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Abstract. We present a modular framework for generating synthetic power grids
that considers the heterogeneity of real power grid dynamics but remains simple and
tractable. This enables the generation of large sets of synthetic grids for a wide range
of applications. For the first time, our synthetic model also includes the major drivers
of fluctuations on short-time scales and a set of validators that ensure the resulting
system dynamics are plausible. The synthetic grids generated are robust and show
good synchronization under all evaluated scenarios, as should be expected for realistic
power grids. A software package that includes an efficient Julia implementation of the
framework is released as a companion to the paper.

Power systems will be reconfigured as conventional generation is replaced by renewable
energy sources (RES). The latter are often connected to the grid via inverters. The exact
dynamical behavior and especially the stability of these inverters-based networks is not
well understood. Thus, the availability of adequate synthetic power system models
remains limited. However, it is vital to simulate future power grids to verify that
this transformation does not result in undesired effects and blackouts. We introduce
a framework for realistic synthetic power systems that can be used to study collective
dynamical effects. We combine established methods such as realistic grid topologies and
active power set-points. This framework opens new avenues for predicting the stability
of future power grids using advanced techniques such as graph neural networks.

1. Introduction

Synthetic power grids have become an important tool for studying the dynamics of
power systems. Traditionally, most dynamical simulation studies in the engineering
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literature were performed using benchmark test cases, such as the "New England" IEEE
39-Bus System [2] or the IEEE Reliability Test System-1996 [3]. The advantage of this
approach is that models and parameters can be specified in great detail and the test
cases are therefore highly realistic. Further, the use of standardized benchmark test
cases guarantees comparability of different dynamic models and analytical methods.
However, for many emerging research questions this approach can be quite limiting
and the use of automatically generated synthetic grid models might be beneficial. This
is for instance the case when the power system in a specific region should be studied
but the detailed topology and parameters of the real grid are not publicly accessible.
Often there is enough data or knowledge available to generate a synthetic grid that
resembles the main properties of a real grid to a reasonable degree. An example is
the algorithm by Birchfield et al. [4, 5] that generates realistic transmission network
topologies from spatial load distributions based on geographic population data. The
algorithm is expanded in [6] to also enable transient stability analysis of the synthetic
power grids. Besides the transmission system, synthetic grids are also required for
studying mid- and low-voltage grids as their exact structure is often unknown [7]. For
German medium and low-voltage grids, the DingO model [8] is an extensive and well-
documented option to generate topologies [8] and supply and demand distributions [9].
DingO is part of the larger research project open eGo and is open-source software that
uses freely available data.
Another important use case for synthetic power grid models is to generate large data sets
of synthetic test cases that can be used to investigate the system dynamics with methods
of machine learning [10,11]. A number of studies have shown that the network topology
of grids has a direct influence on their dynamic stability [12–18]. However, most of
these studies are based on simplistic component models and unrealistically homogeneous
parameters, even though it is known that heterogeneities play an important role [19].
Graph-Neural-Networks have been shown to be a powerful method that could potentially
extend these stability analyses to more realistic power grid models [11, 20, 21]. The
training of such neural networks requires large data sets of realistic grids, that are for
example generated by a synthetic grid model.
Finally, synthetic grid models will be crucially important for the investigation of the
dynamic effects of future power grids. Within the next decades, the power system
will undergo a fundamental transformation as new transmission infrastructure is built
and conventional machines are replaced by renewable energy sources (RES). A major
challenge is that the exact dynamical behavior of generation units is widely unknown as
renewable generation units are connected to the grid via inverters with various control
schemes. In order to maintain stability in such inverter-based grids, a certain share of
these controls must be grid-forming. Today, most RES are still equipped with grid-
following control schemes and hence, there is a lack of practical knowledge on the
collective dynamical behavior of a large number of grid-forming generation units. It
is therefore of great importance to do simulation studies of these systems to ensure that
new technology being integrated into the grid does not lead to unexpected collective
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effects and blackouts [22]. Unfortunately, there is a lack of both benchmark test cases
as well as synthetic power grid models for studying such inverter-based grids.
In this paper, we present a modular framework for generating synthetic grids that are
suited for dynamic power system studies. We give an overview of all necessary steps from
the generation of grid topologies, to the definition and parametrization of component
models and the calculation of the steady state. The paper is accompanied by a software
repository that provides an implementation of all algorithms described in this paper.
Our approach is modular in the sense that users can easily adapt each step in the grid
generation process to their own needs, e.g. by providing their own specific grid topologies
or by using different dynamic models for the generating units in the system. We focus
on extra high voltage (EHV) level transmission grids, which in the continental European
transmission grid includes the 380 kV–400 kV and the 220 kV voltage levels. Collective
dynamical effects are traditionally studied in the highest grid layer [23], which is why
we can rely on a comprehensive foundation there. In principle, the approach presented
here can be extended to all grid layers.
The framework is designed to be capable of efficiently generating large numbers of
synthetic grids with very limited input data. At the same time, the component
models and parameters have a comparatively high level of realism: Generator and
inverter models feature voltage dynamics, the active power production, and demand are
heterogeneous and the parametrization of line admittances is according to data of the
German transmission grid. The framework is therefore well-suited for applying machine
learning methods, e.g. to predict dynamical stability from the structural properties of
the grid.
Another important feature is the possibility of modeling power grids with high shares
of inverter-based generation units. For this, we bypass the problem that the exact
dynamical models of such systems are still uncertain by using a technology and control
scheme neutral model [24] that has been shown to reproduce the behavior of a large
class of different inverter controls as well as synchronous machine models. However, we
also point out open research questions for improving the modeling of future power grids.

