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Figure 1: The proposed YOTO is a dynamic human generation framework, which can simultaneously train and model mul-
tiple people with distinct appearances and motions, while also allowing coherent rendering of them in the unified framework
in high fidelity. The identity animation can be performed by using either seen poses or novel poses.

Abstract

We introduce You Only Train Once (YOTO), a dy-
namic human generation framework, which performs free-
viewpoint rendering of different human identities with dis-
tinct motions, via only one-time training from monocular
videos. Most prior works for the task require individualized
optimization for each input video that contains a distinct hu-
man identity, leading to a significant amount of time and re-
sources for the deployment, thereby impeding the scalability
and the overall application potential of the system. In this
paper, we tackle this problem by proposing a set of learn-
able identity codes to expand the capability of the frame-
work for multi-identity free-viewpoint rendering, and an ef-
fective pose-conditioned code query mechanism to finely
model the pose-dependent non-rigid motions. YOTO opti-
mizes neural radiance fields (NeRF) by utilizing designed
identity codes to condition the model for learning various
canonical T-pose appearances in a single shared volumet-
ric representation. Besides, our joint learning of multiple
identities within a unified model incidentally enables flex-
ible motion transfer in high-quality photo-realistic render-

ings for all learned appearances. This capability expands
its potential use in important applications, including Virtual
Reality. We present extensive experimental results on ZJU-
MoCap and PeopleSnapshot to clearly demonstrate the ef-
fectiveness of our proposed model. YOTO shows state-of-
the-art performance on all evaluation metrics while show-
ing significant benefits in training and inference efficiency
as well as rendering quality. The code and model will be
made publicly available soon.

1. Introduction
Novel view synthesis of a person with dynamic motions

from a monocular video is an especially challenging and
long-standing problem. Unlike other similar tasks dealing
with dynamic scenes, it requires modeling not only com-
plicated motions generated by body joints but also non-
rigidities of finer-granularity components such as the body
and clothes. Moreover, the monocular setting further com-
plicates the problem as information about every body mo-
tion from a single-image view is extremely limited. There-
fore, the free-viewpoint rendering of moving people has
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mostly been investigated under multi-view settings without
taking into account non-rigid fine-grained motions.

Recently, Weng et al. [35] successfully address the
above-mentioned problem with an architecture compris-
ing structures for learning of a motion field and a
NeRF [19]. Although they address the monocular free-
viewpoint rendering with state-of-the-art performance, its
identity-specific nature largely limits its potential for practi-
cal application scenarios. It requires an independent model
that is trained from scratch for every human identity from
each monocular video. This constraint severely down-
grades the efficiency and generalization performance of the
method. For instance, it is clearly not scalable if there
is a considerable number of human-specific videos to be
learned, as the overall model size and the training time
would significantly increase, proportional to the number of
identities following their pipeline. Besides, it is obviously
not flexible to perform any interactions between the differ-
ent identities (e.g., performing motion transfer among the
identities in different videos), due to the fact that there are
no correlations constructed during training and inference
among the different human models. We believe that each
video comprises generic and distinctive information and the
generic one could be learned collaboratively from different
videos by having an unified NeRF framework, thus benefit-
ting the rendering performance as well.

To target the issues above-discussed, in this paper, we
propose YOTO, a more versatile framework for the monoc-
ular free-viewpoint rendering of people with distinct mo-
tions. We introduce an effective set of learnable iden-
tity codes into the framework to enable learning global
human-specific representations, which can be utilized in
our framework as a perfect switcher to allow multi-subject
modeling and renderings, using a single unified model by
only one-time optimization. Furthermore, in this paper, we
present a novel mechanism for querying a separate identity
code to learn identity-specific non-rigid motions. This in-
volves utilizing cross-attention between the identity code
and the 3D pose of the current frame. By adopting this
process, our framework is able to extract discriminative
features that are tailored to each identity with a particu-
lar pose, resulting in better non-rigid motion estimation.
YOTO conditions two different NeRFs, each for non-rigid
motions and appearances learned in a unified manner. Un-
like Weng et al. [35], it incorporates all subjects in interest
at the same time for training while not requiring propor-
tionally longer training time. This significantly improves
the efficiency of the framework on a number of people
and further enhances both qualitative and quantitative per-
formance. Overall, YOTO achieves state-of-the-art per-
formance on free-viewpoint rendering of multiple moving
people while showing remarkable enhancements in flexibil-
ity and training/inference efficiency compared to [35]. We

present our experimental results on ZJU-MoCap [24] and
PeopleSnapshot [1] to demonstrate that YOTO can compe-
tently handle hard cases (e.g. input videos in the wild) and
achieve state-of-the-art performances.

