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ABSTRACT
Recent photometric observations of massive stars have identified a low-frequency power
excess which appears as stochastic low-frequency variability in light curve observations. We
present the oscillation properties of high resolution hydrodynamic simulations of a 25 M⊙ star
performed with the PPMstar code. The model star has a convective core mass of ≈ 12 M⊙ and
approximately half of the envelope simulated. From this simulation, we extract light curves
from several directions, average them over each hemisphere, and process them as if they were
real photometric observations. We show how core convection excites waves with a similar
frequency as the convective time scale in addition to significant power across a forest of low
and high angular degree 𝑙 modes. We find that the coherence of these modes is relatively low
as a result of their stochastic excitation by core convection, with lifetimes on the order of 10s
of days. Thanks to the still significant power at higher 𝑙 and this relatively low coherence,
we find that integrating over a hemisphere produces a power spectrum that still contains
measurable power up to the Brunt–Väisälä frequency. These power spectra extracted from
the stable envelope are qualitatively similar to observations, with same order of magnitude
yet lower characteristic frequency. This work further shows the potential of long-duration,
high-resolution hydrodynamic simulations for connecting asteroseismic observations to the
structure and dynamics of core convection and the convective boundary.

Key words: hydrodynamics – asteroseismology – convection – stars: interiors – stars: massive
– methods: numerical

1 INTRODUCTION

Asteroseismology has evolved into a powerful tool in stellar physics,
to probe stellar interiors and to validate our basic understanding
of stellar physics and evolution. For example, asteroseismology
has been able to constrain the extent and nature of convective
boundary mixing in main-sequence stars (e.g. Aerts et al. 2003;
Moravveji et al. 2015, 2016; Angelou et al. 2020; Viani & Basu
2020; Michielsen et al. 2021; Bowman & Michielsen 2021) and the
theoretical studies suggest that even more detailed constraints may
be possible in the future (Pedersen et al. 2018; Michielsen et al.
2019; Pedersen et al. 2021).

When a star’s hydrostatic equilibrium is perturbed, different
kinds of oscillations can result. Familiar sound waves arise from
pressure perturbations and propagate at the local speed of sound.

★ E-mail: fherwig@uvic.ca

On longer time scales, a second class of oscillation can also occur
when there is a density disturbance. In this case, the force of gravity
acts to counteract the over- or under-density, so they are referred to
as gravity or buoyancy waves (Aerts et al. 2010). Gravity waves can
occur in stratified fluids either at an interface between two disparate
fluids, in which case they are called surface (or interfacial) waves,
or in a continuously stratified fluid, in which case they are called
internal gravity waves (IGWs). IGWs obey a dispersion relation
where their wave vectors make lie at angles 𝜑with respect to surfaces
of a constant density according to 𝜔 = 𝑁 cos(𝜑), where 𝑁 is the
Brunt–Väisälä (BV) frequency. This quantity sets the maximum
frequency at which gravity waves can propagate.

Gravity waves are important probes of stellar interiors, as they
are sensitive to the physics of stellar structure and are particularly
sensitive to the interior mixing and rotation profiles within massive
stars (Rogers et al. 2013; Aerts & Rogers 2015; Bowman 2020).
In asteroseismology, standing gravity waves are referred to as g
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2 W. Thompson et al.

modes, whereas standing pressure waves are referred to as p modes.
We follow the convention that p modes are labelled with positive
radial order 𝑛 and g modes are labelled with negative radial order 𝑛
(higher radial order g modes are more negative).

In massive stars, gravity waves are excited at the interface
of convective and radiative regions such as the boundary of the
hydrogen-burning convective core during the main-sequence phase
of stellar evolution and partial ionization zones within the radiative
envelope (Dziembowski & Pamyatnykh 1993; Dziembowski et al.
1993). Since convection is a turbulent and intermittent process, the
excitation is stochastic. These gravity waves have been hypothesized
as significant contributors to photometric variability in massive
stars, especially at low frequencies where coherent heat-driven g
modes excited by local opacity enhancements in the iron-bump
layer are not the dominant source of variability (Aerts & Rogers
2015; Bowman et al. 2019a).

Recently, high-precision photometric observations of hundreds
of massive stars assembled by the NASA K2 and TESS missions
(Howell et al. 2014; Ricker et al. 2015) have revealed the distinct
features of stochastic low-frequency variability inferred to be caused
by gravity waves (Bowman et al. 2019a). From such observations,
Bowman et al. (2020); Bowman & Dorn-Wallenstein (2022) demon-
strated that the morphology of the stochastic low-frequency vari-
ability (i.e. dominant periodicities and amplitudes) directly probes
the evolutionary properties of the host star (i.e. its mass and age).

From a stellar structure model using a given set of input
physics, such as those available from the 1D evolution code MESA
(Paxton et al. 2011, 2013, 2015, 2018, 2019), pulsation codes such
as GYRE are able to calculate the resonant eigenmodes for various
pulsation mode geometries of a stellar model (Townsend & Teitler
2013; Townsend et al. 2018). Such calculations for a grid of models
allow forward seismic modelling of stars based on a quantitative
comparison of the observed and theoretically-predicted pulsation
mode frequencies (Aerts 2021). Furthermore, non-adiabatic cal-
culations reveal the growth rate of pulsation modes and allow the
excitation physics of heat (i.e. opacity) driven coherent pulsations to
be probed. However, as demonstrated by recent space-based obser-
vations of massive stars, there remain large uncertainties associated
with rotation and stellar opacities which significantly affect the pre-
dictions of opacity-driven coherent mode excitation (e.g. Burssens
et al. 2020).

To study the excitation of gravity waves by convection, astro-
physicists have turned to two and three dimensional hydrodynamic
simulations (Ratnasingam et al. 2020; Horst et al. 2020; Le Saux
et al. 2023; Ratnasingam et al. 2023; Anders et al. 2023). These
codes directly simulate the motions and properties of fluids. Rogers
et al. (2013) and Edelmann et al. (2019a) have surmised that the
excitation of stochastic IGWs in massive stars is driven predomi-
nantly by convective plumes that overshoot the convective boundary
between the core and the stable envelope. Some of these simulations
required very high heating factors beyond the nominal luminosity
of the star (on the order of 106 times higher) and correspondingly
high viscosities to maintain numerical stability. These simulations
showed plumes tend to excite g modes with large wavelengths, or
low angular degrees 𝑙.

In Paper I (Herwig et al. 2023) we presented 3D stellar hy-
drodynamic simulations with heating factors ranging from 101.5

to 104 and high grid resolution based on the explicit, compressible
gas-dynamics approach using the PPMstar code. Those simulations
allow us to characterize the large-scale and turbulent nature of core
convection in massive stars and establish the converged excitation
spectrum up to angular spherical harmonic degree 𝑙 ≈ 100.

The global flow morphology leads to boundary layer separa-
tion flows in which small-scale instabilities are generated causing
perturbations. This is reflected in the flat spectrum of the radial
component of convective motions near the boundary compared to a
fully-developed Kolmogorov spectrum in the core region far away
from the boundary.

The stable layers immediately outside the convective core host
IGWs with the dominant power in the radial velocity component at
radial order 𝑛 = −1 and large wave number 𝑙 ≈ 70. These IGWs have
been hypothesized as a source of mixing in the stable layers adja-
cent to the convective boundary (Blouin et al. 2022, and discussion
there). The IGW spectrum of the horizontal velocity component fol-
lows the turbulent spectrum maintaining the familiar ∝ 𝑙−5/3 power
law spectrum, whereas the radial velocity component assumes a dis-
tinctly different spatial spectrum that peaks at high wave numbers
𝑙 ≈ 30 . . . 70. Reynolds stresses cause a tight correlation between
the horizontal spectrum in the convection and stable layers, but a
broad spectrum of radial plume-like excitations facilitate the distinct
spectral morphology of the radial velocity component.

In this paper we explore the properties of IGWs further out
in the stable layers and present a detailed theoretical asteroseismic
analysis of three simulations with heating factor 1000×. The goal
of this paper is to expand our analysis of IGWs from the boundary
region explored in Paper I to the stable envelope further away from
the boundary, and to establish the spectral properties of synthetic
observations of light curves of the oscillating envelope. We are
motivated by the observed asteroseismic features of massive stars
such as the near-ubiquitous low-frequency variability reported by
Bowman et al. (2019a), but note that our simulations do not include
the outer envelope and surface that are probed by real observations,
nor the effects of radiative damping. Despite these limitations, this
work nonetheless aims to identify mechanisms and effects that could
play a role in the origin of a spectrum with a low-frequency excess.

We begin in §2 by describing our methods including a brief
account of the underlying hydrodynamic simulations, the astero-
seismic analysis technique, and the GYRE analysis of the spherically
averaged radial profiles for the mode identification. In §3, we present
the flow morphology of convection in the core and oscillations in
the envelope. Then, we present simulated synthetic light curves ex-
tracted as if we were observing the luminosity of the star partway
through the radiative envelope. We perform an asteroseismic anal-
ysis of these light curves and reveal a strong low-frequency excess.
From there, the remainder of the paper is dedicated to dissecting this
luminosity power spectrum and explaining how its various features
come to be. Finally, §4 presents discussion and conclusions.

2 METHODS

Based on 3D hydrodynamic simulations of a 25 M⊙ main-sequence
star slightly evolved beyond the zero-age main sequence (Paper I,
Herwig et al. 2023) we generate simulated observations of light
curves to compare them with observations. We decompose the oscil-
lations in three dimensions into spherical harmonics, and compare
them with eigenmodes calculated using GYRE to identify specific
IGW modes.

2.1 Hydrodynamic simulations

The simulations used here are summarized in Table 1 and described
in more detail in Paper I. The simulations have been performed with
the PPMstar gas dynamics code (Woodward et al. 2015; Jones et al.
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Convection and waves in massive main-sequence stars II 3

Table 1. The most important simulations from Paper I analyzed in this paper.
Additional simulations featured only in §3.5 are described in detail in Paper
I. The table provides the run name, the grid size, number of dumps (see
details on PPMstar dumps in Paper I), total length of run in simulated star
time.

Name Resolution Dumps Duration

M107 7683 9943 290 d
M114 11523 5926 170 d
M115 17283 3584 103 d

2017; Andrassy et al. 2020; Stephens et al. 2021), with several im-
portant updates. The most relevant for this work relates to PPMstar
now solving the conservation laws in terms of perturbations with
respect to a base state which aids computational accuracy. It also
makes the mapping of a 1D stratification from a stellar evolution
code to 3D substantially easier and results in an initial 3D stratifica-
tion that is by definition in hydrostatic equilibrium. At the bounding
sphere we impose a reflecting boundary condition using ghost cells
that mirror the cells across the bounding surfaces (see section 2.2
in Paper I for details).

