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Figure 1: MEMES maintains multiple independent ES emitters to update a MAP-Elites archive. Part of the emitters optimise for
the task fitness (exploit emitter) and the rest for the novelty score (explore emitter). Each emitter can be independently reset
based on its ability to improve the archive; when reset, an emitter restarts from a uniformly sampled solution of the archive.

ABSTRACT
With the development of fast and massively parallel evaluations

in many domains, Quality-Diversity (QD) algorithms, that already

proved promising in a large range of applications, have seen their

potential multiplied. However, we have yet to understand how to

best use a large number of evaluations as using them for random

variations alone is not always effective. High-dimensional search

spaces are a typical situation where random variations struggle to

effectively search. Another situation is uncertain settings where

solutions can appear better than they truly are and naively evalu-

ating more solutions might mislead QD algorithms. In this work,

we propose MAP-Elites-Multi-ES (MEMES), a novel QD algorithm

based on Evolution Strategies (ES) designed to exploit fast paral-

lel evaluations more effectively. MEMES maintains multiple (up

to ∼ 100) simultaneous ES processes, each with its own indepen-

dent objective and reset mechanism designed for QD optimisation,

all on just a single GPU. We show that MEMES outperforms both

gradient-based and mutation-based QD algorithms on black-box op-

timisation and QD-Reinforcement-Learning tasks, demonstrating

its benefit across domains. Additionally, our approach outperforms

sampling-based QD methods in uncertain domains when given the

same evaluation budget. Overall, MEMES generates reproducible

solutions that are high-performing and diverse through large-scale

ES optimisation on easily accessible hardware.
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1 INTRODUCTION
Advances in Quality-Diversity (QD) have highlighted the benefit

of diversity in optimisation. Maintaining a collection of diverse

and high-performing solutions has proven beneficial across a wide

range of applications, from robotics [10] to design [23] and content

generation [26]. QD algorithms help improve exploration during op-

timisation [5, 14], find better-performing solutions by maintaining

stepping stones [24, 36], and facilitate rapid adaptation to unknown

downstream tasks [10].

Previously, a large number of evaluations in QD algorithms im-

plied costly compute resources as evaluations had to be parallelised

across many CPU devices in most applications, causing a major bot-

tleneck. However, advances in optimisation and machine learning

have been facilitated by advances in compute and hardware accel-

eration. Evolutionary Algorithms, population-based approaches

and QD algorithms are not to be outdone, and are shown to be

ideally positioned to take advantage of these advances. Recent li-

braries such as EvoJax [43], QDax [4] and EvoSax [30] allow a

speed-up in run-times by several orders of magnitude thanks to the

use of modern hardware accelerators such as GPUs or TPUs. The

vectorisation of many computational operations on these devices

leads to high parallelisation of evaluations. The development of

fast highly-parallel simulators and domains [3, 22, 28, 35, 41, 43]

also enables these advances to be applied in a wide range of both

simple and complex applications. Lim et al. [33] demonstrate that

QD algorithms, and in particular MAP-Elites, scale extremely well

to massive parallelisation of evaluations. Increasing the batch size
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at each generation from ∼ 10
2
to ∼ 10

5
, reduced the runtime of

MAP-Elites by a few orders of magnitude (∼ 100×) without altering
the performance, all on a single, customer-grade GPU.

However, naive random variations might not be the most effec-

tive method to utilise a large number of parallel evaluations. For

example, they remain inefficient and ineffective optimisers in do-

mains that have high-dimensional search spaces. Methods proposed

to overcome this limitation include replacing or augmenting the

random variations of vanilla QD algorithms with other optimisers,

such as policy gradients (PG) [37, 39] or natural gradients in the

form of Evolution Strategies (ES) [7, 21]. ES-based QD approaches

are demonstrated to be powerful and they can be applied more

generally as they are black-box optimisers. However, they require

many samples to estimate gradients and become only practical and

competitive to PG-based algorithms with access to large numbers

of samples and evaluations [42].

Another case where random variations also struggle is in un-

certain domains where naive single-sample estimates of solutions

can be "lucky" and not reproducible, leading to a loss in true perfor-

mance [12, 17, 18, 29]. This problem setting is also referred to as Un-

certain Quality-Diversity [18]. Similarly, solutions to this problem

commonly revolve around takingmore samples of the same solution

to obtain better estimates [12, 29] or other optimisation schemes

which provide and demonstrate more implicit stability [15, 17].

Both these cases are examples of settings where more effective

methods than random variations exist but require a large number of

evaluations, making them ideal settings for algorithmic innovation

through the availability of large-scale parallel evaluations. Ideally,

we want methods that (1) are black-box optimisers so that they can

be generally used across domains, (2) rely on efficient optimisers, to

be effective in both low and high-dimensional domains, (3) obtain

reproducible and reliable solutions in uncertain domains, and (4)

can benefit and scale well with parallelisation, to leverage and

maximise utilisation of more powerful hardware being developed.

It is important to note here that the use of the term scale does not

just refer to the use of more compute or more devices. Instead,

it also refers to better compute devices which allow for greater

speed and parallelisation even on just a single easily-accessible and

commonly available GPU device.

In this work, we address this by proposing MAP-Elites-Multi-ES

(MEMES), an ES-based QD algorithm that exploits large-scale par-

allelisation to improve the search for quality and diversity. MEMES

maintains multiple (up to ∼ 100) parallel and independent ES-

processes each with its own objective, also called emitters, all on

a single GPU device by leveraging tensorisation and parallel eval-

uations. Exploration and exploitation objectives are distributed

between the parallel ES emitters, which together simultaneously

perform optimisation by generating new solutions.

We compare the performance of MEMES against 10 baseline

QD algorithms and demonstrate that it outperforms them across 4

different tasks. This includes beating state-of-the-art PG-based QD

algorithms such as PGA-ME in high-dimensional and uncertain QD-

RL neuroevolution tasks. In uncertain domains, solution archives

from MEMES prove as reproducible as purpose-built sampling-

based approaches that handle uncertain settings well [17, 18] while

obtaining better performance, demonstrating the importance of ef-

fectively using samples and carefully considering them for addition.

Finally, we provide an extensive ablation of the main mechanisms

of MEMES. These results make MEMES a promising QD approach

in settings where very large numbers (∼ 10
5
) of evaluations are

available at each generation. Moreover, MEMES presents an ap-

proach which enables powerful and large-scale ES optimisation on

just a single GPU.

2 BACKGROUND AND RELATEDWORK
2.1 Quality-Diversity
Quality-Diversity (QD) [11] is an optimisation approach that seeks

to find a collection of diverse and high-performing solutions to a

problem. In the QD setting, the diversity of solutions is defined

according to a set of dimensions of interest referred to as features.

