quantum instruments sequentially according to this
ordering gives a mapping from a collection of logical subsys-
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tems to a collection of logical subsystems. As we focus on
networks comprised of Clifford quantum instruments, we can
describe the network with the stabilizer formalism [9, 16]. In
particular, one can define a set of Pauli operators that stabilize
each (logical) quantum instrument. Each vertex of the logical
block network produces a set of classical outcomes that deter-
mines the signs the Pauli operator that stabilize the instrument
(i.e., a partial Pauli frame). The specific set of physical out-
comes that determine the logical Pauli frame are supported on
a logical membranes.

Examples of logical blocks are shown in Fig. 7. We will
consider a class of networks where the (logical) quantum
instruments are constructed from ZX-networks [30, 39, 40]
which we call ZX-instruments following Ref. [16]. Logical
blocks realizing these ZX-instruments are shown in Fig. 7. We
note that as the instruments are Clifford, we may also change
the direction of any edges and have a valid logical block net-
work – as such we often do not draw the arrows explicitly. For
a given logical block (or network), we label ports by integers,
and use them to index the logical correlators of the network.

The CNOT matrix architecture. To demonstrate the uni-
versality of the decoding schemes, we present a universal ar-
chitecture based on ZX-instruments. The scheme is based on
that proposed in Ref. [41]. The architecture can also be un-
derstood in the lattice surgery perspective [7], however, this
presentation will lead to a logic block network that directly
admits a fast modular decoding scheme (as demonstrated in
the following subsection).

A universal set of gates on n qubits is given by {TP =
exp

(
iπ
8 P
)
| P ∈ Pn}, where Pn is the n-qubit Pauli group.

Similar to a T gate, each gate TP can be realized by in-
jecting a magic state and applying a generalized CNOT op-
erator before measuring out the auxiliary qubit. The gen-
eralized CNOT operator with source Pauli product operator
P and target qubit having a Pauli operator X is given by
CPNOT = (1+P +X−PX)/2. A conditional Clifford cor-
rection SP = exp

(
iπ
4 P
)

must be applied depending on the
measurement outcome, as shown in Fig. 7 a). In other words,
the generalized CNOT operator, measurements and a supply
of magic states is a universal set of operations. Using an addi-
tional Y -eigenstate ancilla as a catalyst (that is not consumed)
it is possible to implement the generalized CNOT for an ar-
bitrary Pauli operator P using only elementary CNOT oper-
ations and two Hadamard operations, as shown in Fig. 7 b).
This circuit can be represented as a logic block network with
each element being a ZX-instrument as shown in Fig. 7 which
we refer to as the CNOT matrix architecture. Each element of
the network is a ZX-instrument with a space-time volume of
d3. See Refs. [9, 16] for more details. This architecture will
be used to illustrate the modular decoding schemes.

From logical block networks to scheduling graphs. In
the following, we use the graph Glog describing the logical
block network to determine the scheduling graph Gsch, gov-
erning the set of sub-decoding problems and their order. We
make this choice for convenience and note that one may make
other choices of scheduling graphs. For example, nodes of the
scheduling graph may be decomposed or coarse grained (just
as logical blocks can be) to define alternate decompositions of

the decoding problem. It is desirable for the elementary logi-
cal blocks at each vertex to have small volume, such that the
processing time for each decoding task is short. The decom-
position of fault-tolerant logic into networks of logic block
satisfy this desiderata, with each block having a volume of
O(d3).

A. Vertex-only decoding

The first set of schedules we consider, directly obtain the
vertices and edges of the scheduling graph from the logical
block network. In particular, every logical block (correspond-
ing to a vertex in Glog) defines the commit region (corre-
sponding to a vertex in Gsch) of a sub-decoding problem, and
edges are placed between two blocks whenever they share a
port. What remains is to determine the directions ≺ of the
edges, the order of the decoding sub-tasks which ultimately
impacts the reaction time. This is schematically represented
in Fig. 8. The buffers for each region can be chosen by consid-
ering the neighbouring blocks. One may take all neighbouring
blocks connected to the a given block as the buffer, or alterna-
tively use the graph traversal approach described in Sec. IV D
to construct the minimum necessary buffers.

