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We formulate and quantify the spin-orbit torque (SOT) in intrinsic antiferromagnetic topological insulator
MnBi2Te4 of a few septuple-layer thick in charge-neutral condition, which exhibits pronounced layer-resolved
characteristics and even-odd contrast. Contrary to traditional current-induced torques, our SOT is not accompa-
nied by Ohm’s currents, thus being devoid of Joule heating. We study the SOT-induced magnetic resonances,
where in the tri-septuple-layer case we identify a peculiar exchange mode that is blind to microwaves but can
be exclusively driven by the predicted SOT. As an inverse effect, the dynamical magnetic moments generate a
pure adiabatic current, which occurs concomitantly with the SOT and gives rise to an overall reactance for the
MnBi2Te4, enabling a lossless conversion of electric power into magnetic dynamics.

A central theme of modern spintronics has been the quest
for efficient electrical control of magnetism and magnetic dy-
namics [1–4]. In established paradigms, such control is ex-
emplified by an engineered heterostructure consisting of a
magnetic material and a spin generator (e.g., a heavy metal)
converting currents into spin angular momenta [5–12]. This
archetypal setup suffers from two serious drawbacks: 1) The
spatial separation (i.e., the interface) of electric and magnetic
components inhibits the spin-transfer process. 2) The driving
electric power is largely dissipated via Joule heating.

Exploiting intrinsic magnetic topological materials could
could enable direct control of magnetic dynamics via electric
stimuli in the absence of interfaces. This is because the coex-
istence of spin-orbit interaction and intrinsic magnetic order
allows a single material (monostructure) to drive itself without
relying on external spin sources. While monostructural spin-
orbit torques (SOTs) have been explored in non-topological
magnets [13–21] and topological semimetals [22, 23], little is
known about the subtle interplay between layer-resolved mag-
netism and topological electrons. Recently studies identified
MnBi2Te4 as an intrinsic antiferromagnetic (AFM) topologi-
cal insulator featuring layer-contrasting magnetic order inter-
twined with the electronic band topology [24–34], opening
an ideal testing ground to study the electrical manipulation of
layer-resolved magnetism.

In this Letter, we formulate and quantify the electric field
induced SOT and its inverse effect, adiabatic charge pumping,
in MnBi2Te4 of a few septuple-layer (SL) thick. The SOT is
manifestly SL-resolved and displays an evident even-vs-odd
contrast of the (total) SL-number. The physical consequences
of the SOT are demonstrated by the SOT-induced magnetic
resonances, where in the 3-SL case we identify a unique chiral
mode that is blind to microwave electromagnetic fields but can
be excited only by the SL-resolved SOT.

In contrast to conventional SOTs accompanied by charge
currents, the SOT in MnBi2Te4 does not incur Ohm’s conduc-
tion as the Fermi level lies in the gap under the charge-neutral
condition. In our scenario, the output current only arises from
the coherent dynamics of magnetic moments as a reciprocal
effect of the SOT, which is a pure adiabatic effect that pro-
duces no Joule heating. Under the combined action of the SOT

and the adiabatic charge pumping, a voltage-driven MnBi2Te4
acquires an effective reactance, whereby 100% of the input
electric power can be converted into magnetic dynamics to
overcome the Gilbert damping, achieving an unprecedented
high efficiency of electrical manipulation of magnetism using
a single material. The unique mechanism we pursue here is
fundamentally distinct from the voltage-controlled magnetic
anisotropy [35, 36], the multiferroic effects [37, 38], and the
piezoelectric effects [39, 40].