In summary, the contribution of our work is threefold:
• We resolve the issue of subject-specific training by

proposing a new framework with learnable identity codes
that allows multi-human-identity representation learning.

• The proposed framework, YOTO, better models pose-
dependent non-rigid motions by conditioning the non-
rigid modeling with a pose-conditioned code queried by
cross-attention.

• YOTO not only achieves state-of-the-art performance on
all quantitative metrics but also remarkably improves the
model efficiency. Incidentally, YOTO can animate all the
learned appearances of different identities in high fidelity
with any novel poses, thereby enabling high-quality ani-
mations for various applications.

2. Related Work
We review closely related works from three perspectives,

i.e., deformable neural rendering, neural rendering of hu-
mans, and monocular neural human rendering.
Deformable neural rendering. NeRF [19] leverages a
multi-layer perceptron (MLP) to learn a static 3D repre-
sentation of a scene from a dense set of images from di-
verse viewpoints. Among various research directions, re-
cent works have enhanced NeRF in terms of its efficiency
and performance. For instance, several works [5, 27, 38,
6, 28, 20, 2] boost the efficiency of NeRF in training or
inference stages to allow more practical usage. Some oth-
ers [39, 9, 3, 32, 16] extend NeRF to handle the sparse view
setting, which adapts NeRF to more realistic training sce-
narios and expands its practicality. However, it has been
observed that they are restricted to static scenes while the
majority of the real-world objects are dynamic.

Recent works including [4, 14, 26, 22, 31, 23, 37] have
broadened the modeling capabilities of NeRF to dynamic
scenes containing movements or deformations. Park et
al. [22, 23] handle natural deformations on faces by intro-
ducing an MLP to estimate per-point deformations and [23]
additionally models topological changes by proposing a
canonical hyper-space. Pumarola et al. [26] and Tretschk et
al. [31] propose the same idea as [22] to model dynamic ob-
jects and non-rigidity, respectively. It should be noted that
these motions and deformations are small and simple; other-
wise, the aforementioned approaches would not exhibit the
anticipated level of performance. Nonetheless, there are de-
formations in the world spanning from small-scale motions
to more complex articulated motions. In contrast, our ap-
proach enables learning of human-articulated motions from
monocular videos, and performing free-viewpoint render-
ing of a human performer at any time frame of the videos.



Figure 2: Overview of the proposed framework YOTO for free-view human rendering from monocular videos. Our frame-
work is able to simultaneously train multiple identities while also achieving state-of-the-art performances on rendering qual-
ity. This is achieved by the proposed learnable identity codes and the body-pose-conditioned code generation module for
subject-specific non-rigid motion estimation and canonical radiance field prediction.

Neural rendering of humans. As our approach targets
the problem of neural human rendering, we discuss related
works in this direction. Martin-Brualla et al. [18] pro-
pose a neural re-rendering approach via U-Net-like archi-
tecture for reducing the generated artifacts. By utilizing
a few calibration images of the target subject, Pandey et
al. [21] introduce semi-parametric learning from a single
or few input RGBD frames. Similarly, Liu et al. [15] pro-
pose to use a character model to generate priors for learn-
ing time-coherent dynamic textures. Wu et al. [36] learn
explicit 3D features on point clouds produced from multi-
view stereo [29] and use U-Net for free-viewpoint render-
ing. To enable learning implicit representations from a
highly sparse set of input views, structured latent codes are
introduced by Peng et al. [25] to be applied on a shared
deformable mesh (SMPL [17]). There are also several prior
works exploring learning animatable avatars [12, 10, 33, 7],
which however are based on explicit human parametric
models [17], instead of implicit representations. Besides,
Jiang et al. [11] adopt Instant-NGP [20] to boost the train-
ing efficiency. While most of these existing works either use
the explicit SMPL as a prior or require multi-view videos,
our approach does not rely on the parametric models and
utilizes only monocular videos and 3D poses as inputs.
Monocular neural human rendering. Recently, Weng et
al. [35] propose an approach to conduct free-viewpoint ren-
dering of a human performer within a monocular video. It
learns a canonical T-pose representation of the performer by
modeling rigid body motions and pose-dependent non-rigid
motions. However, it has a severe limitation of subject-
specific modeling, which requires a new model to be trained
from scratch for each input monocular video. In this paper,
we introduce a set of novel learnable identity codes and an