2. Synthetic Power Grid Framework

For this project, we have chosen a framework to structure the synthetic power grid
generation process. A framework in software development is defined as a semi-complete
code basis that provides a reusable structure to share among applications [25]. Users
can integrate the framework into their own software and extend it to include specifically
needed functionalities. The modularity and expandability of frameworks are needed for
this project as researchers are interested in various properties and effects common in
power grids which can be included in the framework over time. Furthermore, as more
information on the structure of power grids under renewables becomes available it can
easily be included in the existing software. As typical for frameworks we have developed
a default structure that can be employed immediately by users. As the framework is
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modular each step can be interchanged as long as it adheres to the general structure.
The default structure of the framework is shown in figure 1. In the default structure,
the first step is to generate a topology or network structure for the synthetic power grid.
Then active power set points for the nodes in the network are defined. The next step is
to specify the node and line models in order to populate the networks with dynamics.
Then an operation point, that fulfills certain stability criteria, is determined. In the last
step, we validate the synthetic grids and ensure that the dynamic network properties
are similar to those of real power grids that are carefully planned.
Most of the steps presented here have been used and validated individually in research
projects before, however, they are now, for the first time, combined as a comprehensive
package that is available for further research. Particularly, it is the first step towards
a synthetic model of future power grids with high integration of RES. Each section
contains a summary of a step in the framework as well as a critical analysis of the state-
of-the-art. In the respective sections, we give an outlook and show which additional
work could be done to improve the model, particularly for the representation of future
power grids.

Figure 1: The default structure of the software framework. The user only needs to
input the dynamic model of the nodes and the size of the power grid. Further steps,
such as the generation of the topology and the power flow in the network are performed
automatically. Before the power grid is returned by the software its behavior is validated
to fulfill the stability criteria of real power grids. This flow chart only shows the currently
implemented default structure, however as the framework is modular further options can
be added over time.

For the analysis of the resulting grids, we also provide stochastic models that characterize
fluctuations processes that are typical at the timescale of interest.

2.1. Grid Topology

The default topologies in our framework are generated using the random growth
algorithm introduced in [26]. We choose this model as it is conceptually straightforward
to generate a large number of interesting and plausible topologies and as it has
little computational complexity, which is convenient for generating large ensembles of
synthetic test cases. However, it is at the conceptual end of the synthetic grid spectrum.
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If the interest is to study dynamics on more realistic topologies, other models should be
employed.
The random growth algorithm [26] generates synthetic networks that resemble real-
world EHV power grids with respect to the exponentially decaying degree distribution
and the mean degree. The algorithm includes first an initialization phase, where a
spatially embedded minimum spanning tree is generated, and then a growth phase. The
growth phase makes use of a heuristic target function for the trade-off between the
total line length, which determines the costs, and the smallest number of edges that
would need to be removed to disconnect the grid into two parts, which influences the
redundancy.
The default parameters of the growth algorithm have been set to [N0, p, q, r, s] =
[1, 1/5, 3/10, 1/3, 1/10], as employed in [17], where N0 is the initial number of nodes
in the minimum spanning tree, p, q are the probabilities for generating a new redundant
line, s is the probability of splitting an existing line, and r is the exponent for the
trade-off between redundancy and cost.
Since distribution grids typically exhibit rather different network structures (mostly
radial and ring topologies [8]) these parameters have to be adapted when the growth
algorithm should be used for modeling lower voltage levels.
For the default step, we assume that there is no correlation between the grid topology
and the positioning of generation units in future grids. We thus assume that the
transmission system topology will remain very similar to today, even if the position
of generation units will be correlated to the renewable energy potentials and the
location of the generation thus changes. This may not be entirely realistic and future
studies should consider that the grid will be expanded and adapted to the new supply
sources. However, such changes are expensive and time-consuming [27] and thus likely
to be limited. To properly incorporate these aspects a synthetic geographical model,
potentially incorporating economic optimization, such as [28] is needed.

2.2. Active Power Distribution

In order to correctly represent the dynamics of the power grid, a realistic distribution
of power in the grid is required. For this purpose the ELMOD-DE [29] data set, an
open-source spatially distributed, nodal dispatch model for the German transmission
system is consulted. This data set has been chosen as it contains real data on demand
and generation and has been accumulated from reliable sources such as the German
Transmission Operators and the European Network of Transmission System Operators
for Electricity (ENTSO-E). The ELMOD data set represents the current load and
capacity distribution, which means that RES are still in the minority. The analysis
shown here is suitable for the distribution of active power in synthetic grids which
should represent the status quo as most buses are either generation-heavy or load-heavy.
Following [30], which also analyses the data set, we examine the net power ∆P at each
node given in the data set.
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The ELMOD data set includes a time series for the total demand Ptot in all of Germany.
The demand is distributed to the individual nodes by introducing the nodal load share
lsm which specifies the proportion of the consumption of a node m from the total demand
Ptot. It is distinguished between two different types of load scenarios, off-peak and on-
peak. Egerer et al. [29] define on-peak and off-peak as the highest and lowest load level
meaning the maximum and minimum of Ptot respectively. The data set gives the load
shares lsm for both scenarios the off-peak and on-peak. In the following, we will always
work with the off-peak scenario. The consumption at a node Pcon,m is then given by:

Pcon,m = Ptot · lsm. (1)

The ELMOD data set includes the installed capacity for each generation unit cm, which
is the maximum power output the unit m can produce. As multiple power plants can be
connected to a single node, the nodal capacity Cm is given by the sum of all capacities at
the node Cm = ∑

m cm. Typically, the full capacity of a generation unit is not available.
In addition to the approach by Taher et al. [30], we also include the availability factors
atech for each technology during the off-peak scenario. The nodal availability Am is then
given by:

