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Biomimetic scale-covered substrates are architected meta-structures exhibiting fascinating emergent nonlinearities via
the geometry of collective scales contacts. In spite of much progress in understanding their elastic nonlinearity, their
dissipative behavior arising from scales sliding is relatively uninvestigated in the dynamic regime. Recently discov-
ered is the phenomena of viscous emergence, where dry Coulomb friction between scales can lead to apparent viscous
damping behavior of the overall multi-material substrate. In contrast to this structural dissipation, material dissipation
common in many polymers has never been considered, especially synergestically with geometrical factors. This is ad-
dressed here for the first time, where material visco-elasticity is introduced via a simple Kelvin-Voigt model for brevity
and clarity. The results contrast the two damping sources in these architectured systems: material viscoelasticity, and
geometrical frictional scales contact. It is discovered that although topically similar in effective damping, viscoel-
satic damping follows a different damping envelope than dry friction, including starkly different effects on damping
symmetry and specific damping capacity.

Biologically inspired scale-covered substrates are under
sustained scrutiny as a structural platform with unique prop-
erty combinations akin to metamaterials using the geometry
and kinematics of scales sliding Fig. 11–5. Physically, such
multi-material systems comprise of a soft deformable sub-
strate with protruding stiff plates acting as scales, Fig. 1 (a)6,7.
When the substrate deforms, the stiff scales eventually contact
as a collective giving rise to a fascinating spectrum of me-
chanical and optical properties8–10. Many of these behaviors
emerge from the collective sliding motion of the scales on the
substrate. Such kinematic origins of nonlinear behavior mean
that their fundamental source of nonlinearity lie in the distri-
bution and orientation of the stiff scales11–13. This results in a
geometry-dictated landscape of nonlinear elasticity and frac-
ture.

In spite of deep scrutiny of the elastic and fracture charac-
teristics, interest in the dissipative behavior of these substrates
has been more recent14–17. In the static regime where dry fric-
tion was postulated between scales, friction was found to play
a dual role in adding stiffness to the substrate as well as limit-
ing the range of motion by introducing an additional locking
phase14,16,18. Such conflicting roles prompted further exten-
sion of friction onto the dynamic regime. Here, a new type of
dissipative behavior was discovered - emergent viscosity. In
other words, even when dry friction was assumed between the
scales, the overall damped oscillation of the substrates indi-
cated viscous-like exponential damping15.

In these works, the role of substrate polymer viscoelastic-
ity was not investigated15. Thus, the only source of damping
was from the scales sliding. However, many polymers ex-
hibit viscoelastic behavior19,20, and its interplay with scales
sliding dissipation remains unknown. Specifically, the effect
of damping that emerges from the synergistic combination
of the viscoelasticity of the substrate and the dry interfacial
scale friction has not been revealed. In this letter, we include
the viscoelasticity of the substrate for the first time to under-
stand its role of damping during the oscillation of an Euler-

Bernoulli substrate. For this study, we chose a simple Kelvin-
Voigt model to represent the viscoelasticity21,22, and assume
Coulomb friction between the scales. We investigate both free
vibration and forced vibration.

Viscoelasticity of real polymers is a highly complex phe-
nomenon encompassing both linear and nonlinear deforma-
tions and multiple intrinsic time scales. In this letter, a simple
Kelvin-Voigt model is chosen for this study for brevity and
fundamental understanding of the complex geometry-material
interplay with the aim for further detailed numerical stud-
ies in later publications. We also note that the major source
of nonlinearity in these slender substrates come from geo-
metrical and contact sources and not the material due to the
geometrical locking phenomena8. The Kelvin-Voigt model
for viscoelastic behavior can be represented as a purely vis-
cous damping element (damper) and a purely elastic element
(spring) connected parallel together. The relationship between
stress σ , strain ε , and strain rate dε/dt is governed by21,22:

σ = EBε + ξ̃
dε

dt
, (1)

where EB and ξ̃ are the Young’s modulus and viscosity of
the substrate, respectively. The scales are considered rigid to
isolate the purely geometric effect of scales.

The length of substrate is considered as LB, and the height
hB. We match the material properties of a typical silicone
rubber, which can be used to fabricating the soft substrate.
These material properties are as follows: the Young’s modu-
lus EB = 1.5 MPa, Poisson’s ratio ν = 0.4210,23, and density
ρB = 854 kg/m315. The viscosity of silicone rubbers is in the
range of 1 to 108 mPa.s24,25, where the lower range is related
to the liquid form of silicone polymer and the higher range
is related to the solid form of silicone polymer. It should be
noted that these material properties are just an example of a
soft viscoelastic silicone polymer, and their exact values are
not critical to the central discoveries of this research work.