effective pose-conditioned code query mechanism, which
allows our single model to represent an arbitrary number of
human subjects while outperforming the baseline [35] on
all evaluation metrics.

3. The Proposed YOTO Approach
3.1. Framework Overview

Given a number of monocular videos each containing a
single distinct human subject, the proposed YOTO frame-
work learns discriminative representations of all the mov-
ing identities by one-time training, for free-viewpoint ren-
dering, as shown in the framework overview (see Fig. 2).
Specifically, we propose a novel idea to enable a simulta-
neous optimization of a collaborative canonical represen-
tation of all the subjects, via introducing a set of learnable
identity codes. To condition the learning of identity-specific
non-rigid motions, we further propose a module to generate
pose-conditioned identity codes.

For each identity in a monocular video, the module uti-
lizes a learnable identity code and joint poses corresponding
to the target subject as input, and produces a subject-specific
pose-conditioned code by a cross-attention mechanism. The
generated code is then embedded into an MLP to condi-
tion the non-rigid motion estimation. It accepts an input
point from a skeletal transformation [35] that maps input de-
formed joint poses to a canonical T-pose based on subject-
specific blend weights with inverse linear-blend skinning.
Then, for the transformed canonical points with non-rigid
motions applied, we further enable multi-identity rendering
by conditioning a canonical MLP with the proposed learn-
able identity codes, to versatilely predicts the radiance and
density that correspond to each different target subject.



Figure 3: Illustration of the proposed pose-conditioned
identity code generation. It accepts a learnable identity
code and joint poses of a subject as input and produces an
identity-specific code for non-rigid motion estimation.

3.2. Preliminaries: HumanNeRF

In this section, we describe two technical components
of HumanNeRF that our proposed framework is based on,
i.e., the skeletal motion estimation which learns sets of
blend weights for skeletal poses, and the pose correction
which corrects estimated error-prone 3D body poses.
Skeletal motion. The skeletal motion learns an inverse for-
mulation of the linear blend skinning, which is an algorithm
to render high-order deformation of objects caused by low-
order skeletons [8]. It transforms a vertex from the canon-
ical pose to the target pose by weighted-summing a point
with a set of skinning weights that describe the degree of in-
fluence of each bone and transformation matrices. Weng et
al. [35] reformulate the linear blend skinning to transform a
point x in the observation space to a point xc in the canoni-
cal space, which can be written as:

xc =

K∑
k=1

wo
k(Rkx + tk), wo

k =
wc

k(Rkx + tk)∑K
j=1 w

c
j(Rjx + tj)

, (1)

where wo
k and wc

k respectively represent observation and
canonical skinning weights of bone k on a point x in the
observation space, and Rk and tk are the rotation and trans-
lation of the bone k. Given Eq. 1, HumanNeRF optimizes
a CNN network to predict the set of canonical skinning

weights {wk}Kk=1 for each observation point whereK is the
total number of joints. YOTO adopts the same formulations
for skeletal motion by having distinct motion priors of each
identity taken by the CNN network as inputs.
Pose correction. As pointed out by Weng et al. [35], the
aforementioned input 3D body pose (J,Ω) (J and Ω denote
the joint locations and orientations, respectively) tends to
be error-prone as it is from an off-the-shelf pose estimator.
Therefore, it introduces a pose correction MLP that takes
the joint orientations Ω = {Ωk}Kk=1 and predicts their off-
sets for pose refinement. Over multiple training iterations,
the joint angles of the 3D body pose undergo continuous
refinements, thus resulting in state-of-the-art performance.