In our 25M⊙ simulation, the convective boundary is located
at ≈ 1500Mm on top of which is a stable envelope with a radial
extent of 1200Mm. The MESA model has a radius of 5000Mm and
therefore the simulation includes 54% of the star’s radius. Since
we dedicate a significant fraction of our resolution budget to the
core, the simulations resolve the large-scale flows and turbulence,
as well as interactions between convective flows and the boundary.
This allows the simulation to accurately capture the excitation pro-
cess. We include enough of the stable envelope to probe oscillation
properties several pressure scale heights away from the convective
boundary without getting close to the outer edge of the simulation
domain.

The base state of the 3D hydrodynamic simulations approxi-
mates the structure of a 25 M⊙ stellar evolution model calculated
with the MESA stellar evolution code (Davis et al. 2019, template
run). Details are provided in Paper I. The model star is near the
zero-age main-sequence, 1.64 × 106yr after the start of H burning,
and its central H mass fraction has decreased to 𝑋 (H)c = 0.606
from the initial 0.706.

The three simulations differ by grid resolution. In all cases
the output (dump) cadence is ≈ 43min, which is comparable to the
observational cadence of the 30-min (“long-cadence”) observing
mode of the K2 and TESS1 planet-hunting satellites (Howell et al.
2014; Ricker et al. 2015). The 7683 simulation M107 was followed
for slightly over nine months of simulated time. The long baseline
and correspondingly high resolution for low frequencies allow at
least qualitative comparisons to asteroseismic observations. How-
ever, with regard to some mixing properties this grid resolution
is not entirely sufficient. Simulation M114 with a 11523 grid still
follows 170 d of simulated time and is ideal to study the internal
structure of the star and its oscillations. The M115 simulation was
performed on a 17283 grid for 103 d containing over five billion
grid cells and is used to determine the convergence properties of
the oscillation results.

The Brunt–Väisälä frequency profile of the adopted base state
and its changes during subsequent simulation run-time are shown in
Fig. 1. Despite applying a heating factor of 1000 which makes the

1 High value TESS targets are recorded with much higher cadence.
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Figure 1. Profile of BV frequency for the three simulations. 𝑁2 has been
calculated from the spherically averaged profiles of the 3D hydrodynamic
simulations. The labels indicate the run ID, the grid resolution and the time
of the simulation for which each profile is shown. The vertical dashed line
indicates the location of the minimum gradient of the tangential velocity
component for run M107, 𝑡 = 1600h which is discussed in Paper I as one
criterion to define the convective boundary. 𝑁 has units of the angular
frequency rad s−1.

convective flows 10× faster compared to nominal heating, the flows
remain very slow. It takes about 40 d of simulated time until a steady
state is reached. By then, it has established a convective boundary
profile due to hydrodynamic processes only. This can be seen in the
evolution of the 𝑁2 peak profile in Fig. 1 (cf. Fig. 15 in Paper I). At
higher resolutions, the maximum of the 𝑁2-peak is larger and the
boundary region is narrower. In the real star the shape of the𝑁2-peak
in the boundary is the convolution of its dynamic-, thermal-, and
nuclear-time scale evolution. The base states we adopted for these
simulations reflect the convective boundary mixing assumptions
adopted in the MESA stellar evolution model and may have to
be revised in future. Note that the values in Table 1 are the total
simulated time, including the initial transition period.

Fourier analysis of the oscillations requires a long duration
baseline, but we nonetheless avoid the initial phase in which the
𝑁2 boundary is changing because it might affect details of the wave
excitation. We therefore exclude the initial 1300 dumps (930h) from
the analysis.

As the simulations run, the following data are output for later
analysis. Rendered images of the simulation are created from full
resolution two-dimensional outputs at each dump (Fig. 3; Section
2.2 of Paper I for details). Likewise, one dimensional radial profile
outputs prepared by the simulation code are based on uncompressed,
full resolution data at the time of each dump. This includes aster-
oseismic observables (Fig. 4). Analysis of the three dimensional
structure of the simulation, on the other hand, is carried out against
reduced resolution data (that we call briquette data, see Stephens
et al. 2021, for details) that contains three dimensional outputs of
some quantities with a resolution reduced by a factor 4 in each di-
rection but full 4-byte precision. The decomposition of oscillation
motions into spherical harmonics is based on this type of filtered
output data.

2.2 Asteroseismic analysis

The PPMstar code generates simulated observations of the lumi-
nosity fluctuations by first calculating the bolometric radiance 𝐿 of
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each octant of each grid cell using its temperature and treating it as
a black body. These simulated observations are generated at each
radius in the simulation up to 54% of the radius of the star. The lu-
minosity is instead reported at mass coordinates up to 𝑚r = 20 M⊙ .

Eight different vantage points from which the simulated star
might be observed are chosen not to align with the simulation grid.
The first four lines of sight (los) to the star are chosen to be along:

−−→
los1 = (1, 1, 1)
−−→
los2 =

−−→
los1 × (0, 0, 1)

−−→
los3 =

−−→
los1 × −−→

los2
−−→
los4 =

−−→
los1 + −−→

los2 + −−→
los3

Each vector is normalized before it is used to define the others. The
subsequent four are anti-parallel to the first four, i.e.

−−→
los5 = −−−→los1

and
−−→
los6 = −−−→los2, etc. This choice allows us to examine the simu-

lation from all sides and avoids grid-alignment. The radiance 𝐿 is
integrated over one hemisphere for each line-of-sight and for each
radius. We apply Lambert’s factor cos(𝜃) where 𝜃 is the angle be-
tween the surface normal and the line-of-sight. This factor changes
the surface integral into an integral over the projected face of the star,
mimicking an observation of an unresolved point source (though of
course, we do not simulate the surface and the boundary condition
is different between the simulation and a real star).

This surface integral is evaluated by computing the volume
integral of 𝐿 cos(𝜃) in one hemisphere of a thin shell divided by
its thickness at each radius. This is repeated at every dump of the
simulation, giving a time sequence of eight simulated photometric
observations at every radius. In §3.4.2 we demonstrate the impact
of applying Lambert’s cosine factor which deemphasizes the outer
annulus of the integration, and thereby the contribution of modes
with high angular degree 𝑙. We also demonstrate how approximating
the full sphere integral with just one point on the hemisphere (see
for example Edelmann et al. 2019a) overemphasizes the power at
frequencies just below the BV frequency.

In long duration simulations there is a slow expansion of the
core. To account for this we work in Lagrangian coordinates con-
verting our radial luminosity profiles into mass coordinates at each
time step. For each simulation run, we analyze the time series lu-
minosity data as if they were real observations of a star. As noted
in Paper I, these simulations neglect the effects of radiation. As
heat is added in the core, the luminosity throughout the star slowly
increases. We begin by removing this trend to the luminosity.

Fig. 2 shows how we detrend the integrated luminosity curves
at each mass coordinate by fitting a quadratic, and dividing through
to arrive at the relative luminosity. We then apply a Hanning win-
dow function to impose a periodic boundary condition and control
spectral leakage, and take discrete Fourier transforms of each time
series to arrive at power spectra (Fig. 4). We correct the amplitude
spectra for power lost due to the window function. In the simula-
tions listed in Table 1 the default dump frequency is approximately
370 𝜇Hz.

These light curves and their resulting spectra may appear dif-
ferent since they have none of the typical noise sources present in
real observations such as read noise or photon noise. The only noise
source present is numerical noise, which as we will see in §3.5,
does not significantly effect our study. As a result, certain subtle
effects like spectral leakage may be visible. For this same reason,
we believe it is valid to interpret signals close to the Nyquist limit
and to the minimum resolvable frequency (besides the very lowest
frequencies that we have removed with our luminosity detrending).
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Figure 2. We take out the global luminosity trend (top panel) by fitting a
quadratic to the average of all eight lines of sight. Dividing the luminosity
time series from each line-of-sight by this fit gives the relative luminosity.
The time axis is in units of dumps which are written out with a frequency
of 1

43 min . The second panel shows the unity-subtracted fluctuations in lumi-
nosity compared to the quadratic fit.

To investigate differences and similarities to observed spec-
tra (§3.2.3 ) we re-produce the procedure applied to real time-
series photometric observations of massive stars (e.g. Bowman et al.
2019a), we apply the method known as iterative pre-whitening (De-
groote et al. 2009; Pápics et al. 2012; Bowman 2017). As an it-
erative procedure, we identify the frequency and amplitude of the
highest-amplitude and statistically significant peak in the amplitude
spectrum of the light curve, optimise the frequency, amplitude and
phase using a non-linear least-squares fit to the light curve using

Δ𝑚 = 𝐴 cos (2𝜋𝜈 (𝑡 − 𝑡0) + 𝜙) (1)

where 𝐴 is the amplitude, 𝜈 is the frequency, 𝜙 is the phase, 𝑡 is
the time with respect to a zero-point 𝑡0. The optimised sinusoid
is then subtracted from the light curve to produce a residual light
curve. From the residual light curve, a residual amplitude spectrum
is calculated and the next iteration proceeds. In the study of coherent
pulsation modes in intermediate- and high-mass stars, it is typical
to continue iterative pre-whitening until an amplitude signal-to-
noise (S/N) criterion is satisfied. Here we use the common value
of an amplitude S/N ≥ 4 to determine if a peak is significant, in
which the noise is calculated using a 1−1 d window centred at the
frequency value of extracted peak at each iteration. In this way, our
iterative pre-whitening procedure only excludes the few dominant
high-amplitude peaks in the amplitude spectrum, which lie on top of
the low-frequency power excess background (Bowman et al. 2019b).

To follow the same methodology as applied to observations,
we fit the model

𝛼(𝜈) = 𝛼0

1 +
(

𝜈
𝜈char

)𝛾 + 𝐶w, (2)

where 𝛼0 is the amplitude at zero frequency, 𝛾 is the logarith-
mic amplitude gradient, 𝜈char is the characteristic frequency, and
𝐶w is a frequency-independent (i.e. white) noise term (Bowman
et al. 2019b) using a least-squares regression fit to the logarithm of
the residual (i.e. post iterative pre-whitening) simulation data. This

MNRAS 000, 1–22 (2024)



Convection and waves in massive main-sequence stars II 5

model thus yields 𝜈char and 𝛾 that can be directly compared to their
observed counterparts.

To produce spectrograms, also known as sliding Fourier trans-
forms, we divide the time series into sub-sequences 512 dumps in
length that advance one dump at a time. We apply a Hanning win-
dow to each sub-sequence and take the Fourier transform to arrive at
low resolution amplitude spectra. These amplitude spectra are then
stacked according to the time at the middle of the sub-sequence to
reveal how modes change over time. To reveal pertinent features, we
will show the power relative to a smoothed background spectrum.