Formalism.—We start by constructing the Lagrangian to
quantify the dynamics of a semiclassical wavepacket |W ⟩
for a Bloch electron with the center-of-mass position rc =
⟨W | r̂ |W ⟩ and momentum kc = ⟨W | k̂ |W ⟩ [41], whose spin
couples the unit magnetization vector m j ( j is the SL index)
through the exchange interaction. The wavepacket is moving
adiabatically in 2D while the SL-dependence constitutes an
internal degree of freedom that does not break the adiabatic
condition [42, 43]. To simplify our notation, we focus on a
single energy band well-separated from all other bands, which
is non-degenerate (doubly degenerate) for an odd (even) total
number of SLs. The Lagrangian density of such a wavepacket
perturbed by electromagnetic fields expressed in vector poten-
tial A and scalar potential ϕ can be written as

Lem =h̄ṙc · (kc − eA)− ε(kc)

+ h̄η
†
(

id/dt +Ak · k̇c +Am j ·ṁ j
)

η (1)

where h̄ is the reduced Planck constant, e > 0 is the absolute
electron charge, and summations of repeated indices are as-
sumed (here and hereafter). For a non-degenerate band, η = 1.
For a degenerate band, η becomes a column vector specify-
ing the projection of the wavepacket on each sub-band [42]:
|W ⟩=

∫
dkw(k)eik·rηa |ua⟩ where |ua⟩ is the periodic part of

the Bloch wavefunction and the spectral profile function w(k)
satisfies

∫
dk|w(k)|2k = kc. The interplay between the elec-

tron and the SL magnetization is characterized by the Berry
connection matrices: [Aab]

α
µ ≡ i⟨ua|∂ α

µ |ub⟩, where ∂ α
µ stands

for ∂/∂kµ when α = k and ∂/∂m j
µ when α = m j. In Eq. (1),

the band energy of the wavepacket is ε(kc) = ⟨W |H |W ⟩,
where H = H0(h̄k+ eA)− eϕ with H0(A→ 0) being the un-
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perturbed Hamiltonian. The spatial variation of m j in the
in-plane directions is ignored, otherwise the real-space Berry
connection Ar will also be present.

The Lagrangian density for the dynamics of m j is Lm j =
h̄S(1−cosθ j)∂tφ

j −H j [44], where θ j and φ j are the spher-
ical angles specifying the direction of m j, S is the total spin
quantum number (of a unit cell in each SL), and H j is the
magnetic free energy of m j including the inter-SL exchange
coupling and the magnetic anisotropy. Applying the Euler-
Lagrangian equation on Ltot = Lem +∑ j Lm j , followed by an
integration of kc over the first Brillouin zone [45], we obtain
the Landau-Lifshitz-Gilbert (LLG) equation for m j and the
in-plane current density as

ṁ j = γ(Heff
j +HT

j )×m j +αGm
j ×ṁ j, (2a)

J = σ0E+σAHẑ×E+Jp, (2b)

where σ0 and σAH are the longitudinal and quantum anoma-
lous Hall (QAH) conductivity, ẑ is the unit vector normal
to the plane, E = −∇ϕ − ∂tA is the applied electric field,
Heff

j = (−1/h̄γS)∂ (∑iHi)/∂m j (with γ the gyro-magnetic
ratio) is the effective magnetic field acting on m j in the ab-
sence of electric stimuli, and αG is the Gilbert damping con-
stant. In Eqs. (2a) and (2b), HT

j is the effective field of the
SOT acting on m j and Jp is the current density generated by
adiabatic charge pumping. In the Cartesian coordinates,

HT
j,µ =

ea2
0

γ h̄S

∫ d2k
(2π)2 f (k)Tr(Ωkm j

νµ )Eν , (3a)

Jp
µ =−e

∫ d2k
(2π)2 f (k)Tr(Ωm jk

νµ )ṁ j
ν , (3b)

where a0 is the lattice constant, f (k) is the Fermi-Dirac distri-
bution function, and Ω

αβ

µν = ∂ α
µ Aβ

ν − ∂
β

ν Aα
µ − i[Aα

µ ,A
β

ν ] is the
Berry curvature, in which the commutation term drops out for
odd-SL samples where bands are non-degenerate [46]. In the
even-SL cases, the bands are doubly degenerate, and the trace
in Eq. (3) also applies to the degenerate subspace, which re-
sults from thermal averaging of the inter-sub-bands transitions
embedded in the dynamics of η [45]. At the charge-neutral
point with the Fermi level εF in the gap, σ0 vanishes while
σAH is quantized for odd-SL (zero for even-SL) samples due
to the momentum-space Berry curvature Ωkk.

