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Harvesting free energy from the environment is essential for the operation of many biological and artificial
systems. We use techniques from stochastic thermodynamics to investigate the maximum rate of harvesting
achievable by optimizing a set of reactions in a Markovian system, possibly under various kinds of topological,
kinetic, and thermodynamic constraints. This question is relevant for the optimal design of new harvesting devices
as well as for quantifying the efficiency of existing systems. We first demonstrate that the maximum harvesting
rate can be expressed as a constrained convex optimization problem. We illustrate it on bacteriorhodopsin, a
light-driven proton pump from Archaea, which we find is close to optimal under realistic conditions. In our
second result, we solve the optimization problem in closed-form in three physically meaningful limiting regimes.
These closed-form solutions are illustrated on two idealized models of unicyclic harvesting systems.

I. INTRODUCTION

Many molecular systems, both biological and artificial, har-
vest free energy from their environments. Biological organ-
isms require free energy to grow and replicate [1, 2], and
many species undergo selection for increased harvesting [3–
6]. Artificial harvesting systems have also been constructed
and optimized in the field of synthetic biology [7–14]. The op-
timization of free energy harvesting is thus a central problem
both in biology and engineering.

As an example, consider a harvesting system such as a bio-
logical metabolic network that converts glucose to ATP [15].
Suppose that the kinetic and thermodynamic parameters of one
or more reactions can be optimized, either by natural selection
or artificial design. What is the maximum rate of free energy
harvesting that the network can achieve, and what are the ki-
netic and thermodynamic parameters that achieve it? These
questions are relevant both for design of optimal harvesting
devices and for quantifying the efficiency of existing systems.

In this paper, we use techniques from stochastic thermo-
dynamics to derive bounds on maximum rate of free energy
harvesting. We consider a harvesting system in nonequi-
librium steady state which is coupled to an external source
of free energy, an internal free energy reservoir, and a heat
bath. The setup is well-suited for studying the kinds of small-
scale systems usually considered in stochastic thermodynam-
ics [16], where assumptions of local detailed balance and
steady state are justified. The steady-state assumption is rea-
sonable in many molecular systems, where there is a separation
of timescales between internal relaxation and environmental
change.

We suppose that the system’s dynamics can be separate into
two kinds of processes, termed baseline and control. The
baseline processes, which are held fixed, mediate the cou-
pling to the external source of free energy. Control refers to
all other processes which can be optimized for increasing the
harvesting rate at which free energy flows into the internal
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reservoir. The particular separation of baseline/control gen-
erally depends on domain knowledge about the system and
the scientific question at hand. For example, to study the ef-
ficiency of a particular reaction in a metabolic network, that
reaction may be treated as control while the other reactions are
baseline. The baseline/control separation is similar to the dis-
tinction in control theory between “plant” (a given system with
fixed dynamical laws) and “controller” (the part that undergoes
optimization) [17].

In our first set of results, we demonstrate that the opti-
mization of the harvesting rate can be expressed as a convex
optimization problem. The optimal solution of this problem
determines both the maximum harvesting rate and the specific
control processes that achieve that maximum. Importantly,
the optimization can also account for various types of con-
straints on the possible network topology, kinetic timescales,
and thermodynamic forces of the control processes.

We illustrate our results on bacteriorhodopsin (Fig. 1), a
proton-pumping membrane protein. Bacteriorhodopsin is a
photosynthetic system found in Archaea, with close relatives
in bacteria [20, 21]. It is also used in many artificial light-
harvesting systems [7–9, 11]. Using published thermodynamic
and kinetic data, we develop a thermodynamically consistent
stochastic model of bacteriorhodopsin. We demonstrate that,
under normal operating conditions, the bacteriorhodopsin sys-
tem is remarkably efficient.

Our main result is formulated as a convex optimization prob-
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Figure 1. Left: Bacteriorhodopsin is a biomolecular free energy
harvesting machine [18], illustrated in its trimer configuration by
D. Goodsell (CC-BY-4.0) [19]. Right: during each turn of the bacte-
riorhodopsin photocycle, the molecule absorbs a photon and pumps
a proton against the cell’s membrane potential.
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lem which must be solved numerically in the general case. In
the second part of this paper, we derive closed-form solu-
tions of this problem for three physically meaningful regimes:
the weakly-driven linear response regime, the irreversible de-
terministic regime, and the intermediate near-deterministic
regime. These solutions illustrate how optimal harvesting
reflects the “alignment” between free energy input and relax-
ation dynamics. We illustrate these closed-form solutions on
two unicyclic systems, which may be interpreted as idealized
models of two types of nonequilibrium harvesting devices.

We finish our paper with a brief Discussion. There we relate
our approach to previous work, including maximization of
power output in steady-state engines and flux balance analysis.
We also propose directions for future research.

II. SETUP

We consider a system with n mesostates described by the
distribution p = (p1, . . . , pn) ∈ Rn

+. The distribution evolves
according to the master equation ṗi =

∑
j Rijpj , where Rji

is the transition rate i → j (Rii = −∑j Rji). Usually p
represents a probability distribution of a stochastic system with
Markovian dynamics [22, 23]. However, under an appropriate
choice of units, it may also represent chemical concentrations
in a deterministic chemical reaction network with pseudo-first-
order reactions, such as an enzymatic cycle [24, 25].

The system is coupled to a heat bath at inverse temperature
β = 1/kBT , an internal free energy reservoir, and a nonequi-
librium environment that serves as an external source of free
energy. For example, in a metabolic network, one may con-
sider an internal reservoir of ATP and an external source of
glucose. The system has nonequilibrium free energy

F(p) =
∑
i

pifi − β−1S(p) , (1)

where S(p) := −∑i pi ln pi is the Shannon entropy and fi is
the internal free energy of mesostate i [26].

As mentioned in the Introduction, we suppose that the dy-
namics of the system can be separated into baseline and control
processes. We make one important assumption in our analy-
sis: the control processes are only coupled to the heat bath and
internal free energy reservoir, but not directly to the external
source of free energy. This means that control can only in-
crease harvesting by interacting with the baseline, rather than
directly increasing the inflow of free energy from the external
source. For example, in a metabolic network, control pro-
cesses cannot directly increase the import of glucose, but they
can affect the rate at which glucose is converted into ATP by
optimizing intermediate reactions and mechanisms. Control
processes may be driven by the internal reservoir (e.g., coupled
to ATP hydrolysis) or undriven (e.g., enzymes).

To formalize the baseline/control distinction, we write the
rate matrix as R = Rb +Rc, where Rb

ji and Rc
ji represent the

transition rate of i→ j due to baseline and control. Given dis-
tribution p, the increase of system free energy due to baseline

processes is

Ḟb(p) =
∑
i,j

piR
b
ji(fj + β−1 ln pj) . (2)

The increase due to control processes is defined analogously
but using rate matrix Rc,

Ḟc(p) =
∑
i,j

piR
c
ji(fj + β−1 ln pj) . (3)

The harvesting rate is the rate at which free energy flows to
the internal reservoir. The harvesting rate due to baseline
processes is

Ġb(p) =
∑
i,j

piR
b
jig

b
ji +

∑
i

piġ
b
i , (4)

where gbji is the free energy increase in the internal reservoir
due to a single baseline transition i→ j and ġbi is the rate of free
energy flow to the internal reservoir due to internal transitions
within i (assuming i is a coarse-grained mesostate). Similarly,
the harvesting rate due to control processes is

Ġc(p) =
∑
i,j

piR
c
jig

c
ji , (5)

where gcji is the free energy increase in the internal reservoir
due to control transition i → j. For simplicity, we assume
that control cannot exchange free energy with the internal
reservoir due to internal transitions within i. Negative values of
gbji, ġ

b
i , g

c
ji indicate driving done on the system by the internal

reservoir.
For a concrete example of how (Rb, Rc,f , gb, ġb, gc) are

defined for a real biomolecular system, see the bacteri-
orhodopsin example below and SM-II [27].

As standard in stochastic thermodynamics, we assume that
control processes obey local detailed balance (LDB) [16, 28],

ln(Rc
ji/R

c
ij) = β(fi − fj − gcji) for Rc

ji > 0 . (6)

Eq. (6) guarantees that the irreversibility of each control tran-
sition is determined by the amount of free energy dissipated
by that transition [29]. Observe that the right side accounts for
free energy changes of the system (fi − fj) and the internal
reservoir (gcji), but not the external source. This formalizes the
assumption that control processes do not exchange free energy
with the external source.

We do not require that the baseline rate matrix obeys LDB,
although it will often do so for reasons of thermodynamic
consistency.

III. MAXIMUM HARVESTING RATE

Suppose that the combined rate matrix R = Rb + Rc has
the steady-state distribution π, which satisfies Rbπ +Rcπ =
0. The total steady-state harvesting rate due to baseline and
control is

Ġtot = Ġb(π) + Ġc(π). (7)
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We seek to maximize this harvesting rate by varying the
parameters of the control processes (Rc, gc) while holding
the baseline parameters (f , Rb, gb, ġb) fixed. Finding this
maximum would allow us to determine fundamental bounds on
harvesting and to evaluate the efficiency of existing harvesting
systems.

However, Ġtot is not a concave function of the parameters
(Rc, gc), therefore maximization of (7) is not a convex op-
timization problem and is not generally intractable. In the
following, we reformulate this maximization as a convex opti-
mization with a physically interpretable objective. This allows
us to solve the optimization numerically and, at least for some
special cases, also in closed form.

To begin, we rewrite (7) as

Ġtot = Ḟb(π) + Ġb(π)− Σ̇(Jc)/β. (8)

where we introduced the Schnackenberg formula for the en-
tropy production rate (EPR) [22],

Σ̇(Jc) =
∑
i ̸=j

Jc
ji ln(J

c
ji/J

c
ij) ≥ 0 , (9)

where Jc
ji = πiR

c
ji ≥ 0 is the one-way probability flux due to

control transition i→ j.
Eq. (8) has an intuitive physical interpretation: the total

steady-state harvesting rate is the rate of free energy increase in
the system and internal reservoir due to baseline, minus the rate
of dissipation (EPR) due to the control fluxes. The derivation
of this result proceeds in two steps (see SM-I A [27] for details).
The first step is to show that Σ̇(Jc) = −β[Ḟc(π) + βĠc(π)],
which follows by combining (9) with (3) and (6). This states
that the EPR due to control is proportional to the free en-
ergy loss in the system and internal reservoir due to control.
The second step is to show that Ḟb(π) + Ḟc(π) = 0, which
follows because the left side is the overall derivative of the
nonequilibrium free energy F , as defined in (1), therefore it
must vanish in steady state. The result (8) then follows by
combining with (7) and rearranging.

Importantly, when expressed in the form (8), the harvesting
rate is a concave function of the steady-state distribution π
and the control fluxes Jc (see SM-I B [27]). To find the
maximum harvesting rate, we optimize (8) with respect to π
and Jc. Note that varying π and Jc is equivalent to varying
the control rate matrix via Rc

ji = Jc
ji/πi and control driving

gcji via (6). However, when performing this optimization, we
must also ensure that π is the steady-state distribution induced
by the fluxes Jc. This condition can be expressed as a linear
constraint onπ andJc viaRbπ+BJc = 0. HereJc is treated
as a vector in Rn2 and B ∈ Rn×n2 is the incidence matrix with
entries Bk,ij = δki − δkj , which guarantees Rcπ = BJc.

Combining, we arrive at the bound Ġtot ≤ G , where

G = sup
(p,J)∈Λ:Rbp+BJ=0

Ḟb(p) + Ġb(p)− Σ̇(J)/β. (10)

In this expression, Λ is the feasible set of distributions p and
control fluxes J . At a minimum, Λ ensures the validity of
the distribution p and the fluxes J via the linear constraints∑
pi = 1, pi ≥ 0, and Jji ≥ 0. We write sup instead of max

because the set of allowed fluxes is potentially unbounded.
Eq. (10) implies a tradeoff between the total gain of free energy
in the system and internal reservoir due to baseline (which
depends only on p) and the dissipation due to control fluxes
(which depends only on J ).

Importantly, the feasible set Λ can include additional con-
vex constraints, which may introduce topological, kinetic,
thermodynamic, etc. restrictions on the control processes.
Topological constraints restrict which transitions can be con-
trolled; e.g., Jji = 0 ensures that control does not use tran-
sition i → j). Kinetic constraints restrict timescales of con-
trol processes, as might reflect underlying physical processes
like diffusion; e.g., an upper bound on control transition rate
Rc

ji = Jji/pi ≤ κ can be enforced via Jji ≤ piκ. Thermody-
namic constraints bound the affinity [22] of control transitions;
e.g., Jjie−A ≤ Jij ≤ Jjie

A ensures that | ln(Jij/Jji)| ≤ A.
The above examples all involve linear constraints. An example
of a nonlinear, but still convex, constraint is an upper bound
on the EPR incurred by control, Σ̇(J) ≤ Σ̇c

max.
Eq. (10) is our first main result. Importantly, G is defined

purely in terms of the thermodynamic and kinetic properties of
the baseline process, along with desired constraints encoded
in Λ. Thus, G is the maximum steady-state harvesting rate
that can be achieved by any allowed control processes, given a
fixed baseline. In addition, Eq. (10) involves the maximization
of a concave objective given convex constraints. This is equiv-
alent to the minimization of a convex objective, thus Eq. (10)
is a convex optimization problem that can be efficiently solved
using standard numerical techniques [30]. The optimization
also identifies an optimal steady-state distribution p∗ and con-
trol fluxes J∗ that achieve the maximum harvesting rate G (or
come arbitrarily close to achieving it). These fix the optimal
control rate matrix via Rc∗

ji = J∗
ij/p

∗
i . Thus, our optimization

specifies an upper bound on harvesting as well as the optimal
control strategy that achieves this bound.

There is an important special case in which our optimiza-
tion problem is simplified. Suppose that Λ does not enforce
additional constraints on p and J (more generally, we permit
topological constraints if the graph of allowed transitions is
connected and contains all n states). Then, the objective is
maximized in limit of fast control, J → ∞ and Σ̇(J) → 0.
We can then write (10) as an optimization over steady-state
distributions:

G := max
p:

∑
pi=1,pi≥0

Ḟb(p) + Ġb(p) . (11)

The optimal p∗ is unique as long as the baseline rate matrix
is irreducible. The optimal control rate matrix is very fast
(Rc∗ → ∞) and obeys detailed balance for p∗, Rc∗

ji p
∗
i =

Rc∗
ij p

∗
j . For details, see SM-I C and SM-I D [27].

IV. BACTERIORHODOPSIN

We illustrate our results using bacteriorhodopsin, a light-
driven proton pump from Archaea [18].

We define a thermodynamically consistent model of the
bacteriorhodopsin cycle using published thermodynamic [31]
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and kinetic [32] data (see SM-II [27]). The system operates in
a cyclical manner, absorbing a photon and pumping a proton
during each turn of the cycle (Fig. 1, right). Specifically,
the transition M1 → M2 pumps a proton out of the cell.
This stores free energy in the internal reservoir (the membrane
electrochemical potential),

gM2M1
= −gM1M2

= e∆ψ − (ln 10)β−1∆pH , (12)

where e is the elementary charge constant,∆ψ is the membrane
electrical potential, and ∆pH is the membrane pH difference.
The other transitions in the cycle do not affect the free energy
of the internal reservoir (gij = 0 and ġi = 0).