2.3 Wavenumber-frequency decomposition

We generate wavenumber-frequency 𝑙 − 𝜈 diagrams from the bri-
quette data (Stephens et al. 2021) to decompose oscillations into
both spatial and temporal frequencies as a post-processing step.
Since we are working with the modes of a spherical object, we
choose to compute the power using a spherical harmonic basis (i.e.
with discrete spherical harmonic degree 𝑙 instead of continuous,
replacing wavenumber 𝑘). For each mass coordinate of interest, we
sample points across a regular grid of 𝜃 and 𝜙 angular coordinates
using a trilinear interpolation.2 Although the longest runs include
almost 10 000 dumps corresponding to > 54 convective turnover
times, we use only 2000 dumps for the frequency wavenumber
analysis. This is because the convective boundary is migrating (cf.
§3.2.2 and Paper I) which may cause artefacts if a longer baseline is
used. In our spectra the frequency resolution is therefore 0.185 𝜇Hz.

We perform the spherical harmonic decomposition using the
SHTools library (Wieczorek & Meschede 2018). We decompose
the radial component of the velocity field first into complex spher-
ical harmonic coefficients for each time step. Next, we apply a
Hanning window along the time axis to control spectral leakage.
Finally, we take the discrete Fourier transform of each time series of
spherical harmonic coefficients. To calculate the relative luminosity
fluctuations, we divide the spherical harmonic coefficients by the
time-averaged 𝑙 = 0, 𝑚 = 0 coefficient for each radius. No window-
ing function is required along the spatial axes since the boundary
conditions are naturally periodic. Finally, we use the SHTools li-
brary to calculate the power spectral density of the radial velocity
oscillations normalized by degree 𝑙 for each frequency bin. The
spherical harmonic transform and Fourier transform are both lin-
ear, so we can apply them in either order. For high-resolution runs
such as M115, this post-processing step requires parallelization on
a computer cluster.

The power by frequency, degree 𝑙, and mass coordinate repre-
sent a reduction from four dimensions to three. The resulting data
cube can be sliced by mass to give frequency-wavenumber diagrams
at each radius, or by 𝑙 to identify specific modes.

2.4 Eigenmodes of the spherically-averaged radial
stratification

We use the stellar oscillation code GYRE3 (Townsend et al. 2018;
Townsend & Teitler 2013) to identify the eigenmodes of waves
based on the spherically averaged radial stratification of the 3D
simulations. In this way we can identify modes and features in the
𝑙 − 𝜈 diagrams extracted from the 3D simulations as described in
§2.3. GYRE solves a two-point boundary value problem for the sets

2 This analysis uses methods implemented in the PyPPM library.
3 https://gyre.readthedocs.io

of the standard equations of stellar oscillations for the adiabatic
and non-adiabatic cases with an option to include rotation. We con-
sider the case of linear adiabatic non-radial oscillations for which
the governing differential equations are summarized in Appendix
A of Townsend & Teitler (2013). The code uses a novel Mag-
nus Multiple Shooting numerical scheme to find eigenfrequencies
of oscillations and their corresponding eigenfunctions representing
radial displacement and Eulerian perturbations of pressure and grav-
itational potential. GYRE is an open source Fortran code that uses
OpenMP directives for parallel computations on multiple cores. It
offers several integrators of differential equations among which we
have chosen the fourth-order Mono-Implicit Runge-Kutta method
as the most stable for our model.

We transform state variable radial profiles from the hydro-
dynamic simulation dumps to the MESA format readable by GYRE.
Because the hydrodynamic model has an insufficient number of ra-
dial zones for the GYRE code to work well, we map it into a larger
number of radial zones of its corresponding MESA model using the
Akima spline interpolation. For the outer boundary condition in
our GYRE calculations we used the vacuum condition with a zero
pressure at the surface.

We run the GYRE code for the harmonic degree 𝑙 ranging from
1 to 45 to identifity the resonant g mode oscillations of radial orders
−20 ≤ 𝑛 ≤ −1, f modes, and low-radial order p modes. The selected
ranges of 𝑙 and 𝑛 numbers are determined by the successfulness
of our GYRE computations. From these computations we get the
eigenfrequencies 𝜈 of oscillation modes and their corresponding
radial 𝜉𝑟 and horizontal 𝐿𝜉h displacement amplitudes for a given
dump of our hydrodynamic simulations, where 𝐿 =

√︁
𝑙 (𝑙 + 1).

3 RESULTS

We present the results of our simulations and our analysis in the
following order. First, we describe the general morphology of the
simulations, such as the convection, the interaction with the convec-
tive boundary, and characteristics of oscillations directly visible in
snapshots of the simulations. Next, we present oscillation properties
of the simulation run M107 (7683 grid) including light curves, lumi-
nosity power spectra, and the evolution of modes with time. Then,
we decompose the oscillations in the simulation M114 (11523 grid)
to reveal the breakdown by frequency and angular degree, the radial
extent of each mode by mass coordinate, and the power spectrum
responsible for exciting the waves. Finally, we compare the disper-
sion relations of our simulations to the predictions from GYRE to
identify the nature of the oscillations in our simulations and to deter-
mine their specific mode numbers. We discuss the coherence time
of g modes in our simulations based on the spectral line broadening
and finally discuss the processes contributing to the formation of
a stochastic low-frequency variability in the amplitude spectra of
luminosity time series.

3.1 General morphology

The general flow morphology of the core-convection and envelope-
wave fluid motions in our simulations are discussed in detail in
Section 3 of Paper I. Here we summarize the most important points.
Fig. 3 shows images of the vorticity, radial, and tangential velocity
components for run M115 with 17283 grid. The large-scale con-
vective motions in the core are arranged like a giant dipole. At
the time depicted in these figures, it is aligned from the north-east
to the south-west direction. The radial velocity component shows
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Figure 3. Centre-plane slice renderings from dump 1500 of run M115. (a) Vorticity. The color scheme has vorticity magnitude decreasing red, yellow, light
and dark blue. (b) Radial velocity. The color scheme has radial velocity light to dark blue represent decreasing negative velocity magnitudes that are directed
inward, yellow-orange-red represent decreasing positive radial velocity components. (c) Tangential velocity magnitude. The color scheme has tangential velocity
magnitude decreasing from dark brown, red, yellow, white, light and dark blue. The white-black dashed circles have been added at the positions of min ∇ |𝑈t |
(see Section 4.3 in Paper I), the radius 𝑟N2−peak where 𝑁2 has a maximum and 𝑟N2−peak + 0.15HP0. Full resolution images and movies for runs M114 and
M115 are available at https://www.ppmstar.org.

inflow broadly in the top hemisphere and outflow in the bottom
hemisphere representing a flow through the centre of the simulated
star. In the horizontal velocity panel, the open (to the north-east)
horseshoe-shaped tangential velocity arching along the boundary of
the south-western hemisphere represents the return flow. We do not
observe many smaller plumes impacting the convective boundary.

Instead, as the outgoing flow (panel b, red is positive radial
velocity) in Fig. 3 impinges on the convective boundary, it is redi-

rected into a sweeping tangential motion (panel b) back towards the
antipode where opposing flows create a mutually adverse pressure
field. Roughly 2/3 to 3/4 of the way around the boundary, the flow
against the adverse pressure gradient starts to separate from the
boundary and curls inwards to form the inflow of the dipole. As it
does so, it produces a characteristic feature when projected in three
dimensions like in Fig. 3. We call these boundary-layer separation
wedges. They are most clearly seen in the vorticity and tangential
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Figure 4. From top to bottom, eight simulated light curves (left panels) and their Fourier transforms (right panels) for different lines of sight of the simulation
M107. The light curves are hemispheric integrations as described in §2.2. For these measurements, a radius corresponding to 19.5 M⊙ was treated as the
surface. The light curves have been de-trended by dividing out a quadratic fit (Fig. 2). The time unit along the bottom horizontal axis is dumps, which are
written out with a frequency of 1

43 min . The amplitude axis plots the unity-subtracted luminosity divided by the fitted quadratic trend, in order to represent the
change in luminosity amplitude in parts per million. The variable L is the power spectral density of the unity-subtracted, relative luminosity. Oscillations are
plainly visible in first column. The second column, shown on a logarithmic scale, shows the distribution of power by frequency. The first 36 d of the simulation
are are part of the initial transition period and omitted, see discussion in §3.2.2 regarding the inital phase of the simulation.

velocity panels just inside the convective boundary in the north-west
and south-east direction.

The vorticity is enhanced inside the wedges indicating addi-
tional instabilities generated due to the boundary-layer separation
process, and it is here that most of the entrainment takes place due
to these wedge instabilities (for details see Paper I). We have already
identified and described the entrainment at the top of a convection
zone through the boundary-layer separation mechanism in high-
resolution simulations of He-shell flash convection in low-mass
stars (Woodward et al. 2015, especially Fig. 10 and 11). Movies4

reveal more clearly than still images that these wedges launch waves
into the stable layers. The features in the wedges are small compared
to the largest convective scales like the dipole flow. Movies do not
always show the convective dipole flow and the boundary-layer sep-
aration wedges clearly since the dipole axis migrates around, and
may at times appear pole-on. For the images shown in Fig. 3, we se-
lected a time where the dipole was aligned with the image rendering
plane.

Focussing now on the convective boundary just above the core,
ripples propagate along the interface, appearing to emanate from
the flanks of the wedges. They travel along the boundary in pre-
dominantly the same direction as the flow from the wedges. At the
inflow side of the dipole convection, the boundary waves are trav-
eling in opposite directions and can be seen hitting each other, and
exciting motions with finer scales. In Paper I we discussed how the

4 Movies and images are available at https://www.ppmstar.org

immediate boundary layer where the peak of 𝑁2 is located con-
tains IGWs that have radial velocity components with power mostly
with radial order 𝑛 = −1 and high spherical harmonic degree 𝑙.
Careful inspection of the shell regions around the radius 𝑟N2−peak
indicated by dashed circles in Fig. 3 reveals these waves especially
in the tangential velocity component along the north-western outer
wedge rim, as well as on the opposite side on the outer wall of the
south-east wedge.

Above the convective boundary are patterns of repeating, oscil-
latory motion in all velocity components. In the tangential velocity
component these appear as long arcs of variable length and radial
extent of ≈ 120 Mm. In the radial velocity component coherent pat-
terns have substantially shorter angular extent than in the tangential
velocity component and they have typically a radial extent that is
twice the radial extent of the arcs in tangential components. The
vorticity naturally shows smaller-scale features of the motions in
the stable envelope. However, the vorticity does not show the irreg-
ular distribution of vortex-tubes that is characteristic for turbulence
and clearly seen in the core. These regular velocity patterns repre-
sent wave motions that are excited by the core convection, as that is
the only mechanism present in these simulations. These oscillations
are predominantly larger and longer period compared to the fine
structures rippling along the convective boundary.