3.3. Learnable Identity Codes

We now introduce the proposed learnable identity codes
that are essential and effective for enabling discriminative
multi-identity rendering using only one-time training. We
propose to impose the learnable identity codes to condition
both the non-rigid MLP Mnr for fine-grained motion esti-
mation and the canonical MLP Mc for identity-specific ra-
diance field prediction. To achieve this goal, a set of N
learnable identity codes {Si ∈ R256}Ni=1 are defined corre-
sponding toN identities in the training video data, and each
identity code Si is learned globally based on gradient de-
scent to represent each identity. Si is jointly optimized with
the objectives of the framework to obtain subject-specific
representations. For each monocular video with a specific
identity, we use its corresponding identity code as input, and
thus the learned identity codes are discriminative. Then,
we directly use the identity codes to condition the canoni-
cal MLP to predict the subject-specific radiance field, while
for the non-rigid motion estimation, we further introduce
an effective mechanism to generate pose-conditioned iden-
tity code to better facilitate the subject-specific fine-grained
motion estimation.

3.4. 3D Body Pose Conditioned Identity Code

Each learned identity code can represent a subject
globally from all the monocular videos. However, different
video frames of the same identity may present distinct
body motions. To further enhance the N learnable identity
codes {Si}Ni=1 for the learning of non-rigid motions,
we propose to employ the 3D body pose as guidance
for generating a pose-condition identity code. A cross-
attention mechanism is designed to perform interactions
between the learnable identity codes and the 23 joint
positions (i.e. J = {ji}23i=1). A detailed overview of
the mechanism is illustrated in Fig. 3. To learn implicit
representations of the 3D body joints, we conduct posi-
tional encoding [19] for the input joint points. We first
project each joint position into a higher dimension by
using a sinusoidal positional encoding function, γ(ji) =



(
sin(20πji), cos(20πji), ..., sin(2L−1πji), cos(2L−1πji)

)
,

where L is the number of frequency bands; γ(·) is inde-
pendently applied to each joint. After this procedure, we
generate a 36-dimension representation for each input joint.
We then project the encoded points (i.e., γ(J) ∈ R23×36)
to an implicit pose code Pl by feeding it to a single linear
layer with parameters Wp as below:

Pl = Wp · γ(ji). (2)
Then, we generate one query signal Sq

i from the correspond-
ing identity code Si of the target identity via a projection
matrix WQ , and key and value signals from the pose code
Pl via two other projection matrices WK and WV as:
Sq
i = WQ ·Si, Pk

l = WK ·Pl, Pv
l = WV ·Pl. (3)

Finally, we generate the pose-conditioned identity code Fnr
i

for the non-rigid motion estimation as:
Pnr = softmax(Sq

i · (P
k
l )>) ·Pv

l , Fnr
i = Pnr + Si. (4)

We further employ this code for conditioning the learning of
the non-rigid MLP (i.e. Mnr). This step is intended to en-
courage this MLP to estimate pose-coherent non-rigid mo-
tions. The details are discussed in Section 3.5.

3.5. Pose-Conditioned IDs for Non-rigid Motions

Learning the non-rigid body motions from the input
monocular video is critical for generating natural and high-
fidelity rendering results. Therefore, we make use of an
MLP to learn the point-specific non-rigid movements by
predicting the corresponding offsets ∆xc to the canonical
point xc. We first apply the aforementioned positional en-
coding γ(·) to enable the learning of high-frequency details.
We concatenate the relative joint coordinates J to γ(xc) as
an input to Mnr so that it can learn the pose-dependent non-
rigid motions. Moreover, we additionally concatenate the
pose-conditioned identity code Fnr

i to the intermediate log-
its of Mnr, thus allowing Mnr to render subject and pose-
dependent non-rigid deformations as well. We intend the
code to play the role of assisting Mnr to learn the non-rigid
motions, and thus we concatenate it with the representation
of point xc in the middle, which can be formulated as:

∆xc = Mnr(J ⊕ γ(xc);F
nr
i ), xc = xc + ∆xc. (5)

We simply add the estimated motion offsets from the pose
condition to the input 3D canonical point xc. As the result,
the 3D canonical points reflect both the non-rigid motions
and the subject-dependent 3D shape deformations.