Am =
∑
m

cm · atech. (2)

The total available power is defined as Atot = ∑
m Am. As there is no data about

how much power each node generates at a given time point we follow the approach
given in [30] and reduce the nodal availability Am by the factor x = Ptot

Atot
, such that

generation and consumption are balanced. The nodal generation Pgen,m is thus given
by: Pgen,m = Am · x. Finally, we can define the net nodal power ∆Pm as:

∆Pm = Pgen,m − Pcon,m. (3)

Figure 2 shows the distribution of the net nodal powers ∆P as a histogram. It can be
seen that the distribution is bimodal and asymmetric and that the power generation
is heavy-tailed. The heavy tail in the power distribution can be explained by the
structure of today’s power grid where the power is mostly produced by a small number
of large generators. In the ELMOD data set 301 nodes are classified as net consumers,
while only 137 are net generators. For a future RES-heavy scenario the capacities and
availabilities should be replaced with a model for the deployment of wind and solar
renewable resources.



7

Figure 2: Histograms of the net nodal generation and consumption in the ELMOD-DE
[29] data set during the off-peak scenario. The distribution is bimodal and asymmetric.
The power generation shows a heavy tail with a small share of net producers that
generate more 750 750 MW.

Following [30] the active power P of each node is sampled from a bimodal distribution,
given by:

p(P ) = 1
2σ

√
2π

(
exp (P − P0)2

2σ2 + exp (P + P0)2

2σ2

)
(4)

in this work we will use P0 = ∆P380 ≈ 131 MW.
The topologies used here, mimic the extra high voltage 380 kV transmission grids.
All following calculations are performed in a Per-Unit-System (p.u.), meaning that an
appropriate base power Pbase and base voltage Vbase have to be chosen. As this work
only examines the highest voltage layer of the grid the base voltage is simply chosen as
Vbase = 380 kV. To define the base power for the 380 kV level we extract all nodes that
are connected to 380 kV lines and calculate the mean ∆P380 ≈ 131 MW. Based on the
available data, we choose Pbase = 100 MW as the base power for the synthetic power
grids.
For this work, we will adopt the bimodal model which was introduced in [30]. How
this distribution will change due to the increasing share of RES but also changing
consumption remains an open research question. A promising possibility is to base the
distribution of active power supply on the renewable potentials of geographical areas.
For this purpose, established software packages, such as atlite [31], could be consulted.
For the consumption side, new sectors with additional loads will be connected to the
electric grid, for example, electric cars or hydrogen production.
Furthermore, it should also be taken into account that the set points for the power
change in the grid over time due to the evolution of the demand over the day and year.
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Typically these set points are updated every 15 minutes based on a cost optimization
procedure. It would be valuable to study a grid and its dynamics under different load
scenarios. Moreover, the demand is not constant between two dispatch times, but
fluctuates, for example, studied in [32]. In section,3.2 we will apply the model for realistic
demand fluctuations, which has been derived in [32], to our power grids. Future work
could also consider that the generation is typically distributed via an optimal power
flow calculation to find the optimal dispatch.

2.3. Power Grid Model

On the most abstract level, we will mathematically describe power grids as systems of
differential-algebraic equations (DAEs). The algebraic constraints are most commonly
introduced via the load models, but can also appear when several generation units are
present at a bus. Explicit DAEs are defined as:

ẋ = f(x, y) (5)
0 = g(x, y) (6)

where equation (5) and (6) represent the differential and algebraic equations respectively.
The vector x holds the differential variables, whose derivatives appear in the DAE, while
the vector y gives the algebraic variables, whose derivatives do not appear.
The specific models for the nodes and lines as well as for the networks are introduced
in the following sections.

2.3.1. Node Models Our synthetic grids will consist of grid-forming components, for
example, power plants and novel types of inverters that contribute to grid stability and
components without grid-forming capabilities, such as loads or grid-following inverters,
that have to rely on an already stable grid. For this work, we have decided to use
elementary nodal models to depict components with and without grid-forming abilities
that are able to cover a large range of dynamical actors.
In this work, PQ-buses [33] are used to represent the components without grid-forming
behavior. The PQ-bus locally fixes the active and reactive power of node m:

0 = (Pset,m + iQset,m) − vm · i∗
m. (7)

where Pset,m and Qset,m are the active and reactive power set points of the node, and
vm and im are the complex voltage and current of node m which completely describe
the physics of a balanced 3-phase AC system [24]. The model can depict either loads or
sub-networks of consumers and RES that are connected to the grid via grid-following
inverters. The PQ-bus (7) is a constraint equation as given in equation (6) and forces
us to use the DAE description of the power grids.
To represent grid-forming components we use the normal-form, a technology-neutral
model for grid-forming actors, that has been introduced in [24]. It has been shown
that various models of grid-forming components, such as droop-controlled inverters [34]
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and synchronous machine models [35], can be expressed by the normal form. The
normal form has been validated by numerical simulations and lab measurements of a
grid-forming inverter so far, and work to identify normal form parameters for a wide
range of grid forming actors is ongoing. A normal form at node m with a single internal
variable, the frequency ωm, is given by:

