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Abstract

We tackle the problem of feature unlearning from a pre-trained
image generative model: GANs and VAEs. Unlike a common
unlearning task where an unlearning target is a subset of the
training set, we aim to unlearn a specific feature, such as
hairstyle from facial images, from the pre-trained generative
models. As the target feature is only presented in a local region
of an image, unlearning the entire image from the pre-trained
model may result in losing other details in the remaining re-
gion of the image. To specify which features to unlearn, we
collect randomly generated images that contain the target fea-
tures. We then identify a latent representation corresponding
to the target feature and then use the representation to fine-
tune the pre-trained model. Through experiments on MNIST,
CelebA, and FFHQ datasets, we show that target features are
successfully removed while keeping the fidelity of the original
models. Further experiments with an adversarial attack show
that the unlearned model is more robust under the presence of
malicious parties.

Introduction
Recent advancements in deep generative models have led
to the generation of highly realistic images. However, this
progress has also raised concerns about the potential misuse
of such models. In some instances, generated images may
contain violent or explicit content and inadvertently leak
private information used to train the model. To address these
issues, a well-prepared dataset with appropriate cleansing
procedures can mitigate the potential for abuse of generative
models.

In addition to data preparation and cleansing, machine
unlearning serves as a complementary tool for preventing the
problem in the development and deployment of a generative
model. Machine unlearning aims to erase the target data
from a pre-trained machine-learning model, which can be
required to remove private information, harmful content, and
biased information (Cao and Yang 2015). However, most
of the machine unlearning methods have been focused on
supervised models so far (Gupta et al. 2021; Tarun et al.
2021; Baumhauer, Schöttle, and Zeppelzauer 2022; Ginart
et al. 2019; Yoon et al. 2022; Chundawat et al. 2022; Golatkar,
Achille, and Soatto 2020; Nguyen, Low, and Jaillet 2020).
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Figure 1: Result of unlearning various features from pre-
trained StyleGAN model. We utilize the same latent vector
to generate images from both the original and the unlearned
models. Our method effectively unlearns the target feature
while maintaining high image quality.

In this work, we tackle the problem of feature unlearning
from pre-trained image generative models where we aim to
fine-tune the model to exclude the production of samples that
exhibit target features. One of the challenges in feature un-
learning is that the target feature can be subtle. For instance, a
specific hairstyle of a facial image could be the target feature
we want to remove from the model, as shown in Figure 1.
The subtlety in the target features makes it hard to adopt
traditional supervised model unlearning approaches.

In many unlearning scenarios with supervised models, the
target of unlearning is a subset of a training dataset, leading to
the oracle model that could have been obtained from training
without the target subset. Unlike supervised model unlearn-
ing, it is non-trivial to define the target data when unlearning
feature since the target feature is only presented in a local re-
gion of an image. If we naively remove the entire image that
contains the target feature, we could lose the other informa-
tion in the remaining region of the image. Eventually, subset
removal results in a loss of high fidelity and diversity in the
generated samples. On the other hand, explicit pixel-level
supervision could be given to unlearn the target feature, but
it is often very expensive to obtain such supervision. Further-
more, the problem becomes more challenging if the training
dataset is inaccessible during unlearning for several reasons,
e.g., storage capacity, private content protection, etc.
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To overcome such challenges, we propose a novel gen-
erative model unlearning framework that can be applied to
generative adversarial networks (GANs) and variational auto-
encoders (VAEs). To do so, we first collect randomly gener-
ated images that contain the target features. We then identify
the latent representation of the target features and use the rep-
resentation to fine-tune the pre-trained model, which prevents
the model from generating images with the target feature. To
our knowledge, this is the first framework for unlearning tar-
get features in the pre-trained GANs and VAEs. Experimental
results show that our unlearning method effectively removes
the target feature while maintaining the image quality. An ad-
ditional study based on adversarial attacks also confirms that
the proposed method is more robust than a standard model
against malicious behavior.

Related Work
Machine Unlearning
Previous studies have demonstrated that machine learning
models may leak sensitive information through attacks or
specific inputs (Yuan et al. 2019; Cao and Yang 2015). In
addition, regulations have emerged to protect private infor-
mation, such as ‘the right to be forgotten’, which grants users
the request that their personal information must be removed
from a system (Rosen 2011). These highlight the growing
significance of machine unlearning.