During the transitionbR → K, the system leaves the ground
state by absorbing a photon at 580nm, thereby harvesting free
energy from the external source and dissipating some heat
to the environment at T = 293◦ K. This transition is much
faster (picoseconds) than the other transitions in the photocycle
(micro- to milliseconds). As commonly done in photochem-
istry [33], we coarse-grain transitions O → bR and bR → K
into a single effective transition O → K.

To explore the performance of bacteriorhodopsin under dif-
ferent conditions, we vary the membrane electrical potential
∆ψ between −75 and 350 mV, while using a realistic fixed
∆pH = −0.6 [34]. We show the actual harvesting rate (Ġtot

in units of kBT/sec) at different potentials as a black line
in Fig. 2 (a). At a plausible in vivo ∆ψ = 120 mV [34],
the model exhibits a steady-state current of 11.5 protons/sec,
each proton carrying 6.1 kBT of free energy, corresponding to
Ġtot ≈ 70 kBT /sec. The largest output is achieved near the in
vivo potential: at lower potentials, the cycle current saturates
while the free energy per proton drops, and at higher potentials
the pump stalls.

Next, we quantify the maximum harvesting rate that can
be achieved by optimizing the parameters of individual tran-
sitions. This analysis is relevant for understanding limits
on increasing bacteriorhodopsin output, whether via natu-
ral selection or biosynthetic methods [35–38]. Interestingly,
such transition-level optimization may be feasible in bacteri-
orhodopsin, as the properties of several transitions are known
to be individually controlled by particular amino acid residues
in the bacteriorhodopsin protein [35, 39–41].

For each reversible transition in the cycle, for instanceN ↔
O, we define the baseline as the rest of the cycle without that
transition. We then optimize control under the topological
constraint that only the relevant transition (e.g., N ↔ O) is
allowed. The analysis is repeated for all transitions, except
for the (coarse-grained) photon-absorbing transition O ↔ K,
which is in accordance with our assumption that control cannot
directly exchange free energy directly with the external source.

Fig. 2 (a) shows G , the maximum Ġtot achievable by opti-
mizing each reversible transition. In Fig. 2 (b), we also show
the efficiency Ġtot/G ≤ 1 for each transition, that is the ratio
of the actual and maximum harvesting rate.

Several transitions, such as K ↔ L,L ↔ M1,M1 ↔ M2,
are remarkably efficient (≥ 85%) near in vivo membrane po-
tentials. The reprotonation step N ↔ O is the least efficient
(∼ 40%) and also has the slowest kinetics of the 5 transitions
studied in Fig. 2. This suggests that N ↔ O is a bottleneck
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Figure 2. (a) Comparison of the actual harvesting rate Ġtot at
different electrical potentials ∆ψ, versus maximum rate G achieved
by optimizing five intermediate transitions (color scheme from Fig. 1
Right). (b) Efficiency Ġtot/G computed while separately optimizing
each transition, with colors as in (a). (c) The actual steady state
π versus the optimal distribution p∗ when optimizing the N ↔ O
transition (at ∆ψ = 120 mV).
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Figure 3. (a) Comparison of the actual harvesting rate Ġtot at
different electrical potentials ∆ψ, versus maximum rate G achieved
by fixing the bacteriorhodopsin cycle as baseline and allowing any
additional transitions as control. (b) Efficiency of the actual bacteri-
orhodopsin cycle with respect to the optimized cycle. (c) The actual
steady state π and optimal distribution p∗ (at ∆ψ = 120 mV).

whose optimization can have a big impact on the harvesting
rate, while optimization of other non-bottleneck transitions has
a more limited effect.

Observe that G for M1 ↔ M2 does not depend on ∆ψ.
This is because G is a function of baseline properties, which
do not depend on the membrane potential when M1 ↔M2 is
treated as control. Conversely,M1 ↔M2 as control transition
can be optimized by varying the membrane potential and/or
scaling up the forward/backward rates. Our results show that
this transition is very close to optimal at in vivo membrane
potentials and kinetic timescales.

Optimal distributions p∗ are also obtained, with a typical
one shown in Fig. 2 (c). We find a consistent shift toward state
O, which accelerates the reset of the cycle and increases the
flux across the photon-absorbing transition O → K.

In SM-II [27], we illustrate how the efficiency of bacteri-
orhodopsin transitions can be evaluated under other types of
constraints, including constraints on thermodynamic affinity,
dynamical activity, and kinetics.

As a final analysis, instead of optimizing individual exist-
ing transitions in the bacteriorhodopsin cycle, we ask to what
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extent the harvesting rate can be increased by any additional
control processes. For example, this could involve an addi-
tional enzyme that shifts the cycle’s steady state by permitting
a new transition between distant states (e.g. L↔ N ), possibly
yielding an increase of the proton pumping rate.

In this case, we treat the entire bacteriorhodopsin system as
the baseline, and we do not introduce any additional constraints
on the steady-state distribution or the control fluxes. Then, as
shown in Sec. SM-I D [27], the objective in (10) is achieved in
the limit of fast control, and the maximum harvesting rate can
be found by solving the simplified optimization problem (11).

For this setup, Fig. 3 (a) shows the baseline (actual) harvest-
ing rate Ġtot and the maximum harvesting rate G at varying
∆ψ. Interestingly, both peak at around the in vivo values of
the membrane potential. In Fig. 3 (b), we show that the ac-
tual bacteriorhodopsin cycle harvests approximately 50% of
the fundamental bound given by G (at in vivo values of ∆ψ).
This suggests that bacteriorhodopsin is remarkably close to
optimal, relative to improvements that could be achieved by
introducing any additional control processes.

We also show the actual steady-state distribution and the
optimal distribution p∗ in Fig. 3 (c). The optimal distribution
increases the probability of state O, similar to the optimal
distribution found by optimizing theN ↔ O transition, shown
in Fig. 2 (c). However, unlike Fig. 2 (c), where most of the extra
probability is taken from stateN , in Fig. 3 (c) the probability is
drawn more uniformly from other states in the cycle, indicating
the presence of distributed control.

V. LIMITING REGIMES

Our results are stated via an optimization problem that gen-
erally does not have a closed-form solution. In our second
set of results, we identify closed-form expressions in three
physically meaningful regimes. For simplicity, here we focus
on the simplified objective (11). See SM-III [27] for detailed
derivations, including analysis of the conditions under which
each of these three approximation are be valid.

For convenience, we first rewrite (11) as

G = max
p

−Ṡb(p)/β +
∑
i

piϕi , (13)

where Ṡb(p) = −∑i,j R
b
ijpj ln pi is the increase of the Shan-

non entropy of p under Rb and for convenience we defined
ϕi := ġbi +

∑
j R

b
ji(fj − fi + gbji). The objective (13) con-

tains a nonlinear term −Ṡb(p)/β quantifying the decrease of
information-theoretic entropy and a linear term

∑
i piϕi quan-

tifying the flow of thermodynamic free energy.
Next, we consider three regimes.
Linear response (LR) applies when the optimal distribution

p∗ is close to the steady-state distribution of the baseline rate
matrix Rb. Suppose that Rb is irreducible and has a unique
steady state πb with full support. We introduce the “additive
reversibilization” of Rb,

Aij = (Rb
ij +Rb

jiπ
b
i /π

b
j)/2 . (14)

The rate matrix A obeys detailed balance (DB) for the steady-
state distribution πb and has the same dynamical activity [42]
on all edges as Rb. A may be considered as a DB version of
Rb, and it is equal to Rb when the latter obeys DB [43, 44].
Let uα indicate the α-th right eigenvector of A normalized
as
∑

i(u
α
i )

2/πb
i = 1, and λα the corresponding real-valued

eigenvalue (λ1 = 0). The LR solution for the maximum
harvesting rate and the optimal distribution is

G ≈ Ġb(πb) + β
∑
α>1

|Ωα|2
−λα

p∗ ≈ πb + β
∑
α>1

Ωα

−λα
uα

(15)

where Ωα = (ϕ + β−1RbT lnπb)Tuα/2 quantifies the har-
vesting “amplitude” for mode α.

Eq. (15) has a simple interpretation. In addition to the base-
line harvesting rate Ġb(πb), G contains contributions from
the relaxation modes of A, with each mode weighed by its
squared amplitude and relaxation timescale −1/λα. All else
being equal, G is large when slow modes have large harvesting
amplitudes. The optimal p∗ shifts the baseline steady state πb

toward mode α in proportion to that mode’s harvesting ampli-
tude and relaxation timescale, thereby optimally balancing the
tradeoff between harvesting and dissipation.

The Deterministic (D) regime applies when the nonlinear
information-theoretic term in (13) is much smaller than the
linear thermodynamic term. We can then ignore the former,
turning (13) into a simple linear optimization. This gives the
approximate solution

G ≈ ϕi∗ p∗i ≈ δi∗i (16)

where i∗ = argmaxi ϕi is the optimal mesostate. This solu-
tion concentrates probability on a single mesostate, effectively
ignoring the cost of maintaining this low-entropy distribution.

The Near-Deterministic (ND) regime lies between Linear
Response and Deterministic ones. By perturbing p∗ around
δi∗i, we can decouple the values of pi in the objective func-
tion (11). The maximal harvesting rate and optimal distribu-
tion in this regime are then given by

G ≈ ϕi∗ + β−1
∑
i ̸=i∗

Rb
ii∗(ln p

∗
i − 1) ,

p∗i ≈
{
Rb

ii∗/[β(ϕi∗ − ϕi) +Rb
i∗i∗ ] i ̸= i∗

1−∑i:i ̸=i∗ p
∗
i i = i∗

(17)

The ND solution also has a simple interpretation. It per-
turbs the Deterministic solution by shifting probability towards
states with high transition rates away from the optimal state
(largeRb

ii∗ ) and small decreases in harvesting (ϕi∗ −ϕi). This
balances the benefit of harvesting against the cost of pumping
probability against Rb

ii∗ .

VI. EXAMPLE: UNICYCLIC SYSTEMS

We illustrate our closed-form solutions using two simple
models, both based on a unicyclic system with n states. The
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a) b)

Figure 4. (a) Unicyclic system where free energy Θ is harvested by
a single transition. (b) Unicyclic system where free energy per unit
time θ is harvested when the system is in a particular mesostate.

baseline dynamics involve diffusion across a 1-dimensional
ring, with left and right jump rates set to 1. The baseline
steady state is a uniform distribution, πb

i = 1/n, with no
cyclic current. We assume a uniform free energy function,
fi = 0 for all i.

We consider two different scenarios. In the first scenario,
shown schematically in Fig. 4 (a), Θ of free energy is harvested
each time the system carries out the transition 1 → 2, so

gb21 = −gb12 = Θ ,

and gbij = ġbi = 0 otherwise. This scenario may be interpreted
as an idealized model of a biomolecular harvesting cycle, such
as a transporter. In the second scenario, shown schematically
in Fig. 4 (b), free energy is harvested at a rate of θ per unit time
when the system is located in one particular mesostate i∗ = 1,
so

ġb1 = θ , (18)

and gbij = ġbi = 0 otherwise. This scenario may be interpreted
as an idealized model of error correction or self-assembly,
where free energy can only be harvested when the system is in
some particular functional mesostate.

For both scenarios, we evaluate the maximum harvesting
rate G and the optimal distributions achievable by adding any
possible control to the system, without constraints. We report
exact values found by numerical optimization of Eq. (13), as
well as the LR, ND, and D approximations described above.
To calculate the LR values, we exploit the fact that the base-
line unicyclic rate matrix is a circulant matrix with a simple
eigendecomposition [45]. Full details of the derivations for the
two scenarios are provided in SM-IV [27] and SM-IV C [27],
respectively.

We first report results for the first scenario from Fig. 4 (a),
where free energy is harvested during the transition 2 → 1.
Observe that baseline harvesting rate vanishes, Ġb(πb) = 0,
since harvesting free energy requires a cyclic current. In
Fig. 5 (a), we plot the maximum harvesting rate G and its
approximations as a function of the supplied free energy Θ.
For small Θ, LR applies and the maximum harvesting rate is

G ≈ βΘ2(n− 1)/4n2. (19)

The optimal distribution in the LR regime, shown in Fig. 5 (c),
builds up in equal increments starting from i = i∗ + 1 until
the optimal state i∗ = 1, after which it drops sharply. For
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Figure 5. (a) Maximum harvesting rate G for the unicyclic system
from Fig. 4 (a), as a function of supplied free energy Θ. Exact
value is found numerically, LR, D, and ND are calculated using
approximations described in the text. Exact and approximate optimal
distributions p∗ in ND (b) and LR (c) regimes are shown, with the
optimal state i∗ = 1 located in the middle of the histograms. (d) G
and its LR approximation for different Θ and system sizes n.
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Figure 6. (a) Maximum harvesting rate G for the unicyclic system
from Fig. 4 (b), as a function of supplied free energy rate θ. Exact
value is found numerically, LR, D, and ND are calculated using
approximations described in the text. Exact and approximate optimal
distributions p∗ in ND (b) and LR (c) regimes are shown, with the
optimal state i∗ = 1 located in the middle of the histograms. (d) G
and its LR approximation for different θ and system sizes n.

large Θ, the D regime is relevant and the optimal distribution
concentrates on the optimal state i∗ = 1, so

G ≈ Θ . (20)

At intermediate Θ, the ND regime applies, which gives

G ≈ Θ− β−1
{
2 + ln[2(βΘ− 1)(βΘ− 2)]

}
. (21)

The optimal distribution in the ND regime, shown in Fig. 5 (b),
allocates p∗i∗−1 = 1/(βΘ− 2), p∗i∗+1 = 1/(2βΘ− 2) and the
rest to the optimal state p∗i∗ .

Next, we consider the second scenario from Fig. 4 (b), where
free energy is harvested when the system is in the optimal
mesostate i∗ = 1. Observe that the uniform baseline steady
state assigns 1/n probability to the optimal state, thus in this
scenario the baseline harvesting rate is Ġb(πb) = θ/n. To
facilitate comparison with the first scenario, we focus on the
increase of the maximum harvesting rate relative to baseline,

∆G := G − Ġb(πb) = G − θ/n. (22)

In Fig. 6 (a), we show∆G and its approximations as a function
of the free energy supply rate θ. For small θ, LR applies and
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the maximum harvesting rate is

∆G ≈ βθ2/48 . (23)

The optimal distribution in the LR regime, shown in Fig. 6 (c),
is symmetric about the optimal state i∗ = 1. For large θ, the
D regime is relevant and the optimal distribution concentrates
on the optimal state i∗ = 1, so

∆G ≈ θ − θ/n . (24)

At intermediate θ, the ND regime applies, giving

∆G ≈ θ − θ/n− 2β−1 [1 + ln (βθ − 2)] . (25)

The optimal distribution in the ND regime, shown in Fig. 6 (b),
allocates p∗i∗−1 = p∗i∗+1 = 1/(βθ − 2) and the rest to p∗i∗ .