Voltage-induced SOT.—We next calculate the SOT field
basing on Eq. (3a) for each SL in a multi-SL MnBi2Te4. The
unperturbed Hamiltonian H0(k) comprises the SL-specific h j
and the inter-SL hopping Ti j as diagonal and off-diagonal
blocks, both of which can be obtained by discretizing the bulk
Hamiltonian in the vertical dimension [27, 47, 48]. Under the
basis [|p+z,Bi,↑⟩ , |p

−
z,Te,↑⟩ , |p

+
z,Bi,↓⟩ , |p

−
z,Te,↓⟩]T ,

h j(k) = ε(k)+da(k)Γa + γexm
j ·σ⊗ (τ0 +δτ3), (4a)

Ti j = σ0 ⊗ (D1τ0 +B1τ3)+ iA1σz ⊗ τ1, (4b)

where ε(k) = C + 2D1 +D2(k2
x + k2

y), d0(k) = M0 + 2B1 +
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FIG. 1. (a) Effective field of SOT (in unit of eEa0/4π2h̄γS) acting on
the bottom SL. (b) Band gaps at the Γ point as functions of γex from
2 to 6 SLs. (c) and (d): The bottom-layer Chern number (C1) and the
SOT field HT

1,x versus γex for 3-SL and 4-SL MnBi2Te4, respectively.
Insets: layer distributions of the Chern number and the SOT field in
the Ctot = 0 phase (at γex = 30meV, for both 3-SL and 4-SL) and the
Ctot =−1 phase (at γex = 75meV, for 3-SL only).

B2(k2
x + k2

y), d1(2)(k) = A2kx(y), γex is the exchange coupling,
Γ0 = σ0 ⊗ τ3, and Γ1(2) = σ1(2)⊗ τ1 with σ and τ the Pauli
matrices in the spin and orbital spaces. Equation (4a) includes
a bias term δτ3 accounting for the asymmetric exchange cou-
pling for the p-orbitals of the Bi and Te atoms [27]. The values
of δ , M0, A1(2), B1(2) C, D1(2) are specified in the supplemen-
tal materials (SM) [45]. In the following, we will restrict to
the low-temperature regime such that f (k)≈ 1 for ε(k)< εF
and f (k)≈ 0 otherwise.

Without loss of generality, we set E = Ex̂ so the Tr(Ωkm j
νµ )

tensor reduces to a vector, whose direction corresponds to that
of HT

j according to Eq. (3a). Numerically, we find that HT
j is

in the x direction (collinear with E) with its amplitude maxi-
mized on the outermost SLs. Since there is no consensus on
the value of γex, we plot HT

1,x (acting on the bottom SL) as a
function of γex for the AFM configuration, m j = (−1) j+1ẑ,
from 2 to 6 SL thick. Inner SLs are subject to substantially
weaker SOTs than the outermost SLs (but the dependence of
HT

j,x on γex is similar in all SLs) [45]. We have excluded the
1-SL case where the SOT vanishes identically (as it is pro-
hibited by the inversion symmetry in linear response [49]).
In the odd-SL cases HT

1,x changes non-monotonically with a
sharp turn [50]; whereas in the even-SL cases it varies mono-
tonically. Figure 1(b) plots the Γ-point band gap versus γex,
where gap closing appears at the sharp turn of HT

1,x for each
odd-SL case; the total Chern number Ctot (including all bands
below εF ) transitions from 0 to −1 across this point. The
even-SL cases are supposed to be axion insulators, where the
band topology is characterized by the axion field rather than
Ctot [51, 52].