Thus, each solution has an attributed fitness 𝑓 , quantifying its

quality; and a feature 𝑑 , quantifying its novelty with respect to

other solutions. Most recent QD approaches rely on one of the two

main QD algorithms: MAP-Elites [36] or Novelty-Search with Local

Competition [32]. Our work builds upon MAP-Elites.

2.1.1 MAP-Elites. MAP-Elites (ME) [36] is a common and popular

QD algorithm. ME keeps an archive A of elite solutions encoun-

tered during optimisation. To do so, it discretises the feature space

into equally spaced grid cells, and keeps the highest fitness solution

encountered in that feature cell during optimisation. The algorithm

follows the simple procedure of (i) selection from the archiveA, (ii)

update of selected solutions via perturbations (i.e. mutations), (iii)

evaluation to obtain the corresponding fitness 𝑓 and feature 𝑑 (iv)

update of archiveA by attempting to add solutions. A new solution

is added to the archive A if it occupies a new cell (i.e. is novel) or

if it is better performing than the solution in an occupied cell. This

way the archive A incrementally improves as this optimisation

procedure is repeated. In this paper, we use the notion of emitter

for ME introduced in [21]. An emitter is the generic name given

to a procedure used to generate new offspring to be added to the

archive A. It corresponds to steps (i) and (ii) above.

2.1.2 Uncertain QD. Uncertain QD (UQD) refers to the setting

where the fitness and feature of solutions are no longer constants

but instead are distributions denoted as 𝑓 ∼ D𝑓 and 𝑑 ∼ D𝑑 [15,

18]. In UQD domains, solutions can be "lucky" during an evaluation

(i.e. outlier under the distribution) resulting in a fitness or features

that make them appear more performing or more diverse. Due to

their elitism, vanilla QD algorithms prioritise these "lucky" solutions

over genuinely diverse or high-performing ones and thus return

under-performing archives. Thus, core challenges in the UQD set-

ting are (i) performance estimation (ii) optimising for solutions that

are reproducible [18]. (i) deals with correctly evaluating the true

performance and novelty of a solution while (ii) tries to identify

and prioritise solutions that exhibit consistent performance under

uncertainty, also referred to as reproducible solutions. The most

common UQD approach is ME-Sampling [12, 18, 29]. It re-samples

each solution 𝑁 times, and uses the average of the 𝑁 reevalua-

tions to better estimate its fitness and feature before addition to

the archive. This helps to prevent illusory elitism. Our approach

implicitly helps with both UQD challenges without compromising

on strong QD optimisation by using samples more effectively.
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2.1.3 Hardware-accelerated QD. Recent advances in hardware

acceleration have led to new tools that run on devices such as

GPUs and TPUs. This can drastically reduce the evaluation time for

optimisation algorithms. Examples of such tools are highly-parallel

simulators like Brax [22] and Isaac [35], which speed up robotic

simulations. These tools led to new QD libraries such as QDax

[33], that allow 10 to 100 times more evaluations per generation in

parallel within the same amount of time. Using these tools, Lim et

al. [33] demonstrated that the performances of ME are robust to

large increases in the batch-size value. This drastically speeds up

the run-time of QD algorithms by ∼ 100× and opens the door to

promising future applications and algorithmic innovations.

2.2 Evolution Strategies
Evolution Strategies (ES) are black-box optimisation algorithms

inspired by evolution where a parameterised distribution over solu-

tions is updated in the direction of higher fitness solutions [2, 47].

The different ES are classified according to their sampling and

update procedure of the parameterised distribution. We focus on

the ES introduced by Salimans et al. [42] for its ability to operate

effectively on high-dimensional RL tasks. This algorithm is also

commonly referred to as OpenAI-ES but we refer to it as ES for

brevity from this point onwards. ES uses the natural gradient ap-

proximated from samples to update the parameters of the search

distribution. The distribution is represented as an isotropic multi-

variate Gaussian distribution N(𝜃𝜇 , 𝜎2𝐼 ), where 𝜃𝜇 and 𝜎2 are the
mean and variance of the distribution. In this ES variant, 𝜎 remains

constant and is a fixed hyperparameter. Therefore, the distribution

is only parameterised by its mean value 𝜃𝜇 . A batch or population

of 𝑁 search points are sampled from this parameterised distribu-

tion 𝜃𝑖 = 𝜃𝜇 + 𝜎𝜖𝑖 where 𝜖𝑖 ∼ N(0, 𝐼 ). Each sampled point 𝜃𝑖 is

then evaluated on the objective function 𝐹 and used to estimate the

search gradient to update the parameters of the distribution:

∇𝐸𝜃∼N(𝜃𝜇 ,𝜎2𝐼 ) [𝐹 (𝜃 )] ≈
1

𝑁𝜎

∑︁
𝐹 (𝜃𝑖 )𝜖𝑖 (1)

We give the pseudo-code for one ES optimisation step in Appen-

dix A. This procedure is then repeated iteratively to improve the

parameters of the search distribution. Following Salimans et al. [42],

we also perform fitness shaping in the form of rank normalisation.

2.2.1 Novelty-Search with Evolution Strategies. The variant
Novelty-Search ES (NS-ES) [8] also uses ES, described in the previ-

ous section, but augments the objective term to be able to handle

sparse and deceptive rewards to encourage exploration in such

settings. To do so, NS-ES uses a novelty score as the objective 𝐹

for the ES. Taken from Novelty Search [31], the novelty score of

a solution 𝜃 corresponds to the average distance in feature 𝑑 to

its K-nearest neighbours in a novelty archive N , containing all

previously evaluated solutions: 𝑛𝑜𝑣𝑒𝑙𝑡𝑦 (𝜃 ) = 1

𝐾

∑𝐾
𝑘=1
∥𝑑𝜃 − 𝑑𝑘 ∥2.

2.3 Gradient-augmented QD
Despite the simplicity and success of conventional QD algorithms,

they have generally been shown to be efficient in low-dimensional

search spaces but suffer in high-dimensional ones due to the sample-

inefficiency of their GA-based mutation [7]. To be able to function

in applications such as neuroevolution, where the size of the param-

eter space is easily in the thousands, more efficient optimisation

procedures were needed over the standard GAmutations used, such

as gradient-based optimisation methods, that are generally known

to be more efficient optimisation algorithms.

Our work builds on MAP-Elites ES (ME-ES) [7], detailed in

Section 2.3.1, which uses ES and maintains an archive of elites.

Other QD algorithms that use ES also exist such as Novelty Search-

Reward ES (NSR-ES) and Novelty Search-Reward Adaptive ES

(NSRA-ES) [8] which also uses ES [42] but instead optimises for

a weighted sum of the task reward and the novelty score as the

objective. Covariance Matrix Adaptation ES (CMA-ES) [27], an al-

ternative ES approach, has also been combined with ME resulting

in CMA-ME [21]. The space and computational time complexity

prevents CMA-ES and hence CMA-ME from being used on high-

dimensional search spaces. However, recent extensions [44, 45] try

to address this challenge by approximating the covariance matrix.