Sequential vertex decoding. The simplest schedule is ob-
tained by completely mirroring the logical order inGlog in the
dependencies and scheduling of decoding tasks making Gsch

identical toGlog. This is called sequential decoding—the sub-
tasks proceed in the same order as the logical blocks are per-
formed. If decoder modules can process each decoding block
faster than the time it takes a block of input outcome data to
be generated by the quantum hardware, this naive approach
works fine. In fact, it minimizes reaction time as each block
can set the boundary condition for its future neighbours.

However, this approach will generate backlog even if the
individual decoder modules take slightly longer to solve de-
coding tasks than it takes the quantum hardware to produce a
block of outcome data. This is true, even if additional decod-
ing power is made available in the form of additional decoder
modules. This is a poor paralelization of the global decoding
problem and decoder modules will lay idle waiting for other
modules to complete their tasks which are needed for input
boundary conditions. The data dependency among decoding
tasks leads to an accumulating backlog and increasing reac-
tion time with the length of chains in Glog.

It is for this reason that it is important to (at least partially)
decouple the logical block order of Glog and the data depen-
dency orderGsch which the decoding of logical blocks should
respect. The reason we say partially decouple here is because,
feed-forward classical control logic in the quantum circuit will
need to be respected by both the decoder scheduling Gsch as
well as consistent with the logical block order. Each logical
membrane associated to a logical outcome must be fully de-
coded before said outcome can be used to condition forthcom-
ing circuit elements. An extreme case of this is presented in
Fig. 1, where each T gate implemented via magic state injec-
tion leads to a logical outcome which is needed to complete
the consumption of the following magic state.
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FIG. 7. (a) A circuit identity showing how an arbitrary n-qubit TP := exp (iπ/8P ) gate, for an n-qubit Pauli product operator P , can be
realized by the inclusion of a magic state, along with a generalized CNOT operator controlled on P and conditional SP := exp (iπ/4P ) gate
conditioned on a single qubit measurement on the injection register. The conditional SP can be accounted for by the Clifford frame tracking in
the fault tolerant setting. (b) The generalized CNOT conditioned on P can be realized (dashed box) by a circuit involving sequence of CNOTs,
and two Hadamard operators. The decomposition uses a |Y 〉 state (i.e. a Y eigenstate) which is kept unchanged in the process (a catalyst
state). The circuit structure can be simplified into a ZX diagram. The figure gives the example of a 5-qubit Pauli operator P = ZXYXZ.
(c) Each element of the graph Glog is realized by a fault-tolerant logical block. Stabilizers describing the quantum instrument are shown, each
one corresponding to a membrane in the logical block. The blue and red boundaries correspond to primal and dual boundaries, following the
conventions of Ref. [9]. (d) A ZX-diagram equivalent to the one obtained for the 5-qubit example in (b) compatible with elementary logical
blocks arranged in a local 3D structure. This is the layout prescribed by the CNOT matrix architecture.

FIG. 8. Directed acyclic graph (DAG) Gsch. In our context, each
node represents a decoding task i ∈ T , and each directed edge rep-
resents a causal dependence i ≺ j imposed whenever the correction
κi committed by an earlier task affects the syndrome for check gen-
erators Σj used by a later task. The direction of the edge points from
the earlier decoding task to the later one w.r.t. the scheduling.