Unlearning scenarios can vary depending on the require-
ments (Nguyen et al. 2022). Traditional machine unlearn-
ing approaches assume that all training data can be ac-
cessed (Gupta et al. 2021; Tarun et al. 2021; Baumhauer,
Schöttle, and Zeppelzauer 2022; Ginart et al. 2019). How-
ever, recent studies have presented problem formulations in
which access to the data is highly restricted (Yoon et al. 2022;
Chundawat et al. 2022; Golatkar, Achille, and Soatto 2020;
Nguyen, Low, and Jaillet 2020). In the context of feature un-
learning, Guo et al. (2022) proposes a representation detach-
ment approach to unlearn the specific attribute for the image
classification task. However, the above researches focus on
supervised learning tasks, whereas we focus on unsupervised
generative models.

Recent research has focused on unlearning methods into
generative models. Kong and Chaudhuri (2022) proposed a
data redaction method from pre-trained GAN. They use a
data augmentation-based algorithm to prevent making un-
desirable samples. This method can only be applied when
the entire dataset is available. Besides that, we first propose
the generative model feature unlearning framework when ac-
cess to entire data is infeasible. Additionally, Gandikota et al.
(2023) and Zhang et al. (2023) propose unlearning methods
applicable to text-to-image diffusion models. However, these
methods are limited to cross-attention-based models, which
may hinder their generalization to diverse generative models.
In contrast, our unlearning method can be applied to any
generative model that has its own latent space.

Latent Space Analysis
It is known that generative models, such as GANs (Goodfel-
low et al. 2020; Radford, Metz, and Chintala 2015; Karras

et al. 2017) and VAEs (Kingma and Welling 2013; Child
2021) well preserve the information of data within a low-
dimensional space, referred to the latent space. In recent
years, various techniques for traversing the latent space and
extracting a latent vector that represents a visual feature have
been proposed.

Radford, Metz, and Chintala (2015) obtain the visual fea-
ture vector by subtracting the two latent vectors: the mean
latent of the images without the features and the mean la-
tent of the images with the features. To decide the label of a
given latent vector of an image, several approaches attempt
to learn a predictor with latent vectors labeled with the cor-
responding features (Goetschalckx et al. 2019; Tran, Yin,
and Liu 2017; Shen et al. 2020). Unsupervised methods for
finding interpretable axes in the generator have also been
proposed (Härkönen et al. 2020; Voynov and Babenko 2020;
Tzelepis, Tzimiropoulos, and Patras 2021; Shen and Zhou
2021; Wang and Ponce 2021).

In our proposed framework, obtaining the target vector rep-
resenting the target feature in the latent space is a crucial step.
We introduce a straightforward and user-friendly approach
that can be applied to both GANs and VAEs, which can be
applied to real-world scenarios easily. Additionally, we lever-
age the target vector to the target identification method within
latent space.

Feature Unlearning for Generative Models
In this section, we propose a framework for unlearning gener-
ative models such as GANs and VAEs to make the unlearned
model unable to generate the target feature. Throughout this
work, we assume that the training dataset is inaccessible once
the training is done due to various reasons, such as limited
storage or privacy concern.

Dataset Preparation
Feature unlearning aims to remove a specific feature from a
pre-trained generative model. For example, after unlearning
the smile feature from a generative model trained on the
CelebA dataset, the model would never generate images of a
smiling person. To do so, in our framework, we first collect
datasets using the principle of distance supervision (Mintz
et al. 2009). We curate a ‘positive’ dataset with images that
contain the feature to be erased from generated images. The
rest of the images without the target feature is categorized into
a ‘negative’ dataset. In practice, we can develop an interface
where users can select images that contain the target feature.
Figure 2 displays the prototype system that we develop to
collect the user responses.

Unlearning Framework
Unlearning the entire subset with the target feature may lead
to losing other image details. Pixel-level supervision can
specify areas to unlearn, but it is expensive to scale. Instead,
we unlearn the target feature by learning a transformation
from the image containing the target feature to the image
without the one. To learn such transformation, we need a
paired dataset with and without target features. For example,
if the target image represents a man smiling and wearing a
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Figure 2: Illustration of interface used to collect images con-
taining the target feature from generated images. A user se-
lects images that contain the target feature to be unlearned.
The selected and non-selected images serve as positive and
negative datasets for target feature identification.

hat, and the target feature is the smile, we need the non-target
image that depicts the same man with the hat but without the
smile. However, it is impossible to curate such a dataset in a
real-world scenario.

Since our goal is to unlearn the pre-trained generator and
not to learn the transformation, we need to apply the transfor-
mation principle to the sampling process of the generator. A
transformation in image space can be modeled by the corre-
sponding transformation in the latent space.

Based on this intuition, we propose a general unlearning
framework from the latent variable perspective as follows:

1. Collect positive and negative datasets from generated im-
ages.

2. Find a latent representation ze that represents the target
feature in the latent space.

3. Sample a latent vector z from a simple distribution.

(a) If the latent vector does not contain the target feature,
let the generator produce the same output without mod-
ification.