There are some similarities among the two harvesting sce-
narios. For both scenarios, in the LR regime, the increase
of the harvesting rate scales quadratically in the supplied free
energy (Θ or θ) and linearly in inverse temperature β. This
scaling reflects the fact that the optimal strategy has to balance
harvesting (Θ or θ contributions) with the thermodynamic cost
of maintaining a low entropy p∗ (β contributions). In the ND
and D regimes, G scales linearly in the supplied free energy
and loses its linear dependence on β. Thus, outside of LR, the
thermodynamic cost of maintaining a low entropy distribution
has a minor effect on the optimal strategy.

There are also important differences between the two sce-
narios. For the first scenario, the optimal strategy maintains
an asymmetric p∗, thereby generating a net flux across the
transition 2 → 1. In the LR regime, the cost of maintain-
ing this asymmetric distribution grows with the system size
n, therefore the maximum harvesting rate in Eq. (19) scales
as ∼ O(n−1). This is shown in Fig. 5 (d), where we plot G
and its LR approximation at various Θ and n. For the second
scenario, the optimal strategy maintains a peaked but symmet-
ric p∗. Remarkably, the cost of maintaining this distribution
does not depend on system size n. This is shown in Fig. 6 (d),
where we plot ∆G at various θ and n.

VII. DISCUSSION

In this paper, we consider the problem of optimizing free en-
ergy harvesting in a nonequilibrium steady-state system. We
demonstrate that this problem can be formulated as a con-
strained convex optimization problem, and we use this for-
mulation to study optimal harvesting and efficiency in the
bacteriorhodopsin proton pump. We also solve the convex op-
timization problem in closed-form for three limiting regimes,
as illustrated on two unicyclic models discussed above.

A key step in our analysis is to separate the dynamics of
the system into separate contributions from fixed baseline
processes and optimizable control processes. We note that,
in stochastic thermodynamics, the baseline/control separation
has been previously used to study autonomous Maxwellian
demons [46, 47], counterdiabatic driving [48], and the cost of
maintaining a nonequilibrium steady state [49, 50].

We derive a simplified bound on the maximum harvesting
rate in (13), which is achieved in the limit of fast dissipation-
less control. Interestingly, this expression involves a tradeoff
between two terms, one information-theoretic and one ther-
modynamic. At first glance, this resembles information/free-
energy tradeoffs characteristic of Maxwellian demons and
other “information engines” [51–58]. However, there are im-
portant differences. In a typical information engine, there is
no external source of driving and information serves as fuel,
which can be converted into β−1 ln 2 of thermodynamic free
energy per bit. In our case, there is an external source of free
energy that in some cases can be harvested more effectively by
reducing the system’s statistical entropy, e.g. by concentrating
it on favorable states. Here, a bit of information can increase
the harvesting rate by a very large amount (much larger than
β−1 ln 2/bit), and information acts more like a catalyst than
a fuel [59, 60]. Loosely speaking, this is similar to how in-
formation encoded in the sequence of a metabolic enzyme is
not itself fuel, but rather allows metabolism to harvest a large
amount of fuel from elsewhere.

We finish by mentioning some connections to previous work
and future directions. First, our approach may be related to
prior work on optimizing power output and free energy trans-
duction in steady-state molecular machines [29, 61–66]. Here
we consider the general problem of optimizing a set of control
processes, given a fixed baseline and possible additional con-
straints on kinetics, topology, and thermodynamics. Previous
work does not make the baseline/control distinction; instead,
it is mostly concerned with the problem of optimizing system
performance with respect to a small set of specific parame-
ters or observables of interest, such as the location of free
energy barriers [62, 63, 65, 66], efficiency [66], and the size
of fluctuations [61, 64].

There is also an interesting relation between our work and
flux balance analysis (FBA) [67–69]. The goal of FBA is to
identify deterministic fluxes in biological metabolic systems
that optimize biomass production, or other similar metrics of
performance. This can be formulated as a linear program,
which may include linear constraints that enforce thermody-
namically favored reaction directions [69] (interestingly, in
Ref. [70], the authors propose a version of FBA that also
accounts for the entropy production rate). Our setting and op-
timization are different from FBA and its variants. We seek
to optimize free energy harvesting at the stochastic level, and
our objective involves nonlinear information-theoretic contri-
butions to free energy. In addition, our optimization involves
both the steady-state distribution p and fluxes J , which allows
us to optimize harvesting due to to internal transitions within
coarse-grained mesostates, as in Fig. 4 (b). Nonetheless, in-
vestigating the relationship between our approach and FBA is
an interesting direction for future work.

Another interesting direction for future work is to consider
stochastic fluctuations of free energy harvesting. In particu-
lar, the thermodynamic uncertainty relation may be used to
study tradeoffs between the entropy production rate, the aver-
age harvesting rate (the quantity Ġtot considered here), and the
fluctuations in the amount of harvested free energy [64, 71].
For biomolecular systems, large fluctuations in harvesting can
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lead to starvation, suggesting that minimizing fluctuations may
be of significant biological importance.

Finally, an interesting direction for future work is to consider
free energy harvesting in a system embedded in a fluctuating
environment. For example, one may imagine a harvesting sys-
tem in an environment with fluctuating sugar sources, or with
a fluctuating amount of available light. In this setting, it is
natural to optimize the harvesting rate under the topological
constraint that control fluxes cannot directly change the state of
the environment, for instance using bipartite models of Marko-
vian dynamics [72]. It would be interesting to investigate how,
under the optimal harvesting strategy, the information flow
from the environment to the system varies with the abundance
of free energy and complexity of the environment.

ACKNOWLEDGMENTS

We thank members of the Complex Systems Lab, B.
Corominas-Murtra, L. Seoane, D. Wolpert, and D. Sowinski
for useful discussions. A.K. also thanks Sosuke Ito for sup-
port and encouragement. This project has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie Grant
Agreement No. 101068029. J.P. was supported by the María
de Maeztú fellowship MDM-2014-0370-17-2 and Grant No.
62417 from the John Templeton Foundation. The opinions
expressed in this publication are those of the authors and do
not necessarily reflect the views of the John Templeton Foun-
dation.

[1] T. L. Hill, Free energy transduction in biology: the steady-state
kinetic and thermodynamic formalism. New York: Academic
Press, 1977.

[2] H. Morowitz, Foundations of bioenergetics. Elsevier, 2012.
[3] A. J. Lotka, “Contribution to the energetics of evolution,” Pro-

ceedings of the National Academy of Sciences, vol. 8, no. 6,
pp. 147–151, 1922.

[4] J. H. Brown, P. A. Marquet, and M. L. Taper, “Evolution of
body size: consequences of an energetic definition of fitness,”
The American Naturalist, vol. 142, no. 4, pp. 573–584, 1993.

[5] W. B. Watt, “Bioenergetics and evolutionary genetics: oppor-
tunities for new synthesis,” The American Naturalist, vol. 125,
no. 1, pp. 118–143, 1985.

[6] O. P. Judson, “The energy expansions of evolution,” Nature
ecology & evolution, vol. 1, no. 6, p. 0138, 2017.

[7] H.-J. Choi and C. D. Montemagno, “Artificial organelle: Atp
synthesis from cellular mimetic polymersomes,” Nano letters,
vol. 5, no. 12, pp. 2538–2542, 2005.

[8] K. Y. Lee, S.-J. Park, K. A. Lee, S.-H. Kim, H. Kim, Y. Meroz,
L. Mahadevan, K.-H. Jung, T. K. Ahn, K. K. Parker, et al.,
“Photosynthetic artificial organelles sustain and control atp-
dependent reactions in a protocellular system,” Nature biotech-
nology, vol. 36, no. 6, pp. 530–535, 2018.

[9] S. Berhanu, T. Ueda, and Y. Kuruma, “Artificial photosynthetic
cell producing energy for protein synthesis,” Nature communi-
cations, vol. 10, no. 1, p. 1325, 2019.

[10] K. Villa and M. Pumera, “Fuel-free light-driven mi-
cro/nanomachines: Artificial active matter mimicking nature,”
Chemical Society Reviews, vol. 48, no. 19, pp. 4966–4978, 2019.

[11] C. Kleineberg, C. Wölfer, A. Abbasnia, D. Pischel, C. Bed-
narz, I. Ivanov, T. Heitkamp, M. Börsch, K. Sundmacher,
and T. Vidaković-Koch, “Light-driven atp regeneration in di-
block/grafted hybrid vesicles,” ChemBioChem, vol. 21, no. 15,
pp. 2149–2160, 2020.

[12] T. E. Miller, T. Beneyton, T. Schwander, C. Diehl, M. Girault,
R. McLean, T. Chotel, P. Claus, N. S. Cortina, J.-C. Baret, et al.,
“Light-powered co2 fixation in a chloroplast mimic with natural
and synthetic parts,” Science, vol. 368, no. 6491, pp. 649–654,
2020.

[13] C. Guindani, L. C. da Silva, S. Cao, T. Ivanov, and K. Landfester,
“Synthetic cells: From simple bio-inspired modules to sophisti-
cated integrated systems,” Angewandte Chemie, vol. 134, no. 16,
p. e202110855, 2022.

[14] P. Albanese, F. Mavelli, and E. Altamura, “Light energy trans-

duction in liposome-based artificial cells,” Frontiers in Bioengi-
neering and Biotechnology, vol. 11, p. 1161730, 2023.

[15] N. S. Chandel, “Glycolysis,” Cold Spring Harbor Perspectives
in Biology, vol. 13, no. 5, p. a040535, 2021.

[16] U. Seifert, “Stochastic thermodynamics, fluctuation theorems
and molecular machines,” Reports on progress in physics,
vol. 75, no. 12, p. 126001, 2012.

[17] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback
control theory. Courier Corporation, 2013.

[18] J. K. Lanyi, “Bacteriorhodopsin,” Annu. Rev. Physiol., vol. 66,
pp. 665–688, 2004.

[19] D. Goodsell, “Bacteriorhodopsin,” The RSCB PDB Molecule of
the Month, vol. 3, 2002. doi:10.2210/rcsb_pdb/mom_2002_3.

[20] O. Béja, L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd,
L. P. Nguyen, S. B. Jovanovich, C. M. Gates, R. A. Feldman,
J. L. Spudich, et al., “Bacterial rhodopsin: evidence for a new
type of phototrophy in the sea,” Science, vol. 289, no. 5486,
pp. 1902–1906, 2000.

[21] L. Gómez-Consarnau, J. A. Raven, N. M. Levine, L. S. Cutter,
D. Wang, B. Seegers, J. Arístegui, J. A. Fuhrman, J. M. Gasol,
and S. A. Sañudo-Wilhelmy, “Microbial rhodopsins are major
contributors to the solar energy captured in the sea,” Science
advances, vol. 5, no. 8, p. eaaw8855, 2019.

[22] J. Schnakenberg, “Network theory of microscopic and macro-
scopic behavior of master equation systems,” Reviews of Modern
physics, vol. 48, no. 4, p. 571, 1976.

[23] M. Esposito and C. Van den Broeck, “Three faces of the second
law. i. master equation formulation,” Physical Review E, vol. 82,
no. 1, p. 011143, 2010.

[24] A. Wachtel, R. Rao, and M. Esposito, “Thermodynamically
consistent coarse graining of biocatalysts beyond michaelis–
menten,” New Journal of Physics, vol. 20, no. 4, p. 042002,
2018.

[25] A. Cornish-Bowden, Fundamentals of enzyme kinetics. John
Wiley & Sons, 2013.

[26] J. M. Horowitz, T. Sagawa, and J. M. Parrondo, “Imitating
chemical motors with optimal information motors,” Physical
review letters, vol. 111, no. 1, p. 010602, 2013.

[27] See Supplemental Material at [URL will be inserted by pub-
lisher] for a derivation of our main results, a full description of
the bacteriorhodopsin model and the details for the analyses of
limiting regimes and unicyclic examples.

[28] C. Maes, “Local detailed balance,” SciPost Physics Lecture
Notes, p. 032, 2021.



9

[29] A. I. Brown and D. A. Sivak, “Theory of nonequilibrium free en-
ergy transduction by molecular machines,” Chemical Reviews,
vol. 120, pp. 434–459, Jan. 2020.

[30] S. P. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge university press, 2004.

[31] G. Varo and J. K. Lanyi, “Thermodynamics and energy coupling
in the bacteriorhodopsin photocycle,” Biochemistry, vol. 30,
no. 20, pp. 5016–5022, 1991.

[32] V. A. Lórenz-Fonfría and H. Kandori, “Spectroscopic and ki-
netic evidence on how bacteriorhodopsin accomplishes vecto-
rial proton transport under functional conditions,” Journal of
the American Chemical Society, vol. 131, pp. 5891–5901, Apr.
2009.

[33] E. Penocchio, R. Rao, and M. Esposito, “Nonequilibrium ther-
modynamics of light-induced reactions,” The Journal of Chem-
ical Physics, vol. 155, no. 11, 2021.

[34] J. K. Lanyi, “Light energy conversion in Halobacterium halo-
bium,” Microbiological Reviews, vol. 42, no. 4, pp. 682–706,
1978.

[35] A. Miller and D. Oesterhelt, “Kinetic optimization of bacteri-
orhodopsin by aspartic acid 96 as an internal proton donor,”
Biochimica et Biophysica Acta (BBA)-Bioenergetics, vol. 1020,
no. 1, pp. 57–64, 1990.

[36] A. Seitz and N. Hampp, “Kinetic optimization of bacteri-
orhodopsin films for holographic interferometry,” The Journal
of Physical Chemistry B, vol. 104, no. 30, pp. 7183–7192, 2000.

[37] K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R.
Birge, “Optimization of bacteriorhodopsin for bioelectronic de-
vices,” Trends in biotechnology, vol. 20, no. 9, pp. 387–394,
2002.

[38] J. R. Hillebrecht, K. J. Wise, J. F. Koscielecki, and R. R. Birge,
“Directed evolution of bacteriorhodopsin for device applica-
tions,” in Methods in enzymology, vol. 388, pp. 333–347, Else-
vier, 2004.

[39] J. Tittor, M. Wahl, U. Schweiger, and D. Oesterhelt, “Spe-
cific acceleration of de-and reprotonation steps by azide in
mutated bacteriorhodopsins,” Biochimica et Biophysica Acta
(BBA)-Bioenergetics, vol. 1187, no. 2, pp. 191–197, 1994.

[40] S. P. Balashov, M. Lu, E. S. Imasheva, R. Govindjee, T. G. Ebrey,
B. Othersen, Y. Chen, R. K. Crouch, and D. R. Menick, “The
proton release group of bacteriorhodopsin controls the rate of
the final step of its photocycle at low ph,” Biochemistry, vol. 38,
no. 7, pp. 2026–2039, 1999.

[41] Q. Li, S. Bressler, D. Ovrutsky, M. Ottolenghi, N. Friedman,
and M. Sheves, “On the protein residues that control the yield
and kinetics of o630 in the photocycle of bacteriorhodopsin,”
Biophysical Journal, vol. 78, no. 1, pp. 354–362, 2000.

[42] The dynamical activity refers to the overall rate of back-and-
forth jumps across a transitions, Rb

ijπ
b
j +Rb

jiπ
b
i .

[43] A. Kolchinsky, N. Ohga, and S. Ito, “Thermodynamic bound
on spectral perturbations, with applications to oscillations and
relaxation dynamics,” Physical Review Research, vol. 6, no. 1,
p. 013082, 2024.