νm = vmv∗
m

ω̇m = Aω,m + Bω,mδωm + Cω,mδνm + Gω,mδPm + Hω,mδQm (8)
v̇m

vm

= Av,m + Bv,mδωm + Cv,mδνm + Gv,mδPm + Hv,mδQk

where vm is the complex voltage. δPm and δQm represent the difference between the
active and reactive power to the set points. δνm is the difference of the squared voltage
magnitude νm to the squared voltage set-point. The other coefficients are the modeling
parameters that capture all the differences between the various models the normal form
can represent. The parameters Aω,m and Av,m are zero when the system is, as in our case,
defined in the co-rotating reference frame. In the normal form, all structural differences
between models are absorbed in the parametrization.
The free parameters for the normal form can be gathered by approximating other models,
moreover, it is also possible to derive them from experimental data, which has also been
performed in [24] for a specific type of inverter in a lab. For the example provided in
this work, we will use a normal form approximation of a droop-controlled inverter [34]
whose parameters can be derived analytically.
The exact ability of the normal form to cover all needed dynamics is a subject of current
research. Future work will include measurements on different types of inverters and
deriving the parameters of the normal form from the data. This is a crucial step to
study the dynamics and stability of realistic future power grids, which will consist of a
variety of interacting grid-forming inverters.
In addition, we use a slack bus [33] for the load flow calculation. The slack bus locally
fixes the voltage vm of node m:

0 = vset,m − vm. (9)

where vset,m is the set point voltage. The voltage magnitude |vset,m| of the slack is
typically set to 1 p.u. and its voltage angle is ϕm = 0◦. The slack bus is not included
in the resulting dynamic synthetic power grid. It is only an ancillary component that
is used as the reference for all other buses in the system while solving the load flow
problem, as described in section 2.4. The active and reactive power of the slack bus are
free to change to compensate for the power imbalance in the network. Therefore it is
assumed that the slack bus has a large amount of energy stored which can be released
quickly. The slack bus is typically considered to be a large power plant or battery, a
connection point to a higher grid layer, or another part of the power system which is
not modeled explicitly.
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2.3.2. Line Model For this work, the Pi-Model, see for example [36], is used. In the
Pi-Model the impedance Zkm = 1

Ykm
is placed in the center of the line. The capacitance

between the line and the ground is also taken into account by introducing the shunt
admittance Ysh,km which is placed, in parallel, at both ends of the line. The current on
the lines connecting node k and m is then given by [36]:

ikm = Ykm(vk − vm) + Ysh,kmvk (10)
imk = Ykm(vm − vk) + Ysh,kmvm (11)

where Ykm is the admittance of a line connecting node k and m and Ysh,km is the shunt
admittance. vk and vm are the complex nodal voltages. Combining the nodal and line
models we obtain the full network model. The current injected at node k is given by:

ik =
∑
m

ikm (12)

and the power flow in the network is defined as:

Sk = vki∗
k = Pk + iQk (13)

where Sk is the apparent power at node k and Pk and Qk are the real and reactive power
injected at k respectively [33].
The impedance and shunts are calculated according to the dena model of standard
380 kV overhead power lines [37] given in table 1. The reactance per unit length X is
specified for the nominal frequency of 50 Hz, which is why we use a static line model
here. The total admittances are calculated according to:

kc = c

ct

(14)

kw = w

wt

(15)

Ykm = kckw

(R + jX) · lkm

(16)

Ysh,km = −(jωCsh)kckw

2 · lkm (17)

where lkm is the line length in kilometers. For consistency, we fix the grid frequency ω,
in the shunt admittance Ysh,km, to the nominal frequency. The coefficients kc and kw

define the ratio between the typical number of cables ct and wires wt and the actual
numbers of cables c and wires w in the line [38]. The typical numbers of cables and wires
are 3 and 4 respectively for transmission lines in the 380 level in Germany [38]. In the
default version of the algorithm, we assume that all transmission lines have the typical
number of cables and wires. In section 2.5.4 we introduce an additional step in the
algorithm where probabilistic power flow scenarios are considered. The line capacities
are increased, by adding new cables to existing lines, if a load scenario leads to an
overload.
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Voltage level R [Ω/km] X [Ω/km] Csh [nF/km]
380 kV 0.025 0.25 13.7

Table 1: Standard overhead line parameters according to [37] for the typical number of
cables and wires.

To calculate the line properties the lengths of the transmission lines are needed. As the
model of [26] generates an embedded topology, but does not provide a spatial scale, we
need an additional step to determine the spatial scale. This is done by requiring that
the line lengths of the synthetic grids resemble the line lengths of real EHV grids.
The line lengths lmk in kilometers are obtained by converting the Euclidean distances
dmk of the lines, which are generated by the random growth model [26]. The conversion
factor cl is given by the mean length ⟨l⟩ of overhead lines in the extra high voltage
(EHV) level, that concerns voltages equal or greater than 220 kV, divided by the mean
euclidean distance ⟨d⟩:

cl = ⟨l⟩
⟨d⟩

(18)

lmk = cl dmk. (19)

Additionally, we used the shortest line lmin in the EHV level as a threshold. The
admittances of lines that are shorter than lmin are set to the threshold impedance of the
shortest line.
The mean line length was determined from the SciGRID data set [38], which consists of
openly available geographic data of the German power grid. At the time of the creation
of the data set the coverage of the EHV level in Germany was around 95% [38], which
thus offers an excellent basis for such a study.
The ELMOD data-set [29] also offers a network topology that is based on network
plans by the transmission system operators (TSOs) and OpenStreetMap data. Since
the data in SciGRID is better documented and the study deals much more intensively
with the network topology, we base our transmission line lengths on SciGRID. Still,
for completeness, we will also analyze the data from ELMOD. A comparison between
SciGRID, ELMOD, and our synthetic grids, which are based on SciGRID is given in
table 2.