(b) If the latent vector contains the target feature, fine-tune
the generator to produce a transformed output without
the target feature.

4. Repeat step 3 until the generator does not produce the
target feature.

Target identification in latent space. We assume that a vec-
tor in the latent space can represent the target feature. As
the first step of unlearning, we obtain the latent vector repre-
sentation of each image from the collected dataset. Once we
obtain the latent vectors, we use a vector arithmetic method
proposed by Radford, Metz, and Chintala (2015) to find the
latent vector representing the target feature. Specifically, we
compute the mean vectors from a collection of a positive
dataset and a negative dataset and subtract the mean vectors
of the negative dataset from that of the positive dataset. The
resulting target vector ze is then used to represent the target
feature in the latent space.

To determine whether a randomly generated image con-
tains a target feature, we project its latent vector onto the
target vector. White (2016) shows that the projection can
represent the similarity between the latent vector and the
target feature. We then compare this value to a threshold to
determine whether the image contains the target feature. For
the experiments, we set the threshold value t as the average
projection values of the positive and negative samples in
the latent space. Let sim(z, ze) ∈ {0, 1} indicate the binary
classification results, i.e.,

sim(z, ze) =

{
0, if projze

(z) < t,

1, otherwise,
(1)

where projze
(z) is the projection of z onto ze, i.e., z⊤

e z
∥ze∥ .

Unlearning process. To formalize the unlearning process,
let gθ be the model to be unlearned, and f be the pre-trained
generator. We initialize gθ from the pre-trained f . When
the randomly sampled latent vector z does not contain the
target feature, i.e., sim(z, ze) = 0, the generator gθ needs to
produce the same output as f , c.f, step 3 (a). To enforce the
minimal changes in the produced output, we formulate the
following reconstruction objective to minimize

Lrecon(θ) = (1− sim(z, ze))∥gθ(z)− f(z)∥1, (2)

where z is the random vector. Hence, the unlearned model gθ
tries to mimic the original generator when the latent vector
does not contain the target feature.

When the randomly sampled vector contains the target
feature, the generation process needs to be changed such that
the sampled output no longer contains the target feature. To
do so, we first create the target-erased output by generating
an output with a translated random vector using f . Given
random vector z, we first project the vector onto the target
vector, and then the original random vector is shifted by the
projected vector, i.e., z − (∥projze

(z)∥ − t)ze, where t is
the predefined threshold. The translated vector is used as an
input of the original generator f producing the target-erased
output. The modified output is then used to train g with the
following unlearning objective

Lunlearn(θ) = sim(z, ze)

∥gθ(z)− f
(
z−

(
projze

(z)− t
)
ze
)
∥1 .

(3)

The objective enforces the unlearned generator producing
outputs similar to those from the original generator without
target features. If the projection can correctly measure the
presence of the target feature in the latent space while dis-
entangling the other features, gθ can successfully forget the
target feature in the latent space.

It is widely known that L2 and L1 loss occurs in blurry
effects in image generation and restoration tasks (Pathak et al.
2016; Zhang, Isola, and Efros 2016; Isola et al. 2017; Zhao
et al. 2016). Prior research has addressed the blurry effects
by introducing diverse techniques, such as adding perceptual
or adversarial loss to the training process (Johnson, Alahi,
and Fei-Fei 2016; Zhao et al. 2016). To overcome the blurry
effects, we add perceptual loss into the objective function.
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Figure 3: Overall illustration of the generative model unlearning framework. Based on whether the randomly sampled vector z
has the target feature, we use different loss functions to unlearn the target feature. t refers to a threshold, and ẑ is the translated
vector, i.e., ẑ = z− (projze

(z)− t)ze.

The objective is formalized as

Lpercep(θ) = sim(z, ze)(
1−MS-SSIM

(
gθ(z), f

(
z−

(
projze

(z)− t
)
ze
)))

,
(4)

where MS-SSIM function refers to the Multi-Scale Structural
Similarity (Zhao et al. 2016), which measures perceptual sim-
ilarity between two images by comparing luminance, contrast,
and structural information.

Finally, we combine three objective functions to define the
unlearning objective as

L(θ) = α (Lunlearn(θ) + Lpercep(θ)) + Lrecon(θ) , (5)

where α is the hyper-parameter that regulates the unlearning
and reconstruction error balance. We visualize the overall
framework in Figure 3.

Experiments
In this section, we show the performance of the proposed
framework for unlearning GANs and VAEs trained on three
datasets. We conduct both synthetic experiments and user
studies with human participants.