[44] J. A. Fill, “Eigenvalue bounds on convergence to stationarity for
nonreversible Markov chains, with an application to the exclu-
sion process,” The Annals of Applied Probability, vol. 1, no. 1,
pp. 62–87, 1991.

[45] R. M. Gray et al., “Toeplitz and circulant matrices: A review,”
Foundations and Trends® in Communications and Information
Theory, vol. 2, no. 3, pp. 155–239, 2006.

[46] N. Shiraishi, S. Ito, K. Kawaguchi, and T. Sagawa, “Role
of measurement-feedback separation in autonomous maxwell’s
demons,” New Journal of Physics, vol. 17, no. 4, p. 045012,
2015.

[47] N. Shiraishi, T. Matsumoto, and T. Sagawa, “Measurement-
feedback formalism meets information reservoirs,” New Journal
of Physics, vol. 18, no. 1, p. 013044, 2016.

[48] K. Takahashi, K. Fujii, Y. Hino, and H. Hayakawa, “Nonadia-
batic control of geometric pumping,” Physical Review Letters,
vol. 124, no. 15, p. 150602, 2020.

[49] J. M. Horowitz and J. L. England, “Information-theoretic bound
on the entropy production to maintain a classical nonequilibrium
distribution using ancillary control,” Entropy, vol. 19, no. 7,
p. 333, 2017.

[50] J. M. Horowitz, K. Zhou, and J. L. England, “Minimum ener-
getic cost to maintain a target nonequilibrium state,” Physical
Review E, vol. 95, no. 4, p. 042102, 2017.

[51] J. M. Parrondo, J. M. Horowitz, and T. Sagawa, “Thermodynam-
ics of information,” Nature Physics, vol. 11, no. 2, pp. 131–139,
2015.

[52] T. Sagawa and M. Ueda, “Minimal energy cost for thermody-
namic information processing: measurement and information
erasure,” Physical review letters, vol. 102, no. 25, p. 250602,
2009.

[53] D. Abreu and U. Seifert, “Thermodynamics of genuine nonequi-
librium states under feedback control,” Physical review letters,
vol. 108, no. 3, p. 030601, 2012.

[54] F. J. Cao and M. Feito, “Thermodynamics of feedback controlled
systems,” Physical Review E, vol. 79, no. 4, p. 041118, 2009.

[55] S. Ito and T. Sagawa, “Information thermodynamics on causal
networks,” Physical review letters, vol. 111, no. 18, p. 180603,
2013.

[56] D. Hartich, A. C. Barato, and U. Seifert, “Stochastic thermo-
dynamics of bipartite systems: transfer entropy inequalities and
a Maxwell’s demon interpretation,” Journal of Statistical Me-
chanics: Theory and Experiment, vol. 2014, no. 2, p. P02016,
2014.

[57] A. C. Barato, D. Hartich, and U. Seifert, “Efficiency of cellular
information processing,” New Journal of Physics, vol. 16, no. 10,
p. 103024, 2014.

[58] P. Sartori, L. Granger, C. F. Lee, and J. M. Horowitz, “Thermo-
dynamic costs of information processing in sensory adaptation,”
PLoS Comput Biol, vol. 10, no. 12, p. e1003974, 2014.

[59] J. Barham, “A dynamical model of the meaning of information,”
Biosystems, vol. 38, no. 2-3, pp. 235–241, 1996.

[60] A. Kolchinsky and D. H. Wolpert, “Semantic information, au-
tonomous agency and non-equilibrium statistical physics,” In-
terface Focus, vol. 8, p. 20180041, Dec. 2018.

[61] P. Pietzonka, A. C. Barato, and U. Seifert, “Universal bound
on the efficiency of molecular motors,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2016, p. 124004, Dec.
2016.

[62] A. I. Brown and D. A. Sivak, “Allocating dissipation across a
molecular machine cycle to maximize flux,” Proceedings of the
National Academy of Sciences, vol. 114, no. 42, pp. 11057–
11062, 2017.

[63] A. I. Brown and D. A. Sivak, “Allocating and splitting free
energy to maximize molecular machine flux,” The Journal of
Physical Chemistry B, vol. 122, no. 4, pp. 1387–1393, 2018.

[64] P. Pietzonka and U. Seifert, “Universal Trade-Off between
Power, Efficiency, and Constancy in Steady-State Heat En-
gines,” Physical Review Letters, vol. 120, p. 190602, May 2018.

[65] J. A. Wagoner and K. A. Dill, “Mechanisms for achieving high
speed and efficiency in biomolecular machines,” Proceedings of
the National Academy of Sciences, vol. 116, no. 13, pp. 5902–
5907, 2019.

[66] T. Schmiedl and U. Seifert, “Efficiency of molecular motors at
maximum power,” EPL (Europhysics Letters), vol. 83, no. 3,



10

p. 30005, 2008.
[67] D. A. Beard, S.-d. Liang, and H. Qian, “Energy balance for

analysis of complex metabolic networks,” Biophysical journal,
vol. 83, no. 1, pp. 79–86, 2002.

[68] K. J. Kauffman, P. Prakash, and J. S. Edwards, “Advances in flux
balance analysis,” Current opinion in biotechnology, vol. 14,
no. 5, pp. 491–496, 2003.

[69] M. Kschischo, “A gentle introduction to the thermodynamics of
biochemical stoichiometric networks in steady state,” The Euro-
pean Physical Journal Special Topics, vol. 187, no. 1, pp. 255–
274, 2010.

[70] R. M. Fleming, C. M. Maes, M. A. Saunders, Y. Ye, and B. Ø.
Palsson, “A variational principle for computing nonequilibrium
fluxes and potentials in genome-scale biochemical networks,”
Journal of theoretical biology, vol. 292, pp. 71–77, 2012.

[71] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. Eng-
land, “Dissipation bounds all steady-state current fluctuations,”
Physical review letters, vol. 116, no. 12, p. 120601, 2016.

[72] J. M. Horowitz and M. Esposito, “Thermodynamics with con-
tinuous information flow,” Physical Review X, vol. 4, no. 3,
p. 031015, 2014.

[73] M. Esposito, “Stochastic thermodynamics under coarse grain-
ing,” Physical Review E, vol. 85, no. 4, p. 041125, 2012.

[74] T. M. Cover and J. A. Thomas, Elements of information theory.
John Wiley & Sons, 2006.

[75] E. Ilker, Ö. Güngör, B. Kuznets-Speck, J. Chiel, S. Deffner, and
M. Hinczewski, “Shortcuts in stochastic systems and control
of biophysical processes,” Physical Review X, vol. 12, no. 2,
p. 021048, 2022.

[76] A. M. Ferreira and D. Bashford, “Model for proton transport
coupled to protein conformational change: application to proton
pumping in the bacteriorhodopsin photocycle,” Journal of the
American Chemical Society, vol. 128, no. 51, pp. 16778–16790,
2006.

[77] J. K. Lanyi, “Halorhodopsin: a light-driven chloride ion pump,”
Annual review of biophysics and biophysical chemistry, vol. 15,
no. 1, pp. 11–28, 1986.

[78] S. Ahmed and I. R. Booth, “The use of valinomycin, nigericin
and trichlorocarbanilide in control of the protonmotive force in
escherichia coli cells,” Biochemical Journal, vol. 212, no. 1,
pp. 105–112, 1983.

[79] C. Naslund, “Mathematics stackexchange. question 104967,”
2012. https://math.stackexchange.com/questions/
104967/.

[80] Svyatoslav and C. Leibovici, “Mathematics stackexchange.
question 4567421,” 2022. https://math.stackexchange.
com/questions/4567421/.

https://math.stackexchange.com/questions/104967/
https://math.stackexchange.com/questions/104967/
https://math.stackexchange.com/questions/4567421/
https://math.stackexchange.com/questions/4567421/


11

Supplemental Material:
Optimization of nonequilibrium free energy harvesting illustrated on

bacteriorhodopsin

Jordi Piñero, Ricard Solé, and Artemy Kolchinsky

CONTENTS

I. Derivations of main results 12
A. Derivation of (8) from LDB and steady-state assumption 12
B. Concavity of constrained optimization (10) 13
C. Properties of the unconstrained optimization (11) 14

1. Concavity and existence of maximizer 14
2. Strict concavity and uniqueness of maximizer under irreducibility assumption 15

D. Derivation and achievability of unconstrained optimization (11) 15
1. Construction of optimal control 16
2. Achievability of the steady state p∗ 17
3. EPR vanishes 17

II. Bacteriorhodopsin model 19
A. Details of model 19
B. Details of numerical analysis in Fig. 2 21
C. Additional analysis: reprotonation step as control 22

1. Constrained activity and affinity 23
2. Constrained kinetics 26

D. Proton-pumping as control 26

III. Closed-form solutions of Eq. (11) in different regimes 29
A. Linear Response (LR) regime, Eq. (15) 29

Region of validity of the LR regime 31
B. Deterministic (D) regime, Eq. (16) 31

Region of validity of the D regime 32
C. Near-Deterministic (ND) regime, Eq. (17) 34

Region of validity of the ND regime 34

IV. Unicyclic model 36
A. An Algebraic Aperitif: eigendecomposition of unicyclic rate matrix 36
B. Transition harvesting cycle 36

1. LR regime 37
2. D and ND Regimes 39

C. State harvesting cycle 40
1. LR Regime 40
2. D and ND Regimes 42

V. Quadratic optimization lemma 43



12

I. DERIVATIONS OF MAIN RESULTS

A. Derivation of (8) from LDB and steady-state assumption

Here we derive (8) in the main text, which reads as

Ġtot = Ḟb(π) + Ġb(π)− Σ̇(Jc)/β. (S1.1)

To derive this result,

Ḟc(p) + Ġc(p) =
∑
i,j

piR
c
ji(fj + β−1 ln pj) +

∑
i,j

piR
c
jig

c
ji

= β−1
∑
i,j

piR
c
ji[ln pj + β(fj + gcji)]. (S1.2)

The first line follows from definitions made in the main text. Since Rc is a rate matrix,
∑

i,j piR
c
jiai =∑

i piai
∑

j R
c
ji = 0 for any a. This allows us to further rewrite (S1.2) as

Ḟc(p) + Ġc(p) = β−1
∑
i,j

piR
c
ji[ln pj − ln pi + β(−fi + fj + gcji)]

= β−1
∑
i,j

piR
c
ji[ln pj − ln pi − ln(Rcji/R

c
ij)] (S1.3)

In the second line, we plugged in the condition of LDB, as expressed in (6) in the main text:

ln(Rcji/R
c
ij) = β(fi − fj − gcji) for Rcji > 0. (S1.4)

Using the definition of one-way fluxes due to control given a generic distribution p, Jcji = piR
c
ji, and the Schnack-

enberg expression of EPR Σ̇, we rewrite (S1.3) as

Ḟc(p) + Ġc(p) = −β−1
∑
i,j

piR
c
ji ln

pjR
c
ji

piRcij
= −β−1

∑
i ̸=j

Jcji ln
Jcji
Jcij

= −β−1Σ̇(Jc) . (S1.5)

In the main text, this equality is applied at the steady-state distribution π. However, Eq. (S1.5) is valid for all

distributions p as long as (S1.4) holds.

To complete our derivation of (S1.1), recall that Rπ = (Rb+Rc)π = 0 by definition of the steady-state π. At the

same time, from the definition of Ḟb(p) in (2), we have

Ḟb(π) + Ḟc(π) =
∑
j

(fj + β−1 lnπj)
∑
i

(Rbji +Rcji)πi = 0 =⇒ Ḟb(π) = −Ḟc(π). (S1.6)

Combining the definition of Ġtot with (S1.5) and (S1.6) gives Eq. (S1.1),

Ġtot = Ġb(π) + Ġc(π) = Ġb(π)−
[
Ḟc(π) + β−1Σ̇(Jc)

]
= Ḟb(π) + Ġb(π)− β−1Σ̇(Jc) . (S1.7)
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Finally, note that the entropy production rate Σ̇ is always nonnegative:

Σ̇(Jc) =
1

2

∑
i ̸=j

(pjR
c
ij − piR

c
ji) ln

pjR
c
ij

piRcji
≥ 0, (S1.8)

where the last inequality follows because the terms pjRcij − piR
c
ji and ln

pjRc
ij

piRc
ji

have the same sign. This can be seen

as a statement of the Second Law.

Let us briefly comment on the physical meaning of our derivation. First, we note that LDB holds when the control

dynamics exhibit a separation of timescales, with fast equilibration within each mesostate and slower transitions

between mesostates [73].

Second, recall our assumption that the control processes do not interact directly with the external source of free

energy, but only with the internal reservoir and heat bath. This assumption is formalized in the particular form of

the LDB condition (S1.4). It means that for the control processes, the combined “system+internal reservoir” may be

treated as a single system coupled only to a heat bath at inverse temperature β. Hence, the rate of entropy production

due to control is simply β times the decrease of the combined free energy of the system and internal reservoir, as in

(S1.5). Moreover, owing to Second Law, their combined free energy cannot increase under control dynamics [26, 29],

Ḟc(p) + Ġc(p) ≤ 0 for all p. (S1.9)

B. Concavity of constrained optimization (10)

Consider the objective Ḟb(p) + Ġb(p)− Σ̇(J)/β in (10) in the main text. In Sec. I C below, we show that the term

Ḟb(p) + Ġb(p) is concave in p. Here we show that Σ̇(J) is convex in J . This shows that the overall objective is

concave in the pair (p,J).

Consider any pair of feasible fluxes J ̸= Y and λ ∈ (0, 1) and let J(λ) = λJ + (1 − λ)Y indicate their convex

mixture. To prove convexity, we write

λΣ̇(J) + (1− λ)Σ̇(Y ) = λ
∑
i ̸=j

Jji ln
Jji
Jij

+ (1− λ)
∑
i ̸=j

Yji ln
Yji
Yij

≥
∑
i ̸=j

Jji(λ) ln
Jji(λ)

Jij(λ)
= Σ̇(J(λ)). (S1.10)

Here we used the log-sum inequality [74, Thm. 2.7.1],

λa ln
a

a′
+ (1− λ)b ln

b

b′
≥ [λa+ (1− λ)b] ln

λa+ (1− λ)b

λa′ + (1− λ)b′
for all a, a′, b, b′ ≥ 0 . (S1.11)
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C. Properties of the unconstrained optimization (11)

1. Concavity and existence of maximizer

Consider the objective in (11), as equivalently written in (13):

L (p) = Ḟb(p) + Ġb(p) = −Ṡb(p) +
∑
i

piϕi, (S1.12)

where Ṡb(p) = −∑i,j piR
b
ji ln pj is the rate of increase of the Shannon entropy of distribution p under the rate

matrix Rb. Here we show that L (p) is concave, thus (11) involves the maximization of a concave function. This

is equivalent to the minimization of a convex function, making it convex optimization problem which can be solved

using standard numerical techniques. We also show the existence of a maximizer

p∗ ∈ argmax
p

L (p) .

Existence of p∗: The feasible set is compact (n-dimensional probability simplex) and the objective is continuous,

so the maximizer exists by the extreme value theorem. Also, the maximum value is finite (see (S3.78)).