⟨l⟩ [km] σl [km] lmin [km]
SciGRID [38] 37.13 36.59 0.06
ELMOD-DE [29] 40.98 35.54 0.42
Synthetic Grids 37.13 34.6 0.06

Table 2: Comparison of transmission line lengths between different models. The values
for the synthetic grid were calculated by generating 10000 different topologies. The
mean line length is given by ⟨l⟩, the standard deviation of the line length is σl and the
minimal line length by lmin.
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In table 2 it can be seen that the mean line length, as well as the standard deviation of
the line length of SciGRID and ELMOD, match well. Furthermore, it can be seen that
our synthetic grid line length shows a standard deviation that matches the SciGRID as
well as the ELMOD. The most significant difference between the two data sets is the
minimum line length lmin, which is about 4 km in ELMOD and about 60 m in SciGRID.
For the reasons that were stated above, we have adopted lmin from SciGRID.
Future work would also include not only analyzing the mean and standard deviation
of the length but also matching the distributions of line lengths (see fig. 6 in the
Appendix). This goes beyond the random growth algorithm [26] which is currently
used, and would require an algorithm that considers line lengths, node locations, and
a spatial embedding. A preliminary study [39] on extending the algorithm which uses
different node positioning rules has been performed but it does not deal with recovering
the correct line length distribution.

2.4. Operation Point and Reactive Power

Finding a stable operation point for synthetic power grids is challenging as power
systems are generally non-linear and multi-stable. The AC load flow has no guarantee
for convergence. Even if it converges only the synchronous fixed points whose voltage
magnitudes are all close to 1 p.u. are physically meaningful for power grids. Securing the
voltages to be close to their nominal values is a difficult task to accomplish. Typically,
the reactive powers of the nodes are adjusted to control the voltage magnitudes in the
power grid [33]. However, for many synthetic grid models, there is no prior information
about the reactive power flow.
Reactive power planning is considered to be one of the most intricate problems in power
grid planning [40]. The review article [40] gives an excellent overview of the objectives
and constraints that are considered in reactive power planning. Instead of implementing
one of the complex established models presented in [40] we use a straightforward method
to solve the reactive power flow. We employ the voltage stability objective, which is
also a standard objective according to [40], and assume that it has to be met perfectly.
This requirement uniquely determines the reactive powers at the nodes.
We generate an ancillary power grid with the same topology and line models as the
full power grid. The ancillary power grid consists of PV buses where all nodes are
constrained to have voltages magnitudes of Vm = 1p.u. and the same active power that
they generate in the actual power grid. One of the nodes is randomly turned into the
slack bus (9) of the system that accounts for any power imbalances, for example, due to
line losses. The reactive powers of the ancillary grid are found by using the power flow
calculation of PowerModel.jl [41] and a root-finding algorithm to find a steady state.
The operation point of the ancillary grid is used as the initial guess for the operation
point search of the actual grid.
As the synthetic grids generated in this work have less than 10000 nodes our approach
still leads to feasible power flow solutions. Once the grids become bigger a more in-depth
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reactive power flow planning algorithm, such as [42], will be needed to find feasible
operation points.

2.5. Validators

Real-life power grids are planned carefully to lead to stable operations. Synthetic
processes can never fully capture this planning stage. Instead, we use a rejection
sampling approach. Synthetic power grids whose dynamics do not satisfy the stability
properties of real-life power grids are rejected. In this section, we introduce a set of
validators that review the stability of the synthetic power grids in their operation point.
To assess our default settings we generated a set of synthetic networks with different
sizes and studied the number of rejections. We generated power grids ranging from 100
to 1300 nodes with a step size of 25 nodes. For each grid size, we generate 100 power
grids and can report that no grid was rejected.

2.5.1. Voltage Magnitude Firstly, we verify that the nodal voltage magnitudes fulfill
the standard of the EN 50160 report [43]. The report specifies that the average 10
minutes root mean square voltage has to stay within the bounds of ±10% for 95% of
the week. We assure this by validating that all nodal voltage magnitudes are V ≈ 1p.u.

in the operation point. If the set points of the system and the parametrization have
been chosen properly the voltage condition should be fulfilled. Even if the reactive
power is chosen to ensure a stable power flow with good voltage magnitudes, incorrectly
specified control dynamics or machine parameters, can still lead to a violation of the
voltage conditions in the operating point. Thus even in this case, the verification of the
voltage condition is still essential in order to catch such unrealistic parametrizations.

2.5.2. Line Loading Stability Margin In a stable operation of the power grid, no line is
overloaded. There are different thresholds for the allowed loading of a transmission line.
In this work, we focus on the threshold which is determined by the stability margin and
depends on the physically possible limit of the line Pmax.
The power flow transferred over a line connecting node m and k, neglecting the reactive
power flow and line losses, is given by:

Pmk = vmvk

Xmk

sin(θmk) (20)

where vm and vk are the nodal voltage magnitudes, Xmk is the line reactance and θmk

is the difference of the voltage angles of node m and k. The transferred power becomes
maximal when θmk = π

2 . Thus the physically possible limit of the line is Pmax = VmVk

Xmk
.