Another class of gradient-based QD methods tailored to Markov

Decision Processes (MDP) and Deep Reinforcement Learning (DRL)

problems [1] are actor-critic based methods such as Policy Gra-

dient Assisted ME (PGA-ME) [37] and QD-PG [39]. They utilize

policy-gradients (PG) from DRL which rely on training a critic net-

work to apply variations to parent policies. They have shown to be

effective in the QD-RL setting but require training an additional

critic network. In the following, we refer to QD approaches using

NES mutations as ES-based QD. Similarly, we refer to approaches

mixing GA and PG as PG-based QD.

2.3.1 MAP-Elites with Evolution Strategies. MAP-Elites ES

(ME-ES) [7] combines the optimisation procedure of ES [42] with

the maintenance of an archive in ME [36]. It uses the ES optimi-

sation procedure in two separate sequential modes; "exploit" and

"explore". The "exploit" mode is used with the task fitness as the

objective 𝐹 for the ES while the "explore" mode uses a novelty score

as the objective 𝐹 . For the "explore" mode, ME-ES maintains a nov-

elty archive N (see Section 2.2.1), separate and different from the

archive of elites A. ME-ES starts by selecting a solution from the

archive of elites A and applies one of the modes (e.g. "exploit") for

𝑁𝑜𝑝𝑡𝑖𝑚 generations. Each generation corresponds to one gradient

step (update of the distribution). At every generation, the updated

mean of the distribution is considered for addition to the archiveA.

After 𝑁𝑜𝑝𝑡𝑖𝑚 generations, ME-ES selects another solution from the

archive and applies the other mode (e.g. "explore"). ME-ES alternates

between the "exploit" and "explore" modes, stopping each mode

after 𝑁𝑜𝑝𝑡𝑖𝑚 generations (in the original ME-ES, 𝑁𝑜𝑝𝑡𝑖𝑚 = 10).

After stopping amode, a new solution is selected from the archive

A following a biased selection procedure rather than a random

uniform selection commonly used in ME. This procedure aims

to select solutions that are already high-performing and can be

improved further. It selects either one of the highest performing for

exploit mode or one of the most novel solutions for explore mode.

The pseudo-code for ME-ES is provided in Appendix A.

3 METHODS
In this paper, we introduce MAP-Elites-Multi-ES (MEMES), which

leverages tensorisation and advances in hardware accelerated QD

to maintain multiple independent ES workers in parallel each with
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its own independent objective and reset mechanism designed for

QD optimisation. In the following we use 32 parallel ES but we show

in Appendix C that MEMES also scales to 128 parallel ES. These

modifications address commonly found limitations of the ME-ES

algorithm (see Sec. 2.3.1) such as slow and inefficient optimisation

due to the large number of samples and low batch-size.

3.1 Parallel ES: from sequential to simultaneous
MEMES leverages the use of vectorisation and fast parallel evalua-

tions [22] to be able to run hundreds of independent ES in parallel.

Each independent ES represents a separate emitter that generates

new solutions. In contrast, in ME-ES, a single thread of ES at each

generation sequentially alternates between the exploitation of the

task fitness objective and of the novelty objective (see Section 2.3.1).

To effectively do this, we reduce the number of samples𝑀 (i.e. pop-

ulation size) used by each ES process to estimate the gradient. In

ME-ES [7], a single ES update (i.e. gradient step) uses𝑀 = 10, 000

samples. Here, we use 𝑀 = 512 samples per ES emitter as we ob-

serve an insignificant increase in performance when using larger

values of 𝑀 beyond 512 in many of our experiments. Thus, for

comparison, to generate 32 offspring (the value used in this work),

MEMES uses 16384 samples per generation while ME-ES uses 10000

samples to generate 1 offspring.

This parallelisation allows multiple independent emitters to be

run together in order to perform the explore and exploit modes

simultaneously. In MEMES, a proportion 𝑝𝑒𝑥𝑝𝑙𝑜𝑖𝑡 of the emitters is

dedicated to the exploitation of the task fitness objective, and a pro-

portion 1 − 𝑝𝑒𝑥𝑝𝑙𝑜𝑖𝑡 is dedicated to the optimisation of the novelty

score. While our experiments only use these objectives for compar-

ison, other objectives such as improvement [21], curiosity [34, 38]

and others can also be used at the same time [9]. This enables

many objectives to be optimised simultaneously and in parallel.

This interplay could lead to the generation of new and interesting

solutions and greater efficiency and more effective search.

3.2 Dynamic emitter reset
An ES-emitter reset refers to selecting a new solution to restart an

ES optimisation process from. This is done by selecting a solution

from the ME archive A. In ME-ES, the ES-emitter is reset every

fixed number of generation 𝑁𝑜𝑝𝑡𝑖𝑚 to switch between explore and

exploit mode. This is imposed by the constraint of having only a

single emitter that needs to switch between the two modes. How-

ever, this might impair the optimisation process as solutions with

high evolvability, dwelling in promising areas of the search space,

might not be fully exploited. Additionally, as the optimiser state is

reset with the emitter itself, even if an evolvable solution is later

re-sampled, it would still take a few generations to be able to use

it meaningfully. Our experimental results (shown in the follow-

ing sections) indicate that some emitters can generate promising

individuals for hundreds of generations, beyond the optimisation

lifetime imposed in ME-ES (𝑁𝑜𝑝𝑡𝑖𝑚 = 10).

MEMES introduces a reset strategywhere each independent emit-

ter can be reset separately to fully maximise having simultaneous

explore and exploit emitters in parallel. We propose dynamically

and automatically resetting the exploit and explore emitters based

Algorithm 1:MEMES proposed in this work.

1 Inputs: sample size 𝑁 , number of generations 𝑁𝑔𝑒𝑛 , number of emitters

𝑁𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , proportion of exploit emitter 𝑝𝑒𝑥𝑝𝑙𝑜𝑖𝑡
2 Initialisation: archive of elites A and novelty-archive N
3 // Set objective for each emitter
4 𝑛 = 𝑁𝑒𝑚𝑖𝑡𝑡𝑒𝑟 ∗ 𝑝𝑒𝑥𝑝𝑙𝑜𝑖𝑡
5 foreach 𝑒 = 1, ...𝑛 do 𝐹𝑒 ← fitness_objective( )
6 foreach 𝑒 = 𝑛, ...𝑁𝑒𝑚𝑖𝑡𝑡𝑒𝑟 do 𝐹𝑒 ← novelty_objective(N)
7 // Main loop
8 for 𝑔 = 1, ...𝑁𝑔𝑒𝑛 do
9 do in parallel for 𝑒 = 1, ...𝑁𝑒𝑚𝑖𝑡𝑡𝑒𝑟