3.6. ID-Conditioned Canonical Representations

To supervise the model training and render novel images,
we now regress the radiance for each canonical point using
another MLP. We embed the learnable identity code Si of
the i−th identity in the training video, into the middle layer
of the MLP via concatenating with the input point represen-
tation, so that the same canonical MLP Mc can also learn

different independent subject-specific radiance fields. Ben-
efiting from the identity codes as conditions, our YOTO
framework optimizes only 1 canonical space while repre-
senting N different subjects. The color ci and density σi of
each point can then be predicted by:

ci, σi = Mc(γ(xc); Si). (6)
Volume rendering. Following Mildenhall et al. [19], we
adopt stratified sampling and volume rendering to compute
the estimated color of each ray. We sample M different
points for each ray r and integrate the colors and densities
of them for subject i as follows:

Ci(r) =

M∑
m=1

Tm(1− exp(−σi,mδi,m))ci,m, (7)

where δi,m is the adjacent distance from m-th to m + 1-th
sample and Tm = exp(−

∑m−1
n=1 σi,nδi,n).

3.7. Optimization

We perform one-time optimization of the model by
training it with combined image frames of all N subjects
{Ii1, Ii2, ..., IiFi

}Ni=1, where Fi is the number of training
frame for subject i. For each training iteration, YOTO ran-
domly selects one frame and samples rays regardless of the
subject identities. For fair comparisons to the baseline, we
follow the setup of Weng et al. [35] as described below.
Our framework also samples rays in a patch P̂Fi

from an
image IiFi

to utilize the LPIPS [40] loss term. The LPIPS
loss term measures the perceptual distance between two im-
age patches, and thus we also adopt it for more percep-
tually good renderings. Our framework takes the features
of patches extracted from the pre-trained VGGNet [30] and
computes the LPIPS loss term LLPIPS. Moreover, we also
compute an L2 loss term (i.e. L2) of the rendered RGB for
each ray. We combine the two loss terms with a coefficient
λ and write the overall optimization loss Lo for the whole
framework as:
Lo = LLPIPS + λL2, L2 =

∑
(Ci(r)− CGT

i (r))2,

LLPIPS = LPIPS(V GG(P̂i), V GG(P̂i
GT

)),
(8)

where the symbol GT indicates the ground truth.

4. Experiments
We conduct extensive experiments on a publicly avail-

able benchmark dataset (i.e. ZJU-MoCap [24]) to verify the
effectiveness of the proposed approach for human rendering
under free-viewpoints with monocular videos. We also il-
lustrate the qualitative performance of YOTO in handling a
larger number of individuals and in-the-wild settings with
a single-time training on PeopleSnapshot [1]. Our find-
ings indicate that YOTO can learn a considerable number
of identities even from the in-the-wild videos, thus high-
lighting its effectiveness in handling such challenges.



Subject 377 Subject 386 Subject 387

PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓
HumanNeRF [35] 30.39 0.9624 25.27 33.18 0.9629 30.29 28.11 0.9515 36.98
YOTO (Ours) 30.57 0.9698 21.88 33.43 0.9655 26.11 28.39 0.9534 34.55

Subject 392 Subject 393 Subject 394

PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓
HumanNeRF [35] 31.03 0.9580 33.99 28.29 0.9476 39.22 30.31 0.9507 34.64
YOTO (Ours) 31.21 0.9598 31.06 28.70 0.9504 35.63 30.80 0.9535 32.11

Table 1: Quantitative results on ZJU-MoCap dataset where LPIPS∗ = LPIPS ×103 following Weng et al. [35]. As there is
no publicly available evaluation protocol from HumanNeRF (e.g. their used testing frames), we directly use their released
checkpoints that achieved the performance mentioned in [35] to evaluate on our evaluation protocol, in which we choose to
evaluate on all existing testing frames instead of sampled frames, in order to have thorough and strict evaluations. YOTO
outperforms the baseline on all metrics: PSNR, LPIPS∗, and SSIM. It should be noted that our model one-time trains all the
identities, while HumanNeRF optimizes each identity separately.