To assure a stable power system transmission lines are operated well below this limit
and a so-called stability margin sm is introduced [44]. The transferred power of a line
Prated must therefore be below a threshold given by: Prated ≤ Pmax(1 − sm). In this
study, we choose sm = 0.3 as suggested in [44]. If any line loading in our power grid
violates this threshold we reject the power grid.
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2.5.3. Small Signal Stability Analysis Since the grids we consider in this work are
described by DAEs, we cannot simply study the eigenvalues of the Jacobian in the
equilibrium to determine the linear stability of the system. Instead, we perform a small
signal stability analysis for DAEs according to [45].
In this approach, the eigenvalues of the so-called reduced Jacobian, or state matrix Jred

are examined. The reduced Jacobian is set up by decomposing the full Jacobian matrix
J into the following blocks:

J =
[
∂xf ∂yf

∂xg ∂yg

]
(21)

where ∂xf is an abbreviation for the matrix of partial derivatives of the right-hand side
of the differential equations f with respect to the differential variables x, and ∂yg gives
the matrix of the partial derivatives of the algebraic equations g with respect to the
algebraic variables y.
Following [45], the reduced Jacobian is defined as:

Jred = ∂xf − D (22)
D = ∂yf (∂yg)−1 ∂xg (23)

where D is the degradation matrix. The eigenvalues of Jred can be examined as
usual again, meaning that power grids whose eigenvalues of Jred have positive real
parts are classified as linearly unstable. Power grids whose operation point is linearly
unstable would not exist in reality and therefore have to be rejected before any further
investigations are performed.

2.5.4. Probabilistic Capacity Expansion So far we have only assured that the synthetic
power grids are stable under a single power set point that was drawn from the probability
distribution (4), or any other source. However, in real power grids, the set points are
updated regularly, e.g. in Germany, a new demand plan is implanted every 15 minutes.
Therefore, it is important to also verify the stability of the grid under different set
points. In principle, all validators can be applied to an ensemble of set points. In this
work, we only focus on the capacity of lines, as this is the most directly affected by the
demand, and assure that there is always enough line capacity to cover the expected load
cases.
We sample completely new set-points from the bimodal distribution (4) but double
the mean power P0 in order to study the system under more stress. A more realistic
analysis of high-stress power flow scenarios would require an extensive investigation of
the expected set points and is therefore beyond the scope of this paper.
For each new scenario, we calculate the load flow in the grid and then analyze the line
loading as given in section 2.5.2. If a line is overloaded we add three additional cables
to the line to increase its admittance as in equation (16). This approach is repeated for
N different scenarios. So far no new cables were added for all performed simulations.
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This is to be expected since, in the SciGRID [38] data set, more than 90% of the EHV
transmission lines have the typical number of cables. It is nevertheless important to
validate the grid under different load scenarios to assure its stability. Furthermore,
this capacity evaluation could become important once more realistic load scenarios are
evaluated, which in the future could include the weather-dependent time series generated
by atlite [31].
While these validators cover the most basic functioning of the grid, further conditions
can also be considered. A natural extension for future work would be to add N-1 stability
as a condition that the grids need to satisfy.

3. Nodal fluctuations

Due to the increasing share of variable RES, i.e. wind and solar energy, power grids
are exposed to new sources of fluctuations. RES are fluctuating at different time
scales [46, 47] and, particularly, have intermittent fluctuations at short time scales [48].
Along with supply-side fluctuations, recent studies of high-resolution recorded electricity
consumption demonstrate intermittent fluctuations on the demand-side [32, 49, 50] as
well. To generate synthetic power grids that imitate the dynamics of real power systems
at such short time scales, fluctuations have to be considered both on the supply and
demand side.
Here we introduce the stochastic processes that generate fluctuating wind and solar
power, as well as demand time series. These models have been derived to ensure that,
these synthetic time series have the same short time-scale stochastic characteristics as
empirically observed in real data. Therefore, one can confidently use the synthetic time
series for further research in power grids, and consider the response of power systems
to these fluctuations. The effects on the grid frequency are illustrated in section 4.

3.1. Supply fluctuations

The intermittent nature of wind speed and solar irradiance, along with their turbulent-
like behavior, which transfers to wind and solar power and, consequently, to power grids
has been widely discussed [46, 48, 51, 52]. As demonstrated in these studies, wind and
solar power are non-Gaussian time series and have heavy-tailed probability distribution
functions (PDF). Extreme fluctuations, such as a 90% reduction in power in just a few
seconds, occur often in RES. These fluctuations can present additional challenges for
maintaining the stability of power systems.
Here, we employ a non-Markovian Langevin-type stochastic process [53], as well as a
jump-diffusion model [54] to generate respectively wind and solar power with similar
short time-scale characteristics as the empirical data sets. The Langevin-type model
used here is:

Ṗwind(t) = Pwind(t)(Γ − Pwind(t)
P0

) +
√

κP 2
wind(t)n(t) (24)
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where, Γ and P0 are constant parameters, and κ is a parameter with which one can tune
the intensity of the noise n. The exact values of the parameters used in our simulations
are given in section 4. The noise n is obtained from the following Langevin equation:

ṅ(t) = −γn(t) + ζ(t) (25)

where ζ is a Gaussian noise with ⟨ζ(t)⟩ = 0 and ⟨ζ(t)ζ(t′)⟩ = δ(t − t
′). The jump-

diffusion model emulating short time-scale fluctuations in solar power is:

dPsolar(t) = D(1)(Psolar, t)dt +
√

D(2)(Psolar, t)dw(t) + ηdJ(t) (26)

where D(1) and D(2) are respectively the drift and diffusion coefficients. In eq. 26, dw is
the Wiener process and dJ is the Poisson process with jump size η, which is assumed
to be a normally distributed random number, i.e η ∼ N(0, ση). The Poisson process
comprises also a jump rate, which we call λ. The advantage of the jump-diffusion model
is that it is a non-parametric model, i.e. all parameters are derived from the empirical
data sets.