Experiment Setup
Datasets and models. To show the performance of the pro-
posed framework, we conduct experiments on three datasets
with a different set of generative models for each. We list
the three datasets used in the experiments and the generative
models trained on each dataset as follows:
• MNIST (LeCun et al. 1998): a Deep Convolutional GAN

(DCGAN)(Radford, Metz, and Chintala 2015) and a
vanilla VAE (Kingma and Welling 2013)

• CelebA (Liu et al. 2018): Progressive Growing of GANs
(ProgGAN) (Karras et al. 2017) and a Very Deep VAE
(VDVAE)1 (Child 2021)
1We concatenate multiple layers of latent variables to apply the

unlearning algorithm.

• FFHQ (Karras, Laine, and Aila 2019): a StyleGAN2 (Kar-
ras, Laine, and Aila 2019)

Further details of the models can be found in Section .
Unlearning dataset preparation. To understand how the
proposed algorithm works, we simulate the cases by using
the known features of each dataset. Specifically, we select
two features from each dataset, with each feature representing
approximately 10% of the dataset.

For the MNIST dataset, we choose the thickness and
left slant as target features to unlearn. We use the Morpho-
MNIST (Castro et al. 2019), which provides a comprehensive
tool for measuring various features of MNIST digits. Since
the thickness and left slant are not binary, we use images
whose feature values range within the top 10% of the entire
dataset as a positive dataset and the remaining as a negative
dataset. The CelebA provides 40 features for each image.
Among the available features, we choose ‘Bang’ and ‘Beard’
as the target features to be unlearned. Although FFHQ does
not provide annotations for each image, we decided to unlearn
the same features as CelebA since both are facial datasets. We
experiment with two additional features, ‘Hat’ and ‘Glasses’
for FFHQ.

For this experiment, we use a classifier to categorize each
sampled image into a positive or negative dataset. To get a
target feature, we utilize Morpho-MNIST as the classifier
and categorize 500 generated images for MNIST. For both
CelebA and FFHQ, we use a pre-trained MobileNet (Howard
et al. 2017) to classify 5,000 generated images. We use these
classifiers as a proxy of users, but we also conduct a user
study involving human participants reported in Section .
Oracle model. There is no unlearning method targeted for
generative models, according to our information. To evaluate
effectiveness, we compared our framework with the oracle
model trained from scratch without the images containing the
target feature. The oracle model is commonly used as a stan-
dard oracle model in supervised unlearning cases, whereas

2We use the output of the mapping network to unlearn.



Dataset Model Feature Target feature ratio (%) Inception Score Fréchet Inception Distance

Original Unlearn Oracle Original Unlearn Oracle Original Unlearn Oracle

MNIST
VAE Thickness 9.47 0.97 1.01 2.21 2.16 2.14 23.36 23.74 24.03

Slant 9.22 0.91 1.08 2.19 2.22 2.22 22.84 23.27 23.52

DCGAN Thickness 9.10 1.35 1.28 2.14 2.13 2.11 2.32 3.35 3.40
Slant 10.92 1.25 1.31 2.15 2.14 2.10 2.24 2.79 2.85

CelebA
VDVAE Bang 3.36 0.28 0.21 2.57 2.58 2.54 82.92 85.21 84.09

Beard 7.22 2.41 1.09 2.47 2.38 2.39 82.92 86.15 84.49

ProgGAN Bang 6.74 0.42 0.49 2.92 2.91 2.91 48.05 49.82 51.37
Beard 3.02 1.01 0.98 2.93 2.88 2.87 48.05 49.80 49.78

FFHQ StyleGAN

Bang 4.48 0.26 ✗ 3.61 3.33 ✗ 20.97 25.88 ✗
Beard 21.96 1.37 ✗ 3.60 3.34 ✗ 20.93 25.12 ✗
Hat 2.10 0.12 ✗ 3.62 3.37 ✗ 21.00 24.75 ✗

Glasses 6.16 0.19 ✗ 3.61 2.37 ✗ 20.86 23.86 ✗

Table 1: Target feature ratio (↓), inception score (↑), and Fréchet inception distance (↓) of original, unlearn, and oracle models.

in our case, this is not ideal since the positive dataset can
contain useful features other than the target feature. Note that,
for FFHQ dataset, we cannot train the oracle model since the
annotated features are not available.
Training details. For all experiments, we use Adam opti-
mizer and a learning rate of 0.001, 0.002, and 0.005 for
MNIST, CelebA, and FFHQ respectively. The MNIST dataset
is trained for 200 epochs, and CelebA and FFHQ are trained
for 500 epochs in unlearning process. We use NVIDIA
GeForce RTX 3090 and A6000 for experiments.