We return to examine these waves quantitatively in §3.3. For a
more complete discussion on convection, wedges, their interaction
with the convective boundary, and mixing, see Paper I.
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Figure 5. The evolution of the simulated photometry as a function of ra-
dius and time. The convective-boundary region begins at approximately
12M⊙ . Above this, oscillations are visible throughout the envelope. By vi-
sual inspection of the peaks and troughs going outward from the convective
boundary, we can identify a prominent mode with radial order 𝑛 ≈ 5.

3.2 Photometric variability

We now present light curves extracted from simulation M107.

3.2.1 Simulated light curves

The eight light curves corresponding to different viewing angles of
the star (cf. §2.2), taken at mass coordinate 19.5 M⊙ are shown in
Fig. 4. A prominent periodicity of approximately 2.5 𝜇Hz domi-
nates the oscillation. This periodicity appears in each line-of-sight.
In addition, the light curves show complex and irregular patterns of
fluctuating amplitudes and additional frequencies can be identified.
The oscillation patterns are stochastic and can be understood as the
superposition of waves with a broad and fluctuating spectrum of
modes. Importantly, the contribution of individual modes is vari-
able leading to fluctuations of the amplitudes of the resulting total
oscillation. The variable nature of the oscillation modes and the
corresponding stochastic excitation of IGWs is discussed in detail
in §3.2.2. The oscillation fluctuations are only weakly correlated
or even uncorrelated for the different directions in the same hemi-
sphere. Opposite directions are in general more correlated with each
other than different directions in the same hemisphere.

The second column of Fig. 4 shows the power spectrum corre-
sponding to each time series. The spectra contain a rich assortment
of peaks, with the highest power near 2.5 𝜇Hz. Sharp features near
25, 95, 127, 150, and 170 𝜇Hz visible from all lines of sight are p
modes (see §3.3 and Fig. 13 for identification). These spectra also
show that there is generally more power at lower frequencies. Be-
low ≈ 50 𝜇Hz the spectrum shows more power than above. Thus,
the oscillation spectra have a low-frequency excess to be discussed
in more detail in §3.2.3. The sharp features visible in right panel
where it may appear there is a line with a deficit of power are in fact
the sidelobes of positive peaks, and are an artifact of plotting the
spectrum on a log scale with little no instrumental or photon noise
to hide these effects.

Considering only one light curve, we plot the time evolution of
the luminosity as a function of radius in Fig. 5. This representation
emphasizes the stark difference between the regular wave patterns
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Figure 6. A sliding Fourier transform, or spectrogram, of the luminosity
time series from one line-of-sight. The colour scale shows the luminosity
power spectral density divided by a smooth background created by median
filtering the power spectrum. Some modes are steady over time, while others
are periodically re-excited such as the mode at ≈ 2𝜇Hz. The initial transient
is visible in the first ≈ 40 d of the simulation, which are excluded from
further analysis. The window size is 15.3 d and we advance advance each
row in time by 11.5 d.

involving radial scales of 100 to 200 Mm in the stable envelope and
the turbulent noise in the convection zone. Since we integrate the
light curve over one side of the simulation, the random turbulent
motion averages away. The regular patterns at mass coordinates
⪆ 13 M⊙ represent standing waves, and again the irregular or
stochastic fluctuation of the wave amplitudes in the envelope is
evident.

3.2.2 Stochastic spectrum variability

In Fig. 4, we see an apparently random variation in the power of most
modes along each line of sight on the time scale of roughly 30 d,
which we call stochastic variability. For example, the 6th and 7th
line of sight include periods of activity that seem uncorrelated with
each other and with those at other times. The stochastic variability
in integrated light is the result of the superposition of a spectrum of
modes excited sporadically by core convection. This is visible most
clearly in a spectrogram (Fig. 6) which shows the relative variation
of power with respect to a smoothed background spectrum. Many
prominent modes vary in power or frequency over the length of the
simulation.

During the initial transition period of approximately one
month, the core-envelope boundary (𝑁2-peak) migrates outward
from the location defined in the initial setup (see Paper I, section
3.1.3 and 4.1 for details). After that time the 𝑁2-peak shape does not
change much and only continues to migrate outward slowly in mass
and radius. Fig. 6 shows that during this initial transition period the
dominant coherent modes are slightly different than at later times
reflecting that the spectrum probes the shape of the 𝑁2 profile. We
generally excluded this transition period from our analysis. Note
that this initial transition period is different from the much shorter
initial transient time of about one convective time scale(§3.2.4)
during which the velocity flow field in the convection zone and in
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the wave region reaches a dynamical steady-state (Paper I, section
3.1.3).

Power at some frequencies like ≈ 4 𝜇Hz, periodically fade
before being re-excited. Another example of a somewhat fainter
mode can be found at ≈ 21 𝜇Hz which is at high power from ≈ 110
to 150 d, then becomes weaker and is excited again at 214 d for a
duration of about 51 d. Our analysis suggests that power fluctuations
shown in Fig. 6 on time scale as short as 3 d are representative of
the underlying data (cf. §3.4 for an estimate of the IGW coherence
time based on the spectral line width presented below).

A sufficiently long spectrogram with a short window size,
such as 15.3 d in Fig. 6 can reveal spectral changes as a function
of time, for example due to the migration of the boundary and by
the adjustment of the spherically averaged structure due to heating
without radiative transport. Modes in Fig. 6 migrate slightly over
the duration of the simulation. For example, one mode that starts at
50 d and 39.67𝜇Hz shifts to 36.95𝜇Hz at the end of the simulation.
We conclude that such dependency of the spectral features on the
omission of radiation diffusion and the impact of this assumption
on the structure is minor. This is also supported by the GYRE
prediction error bars discussed at the end of §3.3.2.

Stochasticity requires not only a stochastic excitation mecha-
nism but also some form of de-excitation or damping. After the ini-
tial transient, the tangential and radial velocity approaches a steady
state, as seen in Figs. 7 and 8 of Paper I. Since these simulations do
not contain the effects of radiative damping, nor significant numeri-
cal damping, a possible mechanism for damping or de-excitation in
these simulations is that convection is not only a source but also a
sink of wave energy. Depending on the phase of the wave and con-
vective motions at the convective boundary where these two types
of motions interface wave energy can be returned to the convection
zone. In this picture the convective and wave energy content of the
simulation assume an equilibrium according to the wave energy
excitation and de-excitation efficiencies.

3.2.3 Low-frequency excess

Taking the discrete Fourier transforms of these light curves leads
to the eight panels in the right column of Fig. 4. These are the
power spectra of relative luminosity variations, where the luminos-
ity results from hemispheric integration and applying Lambert’s
cosine factor. The power peaks at a period corresponding to a fre-
quency of 2.5 𝜇Hz or 0.22 d−1, the same period we identified
in the time series and which is also clearly visible in Fig. 6. This
frequency corresponds to the characteristic convective frequency
(§3.2.4). Motivated by the observations of a low-frequency power
excess by Bowman et al. (2019b,a); Bowman et al. (2020) we apply
the iterative pre-whitening procedure described in §2.2 that sepa-
rates and iteratively removes statistically significant (i.e. S/N ≥ 4)
periodicities to reveal the background. In doing so we do not suggest
that the spectra obtained in such a way are an accurate representa-
tion of the observed spectra. An important difference is, of course,
that our simulated spectra represent the conditions deep inside the
envelope. However, by applying the same data processing steps as
done for observed spectra we hope to gain a better understanding of
the different effects that in combination may lead to the observed
spectra.

The resulting spectra are presented in Fig. 7 for the first four
lines-of-sight pointing which all point into one hemisphere. These
log-log plots show both the original and pre-whitened spectra for
each line-of-sight, taken at 19.5 M⊙ . The residual spectra obtained
in this way show an excess of power at low frequencies with a flat

Figure 7. Fourier transforms of the photometric variability extracted from
simulation M107, for four of the eight different lines of sight (los.) to the
star. The variable on the vertical axis, L, is the power spectral density of the
unity-subtracted, relative luminosity. All time series were extracted at mass
coordinate 19.5M⊙ . The orange lines are the original spectra, and the black
lines are after applying iterative pre-whitening. The result is fit to the model
described in §2.2.

portion at the frequencies below ≈ 10 𝜇Hz followed by a power-law
slope that appears qualitatively similar to that observed in massive
main-sequence stars with the K2 and TESS missions by Bowman
et al. (2019b,a); Bowman et al. (2020) but shifted slightly towards
lower frequencies. Of course, our simulation does not include the
surface or the effects of radiative damping, so we cannot say how the
spectra would change towards the surface. We discuss the properties
of the IGWs that contribute to the formation of this low-frequency
excess once we have introduced the 𝑙 − 𝜈 diagrams and IGW mode
identification based on GYRE calculations in §3.3.1.

The qualitative similarity of the luminosity spectrum in the
stable envelope of our 3D hydrodynamic simulation and the low-
frequency excess observed at the surface suggest that we determine
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Figure 8. Superimposed luminosity power spectra (M107) of all eight lines of sight at a mass coordinate of 19.5M⊙ . As in Fig. 7, L is the power spectral density
of the unity-subtracted, relative luminosity. We observe an excess of low-frequency power. The original spectra are shown in orange, and the pre-whitened
spectra are shown in black. We over plot the mean of the best fitting models of each residual spectrum in green, with standard error between models marked
by the shaded regions. The red and white noise components of the model are separately plotted in red and blue respectively. We also show a power law fit to
the original, not pre-whitened data in cyan.

the fitting parameters of the Lorentzian function used to character-
ize the observed data. This is purely to ease the comparison with
observations that have had the same pre-whitening and model fit
procedure applied. We fit the Lorentzian model consisting of the
sum of red noise and white noise components to each of the eight
line-of-sight spectra. The level of the flat white noise components
are expected to differ due to the absence of surface effects and
instrumental noise. The results of the fit to each line-of-sight are
over-plotted in Fig. 7. Fig. 8 shows the power spectrum that results
from superposition of all eight lines-of-sight along with the best-fit
model with the parameters 𝛾 = 2.33±0.06, characteristic frequency
𝜈char = 0.53±0.05 d−1 (6.13±0.58 𝜇Hz), and𝛼0 = 7.0±1.6×10−8,
which are the mean and standard error of the fit parameters across
the eight lines-of-sight to the simulation. This uncertainty is only the
variation expected due to examining the simulated star from differ-
ent directions; it does not consider the variation expected between
different runs of the simulation.

In observations, the range reported by Bowman et al. (2020,
Table A.2.) for O dwarfs 2 to 9 d−1 with an average of 4 d−1 for
𝜈char and 1.4 to 2.5 for 𝛾. The characteristic frequency measured
from our simulation is a factor 7.5 smaller than the averaged in
the main-sequence O stars. We do not compare 𝛼0, the amplitude
of the variations, to observations as there are many factors that
could impact the comparison to observations (most notably the
radius at which it was measured below the surface and the enhanced
heating rate). Finally, applying the iterative pre-whitening to our
simulated spectrum as done for observations removes in our case
mostly the power in a cluster of frequencies at and around the
convective frequency. While the resulting residual spectrum can

be reasonably well represented by a Lorentzian model the original
simulation data would be better represented by a straight power-law
fit (Horst et al. 2020) up to the peak near 2.5 𝜇Hz. This is illustrated
in Fig. 8 where a power-law fit in log-space to the non pre-whitened
data is able to include the power removed by pre-whitening.