3.2. Demand fluctuations

Standard load profiles used to balance energy in the grid in advance have a time
resolution of 15 minutes. Shorter time scales are balanced by control mechanisms rather
than by trading. To study the dynamics at short time scales the load profiles are thus
of limited use. Instead, we consider empirical measurements of loads that have a high
enough resolution to reveal short-term fluctuations such as [32,49,55].
Here, we apply the superstatistics model introduced in [32] to generate the short time-
scale fluctuations of the demand side. Following the superstatistical approach, the
demand fluctuations are obtained by taking the 2-norm of several Gaussian distributions
plus a constant offset µMB:

P fluc(t) =
√

(z1(t))2 + (z2(t)2) + ... + (zJ(t))2 + µMB (27)

where we use J = 3 as discussed in [32], and zi(t) is obtained from the following Langevin
equation:

dzi(t) = γzi(t)dt + ϵdwi (28)

where dwi is the Wiener process with a mean 0 and standard deviation σ = ϵ/
√

2γ. We
employ the same parameter values µMB, γ, and ϵ as reported in [32].
It should be noted that the stochastic time series we have introduced here is based on
empirical measurements of power grid actors that are typically not directly connected
to the highest level of the power grid. As not all producers and consumers connected
to a bus are perfectly correlated the fluctuations would be attenuated in reality.
Unfortunately, few or no measurements of the actual correlations of fluctuations exist,
which is why we need to leave this point to future work.
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4. Simulation Examples

In this section, we generate a fully electrified synthetic power grid, whose structure is
shown in figure 3, and study its behavior in response to the three different fluctuations
processes that have been introduced in section 3. The synthetic grid that we consider
here consists of 100 nodes with an equal share of grid-following and grid-forming
inverters. We expect that future power grids will have a high share of variable renewable
energies and, therefore, we consider multi-node fluctuations in this example. We assume
that the grid-forming inverters are equipped with sufficiently large storage units. Hence
the RES fluctuations are only fed into the grid via the grid-following inverters.

Figure 3: Network structure of a synthetic power grid. Triangular and circular nodes
depict grid-following and grid-forming inverters respectively.

The fluctuations Pfluc,i(t) are added to the set points Pset,i of the nodes. This results in
the following equation for the active power Pi at node i:

Pi(t) = Pset,i + Pfluc,i(t). (29)

For the different processes, we will analyze the two edge cases, completely correlated
fluctuations, meaning that all nodes have the same fluctuating time series Pfluc(t), and
secondly, completely uncorrelated fluctuations where all nodes have different fluctuating
time series.
In order to compare the results we will study two performance measures, the
synchronization norm ||L||sync [56] and the L2 norm of the average deviation from the
nominal grid frequency ||L||dev [57]:
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||L||sync =

√√√√√ 1
T

∫ T

0

1
N

N∑
m=1

(
ωm(t) − 1

N

N∑
k=1

ωk(t)
)2

dt (30)

||L||dev =

√√√√ 1
T

∫ T

0

1
N

N∑
m=1

(ωm(t) − ω0)2 dt (31)

where ω0 is the nominal grid frequency. The indices m, k run over all N grid-forming
inverters as the grid-following inverters have no internal frequency dynamics (7).
The synchronization norm (30) measures the synchronicity in the power grid. A large
synchronization norm expresses a lack of synchronization. The synchronization norm
however neglects any fluctuation of the so-called bulk [58], the joint response of the
entire power grid, of synchronous frequencies. Therefore the authors of [57] introduce the
deviation norm ||L||dev which measures the contribution of the bulk to the fluctuations.
In [57] it has been shown that the bulk is the dominant contributor in response to
single-node renewable energy fluctuations.
The results are summarized in table 3 and 4. In all cases, it can be seen that the
deviation norm ||L||dev is larger than the synchronization norm. This indicates that the
bulk fluctuations are the main contributors to multi-node renewable energy fluctuations
as well. This holds for all fluctuation processes and for both edge cases, the correlated or
uncorrelated fluctuations. Furthermore, we can see that the deviation norm is smaller
for the uncorrelated case than for the correlated case, which is to be expected. Moreover,
it can be seen that the synchronization norm is very small for all cases which implies that
the networks have a high degree of synchronicity under renewable energy fluctuations.

||L||sync ||L||dev [57]
Wind Fluctuations 0.001 0.874
Demand Fluctuations 0.002 1.952
Solar Fluctuations 0.033 0.686

Table 3: Performance measures for completely correlated fluctuations.

||L||sync ||L||dev [57]
Wind Fluctuations 0.001 0.153
Demand Fluctuations 0.002 0.417
Solar Fluctuations 0.027 0.099

Table 4: Performance measures for completely uncorrelated fluctuations.

In the following, we will go into more detail about the results of the demand fluctuations.
The results for the solar and wind fluctuations can be found in the appendix 5.
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The figures 4 and 5 show the results for the correlated and uncorrelated demand
fluctuations respectively. In this example we use the coefficients for the stochastic
process, introduced in [32], which have been extracted from the NOVAREF data set [59]
which consists of high-resolution demand profiles. In a transmission grid, the number of
consumers is significantly higher than in the data sets analyzed in [32]. As mentioned
in section 3.2 the actual fluctuations should therefore be attenuated. Thus, the result
that we present here should be considered a pessimistic estimate. This explains why the
frequency response for the uncorrelated fluctuations shown in figure is relatively severe
and occasionally even surpasses 0.1 Hz.
For all fluctuation processes considered in this work, we find that the voltage magnitudes
of the nodes stay close to the set-point of 1 [p.u.] which is to be expected as we simulate
active power fluctuations which couple to the frequency [33].
This example demonstrates that we are able to generate robust and stable synthetic
grids. The grid does not lose synchrony even under fluctuations that are stronger than
they will be in reality as averaging effects have not been taken into account.
This opens the door to future research that studies grids that are under severe stress,
possibly from compound events, meaning that multiple stressors occur at once. Extreme
scenarios that can destabilize grids include the loss of multiple lines, as grids are built
N-1 stable, special weather conditions that can cause storage to be locally depleted,
causing grid-forming inverters to have to compromise on their grid-forming capabilities
and to inject fluctuations as well.