Concavity: Consider any pair of distributions p ̸= q and λ ∈ (0, 1), and let p(λ) = λp+ (1− λ)q indicate their

convex mixture. We will show that the objective is concave:

L (p(λ)) ≥ λL (p) + (1− λ)L (q). (S1.13)

Observe that
∑

i piϕi is linear in p, thus we can use (S1.12) to rearrange (S1.13) as

Ṡb(p(λ)) ≤ λṠb(p) + (1− λ)Ṡb(q). (S1.14)

To prove (S1.14), we first rewrite the rate of decrease of the Shannon entropy as

Ṡb(p) = −
∑
i,j

piR
b
ji ln pj = −

∑
i,j

piR
b
ji ln

pj
pi

= −
∑
i ̸=j

piR
b
ji ln

pj
pi

=
∑
i ̸=j

piR
b
ji ln

pi
pj
. (S1.15)

Here we first used that
∑

i,j piR
b
jiai =

∑
i aipi

∑
j R

b
ji = 0 for any a, then used that the diagonal terms of the sum

(i = j) vanish. Next, we use (S1.15) to prove (S1.14) as

Ṡb(p(λ)) =
∑
i ̸=j

pi(λ)R
b
ji ln

pi(λ)

pj(λ)
=
∑
i ̸=j

pi(λ)R
b
ji ln

pi(λ)R
b
ji

pj(λ)Rbji

≤
∑
i ̸=j

[
λpiR

b
ji ln

piR
b
ji

pjRbji
+ (1− λ)qiR

b
ji ln

qiR
b
ji

qjRbji

]
(S1.16)

= λ
∑
i ̸=j

piR
b
ji ln

pj
pi

+ (1− λ)
∑
i ̸=j

qiR
b
ji ln

qj
qi

= λṠb(p) + (1− λ)Ṡb(q) .

The second line follows from the log-sum inequality (S1.11).
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2. Strict concavity and uniqueness of maximizer under irreducibility assumption

We can prove further results under the assumption that the baseline rate matrix Rb is irreducible (i.e., there is a path

of non-zero transitions connecting any two states) and has a steady-state with full support (πi > 0 for all i). In graph

theoretic terms, this means that the graph of allowed transitions under Rb is strongly connected. Specifically, we

prove that our objective is strictly concave, and that the optimizer p∗ is unique and has full support.

Strict concavity: The log-sum inequality (S1.11) is strict when a/a′ ̸= b/b′ [74, Thm. 2.7.1]. In our case, (S1.16)

is strict for any pair of states j ̸= i that have Rbji > 0 and

piR
b
ji

pjRbji
̸=
qiR

b
ji

qjRbji
. (S1.17)

Such a pair of states must exist, as we now prove by contradiction. Suppose to the contrary that (S1.17) is an equality

for all i ̸= j whereRbji > 0. Consider a walk on the graph defined by the allowed transitions inRb — that is, a sequence

of states i0, i1, i2, . . . such thatRbik+1ik
> 0. We would then have that pi0/pi1 = qi0/qi1 , pi1/pi2 = qi1/qi2 , . . . , hence

also (by multiplication) that pi0/pi2 = qi0/qi2 , . . . . Now, since Rb is irreducible, any state can be reached from any

other, implying that pi/pj = qi/qj for all i ̸= j, hence p ∝ q. Since probabilities are nonnegative and normalized to

sum to 1, this can only hold when p = q, contradicting our assumption that p ̸= q in (S1.16).

To summarize, there must be some i ̸= j such that the corresponding term in (S1.16) is a strict inequality, therefore

L (p(λ)) > λL (p) + (1− λ)L (q). (S1.18)

Uniqueness of maximizer: Suppose that there are two different maximizers, L (p∗
(1)) = L (p∗

(2)) = G . Then,

(S1.18) implies that the convex mixture λp∗
(1) + (1 − λ)p∗

(2) would achieve a larger value than G , leading to a

contradiction.

Full support of p∗: Suppose that the maximizer p∗ did not have full support, so that some states have 0 probability.

Then, there must be some pair i ̸= j such that p∗i > 0 and p∗j = 0 and Rbji > 0 (otherwise the graph of allowed

transitions would not be strongly connected). But for this pair, p∗iRbji ln(p∗j/p∗i ) = −∞. Plugging into (S1.15)

implies that L (p∗) = −∞ and contradicting the fact that p∗ is a maximizer. Hence, p∗ must have full support.

D. Derivation and achievability of unconstrained optimization (11)

In this section, we derive the unconstrained optimization (11) from the constrained optimization (10).

First, observe that that the maximum in (10) is always less than the maximum in (11):

G := sup
(p,J)∈Λ:BJ=−Rbp

Ḟb(p) + Ġb(p)− Σ̇(J)/β ≤ G ′ := max
p

Ḟb(p) + Ġb(p) .
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This follows from nonnegativity of Σ̇(J) and the fact that (11) has less constraints than (10).

We will show that G = G ′ as long as the feasible set Λ is not too constrained. In addition to the basic normalization

and nonnegativity constraints on p and J , we allow Λ to encode a set of topological constraints like

Jji = 0 if Gji = 0 , (S1.19)

for i ̸= j, where G is a symmetric matrix that determines the topology of the control dynamics (Gji = Gij = 1

when the transition i ↔ j is allowed, and otherwise Gji = Gij = 0). We assume that G is connected and contains

all n states. Of course, we may have Gji = 1 for all i ̸= j, in which case no topological constraints are imposed. We

assume that Λ includes no other constraints.

Given these assumptions, we construct a sequence of control process (Rc(κ), gc) which satisfy LDB such that:

1. The combined steady state π(κ) of Rb +Rc(κ) and control fluxes Jcij(κ) = πj(κ)R
c
ij(κ) belong to Λ for all κ.

2. The combined steady state obeys limκ→∞ π(κ) = p∗, where p∗ is the optimizer of (11).

3. The steady-state EPR vanishes limκ→0 Σ̇(κ) = 0, therefore the steady-state harvesting rate obeys

G ≥ lim
κ→∞

Ġtot(κ) = G ′.

Our proof technique is related to the idea sketched out in Ref. [50], which studied the minimal cost of maintaining

a nonequilibrium steady state. It is also related to constructions from the literature on counterdiabatic driving [75].

1. Construction of optimal control

We define a sequence of control processes parameterized by κ > 0. For each control process, the free energy

exchanges with the internal reservoir are set to

gcji = fi − fj + β−1(ln p∗i − ln p∗j ). (S1.20)

The control rate matrix Rc(κ) is defined by scaling a given rate matrix B

Rcji(κ) := κBji Bji :=
Gji

1 + eβ(fi−fj−g
c
ji)

= κ
Gji

1 + p∗j/p
∗
i

. (S1.21)

Here κ ≥ 0 is an overall rate constant andG is the matrix discussed in (S1.19). The particular choice of the topology

encoded inG is arbitrary, given our assumption that it is connected and contains all n states which guarantees thatRc

is irreducible. It can be verified that the rate matrix Rc(κ) defined in (S1.21) obeys LDB (6). It also satisfies detailed

balance (DB) for the distribution p∗,

Rcji(κ)p
∗
i = Rcij(κ)p

∗
j , (S1.22)
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This implies that p∗ is the unique steady-state distribution, Rc(κ)p∗ = 0.

We note that there are various other types of rate matrices that can be used in the construction, as long as they

satisfy LDB and DB. However, the parameterization used in (S1.21) is common in the literature [76].

2. Achievability of the steady state p∗

We show that π(κ), the steady-state of the combined rate matrix of R(κ) := Rb +Rc(κ), approaches p∗ in the limit

of fast control (large κ). Since [Rb +Rc(κ)]π(κ) = 0 and Rc(κ)p∗ = 0, we have

1

κ
Rbπ(κ) = −1

κ
Rc(κ)π(κ) =

1

κ
Rc(κ) (p∗ − π(κ)) = B(p∗ − π(κ)). (S1.23)

Rearranging and applying the Moore-Penrose inverse B+ to both sides gives

1

κ
B+Rbπ(κ) = B+B (p∗ − π(κ)) . (S1.24)

Since B is irreducible by construction, B+B = I − p∗1T . Plugging into (S1.24), we obtain

1

κ
B+Rbπ(κ) = (I − p∗1T )(p∗ − π(κ)) = p∗ − π(κ), (S1.25)

which follows from 1Tp∗ = 1Tπ(κ) = 1. Taking norms gives

∥p∗ − π(κ)∥ =
1

κ
∥B+Rbπ(κ)∥ ≤ 1

κ
∥B+Rb∥∥π(κ)∥ ≤ 1

κ
∥B+Rb∥, (S1.26)

where in the last step we used that the norm of any probability distribution is bounded by 1. This shows that

limκ→∞ ∥p∗ − π(κ)∥ = 0, meaning that the combined steady-state converges to p∗.

3. EPR vanishes

The steady-state EPR incurred by rate matrix Rc(κ) = κB is

Σ̇(κ) =
κ

2

∑
i ̸=j

(πj(κ)Bij − πi(κ)Bji) ln
πj(κ)Bij
πi(κ)Bji

. (S1.27)

Next, we use (S1.25) to write p∗ = π(κ)+ 1
κB

+Rbπ(κ). Using the DB condition for p∗ with respect toRc(κ) = κB

obtained in (S1.22), we rearrange terms to find:

πi(κ)Bji − πj(κ)Bij =
1

κ

[
Bij

(
B+Rbπ(κ)

)
j
−Bji

(
B+Rbπ(κ)

)
i

]
(S1.28)

Plugging into (S1.27) gives

Σ̇(κ) =
1

2

∑
i ̸=j

[
Bji

(
B+Rbπ(κ)

)
i
−Bij

(
B+Rbπ(κ)

)
j

]
ln
πj(κ)Bij
πi(κ)Bji

. (S1.29)
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Taking the limit κ→ ∞ shows that EPR vanishes:

lim
κ→∞

Σ̇(κ) =
1

2

∑
i ̸=j

[
Bji

(
B+Rbp∗

)
i
−Bij

(
B+Rbp∗

)
j

]
ln
p∗jR

c
ij

p∗iR
c
ji

= 0,

where we used limκ→∞ π(κ) = p∗ and the DB condition (S1.22) in the logarithmic factor.
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II. BACTERIORHODOPSIN MODEL

A. Details of model

Here we provide thermodynamic and kinetic details of the bacteriorhodopsin model analyzed in the main text.

The thermodynamic parameters are taken from Ref. [31], which reports in vitro measurements of internal free

energies at 293◦ K = 20◦ C. Based on Fig. 7 in that paper, we use the following internal free energies for the 6 cycle

states:

f ≡ (fK , fL, fM1
, fM2

, fN , fO )

= (34.41, 27.96, 29.57, 13.98, 13.17, 14.78 ) kJ mol−1

= (5.71× 10−20, 4.64× 10−20, 4.91× 10−20, 2.32× 10−20, 2.19× 10−20, 2.45× 10−20) joules (S2.30)

All values are referenced from the ground state, in other words the zero point refers to the internal free energy of the

ground state bR [31]. However, since we coarse-grain the transitions O → bR and bR → K into a single transition

O → K, we do not include this ground state in our model. See Fig. S7 for an illustration of the coarse-graining.

M2

K

L

N
O

bR

M1

M2

K

L

N

O

M1

Figure S7. Bacteriorhodopsin cycle. Using the irreversible character and fast speed of the bR → K transition, we coarse-grain
the cycle from the original seven-state system (left) to a six-state one (right). Circled region in gray shows the states and transition
that is coarse-grained into a single state.

We use gji to indicate the free energy transferred to the internal reservoir by the jump from state i ∈

{K,L,M1,M2, N,O} to state j ∈ {K,L,M1,M2, N,O}. Only transitions between neighboring states in the

cycle are permitted: K ↔ L, L ↔ M1, M1 ↔ M2, M2 ↔ N , N ↔ O, and O ↔ K. The values of gji are zero

for all transitions except for the transition M1 ↔ M2, corresponding to proton transport across the membrane. This

value is determined via Eq. (12) as a function of the electrochemical potential (a.k.a. proton motive force), which

includes contributions from electrical potential and pH difference across the membrane. To summarize:

gLK = gKL = gM1L = gLM1
= gNM2

= gM2N = gON = gNO = gKO = gOK = 0

gM2M1
= −gM1M2

= ∆p := e∆ψ − (ln 10)β−1∆pH joules
(S2.31)
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We emphasize that ∆ψ is the membrane electrical potential in volts, where ∆ψ ≥ 0 indicates that the inside is more

negative. ∆pH is the membrane pH difference, where ∆pH ≤ 0 indicates that the inside is more basic. No free

energy is exchanged in the processes internal to each cycle state, so

ġb = 0 . (S2.32)

The dynamics are represented by the system’s rate matrix. We parameterize the transition rate for the jump from

state i ∈ {K,L,M1,M2, N,O} to neighboring state j ∈ {K,L,M1,M2, N,O} as

Rji =
κji

1 + e−∆stotji

, (S2.33)

where κji = κij is the relaxation rate for the transition i ↔ j, and ∆stotji = −∆stotij is the entropy produced during

the transition i→ j. This is a common parametrization which guarantees that the rates satisfy local detailed balance

(LDB) [76]. The entropy production for each jump i→ j is

∆stotji = β(fi − fj − gji +mji) . (S2.34)

where fi refers to internal free energies in joules (S2.30), β = 1/kBT and kB = 1.38 × 10−23 joules · (◦ K)−1 is

Boltzmann’s constant. As above gji = −gij is the increase of free energy of the internal reservoir, whilemji = −mij

is the decrease of free energy in the external source during the transition i→ j. In fact,mji = 0 for all i, j except the

transition O ↔ K, which corresponds to photon absorption. The energy absorbed from the photon is hc/λ joules,

where h is Planck’s constant, c is speed of light, and λ is the photon wavelength. We use a physiologically plausible

value of 580 nm [77]. At this wavelength and temperature of 293◦ K,

mKO = −mOK = hc/λ joules ≈ 84 kBT . (S2.35)

Observe that the transition O → K is highly irreversible (rKO ≫ rOK). In fact, our results are essentially the same

regardless of whether the transition rate for this step is computed using (S2.33) or made absolutely irreversible.

The relaxation kinetics that enter into (S2.33) are taken from Table 1 in Ref. [32]. We use the geometric mean of

the upper and lower estimates of k−1
relax to get the following relaxation rates (in sec−1):

κLK = κKL = 2.57× 105 κNM2
= κM2N = 7.22× 102

κM1L = κLM1
= 2.55× 104 κON = κNO = 5.10× 102

κM2M1
= κM1M2

= 5.42× 103 κKO = κOK = 1.28× 102

(S2.36)

For concreteness, here we provide the numerical values of entropy production for each jump i → j, at in vivo

potential ∆ψ = 120 mV:

(∆stotLK , ∆stotM1L, ∆stotM2M1
, ∆stotNM2

, ∆stotON , ∆stotKO )
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= (2.65, − 0.66, 0.21, 0.33, − 0.66, 76.62 ) (S2.37)

The resulting rate matrix, again at the in vivo potential, is (in sec−1)

R =



−2.40× 105 1.70× 104 0 0 0 1.28× 102

2.40× 105 −2.57× 104 1.68× 104 0 0 0

0 8.69× 103 −1.99× 104 2.35× 103 0 0

0 0 3.07× 103 −2.77× 103 3.01× 102 0

0 0 0 4.20× 102 −4.75× 102 3.37× 102

6.78× 10−32 0 0 0 1.74× 102 −4.65× 102


. (S2.38)

︸ ︷︷ ︸
K

︸ ︷︷ ︸
L

︸ ︷︷ ︸
M1

︸ ︷︷ ︸
M2

︸ ︷︷ ︸
N

︸ ︷︷ ︸
O

B. Details of numerical analysis in Fig. 2

To calculate the curves plotted in Fig. 2, we first define the ordered set of transitions

T := (K ↔ L,L↔M1,M1 ↔M2,M2 ↔ N,N ↔ O)

Then, for each value of the electrical membrane potential ∆ψ we perform the following:

1. Use the transition rates from (S2.33) to define the ‘total’ (baseline-and-control) rate matrix R and numerically

solve for Rπ = 0 to obtain π, which is unique since R is irreducible (all states are connected, see Fig. S7).