Parallel vertex decoding. An approach that gives a
faster reaction time is to consider a partitioning of the ver-
tices of Gsch into a graph coloring, where neighboring ver-
tices have different colors. Indexing the colors by integers

{1, 2, . . . , nc}, one can perform all available tasks of the same
color in parallel, starting with 1 and proceeding in order. We
will still maintain one edge ofGsch per edge ofGlog, however,
their direction will follow increasing color labels. This gives a
bound on the reaction time which is proportional to the num-
ber of colors (nc). In particular, if Glog is bi-colorable, we
can use this coloring to construct Gsch with a very low re-
action time, since all causal chains will have depth bounded
by 2 (decoding tasks). If sufficiently many decoder modules
are available (i.e. decoding throughput is met), this guaran-
tees a reaction time which will not increase with the length of
logical dependency chains in Glog as would be the case with
sequential decoding. However, each decoding problem while
still having volume of order O(d3) may still be large, owing
to the large combined buffer and commit sizes. We improve
on this with edge-vertex decoding.

B. Edge-vertex decoding

Here we consider schedules with even lower reaction time
than parallel vertex decoding. The approach works by first
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Past Commit Buffer Future

FIG. 9. The figure depicts a four decoding tasks which provide
an example of edge - vertex decoding. (left) Three edge decoding
tasks DN1, DN2, DN3 are solved independent of any other decod-
ing task. The outcome data for a significant buffer regions (yel-
low) must be provided to these tasks in order for them to provide
high quality recovery estimates on the commit regions (green). Edge
decoding tasks treat unavailable outcomes (grey) as open boundary
conditions. Such outcomes may be unavailable, either because they
are yet to be produced, or because they are too far from the com-
mit region to be relevant. (right) A vertex decoding task is solved
(green) with check boundary conditions (blue) imposed by preced-
ing edge decoding tasks. (bottom center) The corresponding piece
of the scheduling graph Gsch, the DAG associated to the decoding
tasks presented in the figure. Edge decoding task rely directly on
measurement outcomes but not on corrections obtained by any other
decoding task. In surface code lattice surgery, each edge decoding
task provides boundary conditions to two vertex decoding tasks.

decoding ports between logical blocks, using the neighbour-
ing blocks as buffers. The commit region associated to ports
is chosen to be a minimum number of error generator “lay-
ers” such that the Tanner graph for the decoding problem be-
comes disconnected in the direction perpendicular to the port,
if the corresponding vertices are removed. This effectively de-
couples the decoding problem for neighboring blocks. After
the ports are committed to, the blocks themselves may be de-
coded, using no extra buffers as their boundary conditions are
now fixed.

Parallel edge-vertex decoding. The scheduling graph
Gsch is constructed as follows. For each vertex and edge of
Glog (corresponding to logical blocks and ports, respectively),
we place a vertex for Gsch. We place a directed edge between
a block vertex and any port vertex that belongs to it, directed
from the port vertex to the block vertex. Buffers for the port
vertices are given by the neighbouring logical blocks. The
name of the scheme is derived from the fact that edges of the
logical block network are decoded first, followed by the ver-
tices. We give examples of this schedule in the following sec-
tion. In terms of reaction time, the scheduling graph Gsch is
bipartite (i.e., depth of 2). This scheme thus has an extremely
low reaction time, and as we will numerically be show to per-
forms extremely well in terms of logical error rate.

VII. SIMULATION AND RESULTS

In this section, we first provide a short description of our
implementation of the modular decoding scheme for logical
block networks, then present extensive simulation results for

a b

c

Single spider block with three membranes

Logical-block network Edge decoding Vertex decoding

FIG. 10. Schematics of the software implementation of modular de-
coding. (top) An elementary logical block with three ports and three
membranes, where each membrane is labeled with the correspond-
ing stabilizer representation. (bottom left) A simple logical block
network with three vertices {a, b, c} and three edges {(a, P2) ↔
(b, P1), (a, P3) ↔ (c, P2), (b, P3) ↔ (c, P3)}. Here each edge
represents an identification of two matching ports from two blocks.
Global logical membranes are expressed in terms of stabilizers on the
open ports (blue), e.g., there is a global membrane Za,P1Zb,P2Zc,P1 ,
which is the union of all three individual ZZZ-type membranes.
(bottom right) edge-vertex modular decoding. The interface regions
(or edges in the logical block network, shown in green) are decoded
first in parallel, with buffers growing into bulk regions (yellow). Af-
ter the edge decoding, remaining disconnected bulk regions (or ver-
tices in the logical block network) are decoded in parallel. The edge
decoding step sets boundary conditions (blue) for the vertex decod-
ing step.