10 if require_reset then
11 𝜃 ← uniform_selection(A)
12 𝑆 = 0

13 require_reset = 𝐹𝑎𝑙𝑠𝑒

14 ˜𝜃 ← ES_step(𝐹𝑒 , 𝑁 , 𝜃 )
15 A,N ← update_archives( ˜𝜃 )
16 if added_to_archive(A, ˜𝜃 ) then
17 𝑆 = 0

18 else
19 𝑆 = 𝑆 + 1
20 if 𝑆 > 𝑆𝑚𝑎𝑥 then require_reset = 𝑇𝑟𝑢𝑒

21 return A

on their usefulness to the QD optimisation. Each ES emitter gen-

erates one offspring
˜𝜃 per generation (gradient step), which is a

candidate to be added to the archiveA. Each time a candidate is not

added toA, we increase a stale counter 𝑆 ; each time the candidate is

added toA, we reset 𝑆 to 0. This introduces a new hyperparameter:

the stale budget 𝑆𝑚𝑎𝑥 . If 𝑆 exceed 𝑆𝑚𝑎𝑥 , meaning if the emitter does

not generate promising offspring for more than 𝑆𝑚𝑎𝑥 consecutive

generations, the emitter is reset. This mechanism allows MEMES

to fully leverage lineages of promising solutions, and automatically

determine good optimisation paths. We demonstrate the benefits

of this mechanism in an ablation study in the experimental section.

When resetting an ES emitter, a random solution is selected with

a uniform probability from the archive as a new starting point

of the ES process. This is done to reduce bias on any particular

task and increase the probability of utilising stepping stones from

unexpected feature space regions [36]. More details regarding this

is available in Appendix A.

3.3 Improving the explore emitter
Different QD algorithms use different strategies for exploration. The

most commonly used strategy is random mutations (GAs) [36, 37].

However, as motivated, solutions from these operators might not be

the most effective way to leverage access to a large number of evalu-

ations. Other approaches that rely on explicit novelty optimisation

also exist. QD-PG [39], which only applies in RL-MDP settings,

follows a state-novelty gradient. CMA-MEGA [20] follows feature

gradients in whitebox optimisation settings, but it can also be ap-

plied to problems where gradients can be approximated [45]. In

MEMES, following NS-ES, NSR-ES [8] and ME-ES [7], we compute

approximated-gradients using ES to move in the direction of high

novelty-score. As explained in Section 2.2.1, computing the novelty

score requires a novelty-archive N , consisting of all previously

evaluated solutions, regardless of how they perform. Note that this

is separate and different to the archive of elites A, which contains

only the best-performing solutions (see Section 2.2.1). Maintaining

this novelty archive N is extremely memory-intensive, especially
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in highly-parallel settings, and requires infinitely increasing com-

putation as the archive expands linearly with generations. Hence,

in MEMES, we propose and use a first-in-first-out (fifo) novelty

archive to overcome this challenge. The fifo novelty archive stores

all evaluated offspring until it reaches full capacity. Then, each

time a new solution enters the fifo novelty archive, it replaces the

oldest solution. We also explore alternative approaches to compute

novelty scores but demonstrate experimentally that this simple ap-

proach works the most effectively while alleviating memory usage.

We consider the following approaches:

• Novelty-archive-fifo-ES explore (Ours): uses the fifo novelty

archive described before which alleviates memory congestion.

• Novelty-archive-all-ES explore: conventional novelty archive

N that keeps all evaluated solutions. This has computational

time and memory limitations but is used as a baseline.

• Elites-archive-ES explore: replaces the novelty archive with

the QD archive of elites A, when computing novelty score. This

requires significantly less memory as only the elite of each niche

are kept in A. However, this also leads to a loss of historical

and cumulative information about solutions seen before. The QD

archive only considers the filling of an empty cell as novel while

a novelty archive keeps all solutions seen during search, and ac-

counts for the density of solutions in an area of the feature space

when computing novelty. This means that a QD-archive cannot

identify when a part of the feature space has been explored many

times unsuccessfully.

• GA: uses random mutation [46]. Non-archival method which

does not require any memory resources at all.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Environments. We evaluate MEMES and baselines on four

tasks from QD literature. Two of these tasks (Arm and Hexapod)

are black-box deterministic QD benchmarks while the other two

tasks (Ant and AntTrap) are neuroevolution RL tasks in the UQD

setting. Both neuroevolution tasks consider noise in the initial state

and in the dynamics of the rollout induced by the simulator.

• Redundant Arm (Arm) is a commonly used as a benchmark

QD task [10, 11, 20, 25]. This task aims to learn the smoothest

angular-position vectors to reach all (𝑥,𝑦) positions with a 1000-

DoF planar robotic arm.

• Omnidirectional Hexapod (Hexapod) is a QD benchmark

that aims to learn the vectors of a parameterised open-loop con-

troller to walk in every direction with a 18-DoF Hexapod, while

minimising its orientation error [6, 13].

• Unidirectional Ant (Ant) proposed as part of the QDGym suite

[19, 37]. In this neuroevolution task, the algorithms learns closed

loop neural network policies for a four-legged Ant robot with

randomised initial state. The objective is to find a set of diverse

gaits for moving forward as fast as possible.

• Ant Trap is a neuroevolution task similar to Ant but consists of

deceptive rewards and is categorized as hard-exploration [5, 39].

In Ant Trap, exploiting the task fitness directly would result in

getting stuck in the trap present in the environment. In contrast,

exploitation of the task fitness in the Ant task is always a good

idea. Additionally, in Ant Trap, the policies that are close to the

origin will inherently have a low task fitness and not solve the

task (i.e. pass the trap) despite contributing to the diversity. To

the best of our knowledge, this task has not been considered and

evaluated in the UQD setting prior to this work, making it an

interesting task.

Detailed descriptions of the fitness and feature (including equations)

for each task is provided in Appendix A.

4.1.2 Baselines. In the following, we compare MEMES to a wide

range of baselines. We also consider a variant of our approach

named MEMES-all, which considers all samples and not just off-

spring of ES emitters for addition to the archive.

• ES [42] from Sec. 2.2 optimises for task fitness.

• NS-ES [8] from Sec. 2.2.1 optimises for novelty score.

• NSR-ES and NSRA-ES [8] from Sec. 2.3. They use a weighted

average of the task fitness and the novelty score as objective.

• ME [36] which uses random mutations (GAs). Here, we use the

line mutation operator [46]. We consider two variants of ME.

ME-128 with a batch size of 128 which is a commonly used value

and ME-16384 with a batch size of 16384 which corresponds to

the same number of samples used by MEMES at each generation.

• ME-Sampling [12] Given that re-evaluation is one of the most

common methods in uncertain domains [18], we also consider

the ME-sampling method which uses the same 16384 evaluations

at each generation but distributed to re-evaluate solutions. Here,

each of the solutions is re-evaluated 32 times [16] to obtain a

better estimate of 𝑓 and 𝑑 before addition.