2. Use the transition rates from (S2.33) and values of g from (S2.31) to calculate the total harvesting rate as

Ġtot =
∑
i,j

πiRjigji . (S2.39)

The total harvesting rate is plotted as the thick black line in Fig. 2.

3. For each transition t ∈ T that acts as control:

(a) Define the baseline transition matrix Rb by removing the chosen transition from R. As standard, the

diagonal entries Rbii are determined by Rbii = −∑j R
b
ji.

(b) Define optimization parameters (p,J)with p ∈ Rn and J a vector inRn2 constrained such that
∑

i pi = 1,

pi ≥ 0 ∀i, BJ = −Rbp where B ∈ Rn×n2 is the incidence matrix with entries Bk,ij = δki − δkj . Finally,

we make all J ji = J ij = 0 for {i, j} ≠ t.
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(c) Use the transition rates and free energy values of f from (S2.30) to fix the “baseline harvesting rate” and

the “increase of system free energy” (Eq. (2)) functions:

Ġb(p) =
∑
i,j

piR
b
jigji (S2.40)

Ḟb(p) =
∑
i,j

piR
b
ji(fj + β−1 ln pj). (S2.41)

(d) Plug Ḟb(p), Ġb(p) and Σ̇(J) into Eq. (10) to solve for p∗, J∗ and G (color-coded line in Fig. 2) using

numerical optimization.

We emphasize that in the data shown in Fig. 2 we add no extra constraints. However, in the remaining of this

supplementary material, we consider various additional linear constraints pertaining to activity, thermodynamic

affinity and kinetic limitations. Such constraints are imposed at Step 3.b and determine the feasibility set Λ in

Eq. (10).

We make three final observations regarding our bacteriorhodopsin model. First, our analysis assumes that control

processes can be added without affecting membrane parameters, such as ∆pH and ∆ψ. In practice, this may be

justified by homeostatic mechanisms. For instance, excess proton pumping produced by the introduction of control

may be balanced by up-regulation of ATPase, which consumes the protons while making ATP.

Second, in order to consistent with LDB (6), changing the rate of control transition i→ j, while keeping the internal

free energy values fixed, may require changing the free energy used by that control transition gcji. For transitions

coupled to the membrane potential (such as M1 ↔ M2), this can be achieved by manipulating ∆ψ or ∆pH, which

here act as external parameters (see (12)). However, for a transition that is not coupled to the membrane potential,

manipulating gcji may require, for example, the consumption of a chemical fuel such as ATP. The strength of driving

can be modulated by regulating the nonequilibrium concentration of the chemical fuel.

Third, our model reproduces steady-state currents and parameter dependence (such as membrane potential) that

agree with reported data, at least to a first approximation. At the same time, it is worth noting that the equilibrium

constants reported in our source of kinetic data [32] differ somewhat from the free energy changes reported in our

source of thermodynamic data [31]. This may be due to different experimental or estimation methods, or because

some reaction steps are not approximated well as elementary transitions.

C. Additional analysis: reprotonation step as control

In the analysis in the main text, we observe that near the in vivo membrane potential, the reprotonation reaction

(N ↔ O) is the least efficient of all five transitions in T . In this section, we study this transition as control with
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additional constraints.

Our analysis can be motivated in the context of synthetic or natural selection for increased output in bacteri-

orhodopsin [35–38]. Suppose that the genotype-phenotype map of bacteriorhodopsin is sufficiently modular such

that the thermodynamic and kinetic properties of individual transitions in the cycle can be separately manipulated

by mutations. In fact, in case of the reprotonation transition N ↔ O, there is evidence that a single amino acid in

the bacteriorhodopsin protein specifically and effectively changes the kinetics of that transition [35]. In this setting,

we ask to what extend the existing N ↔ O transition is optimal. At the same time, we illustrate how underlying

thermodynamic and kinetic constraints, e.g., as might arise from underlying diffusion timescales and biochemistry,

can be incorporated when quantifying optimality.

In concrete terms, we let RbNO = RbON = 0 and fix the flux parameters of the optimization problem (10) as

Jij = Jji = 0 for all {i, j} ≠ {N,O}. Formally, we consider the following feasibility set in (10):

ΛNO := {(p,J) : p ≥ 0,1Tp = 1,J ≥ 0, Jij = 0 if (i, j) ̸∈ {(N,O), (O,N)}} . (S2.42)

along with other constraints discussed below.

To compare the result of optimization to the actual system, we also consider the actual transition as the control,

defined via:

RcON =
κON

1 + e−∆stotON

RcNO =
κNO

1 + e−∆stotON

(S2.43)

with all other Rcij = 0. The baseline-and-control dynamics correspond to the actual bacteriorhodopsin system

described in Sec. II A. See also Fig. S8 (left).

For Sections II C and II D in this SM, it is useful to define the current (i.e., net flux) as

J = J∗
NO − J∗

ON (S2.44)

where J∗
NO and J∗

ON are the optimal fluxes found by our optimization problem (10). In the setting of these sections,

where the N ↔ O control transition is the missing step of the unicyclic bacteriorhodopsin system, J is the cyclic

current in the presence of the baseline and the optimal control transition.

1. Constrained activity and affinity

We optimize the maximum harvesting rate with respect to the transition N ↔ O, while imposing an additional

constraint on the “dynamical activity” of the fluxes N → O and O → N . This defines a smaller feasibility set in

(10):

ΛNOa := ΛNO ∩ {(p,J) : JNO + JON ≤ a}, (S2.45)
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Figure S8. Depiction of choices for baseline and control for Sections II C (left) and II D (right) of the SM. In each case, the
baseline (shaded blue) does not include the transition of reprotonation (N ↔ O) and proton-pumping (M1 ↔M2), respectively;
instead, these are treated as control (shaded yellow). For both scenarios, as in the analysis done in the main text, note that no
cyclic current circulates under baseline dynamics but does so under baseline-and-control (i.e. the actual) dynamics.
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Figure S9. Right: actual harvesting rate (in black) and optimized harvesting rate for controlled transition N ↔ O at different
values of activity constraint a. Dashed vertical line shows in vivo membrane potential (120mV). Left panel shows the respective
currents (upper plot) and the distribution at in vivo value of ∆ψ (lower plot) for the actual system versus the optimized solutions
under a = 101 and a→ ∞, in units of sec−1.

for some value of a in units of sec−1. This upper-bounds the dynamical activity of our control transition such that

fluxes cannot be arbitrarily large.

The result of this analysis are shown in Fig. (S9). We begin by noting that, in some instances in the right plot in

this figure, the optimized constrained control yields a lower harvesting rate than that of the actual system (black line).

For example, if a = 101 at around in vivo values, the actual harvesting rate is roughly double the one achieved by the

constrained Ga=101 (blue line). This is not too surprising since, from our computation of the actual harvesting rate at

in vivo values, we read off (in sec−1):

J in vivo
ON = πNRON ≃ 41.6 J in vivo

NO = πORNO ≃ 30.1

Thus, constraining the activity as in (S2.45) limits the ability of the optimized system to amplify the current above

the actual in vivo current (see top left plot in Fig. S9). In contrast, increasing a approaches the optimal solution to

the one shown for the N ↔ O transition in the main text (Fig. 2), here shown in red. Note also that for strongly

constrained activity, such as a = 101, the optimal distribution around the in vivo value shifts in the opposite way with
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Figure S10. Right: actual harvesting rate (in black) and optimized harvesting rate for controlled transition N ↔ O at different
values of maximum affinity A and maximum activity a = 102 sec−1. Dashed vertical line shows in vivo membrane potential
(120mV). Left panel shows the respective currents (upper plot) and the distribution at in vivo value of ∆ψ (lower plot) for the
actual system and the optimized solutions under A = 0.1 and A = 0.8.

respect to the unconstrained case (blue against red bar-plots in the lower left of Fig. S9).

Finally, in the upper left of Fig. S9 we plot the current as a function of ∆ψ. We observe that the actual (baseline-

and-control) current effectively goes to zero (stalls) at large potentials, since there is not enough free energy in the

cycle to push protons across the membrane. At low potentials, the actual current saturates at a larger value while the

harvesting rate plummets. This is because at sufficiently low ∆ψ, transporting protons from inside to outside the cell

actually drains free energy stored in the membrane potential, so the cycle operates as a dud.

Thermodynamic affinity constrained: Next, we add further constraints to the optimization problem by including

thermodynamic affinity limitations, defined by the feasibility set:

ΛNOA,a := ΛNOa ∩
{
(p,J) : JNOe

−A ≤ JON ≤ JNOe
A} . (S2.46)

This linear constraint enforces a bound on the thermodynamic affinity of the N ↔ O transition,∣∣∣∣ln JONJNO

∣∣∣∣ ≤ A for some A ≥ 0 . (S2.47)

Results for this constraint are shown in Fig. S10 with the fixed choice of dynamical activity a = 102 sec−1.

The combination of the constraint on dynamical activity and thermodynamic affinity is necessary to give physically

meaningful results. To see why, imagine that only the thermodynamic affinity was constrained, as in (S2.47). Now

consider some pair of a distribution p and flux vector J in our optimization problem (10), where J is restricted to

have non-zero transitions only for N → O and O → N , and satisfy the steady-state condition BJ = −Rbp. These

fluxes can be increased as JNO 7→ JNO + α, JON 7→ JON + α for α ≥ 0. This transformation doesn’t change the

current across the transition N → O (S2.44), so the steady-state constraint is still valid for the same p (note that BJ

only depends on the currents, i.e., net fluxes). Finally, by choosing α large enough, we can make the EPR term in (10)



26

0 360
0

50

Cu
rr
en
t

0 360Potential ∆ψ (mV)
0

150

k
B
T
/se

c

Harvesting rate
in vivo
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Figure S11. Right: actual harvesting rate (in black) and optimized harvesting rates for controlled transition N ↔ O at different
values of kinetic constraint κ. Dashed vertical line shows in vivo membrane potential (120mV). Left panel shows the respective
currents (upper plot) and the distribution at in vivo value of ∆ψ (lower plot) for the actual system and the optimized solutions
under κ = 101 and unconstrained κ.

vanish and satisfy the affinity constraint (S2.47), since limα→∞ | ln[(JNO + α)/(JON + α)]| = 0. This shows that,

lacking other constraints, the affinity constraint is vacuous, since it can be always satisfied by making the one-way

fluxes sufficiently large. On the other hand, the combination of the activity and affinity constraints sets a bound on

the fluxes.

2. Constrained kinetics

Suppose that we optimizeN ↔ O as control under a constraint involving the respective transition rates. In particular,

assume that the possible rates are bounded by some value κ such that RcON ≤ κ,RcNO ≤ κ (in units of sec−1). Then,

this can be encoded in the following feasibility set:

ΛNOκ := ΛNO ∩ {(p,J) : JNO ≤ κpO, JON ≤ κpN}. (S2.48)

Note that Λκ introduces constraints that mix both p and J . We also note that constraints on the transition rates are

perhaps the most realistic ones when considering the constraints faced by by biomolecular machines [35]. Harvesting

rate curves for different κ are shown in the right plot of Fig. S11.

D. Proton-pumping as control

The proton-pumping steps (M1 ↔M2) is perhaps one of the most experimentally accessible transitions to study. This

is because it is the only transition that depends explicitly on the membrane potential ∆ψ, which can be experimentally

tweaked and thus used as an external parameter. For example, the electrochemical membrane potential is frequently

manipulated by introduction of ionphores, such as valinomycin [78].

In this section, we study this transition as control, possibly under constraints.
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Figure S12. Left: Log-log plot of the optimized harvesting rates as a function of dynamical activity bound a (ΛM1M2
a ). Middle:

Log-linear plot of the optimized harvesting rates under thermodynamic affinity and dynamical activity constraints (ΛM1M2

A,a ) for
values of A at fixed a = 50 sec−1 (green line) and a = 102 sec−1 (red line). Right: Log-log plot of the optimized harvesting
rates as a function of the kinetic bound κ (ΛM1M2

κ ). All figures also show the value of the actual harvesting rate Ġtot at the in
vivo membrane potential value (black dashed lines), which gives ∼ 70kBT/sec, and the maximum achievable harvesting rate
that the system can achieve for any ∆ψ (gray line), ∼ 83.5kBT/sec.

In this analysis, the baseline rate matrix Rb does not include the transition M1 ↔ M2. In concrete terms, we

let RbM2M1
= RbM1M2

= 0 and fix the flux parameters of the optimization problem (10) as Jij = Jji = 0 for all

{i, j} ≠ {M1,M2}. Formally, we consider the following feasibility set in (10):

ΛM1M2 := {(p,J) : p ≥ 0,1Tp = 1,J ≥ 0, Jij = 0 if (i, j) ̸∈ {(M1,M2), (M2,M1)}} . (S2.49)

along with other constraints discussed below.

To compare the result of optimization to the actual system, we also consider the actual transition as the control,

defined via:

RcM2M1
=

κM2M1

1 + e−∆stotM2M1

RcM1M2
=

κM1M2

1 + e−∆stotM2M1

(S2.50)

with all other Rcij = 0. The baseline-and-control dynamics correspond to the actual bacteriorhodopsin system

described in Sec. II A. See also Fig. S8 (right).

Recall that the proton-pumping transition is the only one that involves the membrane potential ∆ψ (see (S2.31)),

and that it is no longer part of the baseline. For this reason, the optimization problem (10), which only involves

baseline parameters, no longer depends on the choice of ∆ψ. We now proceed to study this problem for different

choices of additional constraints on (p,J). For this reason, in Fig. 2, the value for G whenM1 ↔M2 acts as control

is a constant. In this case, it is interesting to compare the optimum harvesting rates with the values of Ġtot at in

vivo membrane potential versus max∆ψ Ġtot, the maximum value attained by Ġtot across all membrane potentials in

Fig. 2 (right). Results are shown in Fig. S12.
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Activity constraint: analogously to Sec. II C, we now define:

ΛM1M2
a := ΛM1M2 ∩ {(p : J) : JM1M2

+ JM2M1
≤ a, } (S2.51)

for values of a in units of sec−1. Solving (10) under ΛM1M2
a yields the blue curve in Fig. S12 for G as a function of a.