logical block networks with increasing complexity. We start
from a benchmark model of a linear chain of identity blocks.
We then move to a planar network of ZX-instruments with a
more complicated composition of logical membranes. Finally,
we simulate the Clifford part of the 15-to-1 magic state distil-
lation protocol. In each case, we show that with sufficient
buffering, the performance of modular decoding approaches
that of monolithic decoding.

A. Software implementation

We describe the modular decoder implementation used in
our numerical investigation. Firstly, we consider the imple-
mentation of the logical block networks. Each elementary
logical block defines its own labeled input and output ports.
For example, the identity block has an input port and an out-
put port named ”IN” and ”OUT” respectively. The partial
membranes in each logical block are labeled by their stabi-
lizer representations, e.g., the two partial membranes of the
identity block are labeled XINXOUT and ZINZOUT. Then
one can define a logical block network by adding elemen-
tary logical blocks as nodes in the network, and specifying
the matching of ports among the blocks as edges in the net-
work. The buffer regions (after specifying the buffer size),
global membranes, and their specific decomposition into par-
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tial membranes are then computed automatically. As an ex-
ample, we can define a chain of two identity blocks as fol-
lows: Add two identity blocks as vertices a and b into the
network; add an edge e = (a,OUT) ↔ (b, IN). The buffer
region will grow (by syndrome-graph traversal) around e until
reaching the target buffer size. Global membrane decompo-
sition will be derived, e.g., there will be a global membrane
Xa,INXb,OUT, which is the union of two local membranes
represented by Xa,INXa,OUT and Xb,INXb,OUT. This sim-
ple design applies to arbitrary logical block networks. See
Fig. 10 for schematics for a slightly more complicated exam-
ple. For the purposes of simulation, any remaining input and
output ports of the global problem are treated as a noiseless
readout. (See Sec. XII. M. of Ref. [9] for more details on this
approach.)

B. Noise model

For the simulations, we assume that the fault-tolerant logi-
cal blocks are realised using fusion-based quantum computa-
tion with the 6-ring fusion network [9, 12]. Fusions, which are
bell basis measurements {XX,ZZ} are performed between
resource states, which are ring-like cluster states on 6 qubits.
Boundaries are realized using certain single qubit measure-
ment patterns. Checks are constructed out of outcomes of fu-
sion measurements: those in the bulk consist of 12 fusion out-
comes, while those on the boundary (involving single qubit
measurement outcomes) may involve 8 or fewer outcomes.
We use the hardware-agnostic error model of Ref. [9], where
each fusion outcome and single-qubit measurement outcome
is subject to an i.i.d bit-flip error with probability perror. Un-
der this error model, using the Union-Find decoder, the thresh-
old error rate is p∗error = 0.95%. We will look at fixing the
error rates at perror = 0.5%, which is approximately half the
threshold.

We remark that despite the numerical results being based
on fusion-based quantum computation, we expect the quali-
tative results and conclusions to extend to circuit-based and
measurement-based implementations of surface code compu-
tations. This is because the decoding problem for all ap-
proaches can be expressed in terms of a syndrome-graph, and
one may regard the differences as a choice of error model. See
secs. VII. and VIII. of Ref. [9] for more details on the scheme
and error model.

C. Idling memory

The simplest model for testing modular decoding schemes
is in the case of a logical qubit in memory, which can also
be thought of as a logical identity block (or chain thereof).
The functionality of the full network, in this case a chain of τ
identity blocks, is still the identity gate and the two global log-
ical membranes X0Xτ and Z0Zτ are simply concatenations
of the two local logical membranes XtXt+1 and ZtZt+1 for
t ∈ {0, . . . , τ−1}. Nevertheless, this setup is enough to show

important aspects of modular decoding, including the need for
buffering and optimization of scheduling.