• ME-ES [7] from Sec. 2.3.1 alternating explore and exploit ES.

• PGA-ME [37] described in Sec. 2.3. applies policy gradient (PG)

updates to half of the selected solutions, in addition to GAs.

PGA-ME represents the upper baseline and state-of-the-art for

high-dimensional neuroevolution QD-RL tasks such as Ant and

AntTrap. However, it can only be used for RL tasks with MDP

assumptions.

• CMA-ME [21] described in Sec. 2.3. CMA-ME is only used

as a baseline for the lower-dimensional optimisation task (i.e.

non-neuroevolution). We do not compare to its extension CMA-

MEGA with approximated gradients as it demonstrates similar

or lower performing results than PGA-ME on QD-RL tasks [45].

It is important to note that ES, NS-ES, NSR-ES and NSRA-ES do

not have an archive of elites and do not rely on re-selection from

the archive during the entire optimisation process. For comparison,

we maintain a passive archive of elites and consider the addition of

the mean of the ES at every generation. We open-source our code

at https://github.com/adaptive-intelligent-robotics/MEMES.

4.1.3 Metrics. We consider the QD-Score, Max-Fitness, and Cover-

age metrics [40] when conducting our analysis. In our evaluation,

all three metrics provide valuable insights: the effect of explore and

exploit emitters can be respectively assessed from the Coverage and

Maximum-Fitness scores, while the QD-score evaluates the overall

algorithm performance. In the uncertain domains (neuroevolution

tasks), we consider the Corrected-metrics [18, 29], computed by re-

evaluating each solution in the archive 512 times and adding them

to an empty archive. We run Arm, Hexapod and Ant for 2000 gen-

erations and AntTrap for 10000 generations. We compute p-values

based on the Wilcoxon rank-sum test with Bonferroni correction.

https://github.com/adaptive-intelligent-robotics/MEMES
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Figure 2: Final QD-Score (top), Coverage (middle) and Max-Fitness (bottom). We report the median and CI over 10 seeds.

4.2 Overall Performance
Figure 2 shows the performance of MEMES compared to the base-

lines. MEMES performs better than all baselines on Arm (𝑝 < 0.08

for QD-Score and Coverage). On the Hexapod, MEMES performs

on par with ME-16384 while outperforming all other baselines (𝑝 <

0.03). Additionally, the MEMES-all variant outperforms MEMES on

Arm (𝑝 < 2.10−4 for QD-Score and Coverage), where the attempted

addition of more samples (from the ES) to the archive results in

better performance, but performs on par with MEMES on Hexapod.

In the Ant neuroevolution task, we observe that MEMES performs

better than PGA-ME, which is known to consistently do well on

this task [37, 45], in both QD-Score and Coverage (𝑝 < 0.003) but

reaches a lower Max-Fitness. The Max-Fitness of MEMES seems

to be constrained by the performance of the ES algorithm as we

observe Max-Fitness performance converging to that of conven-

tional ES. This makes sense given that the adaptive emitter reset

in MEMES would enable a conventional ES optimisation thread to

be present. However, the benefit of parallel explore and exploit ES

emitters each following independent gradients in MEMES is still

overall evident from the higher Coverage compared to GA-based

approaches such as ME and PGA-ME (𝑝 < 0.003 for Coverage) and

also single ES-based approaches such as ES, NS-ES and NSR-ES. In

the AntTrap neuroevolution task, MEMES successfully performs

the best across all baselines, proving the only approach to solve

the task and move around the deceptive trap. Recall that an uncer-

tain version of these neuroevolution tasks are considered and the

corrected metrics are used in the comparison.

These results suggest that with access to cheap and large num-

bers of evaluations, MEMES can be the go-to option across a range

of domains. Given the use of vectorisation and parallelisation of

evaluations, powerful large-scale search optimisation (MEMES)

is accessible and practical to be run in a reasonable time-frame

with only a marginal increase in run-time. An analysis of the run-

time of MEMES and baselines are provided in Appendix C. Re-

sulting archives of elites on the various tasks can be found in the

Appendix C and videos of resulting behaviours are available at:

https://sites.google.com/view/memes-qd/home.

4.2.1 Sampling-wise Comparison and Reproducibility. MEMES re-

quires a large number of evaluations to approximate gradients. We

evaluate if this could be effective in handling the UQD problem

(see Sec. 2.1.2). On the Ant and AntTrap tasks, we observe in Fig-

ure 2 that samples used by MEMES are indeed more effective as

they result in higher QD-scores than those of ME-16384 and also

of ME-Sampling and ME-16384 for AntTrap.

On top of the corrected-metrics, we also further analyse the

archive-reproducibility, by evaluating the algorithms on the archive

loss metric. The archive loss is defined as the percentage difference

before and after computing the corrected archive [15]. In Figure 3,

MEMES is shown to have a much lower QD-Score loss than the ME

https://sites.google.com/view/memes-qd/home
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Figure 3: QD-Score loss that quantifies the ability of algo-
rithms to correctly estimate the performance of solutions in
UQD setting. We report the median and CI over 10 seeds.

Arm Hexapod Ant AntTrap

Explore emitter 143.0 362.4 249.5 270.1

Exploit emitter 265.7 337.2 366.5 387.7

Table 1: Average lifespan (in num. of generations) of exploit
and explore emitters when using adaptive reset in MEMES.

baselines. MEMES losses are comparable to those of ME-Sampling,

which is considered a strong baseline for this metric [15], while

ME-Sampling has a significantly lower QD-Score on AntTrap. This

demonstrates that MEMES archives can reliably maintain its qual-

ity and diversity and that MEMES better estimates and reflects the

true performance in its metrics. This ability of MEMES to favour

solutions that reproducibly solve the task likely leads to it outper-

forming other approaches on AntTrap, while ME-16384 suffer from

elitism and archive loss even with a significant number of iterations,

and ME-sampling is crippled from inefficient optimisation. MEMES-

all also suffers from a high archive loss as it also considers many

"lucky" solutions (from ES samples) for addition causing illusory

archive elitism as well. This means that only the offspring of ES

emitters are more reproducible and further highlights the impor-

tance of carefully and effectively using samples and considering

them for addition in uncertain domains.

4.2.2 Effective Local Optimisation. We also evaluate some charac-

teristics of the optimisation paths and behaviour of MEMES. In-

terestingly, we find in MEMES the ability to perform optimisation

locally within or surrounding a cell niche, which is uncommon in

QD algorithms. This is an important characteristic in QD as optimis-

ing locally in low-performing niches/cells is crucial to ensure high

fitness across the entire feature space. This ability was measured

using the distance between each parent and its offspring in the

feature space. This metric measures whether generated individuals

stay within or around the vicinity of the same cell. As the explo-

ration aspect of QD algorithms such as novelty-ES are expected

to maximise the distance in feature space, we only evaluate this

metric for the task-fitness-maximising aspect of algorithms. For

MEMES, we compute it for the exploit-ES and compare it to the PG

variation of PGA-ME, and GA variation of ME.