3.2.4 Convective frequency

The noted cluster of peaks in the region between 2.14 and 3.00 𝜇Hz
(Fig. 8) and first introduced in §3.2.1 near 2.5 𝜇Hz shown in Fig. 4,
correspond to periods of 129.76 and 92.56 h. The question naturally
arises how these dominant low frequencies relate to a characteris-
tic convective frequency. This is not a precisely defined quantity.
It involves identifying typical velocities and length scales to de-
termine a typical convective time scale that would correspond to a
characteristic convective frequency. However, there are many length
scales and velocity scales in the convection region, and their relative
importance is a function of radius (§3.4.1 as well as Figure 6 and
Section 3.1.2 in Paper I). Despite following the dipole pattern on
the largest scales the flow is highly turbulent as can be seen from the
small-scale chaotic and random distribution of the vorticity (Fig. 3).

As discussed in §3.1 the large-scale flow consists of a central
radial column through the centre and a horizontal, arching return
flow along the boundary. This general flow pattern is manifest in the
spherically averaged tangential and radial velocity profiles (Fig. 9).
In the centre of the core the radial and horizontal speeds are the same.
Toward the boundary the radial velocity component decreases start-
ing at a distance of about one pressure scale height. The horizontal
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Figure 9. Spherically averaged radial and tangential velocity profiles for dif-
ferent resolutions (2688, 1728, 1152, 768, cf. Table 1). The legend provides
simulation name, velocity component and time of profile in h.

velocity component however increases toward the boundary and
peaks just below the convection boundary. This represents the com-
paratively fast boundary-layer flow. Inspection of the flow images
(Fig. 3 and Paper I) shows that the boundary-layer flow separation
typically starts around 3/4 of the way from one end of the dipole to
the other, (or 3/8 of the circumference).

From these flow observations we estimate convective frequen-
cies. In Paper I we have estimated a convective time scale adopt-
ing an average convective velocity of 𝑈conv ≈ 6.5 km/s and as
a distance the diameter of the convective dipole 2𝑅conv which is
≈ 3000 Mm with 𝑅conv ≈ 1500 Mm. This implies a convective
time scale of 128.2 h, or a frequency of 2.17 𝜇Hz. Alternatively
one can consider the circular boundary-layer flow that returns ma-
terial from where the radial flow impinges on the boundary to the
antipode where the inflow forms. Considering that the excitation of
waves is in part related to this boundary-layer flow one may adopt as
a length scale the portion of the flow from where the radial outward-
directed flow reaches the convective boundary and turns around to
the location where the boundary flow separates as 3/4 of 1/2 of the
circumference, which is 3

4𝜋𝑅conv. The horizontal velocity magni-
tude near the convective boundary is higher (𝑈t ≈ 10 km/s) than
the average radial velocity (Fig. 9). The convective time scale ac-
cording to this adopted length scale and velocity is 𝑇conv = 98.2 h
corresponding to a frequency of 2.83 𝜇Hz.

This exercise demonstrates that reasonably defined character-
istic convective frequencies are in the same range as the prominent
features of the low-frequency excess. The direct relation between
these needs to be further investigated through a heating series of
3D simulations with the same radial stratification but different driv-
ing luminosities. Simulations at 10 times lower driving have 101/3

times smaller velocities and therefore a characteristic convective
frequency that is smaller by the same factor. The convective fre-
quency at nominal (1000× smaller) luminosity is then ≈ 0.25 𝜇Hz.
Accordingly, if the prominent system of features evident in the spec-
trum of these simulations are directly reflective of the convective
velocity they should be found at correspondingly lower frequency
in simulations with lower driving luminosity. Demonstrating this
effect requires very high frequency resolution and therefore very
long runs. Such an analysis of the heating dependence of asteroseis-
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Figure 10. Top panel: Waveforms in terms of the radial 𝜉𝑟 and horizontal
𝐿𝜉h =

√︁
𝑙 (𝑙 + 1) 𝜉h oscillation displacement amplitudes calculated using

GYRE on spherically averaged radial profiles of simulation M114 at 116 d
for g modes with 𝑙 = 30 and 𝑛 = −2, −10. The Brunt–Väisälä frequency is
shown in red to indicate the location of the convective boundary region in
which the 𝑛 = −1 modes resonate (Paper I). Bottom panel: 𝑙 − 𝜈 diagram
calculated with GYRE for the same radial profile from run M114. The grey
dash-dotted line shows the Brunt–Väisälä frequency representative for the
envelope (Fig. 1). 𝑛pg < 0 represent g modes. Low 𝑙 f modes for 𝑛pg = 0
appear as well. p modes with low 𝑙 have frequencies larger than shown in
this plot.

mic simulation properties (as in Le Saux et al. 2022; Blouin et al.
2022) is beyond the scope of this paper. However, spatial spectra for
simulations with different heating factors discussed in §3.5 provide
partial answers.

3.3 The nature of the oscillations in the stable envelope

Up to this point we have documented the stochastic properties of
the luminosity oscillations and their correlation with velocity oscil-
lations. We have established the presence of standing waves with
stochastically variable amplitude. In order to further characterize
the nature of these waves, and in order to determine the origin of
the low-frequency excess of the luminosity spectra at a given radius
of our simulation we construct frequency-wavenumber 𝑙 − 𝜈 dia-
grams as in Herwig et al. (2006) where it was demonstrated how
these diagrams allow the identification of IGWs and p modes as a
function of radius when transitioning from the convection zone to
the stable layer. However, first we determine the eigenmodes of the
spherically-averaged radial stratification of the 3D simulations in
order to place the 𝑙 − 𝜈 diagrams from 3D simulations into context.

3.3.1 Predicted modes from GYRE

Usually GYRE is used to determine eigenmodes of a structure calcu-
lated by a stellar evolution code, such as the MESA code. Instead we
use the spherically-averaged radial profile of a dump in the middle
of the range used for the Fourier analysis of the 3D simulation M114
as input for the GYRE code. This allows us to identify the eigenmodes
we expect in the 3D simulation (§2.4).

Fig. 10 shows the GYRE results (cf. Pedersen et al. 2018, Fig.
2). In Paper I we have already discussed the role of the 𝑛 = −1
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g mode that dominates the 𝑢r power in the narrow region of the
𝑁2 peak where its prominent wave motions are clearly distinguish-
able in the velocity image renderings (Fig. 18, Paper I). Here we
show the waveforms of some higher-radial order modes that have
their largest amplitudes in the stable envelope above the convective
boundary region. By identifying systematically the frequencies and
𝑙 for −20 ≤ 𝑛 ≤ −1 we arrive at the 𝑙 − 𝜈 diagram schematic of
eigenmodes shown in the bottom panel of Fig. 10. As expected g
modes have frequencies in the envelope up to the Brunt–Väisälä fre-
quency. For each radial order 𝑛 we obtain the arc-shaped dispersion
relation that is characteristic of g modes.
GYRE can tell us 𝜈 and 𝑙 for each eigenmode with radial order

𝑛, but not how much power is in each of these eigenmodes. This in-
formation is of course contained in the output of our 3D simulation,
and we will extract it in the next section.

3.3.2 𝑙 − 𝜈 diagram from the 3D simulations

The 𝑙 − 𝜈 diagrams extracted from the 3D simulations are based
on the last 2000 dumps (≈ 1300hrs) of the 11523-grid run M114.
We choose to analyse a subset just long enough to achieve sufficient
frequency resolution while limiting blurring the dispersion relations
due to the slow evolution of the boundary in our simulations (Fig. 1
and Paper I).

In Fig. 11, we present diagrams from six mass coordinates
from inside the convection zone and near convective boundary as
well as from several locations in the stable envelope.

The power by mass coordinate and frequency is also plotted
separately for 21 individual 𝑙 values in Fig. 12.

In 𝑙−𝜈 diagrams gravity waves follow dispersion relations that
appear as arcs that asymptotically approach the local Brunt–Väisälä
frequency (see §3.3.1 for the corresponding GYRE predictions). The
dispersion relations are modified by the radial order 𝑛, which relates
to the angle of propagation, with oscillations in low 𝑛 waves being
nearly radial and in high 𝑛 waves with the same 𝑙 approaching
horizontal.

Beginning in the core at 10.0 M⊙ , the convection and turbu-
lence produce smooth spectra (Fig. 11). The projection onto the
spherical-harmonic degree 𝑙 horizontal axis shows power to be cul-
minating at the lowest 𝑙 values and frequencies without any particu-
lar structure. This is typical for the irregular, intermittent turbulent
motions of convective flow and has been documented already for
deep interior simulations of He-shell flash convection (Herwig et al.
2006, Fig. 23, panel 𝑦 = 4.70 Mm and 𝑦 = 7.45 Mm), for O-shell
convection (although less clearly Meakin & Arnett 2007, Fig. 7,
middle panel) as well as core convection (Rogers et al. 2013). The
accumulation of power in the convective region at low frequencies
and low wave numbers reflects the nature of the turbulent spectrum
of convection (e.g. Fig. 6, Paper I) and is most clearly displayed for
radii sufficiently deep inside and distant from the convective bound-
ary. The power in the lowest frequency bins of a few 𝜇Hz relates
to the convective frequency (§3.2.4). However, at 10.0 M⊙ which
is approximately one pressure scale height below the convective
boundary (Fig. 9), a faint signature emerges of the ordered arc-like
pattern of power distribution associated with IGWs appears. This
arc belongs to the 𝑛 = −1 modes that have their largest displacement
amplitude near the convective boundary.

Stepping outward, the general pattern is that power redis-
tributes into different sets of IGW eigenmodes. The mass coordinate
12.0 M⊙ is close to the convective boundary on the unstable side.
The distribution of power shifts to a flatter 𝑙 spectrum. The arcs
of the lowest radial order 𝑛 IGWs now contain more power. The

𝑙 − 𝜈 diagram at this mass coordinate shows a mix of the unordered
convective power distribution and the regular patterns reminiscent
of IGWs. Thus, in the outermost layers of the convection zone mo-
tions are due to a mix of IGWs and turbulent convection. This
gradual transition from convection-dominated to IGW-dominated
flow fields is documented in Paper I. At 12.6 M⊙ we arrive at the
peak of the Brunt–Väisälä frequency profile. Here, the power in the
region at low 𝑙 and 𝜈 which dominated inside the convection zone
is momentarily diminished, demonstrating that irregular, turbulent
convective motions generally do not reach this radial location. It also
shows that at and above the 𝑁2-peak radius, motions are dominated
by IGWs and not, for example, by plume overshooting.