Thermodynamic affinity constraint: owing to the same reasoning as in Sec. II C, this constraint proves physically

meaningful if combined with another constraint on the fluxes, such as the activity constraint (S2.51). In this case, we

analogously define the feasibility set:

ΛM1M2

A,a := ΛM1M2
a ∩

{
(p,J) : JM1M2

e−A ≤ JM2M1
≤ JM1M2

eA
}
, (S2.52)

In the inset of Fig. S12, we show the solution to (10) under ΛM1M2

A,a for values of a range of A with fixed values of

a = 50 sec−1 (green line) and a = 102 sec−1 (red line).

Kinetic constraint: analogously to Sec. II C, we define:

ΛM1M2
κ := ΛM1M2 ∩ {(p,J) : JM1M2

≤ κpM2
, JM2M1

≤ κpM1
}, (S2.53)

for values of κ in units of sec−1. Solving (10) underΛM1M2
κ yields the orange curve in Fig. S12 for G as a function of κ.
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III. CLOSED-FORM SOLUTIONS OF EQ. (11) IN DIFFERENT REGIMES

We consider a system of n states indexed by i ∈ {1, . . . , n} that evolves according to a Markovian master equation

with rate matrix R = Rb+Rc, where Rb and Rc correspond to baseline and control processes respectively. Here we

study the optimization (11) in three limiting regimes.

A. Linear Response (LR) regime, Eq. (15)

We first consider (11) in the linear response regime, that is under the assumption that the optimal distribution is close

to the baseline steady state p∗ ≈ πb, thereby arriving at (15). We assume that Rb is irreducible and has a unique

steady state πb with full support. Note that the assumption that πb has full support is satisfied when Rb is “weakly

reversible”, meaning that Rbij > 0 whenever Rbji > 0.

First, we rewrite the entropic term in (13) as

∑
i,j

Rbijpj ln pi =
∑
i,j

Rbijpj

(
ln pi − lnπbi

)
+
∑
i,j

Rbijpj lnπ
b
i (S3.54)

=
∑
i,j

Rbij(pj − πbj)
(
ln pi − lnπbi

)
+
∑
i,j

Rbijpj lnπ
b
i , (S3.55)

where in the last step we used that −∑i,j R
b
ijπ

b
j lnπ

b
i = 0 when πb is the steady-state distribution of the baseline.

We focus on the first term in (S3.55), and use the expansion lnx ≃ x− 1 for x ≈ 1, to derive

∑
i,j

Rbij(pj − πbj) ln

(
pi

πbi

)
≈
∑
i,j

Rbij(pj − πbj)
pi − πbi
πbi

=
∑
i,j

√
πbj

πbi
Rbijzjzi, (S3.56)

where we defined

z := D−1(p− πb) , with Dij := δij

√
πbi . (S3.57)

Our variable to optimize is a probability distribution p, which needs to satisfy two constrains:
∑

i pi = 1 and pi ≥ 0.

The latter constraint holds automatically, given our hypothesis that p is very close to πb. The former constraint can

be expressed in terms of z by setting

zTD−1πb = 0 →
∑
i

(
pi − πbi

)
= 0 ⇐⇒

∑
i

pi =
∑
i

πbi = 1. (S3.58)

We impose this linear constraint on z below, when redefining the optimization problem in terms of z rather than p.

Before we finish off with the entropic term, we introduce the following symmetric matrix:

Aij :=
1

2

(
Rbij +Rbji

πbi
πbj

)
. (S3.59)
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The matrix A is sometimes dubbed the “additive symmetrization” of Rb. It will always obey the detailed balance

condition (DB) for πb, πbjAij = πbiAji. Moreover, A = Rb if and only if Rb obeys DB. We note that only in this

latter case would πb be an equilibrium distribution. We also define:

M := D−1AD → Mij = (D−1AD)ij =

√
πbj

πbi
Aij . (S3.60)

Observe that M = D−1AD, which implies that M and A are related via a similarity transformation so any right

eigenpair (λ,u) of A,
(
λ,D−1u

)
is an eigenpair of the symmetric matrix M . Also, since D and A are both

symmetric, so is M . In particular, since A is the sum of two irreducible rate matrices, it is then itself an irreducible

rate matrix which has a unique right eigenvector. It is easy to show that, in fact, πb is A’s steady-state distribution

with eigenvalue 0. Then, by similarity, M also has a unique eigenvector D−1πb with eigenvalue 0. Moreover, since

A is a rate matrix, it is negative semidefinite (λα ≤ 0), and so M is also negative semidefinite. We indicate the right

eigenvectors of A as uα and the eigenvectors of the symmetric matrixM as mα = D−1uα. We assume that mα are

normalized as ∥mα∥ = 1, therefore ∥D−1uα∥ = 1.

Going back to (S3.56), we note that

∑
ij

√
πbj

πbi
Rbijzjzi =

1

2

∑
ij

√
πbj

πbi
Rbijzjzi +

∑
i,j

√
πbi
πbj
Rbjizizj


=
∑
i,j

√
πbj

πbi

(
Rbij +

πbi
πbj
Rbji

)
zjzi =

∑
i,j

√
πbj

πbi
zjzi =

∑
i,j

Mi,jzjzi. (S3.61)

In order to keep track of the second term in (S3.55), let us first recall the free-energy term in (13) and the pay-off

vector ϕ which, in terms of the baseline parameters, reads as

ϕi := ġbi +
∑
j

Rbji(fj − fi + gbji),

and conveniently redefine it such that:

ϕLR = ϕ+ β−1Rb
T
lnπb. (S3.62)

For reasons that will become obvious below, we re-scale (S3.62) by setting

v :=
β

2
DϕLR. (S3.63)

We combine the above with the definition (S3.57) and the nonlinear term (S3.61). We then recast the optimization

problem in terms of the variable z, which is constrained by (S3.58). Finally, under the LR regime, (11) is approximated

by

G ≃ GLR := ϕTπb + β−1 max
z∈Rn:zTD−1πb=0

zTMz + 2zTv. (S3.64)
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Eq. (S3.64) is a quadratic optimization problem, which can be solved using standard techniques from linear algebra.

For convenience we summarize these techniques in Lemma 1 in Sec. V of this SM. That theorem implies that

GLR = ϕTπb − β−1vTM+v p∗
LR = πb −DM+v (S3.65)

where M+ =
∑

α>1 λ
−1
α mαmαT is the Moore-Penrose pseudo-inverse of M . In applying Theorem 1, we used

result (S5.115) and the relation p∗ = πb +Dz∗, where z∗ solves (S3.64).

We can rewrite (S3.65) using the eigensystem of M ,

GLR = ϕTπb + β−1
∑
α>1

(vTmα)2

−λα
p∗
LR = πb +

∑
α>1

vTmα

−λα
Dmα (S3.66)

Finally, as in the main text we define

Ωα = β−1vTmα =
1

2

(
DϕLR)T (D−1uα

)
=

1

2

(
ϕLR)T uα, (S3.67)

which can be interpreted as the harvesting amplitude of the eigenmodes of A. Plugging into (S3.65) gives Eq. (15)

in the main text,

GLR = ϕTπb + β
∑
α>1

|Ωα|2
−λα

and p∗
LR = πb +

∑
α>1

βΩα
−λα

uα (S3.68)

Region of validity of the LR regime

Note that the LR regime applies when ∥p∗ − πb∥ ≪ 1. We can write

∥p∗
LR − πb∥ = β

∥∥∥∑
α>1

Ωα
−λα

uα
∥∥∥ ≤

∑
α>1

β|Ωα|
−λα

∥uα∥

≤
∑
α>1

β|Ωα|
−λα

∥D∥∥mα∥ ≤ β(n− 1)max
α>1

|Ωα/λα|max
i

√
πbi ,

(S3.69)

where we used the triangle inequality and properties of the matrix norm. Therefore, the LR approximation is

guaranteed to be valid when

max
α>1

|Ωα/λα| ≪
1

β(n− 1)maxi

√
πbi

. (S3.70)

In other words, the harvesting amplitude on each eigenmode must be slower than relaxation modes, up to a factor that

depends only on β, n, and the steady state πb.

B. Deterministic (D) regime, Eq. (16)

In the Deterministic (D) regime, we assume that the nonlinear terms in (13) are small compared to the linear terms.

This allows us to approximate the optimal solution of (13) as the linear optimization

G = max
p

β−1
(
Rbp

)T
lnp+ ϕTp (S3.71)
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≈ max
p

ϕTp =: GD, (S3.72)

where (lnp)T := (ln p1, . . . , ln pn). The maximum in (S3.72) is achieved by (p∗
D)i = δii∗ with i∗ = argmaxi ϕi, so

GD = ϕi∗ = max
i

[
ġbi +

∑
j

Rbji(fj − fi + gbji)
]
, (S3.73)

as appears in the main text.

Region of validity of the D regime

We now discuss when the Deterministic regime approximation is valid.

We begin by making the assumption that the baseline harvesting rate is non-negative, Ġ(πb) ≥ 0. In addition, for

notational convenience, let K := maxi(−Rbii) indicate the largest escape rate.

We express the regime of validity in terms of the following two parameters:

α :=
K

βGD
=

maxi(−Rbii)
βmaxi

[
ġbi +

∑
j R

b
ji(fj − fi + gbji)

] ≥ 0 (S3.74)

γ := − ln
(
min
i
πbi

)
≥ 0 . (S3.75)

The parameter α reflects the balance between diffusion out of the optimal state versus Deterministic harvesting rate.

The parameter γ is the minimal steady-state probability of any state.

Assuming α < 1, we show that ∣∣∣∣ G

GD
− 1

∣∣∣∣ ≤ α (− lnα+ γ + 1) (S3.76)

The RHS of (S3.76) vanishes for α→ 0, so the LHS tightens as G /GD → 1. We emphasize that the D approximation

only becomes accurate in relative, not additive, terms (i.e., it is not necessarily true that G − GD → 0).

To derive (S3.76), we first consider an upper bound on G . Observe that for any p,

−Ṡb(p) =
∑
i,j

Rbijpj ln pi ≤
∑
i

Rbiipi ln pi ≤
∑
i

|Rbii|(−pi ln pi) ≤ KS(p) ≤ K lnn (S3.77)

where we used Rbijpj ln pi ≤ 0 for i ̸= j and S(p) ≤ lnn. Plugging into (S3.71) and using that GD ≥ ϕTp for all p

and γ ≥ lnn, we then have

G ≤ K(lnn)/β + GD = GDα lnn+ GD ≤ GDαγ + GD . (S3.78)

To derive a lower bound on G , define the distribution pi := (1− α) δii∗ +απbi , with α as in (S3.74). Plugging this

distribution into the objective in (S3.71) yields

G ≥ β−1
(
Rbp

)T
lnp+ ϕTp = β−1(1− α)

∑
i

(Rbii∗ ln pi) + ϕTp, (S3.79)
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where we used that
∑

j R
b
ij

(
(1− α) δji∗ + απbj

)
= Rbii∗(1−α) since Rbπb = 0. Using Rbi∗i∗ ln pi∗ ≥ 0, we bound

the first term on the right side of (S3.79) as

∑
i

Rbii∗ ln pi ≥
∑
i:i ̸=i∗

Rbii∗ ln pi =
∑
i:i ̸=i∗

Rbii∗ ln(απ
b
i )

≥
∑
i:i ̸=i∗

Rbii∗(lnα− γ)

= −Rbi∗i∗(lnα− γ) ≥ K (lnα− γ) , (S3.80)

where we used that lnα− γ < 0 in the last inequality. For the second term on the right side of (S3.79),

ϕTp =
∑
i

piϕi = (1− α)
∑
i

δii∗ϕi + α
∑
i

πbiϕi = (1− α)GD + αĠ(πb). (S3.81)

We can plug (S3.80) and (S3.81) into (S3.79) to give a lower bound on G ,

G ≥ β−1(1− α)K(lnα− γ) + (1− α)GD + αĠ(πb)

= (1− α)GDα(lnα− γ − 1) + GD + αĠ(πb)

where we used the definition of α (S3.74) and rearranged. Since lnα − γ < 0, we can further drop the α2 term to

give

G ≥ GDα(lnα− γ − 1) + GD + αĠ(πb) ,

≥ GDα(lnα− γ − 1) + GD , (S3.82)

where in the second line we used the assumption Ġ(πb) ≥ 0. Combining and using that α < 1 yields

GDα (lnα− γ − 1) ≤ G − GD ≤ GDαγ ≤ GDα(− lnα+ γ + 1) , (S3.83)

which can be rearranged to give (S3.76).

Interestingly, we can also derive a relative perturbation bound on the maximum increase of the harvesting rate,

above the baseline harvesting rate. Specifically, using a similar derivation as above, we can show that∣∣∣∣∣ G − Ġ(πb)
GD − Ġ(πb)

− 1

∣∣∣∣∣ ≤ α (− lnα+ γ + 1) , (S3.84)

where α = K/β(GD − Ġ(πb)) ≥ 0 and γ is defined as before. In fact, this perturbation bound on the increase holds

without any additional assumptions, i.e., regardless of the sign of Ġ(πb).



34

C. Near-Deterministic (ND) regime, Eq. (17)

In this regime, we consider a perturbation of the Deterministic regime: we assume that the optimal p∗ is close to a

delta-function distribution centered at i∗ = argmaxiϕi. If pi ≈ δii∗ ,

ṗi =
∑
j

Rbijpj ≈ Rbii∗ . (S3.85)

This allows us to approximate the entropic term in (S3.71) as

(Rbp)T lnp =
∑
i,j

Rbijpj ln pi ≈
∑
i

Rbii∗ ln pi

= Rbi∗i∗ ln
(
1−

∑
i:i ̸=i∗

pi

)
+
∑
i:i ̸=i∗

Rbii∗ ln pi

≈
∑
i:i ̸=i∗

(
−Rbi∗i∗pi +Rbii∗ ln pi

)
(S3.86)

where we used ln(1− x) ≈ −x when x ≈ 0. Plugging into (S3.71) gives

G ≃ max
p

β−1
∑
i:i ̸=i∗

(
−Rbi∗i∗pi +Rbii∗ ln pi

)
+
(
1−

∑
i:i ̸=i∗

pi

)
ϕi∗ +

∑
i:i ̸=i∗

piϕi

= GD +max
p

∑
i:i ̸=i∗

[
−pi

(
ϕi∗ − ϕi + β−1Rbi∗i∗

)
+ β−1Rbii∗ ln pi

]
=: GND , (S3.87)

where we recall that GD = ϕi∗ , which does not depend on p. After maximizing with respect to {pi}i:i ̸=i∗ by taking

derivatives and setting them to zero, one obtains

(p∗
ND)i =

Rbii∗

β(ϕi∗ − ϕi) +Rbi∗i∗
(for i ̸= i∗) and (p∗

ND)i∗ = 1−
∑
i:i ̸=i∗

(p∗
ND)i . (S3.88)

Plugging (S3.88) into (S3.87) gives

GND = GD + β−1
∑
i:i ̸=i∗

Rbii∗ [ln(p
∗
ND)i − 1] . (S3.89)

Region of validity of the ND regime

The ND approximation applies when (p∗
ND)i∗ ≈ 1, or equivalently when

1 ≫
∑
i:i ̸=i∗

(p∗
ND)i =

∑
i:i ̸=i∗

Rbii∗

β(ϕi∗ − ϕi) +Rbi∗i∗
.