We compare the LER among monolithic decoding (using
the union-find decoder), and modular decoding with differ-
ent buffer sizes (where each modular decoder also utilizes
union find). Fig. 11 shows the evolution of LER with in-
creasing buffer sizes, for a variety of protocol fault distances
d = 13, 15, 17, 19. Without buffering (buffer size b = 0), the
LER is close to 50%. The LER decreases exponential with
initial increase of the buffer size b. However, as the buffer
size b approaches the protocol fault distance d, this improve-
ment in LER stagnates. For b ≥ d, the buffering condition of
Def. 2 is satisfied and numerically obtained LER from modu-
lar decoding is indistinguishable from monolithic decoding.

D. Planar network of ZX-instruments

In this example, we study a planar network of four logi-
cal blocks (see Fig. 12). Each logical block supports partial
membranes Z1Z2Z3Z4 and pairwise XiXj’s (i.e. a 4GHZ
entanglement structure). The logical block network presented
has 8 ports, whose partial membranes are

∏8
i=1 Zi as well as

pairwise XiXj’s (i.e. a 8GHZ entanglement structure).
In addition to the logical membranes which provide the

logical stabilizers for this fragment there is a logical meta-
check. This meta-check is beyond the scope of the topological
fault-tolerance, to which modular decoding is being applied.
Meta-checks are the basis for concatenating fault-tolerant pro-
tocols and are not included in the group 〈Σ〉 generated by the
local check generators Σ. In this example, the meta-check
corresponds to a closed membrane composed of four partial
XX membranes on the constituent logical blocks but with no
support on external ports. In the case of correct topological
decoding the ”logical” outcome associated to this membrane
yields a fixed value. Obtaining a different value is indicative
of an error promoted to a logical error by topological decod-
ing, which can nevertheless be caught by the meta-check.

Fig. 12 provides numerical data confirming that the LER
from modular decoding approaches that from monolithic de-
coding quickly with increasing buffer size b.

A key feature of this logical block network is that global
membranes come in many different sizes. Note that logical
membranes are topological objects, and deformation of a log-
ical membrane by applying (XOR with) parity checks on the
syndrome graph simply leads to an equivalent logical mem-
brane. To quantify the size of a logical membrane in a topo-
logical way, we count the number of minimal-weight logical
errors for the given membrane (i.e., the minimal-weight un-
detectable errors that intersect the given membrane an odd
number of times). This turns out to be a good proxy of
LER especially at low physical error rate. We show that the
LER is indeed roughly proportional to the size of the logi-
cal membrane. Specifically, we collect the LERs from all
membranes {LER(Mi)} and calculate a unit of LER, p =∑
i LER(Mi)/

∑
i size(Mi). The membrane-size ansatz

reads: LERansatz(Mi) = p× size(Mi).
The logical decay is useful for quantifying the FT capability
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FIG. 11. Modular decoding for a chain of identity blocks. (left) Schematics of edge-vertex modular decoding for a chain of 3 identity blocks.
In the first edge-decoding step, all interface regions (green) are decoded in parallel with buffers (yellow) grown into neighbouring bulk regions;
in the second vertex-decoding step, the bulk regions (green) are decoded in parallel. Here we show the primal syndrome graph, and the LER
corresponds to that of the membrane X0X5. Decoding of the dual syndrome graph is similar. (right) Impact of buffer size b on modular-
decoding logical error rate (LER) for a variety of protocol fault distances d (simulation performed for a chain of 5 identity blocks). Without
buffering, the LER is close to 50% per logical membrane; increasing b quickly decreases the LER until it becomes indistinguishable from that
of monolithic decoding. Note that in this case the two global logical membranes (X0X5 and Z0Z5) have the same logical error rate.

of a protocol. It is the speed of the exponential decay of the
LER with increasing block size L when the physical error rate
is below threshold, i.e., the β obtained when fitting the logical
error rate to the relation LER = αe−βL (where α is another
fit parameter). A good FT protocol has large β, such that the
target LER can be achieved by small L. We observe that with
modular decoding, the logical decay increases with buffer size
b, approaching to that of monolithic decoding; also, the logical
decay on larger membranes are generally smaller than that on
smaller membranes.