In Paper I we showed that the radial location of the 𝑁2 peak
is an important separation line between the convection-dominated
flow below and the IGW wave dominated flow above. In this region
of the 𝑁2 peak significant power is present in the 𝑛 = −1 g modes
with a large range of 𝑙 ⪅ 80 (cf. Fig. 19, Paper I). Higher order
g modes exist but have insignificant power. The power spectrum
has now completely changed, peaking at 𝑙 ≈ 70 and 𝜈 ≈ 140 𝜇Hz.
The dominant presence of the 𝑛 = −1 mode depends on the exact
shape of the 𝑁2 profile, something that 3D hydrodynamic simula-
tions aim to ultimately determine. This shape is a combination of
hydrodynamic and secular time scale processes (Paper I). If real
stars feature a prominent 𝑁2 peak at the convective boundary the
𝑛 = −1 IGW clearly plays a key role in the physics of convective
boundary mixing.

The boundary region ends at approximately 12.9 M⊙ where
the 𝑁2 profile reaches a local minimum. At this radius power shifts
to IGW modes that oscillate predominantly in the envelope with
𝑛 ≤ −2 at lower frequencies, below the local Brunt–Väisälä fre-
quency, and lower 𝑙. This general trend continues for larger radii.
At 14.0 M⊙ , some distance from the boundary region and the bot-
tom region of the stable envelope, the power in the high 𝑙, 𝑛 = −1
boundary waves is greatly diminished as they now exceed the local
Brunt–Väisälä frequency. The spatial power spectrum peaks at low
𝑙 but has significant power out to 𝑙 ≈ 80 thanks to a large population
of modes with a wide range of 𝑙 and 𝑛 ≤ −2. At this point, the
spectrum reaches a turning point at frequencies just below the BV
frequency with a sharp drop of power beyond.

At the largest mass coordinate shown, the power in the 𝑛 = −1
boundary mode has vanished. Essentially all power is in IGW modes
with 𝑛 ≤ −2. A full range of g modes are excited for many 𝑛 and
𝑙 values exceeding 100. A key feature of the frequency spectrum
summed up for all 𝑙 shown on the horizontal axis of each panel,
is the large amount of power near the BV frequency. This power
originates from high-𝑙 and relatively low-radial order g modes. It
becomes clear that in order to understand the low-frequency excess
shown in Fig. 8 the substantial contributions of moderate-𝑙, and
high-radial order 𝑛 IGW modes near the BV frequency is key.

When interpreting the 𝑙−𝜈 diagram panels for mass coordinates
in the stable layer, one needs to keep in mind that the 𝑙 − 𝜈 diagrams
do not show any power where a mode has a radial node, and thus
some modes along the regular arcs are not seen very strongly. This
is clearly seen for example for the 𝑛 = −4 g modes for the 19 M⊙
panel in Fig. 11 and in Fig. 12 where the radial power distribution
is shown as function of frequency separately for 21 𝑙 values. In
that diagram each vertical line in the stable layer corresponds to one
radial order 𝑛, and the dark gaps in these vertical lines correspond to
nodes. The frequency of the vertical line for each order 𝑛 increases
from panel to panel with 𝑙, tracing out the dispersion relation arcs
from Fig. 11.

It is worth noting that these modes are not sharp and have
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Figure 11. Oscillation power spectral density of relative luminosity decomposed by both frequency and spherical harmonic for run M114. The variable L is
the power spectral density of the unity-subtracted, relative luminosity. The six panels correspond to different mass coordinates. Frequency in 𝜇Hz is plotted
along the vertical axis, spherical harmonic degree 𝑙 along the horizontal, and power is represented logarithmically by the colour scale. The plots along the
margins show the sum of the power along each axis. The horizontal line indicated by BV gives the Brunt–Väisälä frequency at that mass coordinate. Beginning
from top left: at 10.0 M⊙ the power inside the core is smooth and characteristic of turbulence, with few distinct features. At 12.0 M⊙ which is inside the
convection zone just below the convective boundary, the spectrum begins to show low order g modes couple to the convection. By 12.6 M⊙ , much more of
the oscillation power is in a high 𝑙 mode confined to the boundary. By approximately 14.0 M⊙ a full spectrum of g modes are excited and the spectrum (vs.
frequency and vs. wavenumber) appears flatter out to the local Brunt–Väisälä frequency and 𝑙 ≈ 60. Further out in the envelope such as 19.0 M⊙ , the dominant
mode from the boundary has died out at high 𝑙 as it exceeds the local Brunt–Väisälä frequency. We cropped the diagrams to only show lower frequencies and 𝑙

values where there is significant power and where we expect g modes.
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14 W. Thompson et al.

Figure 12. The relative luminosity power spectrum of M114 as a function of mass, separated by degree 𝑙. The variable L is the power spectral density of the
unity-subtracted, relative luminosity. The turbulence visible throughout the core flattens as it approaches the convective boundary at approximately 12.5 M⊙ . At
this point, a forest of g modes are excited in the envelope with frequencies approaching the maximum Brunt–Väisälä frequency of the envelope. The frequency
and number of nodes along these vertical lines depend on their radial orders 𝑛, which are related to their angle of propagation through the envelope. The 𝑛 = −1
boundary waves are visible above 𝑓 ≈ 60 peaking inside the narrow boundary region outlined by the Brunt–Väisälä profile in white. g modes cannot exist with
𝑙 = 0, so by process of elimination, the modes visible in the top-left panel must be f or p modes, which are not considered in this paper.
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Figure 13. Frequency-wavenumber diagram averaged radially from the convective boundary to the edge of the M114 simulation. The colorscale displays L,
the power spectral density of the unity-subtracted, relative luminosity. We over-plot the eigenmodes predicted by GYRE as white lines and label them by their
radial order npg where positive indices indicate pressure modes, zero indicates the f mode, and negative indices indicate g modes. The predictions of GYRE
agree with the results of our simulations. This figure has been cropped – the numerical resolution of the simulation grid permits modes up to 𝑙 ≈ 1800. The
GYRE calculations were run against the start and end dumps of the time span used to create the diagram, and then averaged. When visible, the vertical white
bars indicate half of the difference between those calculations. We do expect some aliased p modes to visible in top left of the plot.

line widths much greater than we would expect from the Han-
ning window function applied to control spectral leakage. Some of
this broadening comes from evolution of the Brunt–Väisälä profile
throughout the simulation as can been seen in the white error bars of
Fig. 13; however, the more significant contributor to the line width
of these modes is their finite coherence, since the modes are driven
stochastically and have a finite lifetime.

Before discussing the coherence of these modes below, we
return briefly to the interpretation of Fig. 6 now that we have estab-
lished that the waves are indeed IGW. The power at each frequency
usually does not correspond to an individual IGW mode, but rather
to a superposition of modes with different radial order 𝑛 and spher-
ical harmonic degree 𝑙 as shown in §3.3.1. However, in order for
the power to vary over time, the contributing modes must be vari-
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Figure 14. Coherence times measured from three modes at 𝑙 = 30 and a
mass coordinate of 19M⊙ for three different grid sizes. There is no clear
trend in coherence time with grid resolution, and considerable variation
between 𝑛 and 𝑙 mode numbers. The relatively short coherence times are a
result of the stochastic excitation by convection in the core.

able. Thus, the variability of mode amplitudes as the result of their
stochastic excitation by the underlying core convection is also evi-
dent from the sliding spectral representation of Fig. 6.

3.3.3 Internal gravity waves in the stable envelope

The general features of the power distribution in the 𝑙 − 𝜈 diagrams
shown in Fig. 11 show a close resemblance of the eigenmodes
calculated by GYRE shown in Fig. 10. In fact, we can extend the
comparison with the modes as shown in Fig. 12 to include the GYRE
information. In the top panel of Fig. 10 the waveforms are shown for
𝑛 = −2,−10 and spherical harmonic degree 𝑙 = 30. The solid lines
gives the displacement amplitude for the radial velocity component
and dashed lines give the horizontal displacement amplitude.

Comparing the GYRE calculations in Fig. 10 to the 3D sim-
ulations in Figs. 11 and 12, we can directly identify the individ-
ual eigenmodes at the correct frequencies and see that their power
evolves with radius as expected.

Extending this comparison to many modes, Fig. 11 overlays
eigenmodes calculated by GYRE from the spherically averaged radial
profile to the a 𝑙− 𝜈 diagram of the 3D simulation, averaged radially
across the envelope. The radial averaging avoids missing modes
that have nodes at some radii. The GYRE g mode predictions and the
results of the 3D simulation agree very well across the whole range
of 𝑙 and 𝑛. This shows that fluid motions in the envelope are indeed
predominantly IGWs. The f mode indicated by 𝑛 = 0 and first two
p modes are also present but with frequencies approximately 20
percent higher frequency than calculated by GYRE.

The frequencies predicted by GYRE agree within at most 7
percent relative error for high-𝑙 g modes with the frequencies of
eigenmodes in the PPMstar simulation. In Fig. 13 we show the
frequency difference of GYRE predictions based on the spherically
averaged radial profiles of two dumps, one near the beginning of
the sequence analyzed to create the 𝑙 − 𝜈 diagrams, and one near
the end. This shows that according to the GYRE prediction the small
change in the profile contributes little to the broadening of the lines
for all but the 𝑛 = −1 modes.

3.3.4 Coherence time of modes

As visible in Fig. 6, we find that the standing g modes in the envelope
vary in power considerably over time. To evaluate the coherence of
these g modes, we measure the full width at half maximum of a
few characteristic peaks in the M114 𝑙 − 𝜈 diagram in Fig. 14. The
full width at half maximum 2Δ𝜈 of a mode that is not otherwise
broadened by other effects is directly related to the coherence time
by the relation 1/(2Δ𝜈). For low-𝑛 g modes of order 𝑙 = 30, we
find coherence times in the range of 80-100 h. We attribute this
limited coherence and short lifetimes to the stochastic nature of the
excitation and re-excitation from core convection (cf. discussion at
the end of §3.2.2).

3.4 Origin of the low-frequency excess

We are now equipped to describe the origin of the low-frequency
excess (Fig. 8) described in §3.2.3. By doing so we reconsider
two points that could be raised as possible challenges for a low-
frequency excess having the general shape of the one shown in
Fig. 8 to originate from excitation through core convection (e.g.
Lecoanet et al. 2019a). One is that the core convection excitation is
limited to low 𝑙 and the other related point is that higher-𝑙 modes
would cancel in the hemispheric integration. A third important point
is the effect of radiation that we do not include in this paper (see
§4).