Evaluation Metric
The performance of unlearning can be measured from two
different perspectives: 1) how well the unlearning is done
and 2) how good the sample qualities are. We explain two
different metrics used to evaluate the models.
Target feature ratio. The target ratio measures the percent-
age of generated samples with the target feature. Low values
of the target ratio indicate that the generative model has
successfully unlearned the target feature. We use the same
pre-trained classifiers used to target feature identification. For
all experiments, we randomly sample 10,000 images from a
generative model to compute the target ratio.
Image quality. We report two commonly used metrics to
evaluate the quality of the generated image: Inception Score
(IS) (Salimans et al. 2016) and Fréchet Inception Distance
(FID) (Heusel et al. 2017). We compute FID between the
generated samples and the original training dataset. Higher
IS scores and lower FID scores indicate higher image quality.
We use an implementation of StudioGAN (Kang, Shin, and
Park 2022) to calculate IS and FID. 50,000 samples are used
to measure the scores.

Results
Quantitative results. We evaluate the effectiveness of our
unlearning framework by comparing the target feature ratio
between the original model, the unlearned model, and the
oracle model in Table 1. The results show that the unlearned
model produces similar target feature ratios to the oracle for

all features, indicating our framework successfully unlearns
the target feature.

Ensuring high image quality is also important in unlearning
the target feature. Table 1 presents the results of the IS and
FID scores for evaluating the quality of generated images,
respectively. The results demonstrate that all three models
produce similar IS and FID scores, indicating our framework
can successfully unlearn the target feature while maintaining
high-quality image generation. Note that FID is calculated
using the entire dataset, which yields a slightly higher FID
value for the unlearned and oracle models, but there is no
significant difference between the two models.
Qualitative results. Figure 4 presents the qualitative visu-
alization result of our unlearning framework. The top row
shows the images generated from the original generator, and
the bottom row shows those generated from the unlearned
generator. By visualizing generated images using the same
latent vector, we observe that the target feature has been ef-
fectively erased in each case. In addition, we unlearn various
features from StyleGAN trained with FFFQ dataset (Kar-
ras et al. 2017), whose resolution is higher than the other
two datasets. The qualitative results in Figure 1 show the
approach also works well with high-resolution images. Addi-
tional qualitative results are provided in Section .
Computational efficiency. Our unlearning framework takes
approximately one minute to unlearn MNIST on a single
GPU for VAE and DCGAN, and approximately 10 minutes
to unlearn CelebA and FFHQ with four GPUs for ProgGAN,
VDVAE, and StyleGAN. In contrast, training the oracle for
MNIST requires approximately 30 minutes on a single GPU.
Training the oracle for ProgGAN on CelebA takes around
three days using eight GPUs, and one for VDVAE takes about
two days using four GPUs. The authors of StyleGAN report
that training StyleGAN on FFHQ takes approximately 6 days
and 14 hours with 8 Tesla V100 GPUs3. Although we assume
that relearning is impossible, nevertheless, even if relearning
were possible, our method is significantly more time-efficient
with comparable results.

3https://github.com/NVlabs/stylegan
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Figure 4: Visualization of four different features before and after unlearning from pre-trained GAN models. All paired images in
each column are generated from the same latent vector.

User Study
A user study was conducted to assess the effectiveness of our
unlearning framework in a more realistic scenario. This study
was designed to scrutinize the performance of the unlearned
model in comparison to the original model across various
dimensions. We recruited 13 participants and asked them
to select images that contain ‘Glasses’ since the feature is
distinctly discernible by users. 500 samples were annotated
by each participant using the interface shown in Figure 2. The
annotation process took roughly 5 minutes on average. Then,
we unlearned the pre-trained StyleGAN trained on FFHQ
for each participant. User study details and screenshots are
provided in Section .

We use the following three criteria to measure the perfor-
mance of unlearning against the original model:
1. Target feature ratio. This task involved counting the

number of target images (images with glasses) among
randomly generated images. A participant examined 500
images, each of which are randomly chosen between the
original and unlearned models.

2. Image quality. Participants were asked to choose an im-
age with better quality. We provided two randomly gen-
erated samples from the original and unlearned models,
one for each. The samples were shuffled before being pre-
sented, and each participant evaluated a total of 50 cases.
Users can respond that one of the two images is of better
quality or that both images are of similar quality.