Comparing Fig. 1(a) with (b) implies that the SOT fields are
subtly correlated to but not dictated by the band topology. For
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an odd-SL MnBi2Te4, the SOT does not vanish in the Ctot = 0
phase (normal insulator) although it is notably stronger in the
Ctot =−1 phase (QAH insulator). In the even-SL cases (axion
insulators), the SOT is strong despite that Ctot = 0 throughout
the whole plot range. To demystify these striking properties,
we resort to the layer-resolved Chern number defined specifi-
cally for each SL [52, 53]. Figure 1(c) and (d) plot the ampli-
tudes of the bottom-SL Chern number C1 together with HT

1,x
as functions of γex for the 3-SL and 4-SL cases, respectively.
The insets further elaborate the SL-resolved Chern numbers
{C j} and the SL-resolved SOT fields {HT

j,x} for all j involved.
More details about other cases are left to the SM [45]. We ob-
serve three crucial features from these results. First, the SOT
acting on an outermost SL strongly correlates with the Chern
number associated with that SL. Second, C j distributes sym-
metrically among the SLs while HT

j,x distributes antisymmet-
rically in an odd-SL case; they swap their symmetry patterns
in an even-SL case. Third, while Ctot = ∑ j C j delineates the
band topology for the two phases in the odd-SL cases, it does
not speak for the SOT. For example, Ctot = 0 in the normal in-
sulator phase only because C1 =C3 =−C2/2, while the SOT
fields satisfy HT

1,x = −HT
3,x. Here, HT

2,x in the middle SL van-
ishes owing to the antisymmetric SL distribution (which will
soon be explained in Fig. 2) even though C2 is finite.

We emphasize that the SOT originates from the Berry
curvature Ωkm lying in the mixed momentum-magnetization
space, whereas the band topology is determined by Ωkk re-
siding only in the momentum subspace. These two quantities
satisfy an effective Faraday’s relation [54] but they do not re-
flect each other explicitly. That explains why the SOT cannot
be deduced directly from the band topology as discussed ear-
lier. One could of course define a topological number for Ωkm

by integrating it over the mixed m-k space [22], but this quan-
tity does not determine the SOT. What characterizes the SOT
strength is the torkance—the SOT field over the applied elec-
tric field [see Eq. (3a)], which is of order 10−4Oe ·m/V in the
outermost SL. This is three orders of magnitude larger than the
topological magnetoelectric effect enabled by the axion field
in MnBi2Te4 [45] and one order of magnitude larger than the
SOT in mixed Weyl semimetals [22].

We can understand the SL-resolved patterns of the SOT
fields by analyzing the symmetry of the perturbed states (i.e.,
in the presence of E = Ex̂). As illustrated in Fig. 2(a), a two-
fold rotation around the y axis (C2,y) in a 2-SL sample amounts
to flipping the direction of E while leaving the magnetic con-
figuration and the atomic structure unchanged, which should
lead to a sign change of HT

j . Therefore, the system returns
to itself under the combined operation of C2,y and E →−E.
We show comparatively in Fig. 2(b) why opposite SOT fields
HT

1,x = −HT
2,x would lead to inconsistencies with linear re-

sponse (i.e., HT
j flips sign as E reverses). Similarly, a C2,y op-

eration on a 3-SL sample flips not only the E field but also the
magnetization in all SLs, hence an invariant transformation in-
volves C2,y, E → −E, and m j → −m j, as demonstrated in
Fig. 2(c) and (d). Consequently, the 3-SL case is compatible

[7]
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FIG. 2. (a)-(d) Symmetry analysis of the SL-resolved SOT fields HT
j,x

(red arrows) for 2-SL and 3-SL MnBi2Te4. (e) The pattern of SOT
fields from 1 SL to 6 SL. The rotation axis for C2,y locates at the
geometric center of the sample.

with linear response only when HT
j,x is antisymmetric among

the constituent SLs. These symmetry arguments can be gener-
alized into more SLs, as schematically shown in Fig. 2(e). The
red arrows indicating HT

j are exaggerated for the inner SLs to
improve visual clarity; their exact magnitudes are shown in
Fig. S2 [45].