Figure 4: Results for completely correlated demand fluctuations at the nodes. The
figure on the left shows the active powers of the grid-following inverters. The frequency
response of the grid-forming inverters is shown in the figure on the right side. The
parameters [γ, ϵ, µMB] = [0.016, 33.81, 0.03], as in [32], were used to generate the demand
fluctuations.
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Figure 5: Results for completely uncorrelated demand fluctuations at the nodes. The
figure on the left shows the active powers of the grid-following inverters. The frequency
response of the grid-forming inverters is shown in the figure on the right side. The
parameters [γ, ϵ, µMB] = [0.016, 33.81, 0.03], as in [32], were used to generate the demand
fluctuations.

5. Conclusions

In this work, a framework to generate synthetic power grid models for studying collective
dynamical effects has been introduced. For the first time, the following established
methods are combined to obtain synthetic power grids: realistic grid topologies [26],
active power set-points [29, 30] and short-term fluctuations, node [24] and line models.
Finally we introduce validators that ensure our power grid and its operation point fulfill
established stability criteria [44, 45], and reject the sample otherwise. Each element in
the framework can be substituted as long as it adheres to the general structure thus
making the approach modular. For the default elements, we have chosen methods
that have already been used and validated in various research projects. We have
reviewed these established approaches and draw attention to possible improvements
in the respective sections, in particular in order to investigate electricity grids with a
high share of renewable energy. We have identified two elements that need improvement,
the generation of network topologies and the distribution of active power supply.
The topologies created with the random growth model [26] cannot reflect the distribution
of transmission line lengths in the empirical SciGRID data-set [38]. The model has been
designed to resemble network properties, such as the degree distribution, of real EHV
power grids. However, the positioning of the nodes is uniformly random, which does
not reflect the growth of real power grids. Grid growth is driven by population and
demand growth processes that are far from uniform. We assume that it is possible
to correct the length distribution by introducing an additional step in the algorithm
that considers the geographical location of the nodes. Furthermore, we have assumed
that the transmission system topology will remain very similar to today. Future studies
should consider how the energy transition influences the topology, as for example, RES
are connected to the grid differently than large power plants and the grid evolves to
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adapt to the new locations.
The major issue in the distribution of active power supply for our synthetic model is that
the ELMOD-DE [29] specifies scenarios that reflect the current power supply. As we are
interested in studying future dynamics as well, a new method for generating active power
distributions is needed. Atlite [31] is a software tool that generates weather-dependent
power generation potentials and time series for renewable energy technologies. These
potentials and time series are promising and could be used to update the active power
supply in our model. Further, as the time series depend on the weather, they could also
be used to study the synthetic grid under multiple supply scenarios.
Besides the generation of the synthetic grid dynamics in stable operation points, we also
include the major drivers of fluctuations at short time scales. We have implemented
the three major drivers of short-term fluctuations in future power grids, solar, wind,
and demand. As an example, we study a fully synthetic power grid under these
fluctuations. We have decided to add the fluctuations only to the components without
grid-forming capabilities as grid-forming components will usually be equipped with
sufficient storage. We find that the synthetic grid shows good synchronicity under
all three fluctuation scenarios. We saw that there is a relevant contribution to the joint
response of synchronous frequencies.
It remains a challenge to find a balance between the simplicity and tractability of the
model and realism. We have outlined a wide range of points at which realism can be
increased. In the current state, the complete model is already well suited to be used
in further research projects. This includes developing methods to study compound
and extreme events that particularly stress the system. More immediately it will allow
us to advance the study of dynamic power grid stability using graph neural networks
[11,20,21]. It enables for the first time to generate a large and robust set of heterogeneous
DAE models that will challenge the GNN models, and allow us to take one step closer
to predicting the dynamic stability of real power grids.

Data and Code Availability

The data that supports the findings of this study are openly available in the
GitHub repository https://github.com/PIK-ICoNe/SyntheticPowerGrid_Paper_
Companion. The implementation of the synthetic power grid framework can be found in a
separate GitHub repository https://github.com/PIK-ICoNe/SyntheticPowerGrids.
jl.
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Appendix

Line Length Distribution

Figure 6: Histograms of the line lengths in the SciGRID data set [38] and of our synthetic
model. Both distributions show heavy tails. The data for the SciGRID lines indicates a
scale-free distribution but the quantity of data is too small to make accurate statements.
Further investigations are necessary.
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RES Fluctuation Examples

Figure 7: Results for completely correlated wind power fluctuations. The parameters
[D, γ, g, ϵ] = [0.1, 1.0, 0.5, 1.0], as in [53], were used to generate the wind power
fluctuations.

Figure 8: Results for completely uncorrelated wind power fluctuations. The parameters
[D, γ, g, ϵ] = [0.1, 1.0, 0.5, 1.0], as in [53], were used to generate the wind power
fluctuations.
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Figure 9: Results for completely correlated solar power fluctuations. The parameters
[D(2), λ, ση] = [0.001, 0.01, 0.02], as in [54], were used to generate the solar power
fluctuations.

Figure 10: Results for completely uncorrelated solar power fluctuations. The parameters
[D(2), λ, ση] = [0.001, 0.01, 0.02], as in [54], were used to generate the solar power
fluctuations.
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