Model Train Time # of Param. Model Size
Hours Million MB

HumanNeRF [35] 147 386.4 4428
YOTO (Ours) 31 65.3 747

Table 2: Efficiency comparison between our proposed
framework and HumanNeRF [35] in terms of training time,
the total number of parameters, and the model size.

4.1. Datasets

To thoroughly evaluate the performance of YOTO and
to fairly compare against the baseline, we use ZJU-
MoCap [24] dataset for quantitative evaluation. As ZJU-
MoCap dataset has 23 different camera views for each sub-
ject, we use camera #1 for the training and the others for
the evaluation. We train a single copy of YOTO on all 6
different subjects (i.e., 377, 386, 387, 392, 393, 394) for the
evaluation. Therefore, all the qualitative and quantitative re-
sults on ZJU-MoCap in the following sections are rendered
by one and the same YOTO, whereas 6 different Human-
NeRF models are trained for 6 subjects separately. For ad-
ditional qualitative evaluation, we adopt PeopleSnapshot [1]
and use 22 different videos taken in various environments.

4.2. Training Details

We train our model with mostly the same configurations
as HumanNeRF [35] did so that we can clearly observe the
benefits gained from our contributions. We use Adam op-
timizer [13] with betas (0.9, 0.999), and learning rates of
5×10−4 for the canonical MLP Mnr and the subject codes
S, and 5 × 10−5 for the others. The number of patches per
iteration is 6 with the dimension of 32× 32 where each ray
has 128 samples. We train all models including the baseline
for 400K iterations with 1 Nvidia A100.

4.3. State-of-the-art Comparison

Since HumanNeRF is the state-of-the-art method for
free-viewpoint rendering with monocular video, we mainly
compare our performance against it. For quantitative evalu-
ation, Weng et al. [35] did not release their exact evaluation
protocol. For instance, the exact frame IDs of the test set
used for their evaluation are not available. Thus, we con-
duct the quantitative comparison by evaluating the different
models using all the test frames, instead of sampling a sub-
set from them. We believe this evaluation protocol is stricter
to verify the performance of a model. To ensure fair com-
parisons, we also directly utilize the pre-trained checkpoints
released by Weng et al. [35] on all the following evalua-
tions, as the authors confirmed that the best performances
are from the released checkpoints.

Quantitative comparison. We compute PSNR, SSIM [34],
and LPIPS∗ and use these metrics to quantitatively evaluate
our framework. As mentioned earlier, we use the released
pre-trained checkpoints of HumanNeRF for the comparison
and it is denoted as HumanNeRF∗, and evaluate the mod-
els on all the available novel-view frames instead of eval-
uating on sampled images. As demonstrated in Table 1,
YOTO achieves state-of-the-art performances in terms of
all the metrics on ZJU-MoCap dataset. It can be observed
that our framework shows considerable improvements on
LPIPS∗ across all subjects, while PSNR and SSIM metrics
are also clearly improved. It implies that YOTO renders
more perceptually reasonable and coherent novel-view im-
ages compared to HumanNeRF [35]. It should be noted that
our YOTO framework jointly learns all the different identi-
ties via one-time training, while the results of HumanNeRF
are evaluated on models separately trained on the different
identities. These results can effectively demonstrate the per-
formance advantages of our model.



Figure 4: Qualitative comparison of free-viewpoint synthesis against HumanNeRF [35]. We indicate failing cases with red
solid circles and successful cases with green dotted circles.

Qualitative comparison. Fig. 4 illustrates images ren-
dered from novel views by both HumanNeRF and our pro-
posed framework. The free-view rendering results for Hu-
manNeRF are generated by their released checkpoints. As
shown in Fig. 4, HumanNeRF suffers from various artifacts
caused by its motion field, non-rigid and canonical MLPs.
The result of HumanNeRF on subject 377 shows that the
unseen parts of arms are rendered as black, whereas our
framework can coherently render the skin color. Moreover,
the results also show that HumanNeRF suffers from incor-
rect pose transformation. We can observe that HumanNeRF
fails to transform the head pose of subject 386, thus show-
ing both eyes as indicated with a red circle. For subject

392, the baseline fails to model the non-rigid motions of the
t-shirt’s bottom hem caused by the raised left leg, while our
framework can successfully render them benefiting from the
proposed pose-conditioned identity codes for non-rigid mo-
tion estimation. All other examples in Fig. 4 can further
verify that YOTO is better at modeling coherent and pose-
dependent non-rigid motions.