E. 15-to-1 magic state distillation protocol

The magic state distillation (MSD) protocol is essential
for universal quantum computing. We present the first fault-
tolerance simulation of the static, Clifford part of the 15-to-1
MSD protocol. Here static means we focus on the MSD pro-
tocol before the adaptive measurements of input magic states,
and Clifford means we ignore errors from the injection of in-
put magic states and focus on errors incurred by the Clifford
quantum gates. This part of the 15-to-1 protocol can be re-
alized by a network of logical blocks using the tri-orthogonal
matrix representation (which will be explored in an upcom-
ing paper [42]. Specifically, there are 27 logical blocks (16
red ones and 11 green ones), 27 global ports, and 27 global
membranes with varying sizes. In the edge-vertex modular
decoding scheme, 46 edge-decoding tasks will be performed
in parallel first, followed by 27 vertex-decoding tasks.

Fig. 13 shows edge-vertex modular decoding with buffer-
ing still performs very well for this fairly large logical block
network. In this example, different logical membranes have
LERs that are differed by orders of magnitude, because of the
drastic difference in the membrane sizes. The LER is still
roughly proportional to the membrane size. The logical decay
rate β still increases with buffer size, and is in general smaller
on larger membranes.

VIII. CONCLUSIONS AND OUTLOOK

We have introduced modular decoding, a distributed ap-
proach to solving large decoding problems by decomposing
them into smaller decoding sub-tasks with minimal data inter-
dependencies. Each sub-task can be solved by a suitable off-
the-shelf, offline decoder (such as MWPM [2, 23] or UF[24]
for surface-code based schemes) to produce a partial recov-
ery, which are then combined to produce a global correction.
Modular decoding is designed to guarantee the availability of
logical measurement outcomes as they become necessary for
branching decisions throughout the quantum computation. In
order to provide these outcomes in a timely manner and avoid
slowing down the computation, the decoder must keep up with
the continuous stream of measurement data produced. This
places stringent requirements on the the decoder subsystem,
such as high throughput (keep up with the overall data rate),
short reaction times (provide partial results within a short time
frame) and minimal LER (logical error rate).
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FIG. 12. Edge-vertex decoding on a planar network of logical blocks. (left) Logical block network and syndrome graphs for the protocol. The
network consists of four 4GHZ logical blocks connected in a ring structure to form an 8GHZ with one meta-check. Orange shading shows
one of the logical membranes (corresponding to IIXIIIIX stabilizer), supported on three of the constituent blocks and crossing two port
connections. Commit and buffer regions are respectively shaded green and yellow for all decoding tasks (both edge and vertex). (middle)
Impact of buffer size b on logical error rate (LER) in edge-vertex modular decoding. Each curve corresponds to a different logical membranes
in the network and are labeled up to a cyclic shift by 2 and order inversion (i.e. the geometric symmetries of the network). Membranes crossing
a larger number of ports have higher LER for low b. For sufficiently large buffer size b, all LERs approach to values from monolithic decoding
(shaded horizontal gray lines), which is roughly proportional to membrane size (purple star estimate). (right) Logical decay β for selected
logical membranes (using stabilizer representation) and buffer sizes b. The XXIIIIII logical membrane is supported on a single logical
block and is minimally affected by buffer size (beyond b ≥ 5). The ZZZZZZZZ logical membrane is supported on all four logical blocks
and all four ports. It is maximally sensitive to buffer size b and increasing code distance d does not yield exponential suppression of LER for
d� b.