The rectangular scales with thickness D are partially em-
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FIG. 1. (a) The overlapped arrangement of natural fish scales, and their artificial biomimetic reproduction. The picture is adapted under CC BY
2.07. (b) Schematic diagram of a simply supported biomimetic scaled beam and the representative volume element (RVE) selected from the
middle of the beam marked with the blue rectangle. (c) Schematic diagram of scales with characteristic dimensions and angles. (d) Schematic
geometry of the representative volume element (RVE) with detailed geometric parameters.

bedded into the top surface of the substrate with initial angle
θ0, Fig. 1 (c). The total length of scales ls is including the
exposed length l, and embedded length L, (ls = l + L). The
exposed length of scales l is non-dimensionalized by the spac-
ing between the neighboring scales d̃, , Fig. 1 (c), as η = l/d̃
called overlap ratio8,15. We assume that the scale’s thickness
D is negligible in comparison with the length of the scales,
ls (D � ls), and the scale’s embedded length is negligible
in comparison with the substrate’s height (L� hB)8–10,14–16.
These assumptions allow us to consider each scales as a linear
torsional spring with constant K̃s, due to resistance of sub-
strate against rotation of embedded part of scales8,10,26. For
such a system, the constant was obtained as scaling expres-
sion K̃s = EBD2CB(L/D)n, where CB and n are constants with
corresponding values 0.66 and 1.75, respectively8,15.

The dynamic equation of motion of a viscoelastic plain
beam (without any scale) is derived using Hamilton’s prin-
ciple, δ

∫ t̃2
t̃1
(T̂ −V̂ +W )dt̃ = 0 for a viscoelastic beam. In

this relationship, T̂ , V̂ , and W are the kinetic energy per unit
length, the strain energy per unit length, and the work done by
the applied traction, respectively,15,27–which leads to the fol-
lowing differential equation for a plain viscoelastic beam21,28:

ρBAB
∂ 2ỹ
∂ t̃2 +EBIB

∂ 4ỹ
∂ x̃4 + ξ̃ IB

∂

∂ t̃

(
∂ 4ỹ
∂ x̃4

)
= f̃ (x̃, t̃), (2)

Here, AB and IB are the area of the substrate’s cross-section
and the second moment of area, respectively. The quanti-

ties: t̃, and x̃ and ỹ are time, and the two spatial coordi-
nates shown on Fig. 1 (b), respectively. The f̃ (x̃, t̃) is the
applied force function, which is shown in Fig. 1 (b) schemat-
ically, for a scale-covered beam. For the free vibration case,
the function f̃ (x̃, t̃) is equal to zero and the equation of mo-
tion is a homogeneous equation, whereas for the forced vi-
bration case, applied force can be considered as the first mode
f̃ (x̃, t̃)= f̃0φ(x̃)cosΩ̃t̃15,29, where f̃0, φ(x̃), and Ω̃ are the load
amplitude, the first mode shape function for the simply sup-
ported beam, and the load frequency15,30. First mode shape
function for a simply supported beam with length LB is known
as φ(x̃) = sin

(
π x̃
LB

)
.

Under pure bending, the relationship between scales incli-
nation angle θ , and the substrate bending angle ψ , is given as
θ = sin−1(ηψ cosψ/2)−ψ/28,14,26. Note that although this
relationship is not satisfied globally except pure bending, local
periodicity could be assumed (dense scales assumption)10,15.

With these considerations, the global deformation of the
scaly beam can be envisioned as a combination of the two de-
formation modes comprising of the substrate bending and the
local scales rotating in all RVEs8,10. This kinematics allows
the inclusion of the work of the friction between scales as they
slide. The frictional work can be included in the Hamilton’s
principle now. The friction is modeled based on the Coulomb
dry friction by considering different coefficients of friction µ ,
and the effect of scales’ mass on the kinetic energy of the sys-
tem is neglected15. These considerations lead to the follow-
ing partial differential equation for a scale-covered viscoelas-
tic beam15 (see Supplementary Material):
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FIG. 2. The response of middle point of the scaly viscoelastic beam
with η = 5 under velocity initial condition for various viscosity co-
efficients ξ̃ (Different ξ̃ are described with the unit MPa.s). For the
gray plot µ = 0, and for other plots µ = 2.