Figure 4 shows this distance measure plotted across generations

of the algorithm. For comparison, we display on the same graph the

cell-size for each task (red line). In Ant and Hexapod, the exploit-ES

emitters produce offspring solutions after a gradient step that have

a distance of less than one cell (below red line). This demonstrates

Figure 4: Parent-offspring feature-distance for the exploit-ES
emitter of MEMES, the PG emitter of PGA-ME and the GA
emitter of ME. The solid line is the median and the shaded
areas are the quartiles over 10 replications. We display in red
the average width of the cells in the each task.

some implicit ability of the emitter to perform local optimisation

around a certain niche. This is beneficial in tasks where the task

fitness is orthogonal to the feature. In the AntTrap tasks, the goal

of the exploit-ES emitter is to move forward as fast as possible and

hence the nature of this task does not require such local optimi-

sation. Interestingly, we also observe that the exploit-ES emitter

largely results in offspring with much lower distance than PGA-

ME and ME. PGA-ME uses policy gradient variations that rely

on training a global critic. We hypothesise that this global critic

systematically pushes updates in the same direction of the search

space, which while can improve the policy might also result in

similar features far away from parent solutions. Likewise, the GA

variation of ME has no specific mechanism to optimise solutions

while remaining locally in a feature region and hence results in

offspring further away in the feature space.

4.3 Analysis and ablation of MEMES
In this section, we conduct experiments to study the different com-

ponents of MEMES and show that each one of them contribute to

the effectiveness of the approach.

4.3.1 Simultaneous over sequential. To demonstrate the impor-

tance of having simultaneous explore and exploit emitters, we

compare against MEMES-Sequential, a variant of MEMES with par-

allel ES emitters that follows the original ME-ES implementation

of alternating between either fully explore or fully exploit modes.

The emitters are reset and swapped mode after 10 generations.

It is important to note that being sequential necessitates having

a fixed number of generations in order to swap between modes.

Figure 5 shows that MEMES-Sequential slightly under-performs

MEMES with simultaneous explore and exploit (MEMES - Fix reset
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Figure 5: Comparison of the final QD-score for different fixed
reset values, compared to the adaptive reset mechanism. We
report the median and CI over 5 seeds.

10). While the improvement of having simultaneous emitters is

marginal, they allow independent ES emitters with adaptive resets.

4.3.2 Adaptive emitter resets. Next, we evaluate the importance

of the adaptive reset of the emitters by increasing the number of

optimisation steps of ES before resetting the emitter. We observe

in Figure 5 that increasing the number of optimisation steps of

the ES emitters seems to help (i.e. from 20 to 100). However, the

optimal value may vary depending on the tasks. For example, we

can observe that there are minimal gains (Hexapod, Ant, AntTrap)

or detrimental to overall performance (Arm) when moving from 50

to 100 optimisation steps. Similarly, the optimal value also could

depend on the mode of ES used (exploit or explore). On the Ant

task, more steps are critical for the exploit-ES for optimal maximum

fitness performance while potentially unnecessary for the explore-

ES model (coverage metric). Conversely, in the AntTrap, more steps

are important for the explore-ES (coverage) while the gain in steps

might even be detrimental to exploit-ES at times. Table 1 shows

that the adaptive reset mechanism in MEMES can modulate and

shows different average lifespans of the ES emitters depending on

the task and the mode of the ES. Figure 5 demonstrates that our

adaptive mechanism achieves the best on all the metrics across all

the tasks without much hyperparameter tuning.

4.3.3 Explore Emitter. Lastly, we study the different options for

effective exploration (see Sec. 3.3). For fair comparison, we maintain

the same ES-exploit emitter with the adaptive resets to isolate the

performance of the different explore-emitter choices. Figure 6 shows

the performance of the different explore emitters considered. The

fifo novelty archive performs similarly to the full novelty archive

whilst being more memory efficient. Interestingly, the archive of

elites A also represents another compute and memory efficient

alternative that performs strongly on some tasks (i.e. Hexapod). The

decrease in performance in some tasks (especially deceptive) can be

attributed to the loss of historical information by only maintaining

elites as highlighted in Section 3.3. However, in tasks such as the

Hexapod, where this information is less important and relevant,

it performs the best. The GA variant performs well on Arm but it

Figure 6: Final QD-score for different novelty-computation
mechanisms. We report the median and CI over 5 seeds.

clearly under-performs on more complex tasks, highlighting the

benefit of the novelty ES emitters.

5 DISCUSSION AND CONCLUSION
In summary, we present MEMES, a QD algorithm that leverages

tensorisation and large-scale parallelisation, to maintain multiple

independent ES emitters (up to ∼ 100) in parallel, each with their

own objective on a single GPU. MEMES also introduces an adap-

tive emitter reset mechanism to manage the parallel optimisation

threads andmaximise the improvement efficiency of the QD archive.

We demonstrate that MEMES outperforms a large variety of exist-

ing QD algorithms on a range of high-dimensional neuroevolution

tasks and also lower-dimensional optimisation tasks. Importantly,

in addition to finding higher-performing and more diverse solu-

tions, we also show that archive solutions generated by MEMES are

more reproducible when operating in uncertain domains, making

MEMES a more reliable QD algorithm. This highlights the impor-

tance of effectively using samples and carefully considering them

for addition in uncertain domains.

While MEMES performs consistently well, it is important to

remember that this approach requires a large number of evaluations

for estimating gradients. This limitation means that our proposed

approach is currently effective only in settings where evaluations

are cheap and can be parallelised on accelerator devices. However,

with powerful compute becoming cheaper, smaller, more widely

available and heavy development and movement of environments

on accelerated hardware [3, 28, 41], we believe MEMES can be

an effective approach across a wide range of applications. Given

the flexibility of our algorithm, we hope more maximise the use of

many parallel ES processes by extendingMEMES to more objectives

beyond fitness and novelty objectives in future work.
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APPENDIX
A ADDITIONAL DETAILS
A.1 Pseudo-code for ES and ME-ES
Algorithm 2 shows the optimisation procedure of the ES from Sali-

mans et al. [42] (see Sec. 2.2). Algorithm 3 shows the procedure of

the ME-ES algorithm by Colas et al. [7] (see Sec. 2.3.1).