3. Pinpoint unlearning. We provided two images gener-
ated with the same latent vector from the original and
unlearned models and asked participants how many fea-
tures were changed after unlearning. CelebA’s attributes
were shown in advance to familiarize participants with
the existing features. The participants had the following
options:
• All features except the target were unchanged.
• One or two features appeared to have changed.
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Figure 5: User study result of unlearning ‘Glasses’ feature
from the StyleGAN.

• More than two features appeared to have changed.
Each participant compared ten randomly generated pairs.

Result. Figure 5 presents the result of the user study. We
normalize the answers of each user and plot their distribution.
The result shows a significant drop in the target feature ratio
representing the effectiveness of our framework on the target
feature. There is no significant difference in image quality
between the original and unlearned models, and the majority
of users answer the quality between the two models is similar
to each other.

Participants evaluated that only the target feature was
changed through unlearning on average 45% of cases. How-
ever, 43% of cases were reported to have one or two features
changed, and 12% to have more than two features changed.
We found that the entanglement between the ‘Glasses’ and
‘Young’ features leads to the result. In FFHQ, a person with
‘Glasses’ are more likely to be elderly. As a consequence, the
identified target feature vector is likely to be entangled with
the ‘Young’ feature. More sophisticated feature disentangle-



Original Unlearn

Before
attack

Target feature ratio (↓) 3.54 0.96
IS (↑) 3.16 3.16

FID (↓) 23.54 24.00

After
attack

Target feature ratio (↓) 14.28 5.54
IS (↑) 2.83 3.03

FID (↓) 44.25 38.39

Table 2: The target feature ratio (%)/ IS / FID before and after
an adversarial attack.

ment algorithms (Tran, Yin, and Liu 2017; Locatello et al.
2019) could help to mitigate such effect, but we leave this for
future work.

Adversarial Attack
To check the robustness of our unlearning method under the
presence of adversaries, we further conduct an experiment
with an adversarial attack method on an unlearned model.

Experimental Setting
An adversarial attack on the unlearned model is conducted to
assess its vulnerability to malicious users who may attempt
to exploit the model to generate harmful or explicit content.
By subjecting the unlearned model to an adversarial attack,
we can evaluate its robustness and ensure that the unlearned
model does not generate content that goes against ethical or
safety guidelines.

For this experiment, we employ a Projected Gradient De-
scent (PGD) attack (Madry et al. 2017) on the latent variable
of the unlearned model. The attack is guided by a pre-trained
feature classifier capable of classifying the target feature. The
purpose of this attack is to determine whether the unlearned
model can be manipulated to produce images that contain
the target feature, even after it has been supposedly removed.
The overall method used in this experiment is provided in
Algorithm 1.

We attack the ProgGAN (Karras et al. 2017) trained with
CelebA-HQ (Karras et al. 2017) with the target feature of
‘Bang’. We conduct an adversarial attack on 10,000 distinct
latent vectors to both the original and unlearned models. The
classifier used for this experiment is a MobileNet (Howard
et al. 2017) specified in Section . For the hyper-parameters
of the PGD method, a learning rate of 0.02 is chosen, and
the attack step is set at 50. The maximum magnitude of the
permissible perturbation is set to 0.1, i.e., ||z̃ − z||∞ ≤ 1.
Note that a larger perturbation may cause the perturbed latent
vector to deviate significantly from the original distribution.

Results
As a preliminary step, we evaluate the feature target ratio
and image quality for each original and unlearned model to
compare the before and after attack results. Table 2 presents
the result before the attack. The result shows that the un-
learned model generates less number of target images than
the original model while maintaining high image quality in
terms of IS and FID.

Before attack

After attack
(Original)

After attack
(Unlearn)

(a) (b) (c) (d)

Figure 6: Examples of generated images before and after an
adversarial attack on its latent variable. The top row shows the
original image. 2nd and 3rd rows are attacked images from
the original and unlearned models. The first two columns are
successful defenses by the unlearned model and the last two
show failures.

To measure the target feature ratio after the adversarial
attack, we train the second target feature classifier with a
different random seed. Since the adversarial attack perturbs
the latent vector to fool the target classifier, the perturbed
sample may not contain the target feature but overfit the
target classifier. Hence, we use the second target classifier to
measure the target feature ratio. Although the target feature
ratio of the unlearned model has increased after the attack,
the target feature ratio of the unlearned model remains lower
than that of the original model.

We visualize the randomly generated images before and
after an adversarial attack in Figure 6. The first two columns
(a, b) show that the original model generates the target feature
through the adversarial attack, while the unlearned model
effectively defends against the attack. However, the last two
columns (c, d) demonstrate that both models fail to defend
against the attack.