In addition, we present qualitative results on Peo-
pleSnapshot [1] in Fig. 5, to demonstrate the capability of
our YOTO in joint handling a greater number of identities
by one-time training. As can be observed in Fig. 5, mostly
distinct appearances, especially the garments, are success-
fully learned by a single copy of YOTO. By controlling the



Figure 5: Illustration of the capability of YOTO on Peo-
pleSnapshot [1] for learning with a larger number of input
monocular videos. We show the rendering results of 22 dif-
ferent videos taken under various environments. Only one
YOTO is used to learn all the representations.

PSNR↑ SSIM↑ LPIPS∗↓

YOTO (Full Model) 30.51 0.9588 30.20
w/o pose-condition 30.41 0.9583 30.39
w/o ID codes & pose-condition 28.72 0.9501 39.35

Table 3: Quantitative model analysis on ZJU-MoCap for
our novel contributions, i.e. the learnable identity codes and
pose-conditioned code generation mechanism.

Figure 6: Qualitative ablation on ZJU-MoCap. Without the
identity codes and pose-conditioned non-rigid codes (a), the
model fails to learn distinct appearances. The identity codes
(b) resolve the issue of (a). The pose-conditioned non-rigid
codes (c) allow the model to learn more coherent and high-
fidelity non-rigid motions that correspond to the 3D pose.

capacity of MLPs of YOTO and the learning rate configura-
tions based on the desired number of identities, we believe
that the rendering quality can be further boosted.
Efficiency comparison. As shown in Table 2, although we
train our model with 6 different subjects jointly, there is
no significant increase in the training time and the model
size. YOTO requires approximately 5.5 seconds on average
for every 20 iterations of training, while the baseline takes
about 4.4 seconds. With the same computer resource avail-
able, YOTO boosts the total training time by ×4.7 since
HumanNeRF requires sequential training for all 6 subjects.

Figure 7: Illustration of motion transfer on ZJU-MoCap.

Moreover, as also stated in Table 2, the model size is only
increased by 9MB which is 1.22% of the original model size
whereas it increases linearly with the number of subjects in
the case of HumanNeRF.
Novel Motion Transfer. YOTO has an incidental advan-
tage in that it can animate the learned identities by sim-
ply replacing the input pose with a novel one as illustrated
in Fig. 7. This improves the usability and applicability of
YOTO since it would not need to train each model for the
animation of each identity.

5. Model Analysis

To study the effectiveness of the proposed different com-
ponents of YOTO, we consider different variants as shown
in Table 3: (i) ‘YOTO (Full Model)’ indicates the proposed
full version of YOTO framework; (ii) ‘w/o pose-condition’
denotes that we disable the pose-conditioned identity codes,
while only using the learnable identity codes; (iii) ‘w/o
ID codes & pose-condition’ means that we disable the
learnable identity codes and the pose-conditioned codes.
As shown in Table 3, the introduction of learnable iden-
tity codes significantly improves the quantitative perfor-
mance, especially in terms of PSNR and LPIPS∗. The pose-
conditioned code generation module further allows YOTO
to achieve state-of-the-art performance. Fig. 6 also clearly
demonstrates remarkable qualitative improvements made
by both of our proposed contributions. For example, as in-
dicated with a green arrow in Fig. 6 the non-rigid motions
of the hem of the jacket caused by the raised right leg is only
coherently reproduced with the pose-conditioned codes.

6. Conclusion

In this paper, we presented a novel approach YOTO for
simultaneous training of multi-identities from monocular
videos for free-viewpoint rendering with higher fidelity and
better efficiency. By optimizing a single model with the pro-
posed learnable identity codes, the model becomes able to
handle all subjects in the input monocular videos, produc-
ing even higher quality compared to the models trained sep-
arately. We further propose a novel pose-conditioned iden-
tity code to enhance motion coherency in modeling. YOTO
has fully demonstrated its effectiveness and established new
state-of-the-art performance on the problem.
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