Algorithm 2: ES Optimization Step (Adapted from [42])

1 Input: objective 𝐹 , sample size 𝑁 , solution 𝜃𝑡
2 def ES_step(𝐹 , 𝑁 , 𝜃𝑡 ):
3 𝜖1, ..., 𝜖𝑁 ∼ N(0, 𝐼 )
4 for 𝑖 = 1, ..., 𝑁 do
5 𝐹𝑖 = 𝐹 (𝜃𝑡 + 𝜎𝜖𝑖 )
6 𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 1

𝑁𝜎

∑𝑛
𝑖=1 𝐹𝑖𝜖𝑖

7 return 𝜃𝑡+1

Algorithm 3:MAP-Elites-ES (Adapted from [7])

1 Inputs: sample size 𝑁 , number of generations 𝑁𝑔𝑒𝑛 , 𝑁𝑜𝑝𝑡𝑖𝑚

2 Initialisation: archive of elites A and novelty-archive N
3 for 𝑛𝑔𝑒𝑛 = 1, ..., 𝑁𝑔𝑒𝑛 do
4 if 𝑛𝑔𝑒𝑛 mod (2 ∗ 𝑁𝑜𝑝𝑡𝑖𝑚 ) == 0 then
5 // Explore mode
6 𝜃 ← biased_explore_selection(A)
7 𝐹 ← novelty_objective(N)
8 else if (𝑛𝑔𝑒𝑛 − 𝑁𝑜𝑝𝑡𝑖𝑚 ) mod (2 ∗ 𝑁𝑜𝑝𝑡𝑖𝑚 ) == 0 then
9 // Exploit mode

10 𝜃 ← biased_exploit_selection(A)
11 𝐹 ← fitness_objective( )
12 // Apply ES

13 ˜𝜃 ← ES_step(𝐹, 𝑁 , 𝜃 )
14 // Evaluate and update archives

15 A,N ← update_archives( ˜𝜃 )
16 return A

A.2 Uniform Selection during Emitter Reset
Another key design of ME-ES is its biased sampling strategy. Each

time the ME-ES emitter is re-initialized, a new parent is sampled

from the archive using a complex biased selection strategy. It in-

volves selecting cells with a high fitness for the exploit mode and

cells with a high novelty-score for the explore mode. Thus, it as-

sumes that high-fitness parents may lead to higher-fitness offspring

and similarly for high-novelty. Based on this assumption, this selec-

tion strategy seems a reasonable choice given that only one parent

is selected at every 𝑁𝑜𝑝𝑡𝑖𝑚 generation and that solutions are only

optimised for 𝑁𝑜𝑝𝑡𝑖𝑚 steps before reset.

However, while this assumption may generally be true, it is not

always the case. One example is deceptive-rewards scenarios [31].

Thus, this selection procedure could end up negatively impacting

the efficiency of the algorithm. Additionally, a common hypothesis

in QD is that uniform selection promotes the use of stepping stones

in the archive to obtain even more promising solutions [24, 36].

Thus, the original ME algorithm used uniform selection. Hence, for

MEMES we also choose uniform selection to reset the ES emitters.

A.3 Tasks and Environments
To evaluation our method, we purposefully select four distinctly dif-

ferent tasks: Arm, Hexapod, Ant andAntTrap. The Ant andAntTrap

tasks are RL-based neuroevolution tasks in which the search space

corresponds to the parameters of a neural network policy. On the

other hand, the Hexapod and Arm represent more mathematical

optimisation tasks. We provide details of each environment below:

A.3.1 Arm. This task involves a n-DoF planar robotic arm where

the objective is to find the all the reachable (𝑥,𝑦) positions in the

end-effector workspace of the robot, that are as smooth as possible.

This is also known as the inverse-kinematic problem in robotics.

The search space in this task corresponds to the relative joint angles

for each DoF of the arm. As the arm is redundant, there can be

multiple solutions for an (𝑥,𝑦) end-effector position. To find smooth

solutions, the objective 𝐹 (𝜃 ) is defined to minimize the variance of

the joint positions. The feature space then corresponds to the (𝑥,𝑦)
positions of the end-effector. The arm task is used as a simple and

fast benchmark task. We select this task to also demonstrate that

our method can be applied to general QD optimisation problems

that do not have to be an MDP/RL or neuroevolution problem. The

search space, feature space and fitness values all lie in the range

[0, 1]. Equations for the 𝑑 and 𝐹 are given below where 𝐹𝐾 is the

2-D Forward Kinematics equation:

𝑑 (𝜃 ) =
(
𝐹𝐾𝑥 (𝜃 )
𝐹𝐾𝑦 (𝜃 )

)
(2)

𝐹 (𝜃 ) = 1 −

√√
1

𝑛

𝑛∑︁
𝑖=1

(𝜃𝑖 − ˜𝜃 )2 (3)

A.3.2 Hexapod. The hexapod robot is an 18-DoF robot with 12

independent DoF. The joint angle trajectory follows a cyclical sinu-

soidal pattern and is parameterised by two values, the amplitude

and phase of a sinusoidal wave [10]. The fitness 𝐹 (𝜃 ) is defined by

the angular yaw of the robot following a circular trajectory while

the feature 𝑑 (𝜃 ) corresponds to the final (𝑥,𝑦) position of the robot

after 𝑇 seconds [13]. This task is used to evaluate MEMES on a

more complex non-MDP/RL tasks. Equations for the 𝑑 and 𝐹 are

given below, where 𝛼 (𝜃 ) is the final orientation of the robot and

𝛽 (𝜃 ) the tangent of the circle through its start and end position:

𝑑 (𝜃 ) =
(
𝑥𝑇
𝑦𝑇

)
(4)

𝐹 (𝜃 ) = −|𝛼 (𝜃 ) − 𝛽 (𝜃 ) | (5)

A.3.3 Ant. The Ant task is a QD benchmark task [10, 19] where the

objective is to find a set of diverse gaits for moving forward as fast

as possible. The solutions found in such an archive are shown to be

effective for damage adaptation [10]. The fitness 𝐹 (𝜃 ) is defined by

the forward velocity of the Ant while minimising the torque used

(to represent efficient walking gaits). The feature 𝑑 (𝜃 ) is defined
by the average time each foot is in contact with the ground, a

diversity which results in diverse walking gaits. Here, we consider

the uncertain case where the initial position and velocity of the

joints are randomly sampled at the start of each episode, making

the task a good example of a UQD task (see Sec. 2.1.2). Equations

for the 𝑑 and 𝐹 are given below:
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Hyperparameter ME PGA-ME ES NS-ES NSR-ES NSRA-ES ME-ES CMA-ME MEMES

Iso coefficient, 𝜎1 0.01 0.01

Line coefficient, 𝜎2 0.1 0.1

Samples sigma 0.02 0.02 0.02 0.02 0.02 0.5 0.02

Num. of samples 512 512 512 512 10000 512

Learning rate 0.01 0.01 0.01 0.01 0.01 0.01

Num. nearest neighbors 10 10 10 10 10

l2 normalisation coefficient 0 0 0 0.01 0

Reset budget 𝑆𝑚𝑎𝑥 32

Proportion explore 𝑝𝑒𝑥𝑝𝑙𝑜𝑟𝑒 0.5

Fifo size 50000

Pop. size 5 5 5

Fitness weight 0.5 1.0

Adapt. fitness weight amount 0.05

Adapt. fitness weight period 50

Pool size 15

Emitter type Imp.