3.4.1 The excitation spectrum

A key result from our high-resolution 3D core-convection simu-
lation is a detailed characterization of the dynamic motions near
and across the convective boundary (see Paper I for additional de-
tails). As concluded in §3.3.4, wave energy is also returned to the
convective core to arrive at an equilibrium between excitation and
de-excitation. For this reason, it might be better to describe this as
the equilibrium spectrum. Regardless of the name, a simple picture
of convection motivated by mixing-length theory would suggest
that the dominant power resides in the lowest 𝑙 modes (representing
the mixing-length blob rising for the distance of a mixing length).
While we do see that power peaks at low 𝑙 modes, significant power
is nonetheless present up to much higher 𝑙 as well.

We showed in Paper I (Fig. 6) that the spectrum of the radial
velocity flattens significantly near the convective boundary com-
pared to the regions deep inside the convective core and compared
to the tangential velocity. This is simply a result of the low-M
Mach number and therefore essentially incompressible flow chang-
ing from predominantly radial to predominantly horizontal near the
convective boundary (Fig. 9). This flattening of the spatial spectrum
near the convective boundary is a general feature of interior convec-
tion and has also been documented for He-shell flash convection in
rapidly accreting white dwarfs (Stephens et al. 2021).

The motions contributing to power at large 𝑙 are physically
associated with the boundary-layer separation wedges (§3.1, Paper
I). Thus, at the convective boundary a broad spectrum of scales and
frequencies with power at small and large 𝑙 are present that couple
to and inject energy into the IGW modes of the stable envelope.
Finally, Fig. 12 reveals that it is not strictly necessary to have as
much power at a given 𝜈 and 𝑙 at the convection boundary as in an
excited IGW in the stable layer.
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Figure 15. Luminosity spectra extracted at 19.5 M⊙ from our M107 simu-
lation in three different ways. The “one point” spectrum is measured at just a
single point on the sphere. The uncorrected spectrum is integrated uniformly
over one hemisphere. The corrected spectrum integrated over hemisphere
and corrected for Lambert’s cosine factor cos(𝜃 ) , converting the surface
integral into an integral over the projected disk of the star. The integrated
luminosity power spectra are attenuated significantly where the spectrum
is dominated by higher 𝑙 modes. The latter method is used throughout this
paper. The all points spectrum is similar to the one point spectrum, but is
instead extracted from a frequency-wavenumber diagram of M114 (left mar-
gin panel of Fig. 13). This is similar to averaging one point spectra across a
surface of the sphere.

3.4.2 Attenuation

Through the analysis of the 𝑙 − 𝜈 diagrams presented in the previous
section we have established that the fluid motions in the envelope are
IGWs and that the substantial power contribution to frequencies just
below the Brunt–Väisälä frequency originates from the superposi-
tion of modes with the approximate range of spherical harmonic
degree 15 ⪅ 𝑙 ⪅ 40 and with small radial orders in the range
−6 ⪅ 𝑛 ≤ −2. While the highest power lies in individual modes
with low 𝑙 and 𝜈, the combined power from the superposition of
waves with a wide range of higher 𝑙 contributes significant power
out near the Brunt–Väisälä frequency. Radial order −5 ≤ 𝑛 ≤ −2
and 𝑙 ≈ 30 modes are responsible for the power in the upper half of
the frequency range up to the BV frequency.

We now consider how different approaches of turning the 3D
wave field into a simulated light curve impact the resulting synthetic
spectrum. We consider three options. The first is to take the lumi-
nosity only at one point on a 3D sphere of a given radius, somewhat
similar to Edelmann et al. (2019b) who used eight points. We refer
to this in Figs. 15 and 16 as one point. The second is to integrate
at each dump over a hemisphere of the simulated star at a given
radius and into the direction of a given line-of-sight (§2.2) to ob-
tain time series of single luminosity values. Finally, we consider
the correction due to Lambert’s cosine factor as described in §2.2.
The latter two options are referred to as uncorrected and corrected
respectively. The spectra generated using these three options are

Figure 16. The attenuation of the luminosity power spectrum when inte-
grated across one face of the simulation, compared to a spectrum extracted
from a single point (integrated power spectra divided by the single point
spectrum). The strongest attenuation occurs where the spectrum is domi-
nated by higher 𝑙 modes.

compared in Fig. 15. A tentative fit of a Lorentzian model to the one
point spectrum places 𝜈char ≈ 3.8 d−1 close to the BV frequency of
this model, and much higher than the value determined for the spec-
trum according to the corrected approach reported in §3.2.3. The
one point spectrum has a pronounced flat low-frequency plateau
with a relatively gentle slope from the peak near the convective
frequency toward the envelope BV frequency.

That said, a photometric observation receives light that is the
2D integration over the projected face of a hemisphere. This inte-
gration cancels luminosity peaks and troughs of oscillations. The
cancellation is expected to be largest for high-𝑙 modes, and for
coherent oscillations only the partial peaks and troughs along the
rim that have no exact counterpart are expected to contribute net
flux to the oscillation. This rim contribution is further diminished
by applying the cos(𝜃) Lambertian projection factor (§2.2). These
are all good reasons to expect that high-𝑙 modes do not contribute
significantly to spectra over an entire hemisphere. However, our
simulations suggest otherwise.

The uncorrected spectrum in Fig. 15 also shows the spec-
trum of the same simulation, but integrated over a full hemisphere.
The cancellation effect of the integration is clearly present, and it
attenuates power from the higher frequency range below the BV
frequency that is associated with high-𝑙 modes (as explained in the
previous section). Performing a Lorentzian model fit results in a
substantially lower parameter 𝜈char (which identifies the edge of the
low-frequency plateau) and a smaller parameter 𝛾 (that describes
the slope from the red noise to the level of the white noise). How-
ever, the power is not attenuated completely and, at least in the
simulation, we still detect power out to the BV frequency, Thus, the
hemispheric integration indeed cancels high-𝑙, but not to the level
that they become entirely insignificant.

Applying the cos(𝜃) correction further reduces 𝜈char, though
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the additional effect is relatively small. This can also be seen in
Fig. 16 where we show again the spectra for all three cases as well
as their ratios. Power at high 𝑙 is largely present at intermediate
frequencies approaching the BV frequency of the envelope (see
Fig. 11). Accordingly, the attenuation between considering just one
point on the equator and integrating over one face of the simulation
is strongest between frequencies of 1 and 10 d−1. Applying the cos 𝜃
correction does not effect the cancellation significantly.

This suggests that the oscillation contributions escaping can-
cellation do not primarily come from the rim, but that instead can-
cellation effects are smaller than one may expect because the os-
cillations are stochastic (Fig. 5,§3.2.2, 3.4). Especially stochasticity
in phase would reduce cancellation effects compared to the case of
coherent oscillations. In fact, we have seen in Fig. 4 that the lu-
minosity oscillations have fluctuations in different directions of the
same hemisphere with different phases.

This leads to a key result. A power spectrum such as the one
shown in Fig. 8 is the result of attenuation through hemispheric
integration of high-𝑙 modes of an underlying spectrum relatively
flat for 𝜈 < 𝜈BV. The attenuation does not entirely suppress the
modes with frequencies closer to the BV frequency. Instead, the
slope of the decrease of power from the red noise level at 𝜈char to
the intercept of white and red noise changes by the cancellation due
to hemispheric integration. This slope is expressed in terms of the
parameter 𝛾 of the Lorentzian model fit. It in turn depends on the
power distribution in terms of 𝑙 and 𝜈 and on the stochastic nature of
the excitation, as we believe this reduces the cancellation compared
to the case of coherent oscillations.

Finally, we note that the low-frequency power excess falls to
the level of the white noise at the BV frequency. In other words, the
location where the red noise intercepts the white noise indicates the
peak BV frequency in the envelope, assuming that no other observa-
tional white noise sources dominate. This frequency 𝜈0 changes less
than 𝜈char when integrating over the hemisphere with and without
Lambertian correction factor.

3.5 Convergence and dependence on heating factor

For results of any 3D hydrodynamic simulation an important ques-
tion is always to what extent the finite grid resolution affects the
results in question. This is especially true in light of conflicting
results between simulations, and how those results depend on lumi-
nosity and resolution (Lecoanet & Edelmann 2023).

Fig. 17 shows vorticity images for a zoomed-in region of the
simulation for three different grid resolutions taken from the same
time step. The overall morphology of the flow is similar for all
three resolutions and as expected higher resolution simulations show
more small-scale structure.

This is reflected in the spatial power spectra of the velocity
magnitude shown in Fig. 18 for simulations with grids from 7683 to
26883. Note that spatial spectra velocity magnitude are essentially
identical to luminosity spectra which were for technical reasons
not available for all simulations shown in Fig. 18. As expected,
simulations with higher resolution contain power at increasingly
higher spherical harmonic degree 𝑙. Considering the dispersion re-
lation of IGWs (Fig. 13) high-𝑙 power is associated with higher
frequencies where most of the attenuation takes place (§3.4.2). This
de-emphasizes the already small impact of grid resolution on the
frequency spectra since geometric attenuation is most effective at
high 𝑙. At lower 𝑙 the agreement between simulations with grids
of 11523 and higher is very good. Importantly, the shape of the
spectrum depends little on grid resolution.

Figure 17. Zoom-in vorticity images (center plane) for dump 2150 (1540 h)
for simulations M107 (7683), M114 (11523) and M115 (17283), from top
to bottom.
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Figure 18. Spatial power spectra of velocity magnitude at radius 1900 Mm.
Each line is the average of hundreds of dumps to remove short-term spectral
variations. Top: Simulations with 1000× (103) heating factor for different
grid resolutions as indicated in the legend. Bottom: Spectra for different
heating factors from 11523-grid simulations (table 1, Paper I) as indicated
in the legend. The heating factor for each case is given as the log heating
rate subtracted from 3 as given in the bracket in the legend. For example, the
heating factor simulation M119 is 103.5. Each heating run has been shifted
according to the scaling 𝑢IGW ∝ 𝐿2/3, see section 5.2 in Paper I. Power laws
have been added with dashed lines to guide the eye. Simulations shown that
are not included in Table 1 are discussed in detail in Paper I.

The temporal spectra for the same set of grid resolutions is
shown in the top panel of Fig. 19. These have been obtained based
on the time series shown in Fig. 20. As can be expected higher
resolution runs are shorter. This impacts the frequency resolution.
However all simulations are long enough to capture the peak of
the power spectral density at ≈ 2.7 𝜇Hz, essentially the same as
the convective frequency (§3.2.4). We exclude as before the initial
transition period (§3.2.1) and compared to spectra shown in §3.2.3
we are using for this comparison the same (smaller) radius as for the
spatial spectra (Fig. 18). The good agreement between spatial and
temporal spectra for the four resolution simulations spanning overall
a grid size factor of 3.5 as well as the absence of an obvious trend
of the mode life times reported in Fig. 14 suggests that numerical
effects commonly associated with insufficient numerical resolution
are not impacting our results.