The main novel features of our decoder, are scalable
throughput and low reaction time and these are achieved by
design. Scalable throughput is guaranteed by the high de-
gree of parallelism which is achieved by distributing indepen-
dent decoding tasks to different decoder modules which op-
erate synchronously, as per Fig. 14. Low reaction time (or at
least the computational contribution to it) is achieved by mak-
ing decoding sub-tasks relatively small (i.e. O(d3) error and
check generators, for fault-distance d) and by keeping all data
dependence chains in the scheduling graph Gsch short. The
most extreme example for this is given by what we refer to
as edge-vertex decoder scheduling which minimizes both task
size and data dependence chains and derives its scheduling
graph from the connectivity graph Glog of the logical block
network.

While the main novel features of our approach are essen-
tially guaranteed by construction, most of our work goes into
understanding how to retain a competitively low logical error
rate (LER) w.r.t. existing decoders. To this end, we provide
examples, a rigorous soundness proof (Sec. V) and numerical
evidence (Sec. VII). All of these lead us to the same consis-
tent conclusion; In order to retain the original fault-distance
of the protocol as well as similarly low LER, it is necessary to
supplement each decoding task with a buffer of syndrome in-

formation along a neighborhood of width roughly d (the pro-
tocol distance). This is one of the assumed conditions in prov-
ing decoder soundness and is found to be necessary and suffi-
cient to achieve an error rate indistinguishable from that of a
monolithic decoder with simultaneous access to all syndrome
information.

While union find decoder [43] already have an almost lin-
ear complexity in the size of the decoding problem input, there
are other decoders such as minimum-weight perfect matching
[11] or tensor network decoders [44–46] which have a sig-
nificantly less favorable scaling. While our numerical sim-
ulations used a union-find decoder as a base decoder for in-
dividual tasks in modular decoding, the soundness proof for
modular decoding is completely general. The modular de-
coding decomposition provided by edge-vertex decoding or
other variants guarantee that the computational scaling of the
base decoder will only be relevant up to inputs of size O(d3)
beyond which, a linear coarse grained scaling guaranteed by
modular decoding kicks is. As such, we expect modular de-
coding provides a way to linearize the coarse grained com-
plexity of arbitrary decoding algorithms without compromis-
ing their decoding accuracy. This allows seriously considering
other computationally costly decoding algorithms with higher
noise thresholds and use them as a base decoders for modular
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FIG. 13. (left) A blue box notation for non-destructive Pauli measurement of P is introduced to represent the quantum circuit for the 15-to-1
magic state distillation using 11 auto-corrected T gates. The static Clifford part is marked with a dashed outline and grey background. The
circuit can be reduced to GHZ type logical blocks as in Fig. 7 where modular decoding is performed in two steps. First, parallel edge decoding
for all 46 interfaces with buffers, followed by parallel vertex decoding for all the 27 interiors of the GHZ style logical blocks. (right) LER
performance of modular decoding on a static Clifford portion of a 15-to-1 magic state distillation protocol. (upper panels) Logical error rate
(LER) from modular decoding versus that from monolithic decoding, for the 27 logical membranes (each of the 27 points of a given color
represents a logical membrane), and different buffer sizes. With increasing buffering, the performance of modular decoding approaches to
monolithic decoding (indicated by the gray y = x line). Larger membranes have larger LERs, and fitting of the LER according to the size of
the corresponding logical membrane (blue crosses) agrees well with the actual data. Here the physical error rate is 0.005, which is around half
of the fault-tolerance threshold. (lower panels) The left/right panel shows the logical decay for a representative small/larger membrane, which
has higher/lower decay constant β, and is less/more sensitive to the buffer size.

decoding.
The methods, and scheduling sections (IV & VI), accu-

rately describe how to decompose a global decoding prob-
lem into sub-tasks, schedule these and identify the necessary
buffer regions for each task (Sec. IV D) in a way which satis-
fies all of the desired conditions. Our prescriptions are most
concrete for topological quantum circuits (also known as lat-
tice surgery), for which the decomposition into decoding tasks
mirrors the graph structure Glog of the logical block network.
The simple but powerful buffering method presented (Sec.
IV D) is, to our knowledge, a novel contribution. When used
with buffer parameter b = d (i.e., the fault-distance of the
protocol), the modular decoding scheme obtained is guaran-
teed to satisfy the decoder soundness. More importantly, the
buffering method, is put to the test in combination with edge-
vertex decomposition approach and is numerically shown to
perform extremely well under the same condition. Moreover,
we show the robustness and flexibility of this method by de-
coding a Clifford circuit fragment of 15-to-1 magic state dis-
tillation which is composed of 27 logical blocks with 46 con-
nections among them.