For convenience, we define the harvesting gap as the difference in the pay-off between the optimal state i∗ and the

second optimal state,

∆ϕmin := ϕi∗ − max
i:i ̸=i∗

ϕi .
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By combining and rearranging the above, we can simplify the validity condition for the ND approximation as

β∆ϕmin ≫ −2Rbi∗i∗ , (S3.90)

Note that this condition also guarantees that (p∗
ND)i ≥ 0 for i ̸= i∗. Expression (S3.90) implies that ND approximation

is valid when the harvesting gap is much larger than the rates of escape from the optimal state i∗.
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IV. UNICYCLIC MODEL

Here we analyze the unicyclic model considered in the main text. Before proceeding, we briefly introduce some

useful facts about the eigendecomposition of a unicylic rate matrix.

A. An Algebraic Aperitif: eigendecomposition of unicyclic rate matrix

Consider a unicylic rate matrix Rb,

Rb =



−2k k 0 · · · k

k −2k k · · · 0

0 k −2k · · · 0

...
...

... . . . ...

k 0 0 · · · −2k


, (S4.91)

which is a symmetric circulant matrix. Due to symmetry, its steady state is uniform: πbi = 1/n for all i. The

eigensystem for R is obtained from the theory of circulant matrices [45], which, for odd n, yields:

λa = −2k [1−ℜ (ωa)] = −2k

[
1− cos

(
2π(a− 1)

n

)]
, (S4.92)

where ωa := ei2π(a−1)/n. These eigenvalues are all degenerate twice (except λ(1) = 0, whose eigenvector is simply

(1, 1, . . . , 1)). An orthonormal choice of eigenbasis is given by the set

{m(a)} =

{
1√
n

(
1, ωa, ω

2
a, . . . , ω

n−1
a

)}
. (S4.93)

B. Transition harvesting cycle

We now analyze the unicyclic model using techniques developed in Sec. III. We consider a systems with n state

arranged in a ring, where baseline transitions are symmetric with uniform kinetics: i
k
⇌
k
i+1 mod n, ∀i = 1, . . . , n

(see Fig. S13 here and Fig. 4 (a) in the main text). The baseline dynamics are equivalent to a random walk on a

one-dimensional ring, and the baseline rate matrix is given by (S4.91).

We assume that a single transition, taken to be 1 → 2 without loss of generality, harvests gb21 = −gb12 = Θ joules

of free energy. In addition, note that in the main text we chose to set the units of k = 1 without loss of generality.

However, we have kept k explicit in the rest of the SM. For this system, the baseline steady state is uniform, πbi = 1/n,

and the harvesting vector is

ϕLR = ϕ = (kΘ,−kΘ, 0, . . . , 0) . (S4.94)
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Figure S13. A unicyclic system across
the n states with symmetric back-and-
forth rates k, as discussed in the main
text. An amount of Θ joules is har-
vested as free energy into the internal
reservoir for each transition 1 → 2
(and vice versa for 2 → 1).

In the rest of this section, we analyze this model in the LR, D and ND regimes. We will also discuss the validity of

these approximation in terms of the model parameters.

1. LR regime

We first consider the LR solution (S3.68). Combining (S4.94) with (S3.63), πbi = 1/n, and D = 1√
n
In gives

v = kβΘ
2
√
n
(1,−1, 0, . . . , 0). In addition, since in this particular example R obeys detailed balance, Rb = A. Finally,

it is easy to verify that M = D−1AD = A = Rb. Thus, M has the same eigendecomposition as R. The normalized

eigenvectors of M are given by (S4.93).

We can compute Ωa = β−1vTmα for a = 2, . . . , n, using the eigenvector set given in (S4.93),which simply yields

Ωa =
kΘ

2n
(1− ωa) . (S4.95)

Next, we compute the maximum harvesting rate attainable using (S3.68),

GLR =

n∑
a=2

β |Ωa|2
−λa

= βk

(
Θ

2n

)2 n∑
a=2

|1− ωa|2

2
[
1− cos

(
2π(a−1)

n

)]
= βk

(
Θ

2n

)2 n∑
a=2

1

= βk

(
Θ

2n

)2

(n− 1) . (S4.96)

On the other hand, continuing with odd n, it is also possible to compute the deviation of the optimal distribution

from stationary distribution using (S3.68),

∆p∗
LR := p∗

LR − πb = β

n∑
a=2

Ω†
aDmα

−λa
, (S4.97)

which is depicted in Fig. S14(a). (Note that, due to our choice of a complex-valued eigenbasis, we must be careful in

adding the complex conjugate on the Ωa, following the ordering of the operator M+ in (S3.68).) Now, component
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Figure S14. The optimal ∆p∗
LR (deviation of optimal

distribution from the uniform baseline steady state)
given (S4.99). The optimal distribution exhibits a
clockwise cyclic current given by (S4.100), The mag-
nitude of ∆p∗

LR decays as ∼ n−1, so larger rings will
result in optimal distributions that are closer to the
baseline steady state.

by component, we can rewrite (S4.97) as

(∆p∗
LR)i =

βΘ

4n2

n∑
a=2

(1− ωa)
†ωi−1
a

1− cos
(
2π(a−1)

n

)
=
βΘ

4n2

n∑
a=2

cos
(
2π(a−1)(i−1)

n

)
− cos

(
2π(a−1)(i−2)

n

)
1− cos

(
2π(a−1)

n

)
=
βΘ

4n2

− n∑
a=2

cos

(
2π(a− 1)(i− 2)

n

)
−

n∑
a=2

sin
(
2π(a−1)(i−2)

n

)
sin
(
2π(a−1)

n

)
1− cos

(
2π(a−1)

n

)
 . (S4.98)

In the first line, we used the expressions for Ωa from (S4.95), λa from (S4.92), mα from (S4.93), and D = I/
√
n

and then simplified. In the second line, we expanded (1 − ωa)
†ωi−1
a = ωi−1

a − ωi−2
a into real and imaginary

components and then used that the imaginary components cancel over the sum. In the last line, we used the identity

cos(x + y) = cos(x) cos(y) − sin(x) sin(y) for x = 2π(a−1)(i−2)
n and y = 2π(a−1)

n and then simplified. It can

be verified that the first series in (S4.98) sums to −1. The second series is trickier but can be simplified using

trigonometric methods as shown in Ref. [79]. Plugging in that solution and simplifying gives the very simple

expression:

(∆p∗
LR)i =

βΘ

4n2


2(i− 1)− (n+ 1) for i = 2, . . . , n

(n− 1) for i = 1

. (S4.99)

Thus, in the LR regime, the optimal distribution builds up in equal increments starting at i = 2 until the optimal state

i = 1, after which it falls off a cliff. This is shown in Fig. S14.

We can also compute the probability current across the transition 1 → 2, which we leave as an exercise for the

reader:

k[(p∗
LR)1 − (p∗

LR)2] =
kβΘ

2n

(
n− 1

n

)
. (S4.100)

The expressions (S3.69) and (S3.70) suggest for which values of Θ the optimal solution will be in the LR regime.
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In this case, however, it is possible to work out the norm ∥p∗
LR − πb∥ exactly:

∥∆p∗
LR∥ =

βΘ

4n2

[
n∑
x=2

(2x− n− 3)2 + (n− 1)2

]1/2
=

βΘ

4
√
3

√
n2 − 1

n3

which implies that the LR regime is valid when

∥p∗
LR − πb∥ ≪ 1 ⇔ Θ ≪ 4

√
3

β

√
n3

n2 − 1
(S4.101)

In this case, the larger the number of states n in the ring, the wider the interval of Θ values that will make the

optimal solution fall into the LR regime. For large n, we obtain

Θ ≪ 4
√
3

β

√
n.

2. D and ND Regimes

Note that the optimal mesostate is i∗ = 1. Hence GD = ϕ1 = kΘ and (p∗
D)i = δi1. Next, consider the ND

expressions (S3.88) with the payoff vector (S4.94). Denote ∆ϕ2 = ϕi∗ − ϕ2 = 2kΘ and ∆ϕn = ϕi∗ − ϕn = kΘ;

and observe that Rb21 = Rbn1 = k, Rb11 = −2k and Rbj1 = 0 for all j ̸= 2, n. Hence, for i ̸= i∗, we obtain

(p∗
ND)i =

Rbi1
β∆ϕi +Rb11

=



1
2(βΘ−1) i = 2

1
βΘ−2 i = n

0 otherwise

(p∗
ND)i∗=1 = 1−

∑
i:i ̸=i∗

(p∗
ND)i = 1− 3βΘ− 4

2(βΘ− 1)(βΘ− 2)
.

(S4.102)

The harvesting rate attainable in this regime can be calculated using Eq. (S3.89),

GND = ϕ1 + β−1
∑
i:i ̸=i∗

Rbi1 [ln (p
∗
ND)i − 1] (S4.103)

= k(Θ− 2/β)− kβ−1 ln [2(βΘ− 1)(βΘ− 2)] . (S4.104)
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Figure S15. We consider a unicyclic
system with transitions across the n
states with symmetric back-and-forth
rates k. A single state (labelled i = 1)
leads to a flux of free energy at rate θ.

C. State harvesting cycle

In this section, we consider the second unicyclic model, see Fig. S15 and Fig. 4 (b) in the main text. In this model, the

baseline dynamics correspond once again to the unicycle with symmetric rates, as in Sec. IV B. However, harvesting

is not coupled to transitions, but rather to internal fluxes within a single mesostate. Without loss of generality, we

choose this mesostate to be i = 1. In other words, we let ġb1 = θ > 0 and ġb1<i≤n = 0. There is now no preferential

direction for the probability current. The free energy harvested per unit time when the system is in mesostate 1 is

given by the parameter θ, which carries the same units as G . Just as before, the baseline steady state is uniform, i.e.

πbi = 1/n. Hence, the harvesting vector is

ϕLR = ϕ = (θ, 0, . . . , 0) . (S4.105)

Below we consider the LR, D and ND regimes.

1. LR Regime

In analogy with the previous example, the expression for the upper bound in free energy harvesting rate under the LR

regime here is obtained as

GLR = β

n∑
a=2

Ω2
a

−λa
, (S4.106)

with Ωa = β−1vTmα, where the vectors mα correspond to the eigensystem discussed in discussed in Sec. IV A,

i.e. in (S4.93). On the other hand, here v = βθ
2
√
n
(1, 0, . . . , 0). The latter is obtained by construction using (S3.57),

(S3.62) and (S3.63). Thus,

Ωa =
θ

2n
.
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Figure S16. The optimal ∆p∗
LR (the deviation of the

optimal distribution from the uniform baseline steady
state) from (S4.109). Note that there optimal distri-
bution does not lead to a cyclic current.

For large even n, it is possible to show that [80]

n/2∑
a=2

1

1− cos
(
2π(a−1)

n

) ≃ n2

12
+O(1) , (S4.107)

which allows us to write

GLR ≃ β

12k

(
θ

2

)2

. (S4.108)

If we wanted to approximate the result above for a large odd n, we would need to add a term proportional to 1/4n2,

which is of second order, hence the leading order is still captured by expression (S4.108).

We can also study the optimal distribution using (S3.68),

∆p∗
LR = p∗

LR − πb = β

n∑
a=2

Ω†
aDmα

−λa
=

βθ

4kn2

n∑
a=2

uα

1− cos
(
2π(a−1)

n

) (S4.109)

with u(a) :=
(
1, wa, w

2
a, . . . , w

n−1
a

)
. This is computed numerically and its behavior is shown in Fig. S14(b). We

leave this computation as an exercise to the reader.

Expression (S3.70) suggests sufficiency conditions for when the optimum will be in the LR regime. Note that, in

this case, maxa>1Ωa = θ/2n while

min
a>1

−λa = 4kmin
a>1

sin2
(
π(a− 1)

n

)
= 4k sin2

(π
n

)
.

Then, using ∥D∥ = 1/
√
n, condition (S3.70) will read as:

θ

2n
≪ 4k

√
n

β(n− 1)
sin2

(π
n

)
⇔ θ ≪ 8

√
nk

β

(
n

n− 1

)
sin2

(π
n

)
. (S4.110)

For sufficiently large n, we can approximate sin2(πn) ≈ (πn)
2, so the LR regime is valid when

θ ≪ 8π2

n3/2
k

β
. (S4.111)

Expression (S3.70), however, is not necessarily a tight bound. That is, the result hereby obtained is a sufficient

condition for the LR regime to be valid, but not a necessary one.
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2. D and ND Regimes

The optimal mesostate is i∗ = 1. Hence

GD = ϕ1 = θ (p∗
D)i = δi1 .

Next, by following a similar procedure as above, we denote ∆ϕ2 = ∆ϕn = θ, Rb21 = Rbn1 = k, Rb11 = −2k and

Rbj1 = 0 for all j ̸= 2, n. Thus, for i ̸= i∗, we obtain:

(p∗
ND)i =

Rbi1
∆ϕi +Rb11

=
1

βθ/k − 2
(δ2i + δni)

(p∗
ND)i∗=1 = 1−

∑
i:i ̸=i∗

(p∗
ND)i =

βθ/2k − 2

βθ/2k − 1
.

(S4.112)

The harvesting rate attainable in this regime can be calculated using Eq. (S3.89),

GND = ϕ1 + β−1
∑
i:i ̸=i∗

Rbi1 [ln(p
∗
ND)i − 1]

= θ − 2kβ−1
[
1 + ln

(
βθk−1 − 2

)]
. (S4.113)



43

V. QUADRATIC OPTIMIZATION LEMMA

In this section, we provide a useful theorem for solving the quadratic optimization problems that occurs in our analysis

of the linear response (LR) regime. It uses standard techniques from linear algebra.

Lemma 1. Consider the maximization problem

L ∗ = max
z∈Rn:uTz=0

zTMz + 2zTv, (S5.114)

where M ∈ Rn×n is a negative semidefinite symmetric matrix with a single null eigenvector u ∈ Rn and v ∈ Rn is

any vector. The solution is given by:

L ∗ = −vTM+v and z∗ = −M+v, (S5.115)

where M+ is the Moore-Penrose pseudo-inverse of M .

Proof. Since M is symmetric, its real valued eigendecomposition can be written as:

M =

n∑
α=1

λαu
αuαT

where we will choose u = u1, without loss of generality, i.e. λ1 = 0 is the only zero eigenvalue. The Moore-Penrose

pseudo-inverse of M can be written as:

M+ =

n∑
α=2

1

λα
uαuαT .

The constraint on the optimization problem reads as zTu = 0, which implies that

M+Mz = (I − uuT )z = z.

Now, consider the objective function,

zTMz + 2zTv = zTMz + vTM+Mz + zTMM+v =
(
z +M+v

)T
M
(
z +M+v

)
− vTM+v (S5.116)

where we used properties of the transverse operation, symmetry ofM andM+, thatM+Mz = z ⇔ zT = zTMM+,

vTz = zTv and that M+MM+ = M+. Note that the last term on the right hand side of the previous expression

does not depend on z, and that the first term is always non-positive because M is negative semidefinite. Thus, the

objective is maximized only by setting the first term to zero, which is achieved by z = −M+v. Upon substitution,

this yields L ∗ = −vM+v .