The dependence of IGW spectra driving luminosity deserves
attention as well since all of our simulations are at a considerable
boost factor. Demonstrating that spectra are self-similar not only
under grid refinement but also as a function of heating factor is
key for extrapolating from boosted simulations to nominal heating.

Figure 19. Temporal power spectral density of the unity-subtracted, relative,
hemispherically integated luminosities L, averaged over all eight lines-of-
sight (§2.2), and using for each simulation the time series shown in Figs. 20
and 21 at radius 1900 Mm. Spectra have different frequency resolutions due
to the different simulated time range available and/or adopted in the analysis.
Top: Simulations with 1000× heating factor for different grid resolutions
as indicated in the legend. Bottom: Spectra for different log heating factors
based on 7683-grid simulations, except M119 which is 11523 grid. Filled
markers are added at frequencies ∝ 𝐿1/3 reflecting the scaling of the con-
vective frequency. The vertical position of the markers is ∝ 𝐿2 and the offset
is chosen to approximately match the power of simulation M107. A second
set of open markers connected with a vertical line is added at 9 𝜇Hz with
the same heating factor scaling. Simulations shown that are not included in
Table 1 are discussed in detail in Paper I.

We have already shown in Paper I (section 5.2) that for heating rate
factors ≤ 100 for an 11523 grid and ≤ 316 for a 7523 flow velocities
start to depart from scaling relations, thereby indicating decreasing
levels of accuracy. Figs. 18 and 19 show both spatial and temporal
spectra as a function of heating factor. The two lowest heating-
factor simulations show somewhat flatter spatial spectra that extend
relatively to higher anglar degree 𝑙. The three higher heating rate
simulations agree well with each other when scaled according to
𝑈IGW ∝ 𝐿2/3.

The temporal spectra are shown in the bottom panel of Fig. 19.
The frequency-integrated power spectrum density

∫
L𝑑𝜈 scales lin-

early with the heating factor, with a deviation from the linear fit of
−2.5, −6.8, 7.5, 20.4 and −14.2% from low to high heating factor.
Markers are positioned at the convective frequency corresponding
to the respective heating factor with vertical shifts reflecting the just
mentioned scaling. The peaks of the spectra evolve with heating fac-
tor with almost the same rate as the expected convective frequency.
Such a correlation was recently reported by Le Saux et al. (2022).
The same analysis at a larger radius of 2400 Mm showed an even
smaller relationship between spectrum peak frequency and heating
factor.

A second set of open markers at 9 𝜇Hz reflects the scaling
found for the integrated power spectral density, and indicates that
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Figure 20. Time series of first four line-of-sight hemispherically integrated
luminosities at radius 1900 Mm for the resolution series used for the tem-
poral spectra shown in Fig. 19. The text label gives the simulation name and
the grid size.

this scaling applies not only approximately to the peak power but
also at other frequencies. Overall it appears that the spectra are
mostly self-similar with respect to heating factor.

4 DISCUSSION

Based on 3D hydrodynamic simulations of a 25 M⊙ star near the
beginning of its main sequence evolution we have investigated the
excitation and spectrum of IGWs in the stable layer excited by core
convection. The key convection and convective boundary properties
of these simulations have been reported in Paper I. The key results
of this paper can be summarized as follows:

• Deep inside the convective core the flow is well represented
by a fully-developed Kolmogorov power spectrum. However, near
the convective boundary the flow is dominated by horizontal flow
topologies, in particular the boundary-separation flow wedges (cf.
Paper I) where unstable flow morphologies with a wide range of
scales are generated.

• The broad range of scales of fluid motions near the boundary
excites IGWs with a broad range of spherical harmonic degrees
𝑙 and radial order 𝑛. The power remains significant up to 𝑙 ≈ 30
and the dispersion relations for radial orders up to 𝑛 ≈ −10 can
be clearly distinguished in the 𝑙 − 𝜈 diagram. These agree with the

Figure 21. Time series of first for line-of-sight hemispherically integrated
luminosities at radius 1900 Mm used for the heating series temporal spectra
shown in Fig. 19. The text label gives the simulation name and the log of
the heating factor.

GYRE predictions for the spherically averaged radial profile of the
3D simulation demonstrating that the oscillations are indeed IGWs.

• The 𝑛 = −1 g modes populate the convective boundary region
where due to the choice of our initial profile from a MESA stellar
evolution model the profile of 𝑁2 has a sharp peak (see Paper I for
details).

• The power in different IGWs fluctuates stochastically. This
may reduce the cancellation effect when integrating photometric
variability due to IGWs over a hemisphere.

• IGWs have a broad distribution of power at moderate to high
𝑙 which corresponds, according to the dispersion relation of IGWs
as seen in Fig. 13, to relatively high frequencies near the Brunt–
Väisälä frequency. This power at high frequencies is attenuated
by the cancellation in spherical integration, but not to the level of
insignificance.

• The combination of these two effects—the excitation of high-
𝑙 IGWs and reduced attenuation of incoherent IGWs—leads to a
spectrum (right panels in Fig. 4 and Original in Fig. 7) in which
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the power peaks in the frequency range that coincides with the con-
vective frequency and then gradually tapers off toward the Brunt–
Väisälä frequency.

• When further applying the same pre-whitening procedure as is
applied to observational data (Bowman et al. 2019a; Bowman et al.
2020) the low-frequency peaks that coincide with the convective
frequency are removed resulting in a flat red noise spectrum shown
in Figs. 7 and 8.

• Spatial and temporal spectra show little dependence on grid
resolution. The temporal spectra show a clear trend of the peak
frequency with heating factor, with almost the same power as the
convective frequency. The overall shape of the spatial and temporal
spectra is self-similar with respect to heating factor.

• Since the convective velocity scales with ∝ 𝐿1/3 the convec-
tive frequency at nominal heating would be 10 times lower (thus
≈ 0.27 𝜇Hz) compared to our 1000× simulation, and therefore
challenging to access with current observations.

Our simulations do not include the effect of radiative damp-
ing (§3.2.2). Similar simulations to the ones analysed here have
been presented in Paper III, where it has been shown that adding
radiative diffusion does not alter the spectra enough to change the
key findings of this work. Radiation diffusion is expected to hap-
pen predominantly near the surface which we do not include, and
it may also damp low temporal frequencies more than higher ones
(Zahn et al. 1997). How this damping manifests itself in the con-
text of the other processes discussed here (e.g. §3.2.2) that lead
to the formation of the IGW spectrum remains to be investigated.
However, a key question is what role the IGWs excited by core
convection play in generating the observed low-frequency excess
in O and B stars. Lecoanet et al. (2019a) argue that the observed
low-frequency excess cannot be due to IGW excitation from core
convection, based on mainly two arguments relating to waves with
𝑙 ≤ 3. One key argument is that these low-𝑙 waves should leave
distinguishable features in the spectrum. Our simulations show that
such individual features can be swamped in the forest of lines from
the power residing at higher 𝑙 (15 ⪅ 𝑙 ⪅ 45). Lecoanet et al. (2019a)
discard such high-𝑙 waves in their analysis presumably because they
correspond to frequencies much higher than the convective frequen-
cies, and it is maybe assumed that such high 𝑙 and high 𝜈 modes
cannot be excited. Our simulations show that such waves are effi-
ciently excited in boundary-flow features such as the boundary-layer
separation wedges. Omitting high-𝑙 waves would also be justified
due to the expected cancellation effect in hemispheric integration
which our simulations show to not be completely efficient, likely due
their stochastic nature. In our simulated, hemispherically integrated
spectrum the Lorentzian downturn expressed in the parameter 𝛾

represents indeed the high-𝑙 wave power attenuated by incoherent
IGW cancellation.

Although our simulations do not support the reasons for the
suggestion of Lecoanet et al. (2019a) that the observed red noise
in massive stars is not caused by convective core excitation, we do
agree with the notion that IGWs excited by convective core con-
vection alone may not fully account for the observed spectra, based
on conventional massive star stellar structure such as those used as
initial model for our simulations. In order to obtain a low-frequency
excess in a hemispherically-integrated mock observation spectrum
through stochastic attenuation (§3.4.2) the underlying eigenfrequen-
cies need to extend to higher frequencies than in our simulations,
because the IGW frequencies are limited by the Brunt–Väisälä fre-
quency.

It has been suggested that the FeCZ zone would excite waves

in the surface region (Cantiello et al. 2009; Lecoanet et al. 2019b;
Schultz et al. 2022). Our simulations do not provide arguments
that would speak against that. We speculate that the observed low-
frequency excess is excited by a combination of core convection and
near-surface convection zones, where the former contribute power
to the lower frequencies and the surface convection adds power to
the higher-frequency range. We expect that the reduced attenuation
of incoherent IGWs would also apply to hemispheric integration
of high-𝑙 modes excited by near-surface convection modes. Indeed,
Bowman et al. (2020) observe a trend in the inferred morphology of
the low-frequency power excess between younger and older stars.
Such a transition also argues for both convective regions contribute
to the excitation of IGWs observable at the surface, with a relative
contribution of the two mechanisms that depends on the structure
(i.e. age) of the star (Bowman & Dorn-Wallenstein 2022).

If the low frequency excess observed at the surface does in-
deed originate from IGWs in the envelope, then the shape of the
low-frequency excess could provide direct measurements of certain
properties of the core and envelope. For instance, we note that the
location where the tail of the low-frequency excess falls to a negli-
gible level coincides with the peak Brunt–Väisälä frequency of the
envelope. Assuming that observational noise does not overwhelm
this signal, it could be used as a direct measurement of the proper-
ties of a star’s envelope. In a similar vein, we showed that certain
coherent modes above the IGW background are variable. Individual
modes can be seen in a spectrogram (Fig. 6) to vary in power during
the simulation, and in some cases disappear before being stochas-
tically re-excited. If this is detected in observations, properties like
the mean lifetime of these modes or time scale after which they
are re-excited could probe the core convection. Indeed, the sliding
Fourier transforms of asteroseismic observations of O stars shown
in Bowman et al. (2019b) reveal mode fluctuations, possibly on time
scales of several dozen days which could correspond to this main
fluctuation time scale of the IGW mode excitation. Recall that in a
real star this time scale would be ten times longer than in our 1000×
heating simulations.

We also identified a characteristic convective frequency based
on how long it takes on average for material in a convective wedge to
travel from one end of the dipole until it separates from the boundary.
This excites a strong oscillations that peaks on the order of a few
𝜇Hz (and again, ten times less at nominal heating). Detection of
this peak in observations could constrain the bulk speed of material
traveling just under the convective boundary.

Finally, the effect that adding radiation to our simulations will
have on the IGW spectrum will be considered in Paper III. This
is expected to provide a damping mechanism that may affect the
overall distribution of power in the envelope, and may affect the
time variability of discrete modes identified in a spectrogram. We
also leave a full parameter study on the effects of heating rate and
rotation for a future work.
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