ρBAB
∂ 2ỹ
∂ t̃2 +EBIB

∂ 4ỹ
∂ x̃4 + ξ̃ IB

∂

∂ t̃

(
∂ 4ỹ
∂ x̃4

)
+

∂ 2

∂ x̃2
1
N ∑

[
K̃s(θ −θ0)

∂θ

∂ψ
+

sin(β )K̃s(θ −θ0)sgn( ˙̃y)
cos(ψ +β )− r̄ cos(β )

∂ r̄
∂ψ

]
H(κ̃− κ̃e) = f̃ (x̃, t̃). (3)

Here, β = tan−1 µ , and r̄ is the non-dimensionalized form
of r, which is the distance between the scale’s base to the in-
teraction point with the left neighboring scale, with respect to
the exposed length of scale l, as r̄ = r/l, Fig. 1 (d) for a par-
ticular RVE. By considering the geometrical arrangements in

each RVE shown in Fig. 1 (d) r̄ is derived as r̄ =
sin
(

θ−ψ/2
)

sin
(

θ+ψ/2
) .

In Eq. (3), the Heaviside step function ensures that the terms
regarding the strain energy due to the scales rotation, and the
dissipation energy due to the friction between the scales, are
only contributed after scales engagement at each RVE level.
That is, only in the case of downward deflection of the beam,
and when θ > θ0 or, in another word, when κ̃ > κ̃e. The num-
ber of RVEs utilized in the solution of the system has been
shown as N.

We first verify our model by comparing the midpoint de-
flection during free vibration of the beam with finite element
simulation of an equivalent system, Fig. 2. In this figure,
which is a displacement-time plot of the midpoint of the beam,
we fix η = 5 , θ0 = 5◦ and vary the coefficient of friction.
The black dots indicate FE simulations, which are in excel-
lent agreement with our model results. Overall, comparing
this plot with purely Coulombic friction case15, it looks as if
the material viscosity effects are very similar to dry friction
effect. They both lead to viscous damping, and increase with
time. Thus, it would seem that dry friction and material vis-
cosity effects reinforce in tandem, the viscous damping of the
beam.

However, this is where their similarities end. The material
viscosity is essentially an symmetric source of dissipation -

acting on both sides of the bending whereas the friction is
asymmetric, acting only on scales side. In addition, the scales
themselves add asymmetry to the overall vibration by dent of
being on only one side.

The asymmetry brought about by scales have a pronounced
geometrical component. On the one hand, if the scales are
dense, the additional stiffness would be higher on the scales
side. Similarly, frictional effects would also be higher. Thus
it would seem like denser scales add to asymmetry of the
medium. On the other hand, if the scales initial inclination
is higher, then they engage at a greater curvature and hence
their impact on symmetry would be lesser. The effect of ma-
terial viscoelasticity seems to be symmetric in nature because
it acts on both sides. However, the scales on one side also
inhibit displacement on the other side, and hence the symmet-
ric effect of material viscosity can also be broken. A suitable
measure of asymmetry would be the logarithmic decrement
factor (δ = 1

∆
log AAn+1

AAn
) that measures the relative decline of

amplitudes in successive cycles. This parameter is related to
the overall damping coefficient and the Q-factor of the vibra-
tion. We could expect that these vibration asymmetries would
lead to a split in the δ values between the concave and con-
vex side. We define the ratio of the two δ s by an asymmetry
ratio α = δconvex/δconcave, and take them as a measure of bi-
directional asymmetry.

Topically, it would seem that increasing friction of scales
would cause greater asymmetry as it acts selectively on only
one direction whereas material dissipation would cause dis-
sipation symmetrically in both direction. Hence, increasing
Coulomb friction should accentuate asymmetry, whereas vis-
coelasticity should leave it unaffected. In order to investi-
gate these effects, we develop phase maps of α mapped by
µ and ξ̄ for various values of η and θ0, Fig. 3. The first row
of this asymmetry map Fig. 3 (a-b) shows the effect of in-
creasing θ0 while η is kept constant. Fig. 3 (a) shows that
increasing Coulomb friction does not lead to an increase in
anisotropy of logarithmic damping, even though its effect on
displacement asymmetry is pronounced. A rather surprising
and counter-intuitive result. It seems like symmetry is bro-
ken only when the initial inclination angle changes. Once that
occurs, increasing inclination angle causes the asymmetric re-
gion to flatten and spread to lower values of Coulomb friction.
We also investigate the effect of scale density η towards the
asymmetry, Fig. 3 (c-d). As expected the effect of higher den-
sity is also to further anisotropy. For the same combination of
µ and ξ̄ , the anisotropy is greatly pronounced with higher η ,
Fig. 3 (c-d).

In order to gain better physical insight into the system
we probe the fundamentals using an asymmetric spring mass
damper system (SMD) that is damped more on one side,
Fig. 4. This system can be integrated to obtain analytical
closed-form expressions for logarithmic damping ratio (See
Supplementary Material).