Conclusion

The recent success of generative models has brought excit-
ing developments in various fields, such as computer vision,
natural language processing, and art generation. However,
the potential risks associated with the generation of harmful
or private content through these models highlight the im-
portance of developing effective unlearning algorithms. Our
proposed unlearning algorithm for generative models shows
promising results in preventing the generation of unwanted
features, which can serve as a crucial tool in addressing sen-
sitive or private content concerns. Future research can build
upon this work to improve the efficiency and effectiveness
of unlearning algorithms in other contexts, such as data pri-
vacy and fairness. Ultimately, the development of robust and
reliable unlearning algorithms can maximize the benefits of
generative models while minimizing the associated risks.
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Appendix
We discuss the model details, training details, and hyper-parameter setting in Section . we present additional qualitative results
and further analysis of experiments in Section . We then describe the details of the user study in Section . Finally, Section offers
an expanded explanation of the PGD attack used in Section .

Experimental Details
Model Details
MNIST. We train DCGAN4 on the MNIST dataset for 100 epochs with a learning rate of 0.0002. For the VAE, we employ
three fully connected layers in both the encoder and decoder, training them for 100 epochs at a learning rate of 0.001.

CelebA. We utilize the ProgGAN5 and train it on the CelebA dataset for 96,000 iterations, employing a learning rate of 0.001.
We train the VDVAE6 with the imagenet32 configuration from the code.

FFHQ. We use the pre-trained StyleGAN7 model at a resolution of 1024 pixels. The target feature vector is identified within
the W space, i.e., the output space of the mapping network. Also, we do not update the mapping function, which maps z space to
W space.

Training Details
Target feature of the dataset. We specify the number of images that have a target feature within each dataset in Table 3. For
MNIST, we set it as having the target feature if it has a measured value using Morpho-MNIST in the top 10%. Also, we select
‘Bang’ and ‘Beard’ as target features. These features appear around 10% of the CelebA dataset.

Target image Non-target image

MNIST Thickness 6,000 54,000
Slant 6,000 54,000

CelebA Bang 30,709 171,890
Beard 33,441 169,158

Table 3: Number of the target image and non-target image for each feature used in the experiments.

Oracle model. The oracle model is initialized with the trained model. We further train the oracle model without the target
features over 50 epochs and 96,000 iterations for MNIST and CelebA, respectively, to remove the target features as done in
(Nguyen, Low, and Jaillet 2020).

Hyper-parameter Setting
We detail the hyper-parameter used for each dataset in Table 4. The same hyperparameters were applied when unlearning the
GAN and VAE trained on the same dataset.

Learning-rate α Epoch # of sample

MNIST 0.0001 3 200 500
CelebA 0.0002 300 500 500
FFHQ 0.0005 300 500 20

Table 4: Hyper-parameter setting used for each dataset in experiments.

Additional Results
Additional Qualitative Results
We further present qualitative results from StyleGAN, visualizing the interpolation of four features: Bang, Beard, Hat, and
Glasses. Our results indicate that the target features are removed while preserving high image quality.

4https://github.com/pytorch/examples/tree/main/dcgan
5https://github.com/facebookresearch/pytorch GAN zoo/
6https://github.com/openai/vdvae
7https://github.com/rosinality/style-based-gan-pytorch
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Figure 7: Visualization of ‘Bang’ feature before and after unlearning from pre-trained StyleGAN model. All paired images in
each column are generated from the same latent vector.
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Figure 8: Visualization of ‘Beard’ feature before and after unlearning from pre-trained StyleGAN model. All paired images in
each column are generated from the same latent vector.
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Figure 9: Visualization of ‘Hat’ feature before and after unlearning from pre-trained StyleGAN model. All paired images in each
column are generated from the same latent vector.
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Figure 10: Visualization of ‘Glasses’ feature before and after unlearning from pre-trained StyleGAN model. All paired images in
each column are generated from the same latent vector.



Analysis of the experiment

Target identification in latent space. The feature identification method proposed in Eq. 1 raises a question about the quality
of the result. We use the same classifier used to measure the target feature ratio to measure the quality of the feature identification
method. Note that the pre-trained classifiers are only used in the evaluation and not given during unlearning.

Table 5 shows the ROC-AUC score of the feature identification used in each experiment. The feature classification method
achieves relatively high accuracy without an external classification model showing that the feature extracted from the latent
space can be used for unlearning.

MNIST

Models Thickness Slant

VAE 0.908 0.936
DCGAN 0.853 0.858

CelebA

Models Bang Beard

VDVAE 0.840 0.834
ProgGAN 0.891 0.806

Table 5: ROC-AUC score of feature identification method.