In summary, we have defined modular decoding and shown
that it can be instantiated to meet the practical requirements
associated with real-time decoding: high throughput, short re-
action time and low LER. We look forward to its hardware
implementation supporting real-world fault-tolerant quantum
computations.

Future directions. While our approach minimizes the im-
pact of the decoding process on the reaction time, in practice,
there are further hardware and systems considerations that are
relevant. Improvements to the speed of individual decoder
units (also known as offline decoders) remain important direc-
tions. One can combine our modular approach with the com-
plementary approaches of pre-decoding and data compression
to further reduce the reaction time. In these approaches, the
decoder accuracy is (slightly) sacrificed in order to simplify or
speed up the decoding problem [47–49]. The buffer size of-
fers another tunable parameter to trade off reaction-time and
logical-error rate performance.

We remark that although we have focused on fault-tolerant
schemes based on the surface code, our modular decoding
schemes (such as edge-vertex decoding) can readily be ap-
plied to any universal computation for fault-tolerant compu-
tations based on topological error-correcting codes. For ex-
ample, our scheme can be applied to color codes in various
dimensions [50–54], subsystem color codes [35, 55, 56], and
floquet codes [21, 22], and it would be interesting to see if
the accuracy is maintained for similar sized buffers. A suit-
able decoder for sub-tasks will be required in each of these
cases. Belief propagation with ordered statistics decoding (BP
OSD)—which has shown to have quite good performance for
a range of codes [57, 58])—along with renormalization group
decoding [59] are examples of suitable decoders.

Beyond topological codes, it may be interesting to ap-
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ply modular decoding techniques to the setting of quantum
LDPC codes [60–62], or combine them with existing paral-
lel decoders [15]. As quantum LDPC codes with good code-
properties require high expansion [63], care is needed to pre-
vent the buffered sub-task from becoming too large.

Finally, it would be interesting to extend the soundness the-
orem to prove a fault-tolerance threshold theorem for univer-
sal computation with surface codes (i.e., a topological analog
of the threshold theorem for concatenated codes in Ref. [64]).
In particular, one can readily adapt the argument for the lower
bounding accuracy threshold in Ref. [2] to include the use of
Buffers. In particular, applying this argument to the Clifford
part of the CNOT architecture in Fig. 7 can give a lower bound
on the fault-tolerant threshold for logical Clifford operations.
Taking the minimum of this, and the threshold for distilling
magic states [65], one can obtain a threshold theorem for uni-
versal computation with surface codes.
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Appendix A: Modular decoding system-level overview

For a device-level implementation of modular decoding, the
classical data from measurements, checks, partial membranes
(i.e., decoder output) and logical measurement outcomes need
to be relayed to several different processing units. In Fig. 14
we present a system-level schematic for this data flow.
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FIG. 14. A schematic for the system-level data flow in a modular decoding implementation. the decoding coordinator has a description of the
logical block network, and partitions and schedules the global decoding problem into sub-decoding problems. The decoding coordinator also
combines partial membrane outcomes into global membrane outcomes. The quantum hardware units produces a stream of classical outcomes
(which may or may not be partially compressed). The measurement outcome data router receives outcome from one or more hardware units
and routes it to one or more decoder modules. The decoder modules solve a decoding problem specified by the decoding coordinator. They
receive outcome data from the measurement outcome data router as well as any updated checks from the boundary condition data store. After
completing their task, they store boundary condition data in the boundary condition data store, and report partial membrane data to the decoding
coordinator.
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