The symmetry breaking of this system can result from two
different sources - scales sliding on one side, and delayed en-
gagement of scales on the other side only due to initial scale
angle. Damping phase maps show that although introduction
of asymmetry (in one direction) is sufficient to cause overall
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FIG. 3. Phase map of the ratio between the convex and concave damping coefficient (ᾱ), known as asymmetry coefficient, spanned by ξ̃ and
µ , for different cases: (a) η = 5, and θ0 = 0◦. (b) η = 5, and θ0 = 5◦. (c) θ0 = 5◦, and η = 3. (d) θ0 = 5◦, and η = 7.

asymmetry of the system, the logarithmic decrement is still
the same for both sides of damped oscillation. Thus damp-
ing on just one side is not sufficient to cause a major change
in symmetry in logarithmic damping ratio. The symmetry of
the SMD system can be further broken if we introduce an en-
gagement asymmetry to mimic initial angle θ0. The asym-
metry in stiffness in our SMD model is addressed by letting
that damping start at y = 0 in the domain y < 0, and at an
arbitrary ye > 0 in the domain y > 0, Fig. 4 (a). We vary the
natural frequencies ω|y>ye and ω|y<0 while keeping the damp-
ing coefficients c|y>0 and c|y<0 constant, so that damping ra-
tios ζ |y>0 and ζ |y<0 change together with the respective natu-
ral frequencies. These parameters are defined to approximate
our architectured system – high natural frequencies indicate
higher stiffness, where higher damping coefficient is meant
to simulate higher stiffness, whereas ye—the offset–simulates
the initial angle. In Fig. 4 (b) we plot the effect of scales with
no offset. We clearly see that the lack of offset results in neg-
ligible difference in damping between the scales and the plain
side. However, as soon as offset is added we see that a visible
asymmetry in damping emerges. The asymmetry in damping

coefficient increases as the contrast between the two sides in-
creases. In Fig. 4 (c), we plot the effect of different damping
coefficients with a given offset, and in Fig 4 (d), we increase
the ratio of the stiffnesses while keeping the damping coeffi-
cients the same. This would be a comparison between systems
with a different overlap ratio. We find that higher overlap ra-
tio clearly accentuates the asymmetry in logarithmic damping,
ceteris paribus. This confirms the trends from phase map Fig.
3 (c), (d). Here, we compare two asymmetric SMD systems,
one with no offset and another with offset and find that addi-
tion of offset, accentuates asymmetry, confirming our findings
in Fig 3 (a)-(b). In addition to free vibration, we also con-
sider dissipative effects in forced oscillations. We quantify
dissipation using "Specific Damping Capacity (SDC)", which
measures a material’s ability to dissipate elastic strain energy
through a mechanical vibration motion30,31. The SDC can be
defined as follows:
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FIG. 4. Logarithmic decrement asymmetry exhibited when partial engagement at ye > 0 is present in a simplified system of two coupled
damped oscillators. (a) A schematic of asymmetric spring mass damper system simulating the biomimetic metastructure. The offset mimics
initial scale angle after which engagement occurs. The engagement adds additional stiffness ∆ω and additional damping ∆c (b) Damped
oscillations with no offset, (c) with offset, (d) with offset and higher stiffness on scales side than (c).

SDC =
Dissipated Energy per Steady State Cycle (∆U)

Maximum Stored Energy (U)
.

(4)

These dissipated and stored energies can be calculated nu-
merically through a computational model.

Here, in Fig. 5 (a), we plot the specific damping capacity
from material sources ξ̄ and find that it increases (barring a
few peaks at sub-harmonic frequencies due to complex nature
of oscillations) as the frequency increases. This is a traditional
viscous damping response. In contrast, the effect of inter-scale
friction is dramatically different. The specific damping ca-
pacity, Fig. 5 (b) shows a pronounced and sharp increase near

resonance with higher peaks corresponding to higher friction.
After the resonance, the damping begins to decrease sharply.
The overall reason for this behavior is due to lack of rate-
dependence of the frictional component of the force. As the
amplitude of the vibration decreases post resonance, so does
the work done by friction.

In conclusion, we find that although the viscoelastic and
frictional sources of dissipation are two apparently similar
sources of damping in a biomimetic scale architectured sub-
strate, on closer scrutiny they are quite different. Their effects
on displacement, damping asymmetry, and specific damping
markedly diverge. The geometry-material interplay is investi-
gated for the first time. Real world polymers exhibit far more
complexity in their material behavior. In linear regime they
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FIG. 5. (a) Variation of Specific damping coefficient (SDC) with frequency for forced vibration for various material viscosity parameters,
friction is absent. (b) Variation of Specific damping coefficient (SDC) with frequency for forced vibration for various coefficients of friction.
Material viscosity is negligible (<0.005)

are often represented by a combination of Kelvin-Voigt ele-
ments. We aim to study such complexities in later iterations
of this study. In spite of this limitation, the current findings
have wide implications in the design of fish scale like smart
skins and appendages for soft robotics, tailored prosthetic ap-
plications.
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