Ablation on the objective. We conduct an ablation study to evaluate the effectiveness of our proposed objective function.
Specifically, we experiment with erasing ‘Bang’ in a pre-trained GAN trained with the CelebA dataset. Table 6 provides a
detailed comparison of the performance under different combinations of objectives. Without the perception loss, the model
achieves a better unlearning performance in terms of target ratio, sacrificing the quality of images.

Lrecon Lunlearn Lpercep TFR (%) IS FID

✓ 0.08 2.89 52.48
✓ ✓ 0.38 2.85 50.93
✓ ✓ ✓ 0.42 2.92 49.82

Baseline 0.49 2.91 51.37

Original 6.74 2.92 48.05

Table 6: Ablation study to unlearn the ‘Bang’ feature from a pre-trained GAN. Each metric indicates the target feature ratio (↓),
inception score (↑), and Fréchet inception distance (↓).

Choices of hyper-parameter. We analyze the results with varying hyper-parameter α on unlearning the ‘Bang’ feature from
GAN. As shown in Table 7, the importance of the unlearning objective becomes more significant as α increases. Consequently,
increasing α results in a decrease in the target ratio, which successfully erases the target feature from the generated images.
However, we observe the trade-off between the target feature ratio and the quality of the generated images. Therefore, careful
selection of α is important to achieve the desired balance between effective unlearning and preserving image quality.

Target feature ratio (↓) IS (↑) FID (↓)

α = 1 5.36 2.87 48.41
α = 2 1.08 2.89 49.09
α = 3 0.42 2.91 49.82
α = 4 0.21 2.89 49.93
α = 5 0.01 2.87 50.57

Table 7: Result of hyper-parameter analysis varying α



User Study
User Interface.
To conduct the user study, we recruit 13 participants from a graduate school studying machine learning and artificial intelligence.
Participants first identify generated images with specific target features (e.g., Glasses). Using the collected dataset, we unlearn
pre-trained StyleGAN with our proposed unlearning framework. Then, each participant assesses their customized unlearned
model based on three criteria: target feature ratio, image quality, and pinpoint unlearning. This section shows the screenshot from
the user study discussed in Section .

Figure 11: Screenshot for annotating images that have target feature. Participants examine 500 images from generated images.

Figure 12: Screenshot for evaluating target feature ratio. Given 500 images, participants select the images that have a target
feature.



Choose a better quality image

A B

Figure 13: Screenshot for evaluating image quality. Participants choose the better quality image given two random images
generated from the original model and the unlearned model.

Original Unlearn

Figure 14: Screenshot for evaluating pinpoint unlearning. Participants are provided with two images: one from the original model
and another from the unlearned model. Both are generated using the same latent vector. Then they measure how many features
are changed except the target feature.

Detail results of user study

Table 8 provides the average and standard deviation of three user study experiments.

Experiments Source Avg.±Std.

Target feature ratio Original 47.92±6.04
Unlearn 3.23±1.92

Image quality
Original 15.15±5.10
Unlearn 15.23 ±4.54
Similar 19.61±7.46

Pinpoint unlearning
Unchanged 4.53±2.26

1∼2 changed 4.38±1.66
More changed 1.07±1.80

Table 8: Average and standard deviation of user study result.



PGD Attack
We employ a Projected Gradient Descent (PGD) attack (Madry et al. 2017) on the latent variable of the unlearned model in
Section . The attack is guided by a pre-trained feature classifier capable of classifying the target feature. The purpose of this
attack is to determine whether the unlearned model can be manipulated to produce images that contain the target feature, even
after it has been supposedly removed. Specifically, let h : X → [0, 1] be the target feature classifier. With randomly sampled
latent vector z, the PGD attack aims to find z̃ such that

z̃ = argmin
z′∈∆z

CE(1, h(gθ(z
′))),

where CE is a cross-entropy loss, and ∆z defines a set of possible perturbations from the original value z. Hence, the PGD attack
finds the latent variable generating a sample that can be classified as the one with the target feature. The overall method used in
this experiment is provided in Algorithm 1.

Algorithm 1: Projected Gradient Descent method

Require: h: target classifier, gθ: unlearned model
Require: A: attack step, η: learning rate, ϵ: maximum magnitude of perturbation

Sample a latent vector z from N(0, 1)
Initialize a perturbation z′ = z
for i = 1 to A do

Compute the loss L = CE(1, h(gθ(z
′)))

Compute gradient ∇ = ∂L
∂z′

Update the perturbation z′ = z′ + η · sign(∇)
Project z′ to ϵ-ball under the infinity norm:
z′ = min(max(z′ − z,−ϵ), ϵ)

end for
return z′