Proportion PG 𝑝𝑃𝐺 0.5

Num. PG training steps 100

Replay buffer size 10
6

Policy hidden layer sizes [64, 64]

Critic hidden layer size [256, 256]

Critic learning rate 0.0003

Greedy learning rate 0.0003

PG variation learning rate 0.001

Transitions batch size 256

Noise clip 0.5

Policy noise 0.2

Soft 𝜏 update 0.005

Table 2: Hyperparameters of baselines considered in our experiments.

𝑑 (𝜃 ) = 1

𝑇

𝑇∑︁
𝑡

©­­­«
𝐶𝜃
1
(𝑡)
.
.
.

𝐶𝜃
𝐼
(𝑡)

ª®®®¬ , where 𝐼 is the number of feet. (6)

𝐹 (𝜃 ) =
𝑇∑︁
𝑡=0

𝑟 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝜃 ) + 𝑟𝑠𝑢𝑟𝑣𝑖𝑣𝑒 (𝜃 ) + (−𝑟𝑡𝑜𝑟𝑞𝑢𝑒 (𝜃 )) (7)

A.3.4 AntTrap. The AntTrap task is categorised as a hard explo-

ration QD benchmark task [5] as it consists of deceptive rewards.

The goal of this task is to move forward as fast as possible with the

caveat of there being a trap in front of the ant. The fitness 𝐹 (𝜃 ) is de-
fined similarly to the Ant as a combination of the forward velocity

and energy used while the feature 𝑑 (𝜃 ) is defined by the final (𝑥,𝑦)
position of the robot at the end of the episode. As mentioned in

Section 4.1, the nature of this task differs significantly from the Ant

described above, despite sharing the same Ant robot morphology

for simplicity. Similarly to the Ant task, we consider the uncertain

case with random initial positions. To the best of our knowledge,

no other work study this complex UQD task that requires solutions

to go around the trap in a reproducible manner, making it highly

challenging. Equations for the 𝑑 and 𝐹 are given below:

𝑑 (𝜃 ) =
(
𝑥𝑇
𝑦𝑇

)
(8)

𝐹 (𝜃 ) =
𝑇∑︁
𝑡=0

𝑟 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝜃 ) + 𝑟𝑠𝑢𝑟𝑣𝑖𝑣𝑒 (𝜃 ) + (−𝑟𝑡𝑜𝑟𝑞𝑢𝑒 (𝜃 )) (9)

B IMPLEMENTATION AND
HYPERPARAMETERS

The implementation of all our baselines is part of the QDax library.

We give in Table 2 the hyperparameters used for each baseline.

C SUPPLEMENTARY RESULTS
C.1 MEMES with larger batch-size
To demonstrate the ability of MEMES to scale to higher numbers

of parallel ES, we run MEMES and MEMES-all with 128 parallel

ES. For a fair comparison, we also re-run ME with batch size 65536,

which corresponds to the number of evaluations used by MEMES -

128. All of these variants still run on a single commonly available

GPU device. However, due to time and computational constraints,

these variants were only run on the AntTrap for 4000 generations

instead of 10000 for the main approaches. The addition of 65536

solution to the ME archive, as well as the computation of novelty

for 65536 individuals both required to be batched to fit on the RAM

of our GPU, significantly increasing the run time and leading to

this limitation. Hence, we find MEMES - 32 to be a good parameter

that balances runtime and good performance on these tasks but

scaling to MEMES - 128 and larger could be important and critical

in more complex and open-ended task settings that necessitate a

large number of independent optimisation threads.

We display the new comparison in Figure 7. The results show

that MEMES - 128 is also competitive, managing to get even better

results on the Arm, Hexapod and Ant tasks. Its significantly lower
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Figure 7: Final QD-Score (top), Coverage (middle) and Max-Fitness (bottom). We report the median and CI over 10 seeds.

performance on the AntTrap can be fully attributed to the lower

number of generations it has been run for.

C.2 Time comparison
Table 3 shows the run-time comparison of the algorithms. This

shows that despite using significantly more evaluations and per-

forming significantly better, MEMES only requires marginally more

run-time than our baselines using the same number of evaluations.

All experiments were done on a single GPU as well for fair compar-

ison also demonstrating that our implementation of MEMES can

handle 32 parallel ES processes at an efficient run-time.

This marginal increase in runtime can be attributed mainly to

operations related to computing empirical gradients. In particular,

the novelty score computation which while has already been signifi-

cantly sped up using the fifo mechanism proposed, still requires the

computation of thousands of distances between the ES samples and

the novelty archive content. This is confirmed by a ∼ 9% increase in

runtime compared toMEwith a batch size of 16384 (same number of

total evaluations as MEMES per generation). Additionally, despite

the massive parallelisation of evaluations, these evaluations still

contribute to additional runtime, as highlighted when comparing

ME-128 with ME-16384.

.

Time (mins) Hexapod Ant AntTrap

ME 4 25 81

ME - 16384 60 69 753

PGA-ME - 150 383

MEMES 64 77 813

MEMES-all 87 100 960

Table 3: Average wall-clock time comparison on the same
hardware, in minutes. We purposefully do not report the
time for Arm since this task is extremely fast to run.

C.3 Convergence Results
We provide in Figure 8, 9 and 10 the convergence plots (performance

metrics across generations) for the main results, the MEMES reset

ablation and the MEMES novelty ablation respectively.

C.4 Archive plots
Figure 13 and 12 display the archives for the uncertain AntTrap and

Ant uncertain neuroevolution tasks respectively. Figure 11 displays

the archive plots for the Hexapod optimisation task.
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Figure 8: QD-score (top), Coverage (middle) and Max-fitness (bottom) across generations. The solid line is the median and the
shaded areas are the quartiles over 5 replications.

Figure 9: QD-score (top), Coverage (middle) and Max-fitness (bottom) for different fixed reset values, compared to the adaptive
reset mechanism across generations. The solid line is the median and the shaded areas are the quartiles over 5 replications.
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Figure 10: QD-score (top), Coverage (middle) and Max-fitness (bottom) for different novelty-computation mechanisms across
generations. The solid line is the median and the shaded areas are the quartiles over 5 replications.

Figure 11: Hexapod archives.



Enhancing MAP-Elites with Multiple Parallel Evolution Strategies

Figure 12: Ant archives: we display both the illusory archives (top) and the corrected archives (bottom).
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Figure 13: AntTrap archives: we display both the illusory archives (top) and the corrected archives (bottom).
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