Magnetic resonances.—In light of the symmetry of SOT
depicted in Fig. 2, we study the magnetic resonances in the
2-SL and 3-SL cases to exemplify the even-odd contrast. A
2-SL MnBi2Te4 can be modeled as a collinear two-sublattice
antiferromagnet affording two chiral resonance modes of fre-
quencies ωr

1(2) =
√

ωA(2ωE +ωA)±ω0 [55], where ωE is the
inter-SL Heisenberg exchange interaction expressed in angu-
lar frequency, ωA is the perpendicular easy-axis anisotropy,
and ω0 = γH0 is the bias magnetic field in the z direction.
Because an in-plane ac electric field Ẽeiωt (phasor notations
adopted hereafter) generates the same SOT field on each SL,
the 2-SL AFM resonance induced by the SOT is physically
similar to that driven by a microwave, the detailed discussion
on which is left in the SM [45].

The 3-SL case, however, is quite non-trivial. Solving the
coupled LLG equations for the SL-specific magnetization
gives three distinct resonance modes

ω
r
1 =

√
ω2

A +3ωAωE +ω2
E/4−ωE/2+ω0, (5a)

ω
r
2 =

√
ω2

A +3ωAωE +ω2
E/4+ωE/2−ω0, (5b)

ω
r
3 = ωA +ωE +ω0, (5c)

which are plotted in Fig. 3(a). The SL-specific motions for
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each mode are illustrated in Fig. 3(b). The right-handed mode
ωr

1 (blue) and the left-handed mode ωr
2 (red), while having

counterparts in the 2-SL case, are non-degenerate at zero field,
which can be attributed to the uncompensated magnetization
in the ground state of 3 SL MnBi2Te4. In addition, we identify
an exotic right-handed mode ωr

3 (green) in which the top and
bottom SLs precess out-of-phase while the middle SL stays
stationary as the instantaneous exchange torque exerting on it
by the neighboring SLs exactly cancel. The top and bottom
SLs do not directly couple; they affect each other indirectly
through the middle SL.

Leveraging the ωr
3 mode calls for a staggered ac field acting

oppositely on the top and bottom SLs while leaving the mid-
dle SL unperturbed, which coincides with the SL-contrasting
SOT field depicted in Fig. 2(d). Therefore, by virtue of the
SOT, the Ẽeiωt field is able to induce the resonance of the ωr

3
mode. We numerically confirmed that the symmetry of SOT
shown in Fig. 2 persists for fairly large-angle precessions and
the SOT fields remain almost independent of the direction of
m j up to about θ = π/3 (see Fig. S9 [45]). Note that the
ωr

3 mode is blind to microwaves because at the resonance fre-
quency the wavelength far exceeds the SL spacing (so the os-
cillating magnetic field is SL independent). Moreover, while
the Oersted field arising from Ẽeiωt is also staggered, it is
much weaker than the SOT field [45]. Consequently, observ-
ing the resonance of the ωr

3 mode provides an unequivocal
way to verify the SOT.

By including the ac SOT field into the linearized LLG equa-
tions using phasor notations, we can solve the dynamical sus-
ceptibility as [45]: χ̃∥ ≡ m̃1

x/γH̃T
1,x = m̃3

x/γH̃T
3,x = −(iαGω +

ωr
3)/[ω

2 − (iαGω +ωr
3)

2] and χ̃⊥ ≡ m̃1
y/γH̃T

1,x = m̃3
y/γH̃T

3,x =

iω/[ω2−(iαGω+ωr
3)

2]. The dynamical susceptibility is hard
to measure directly because the oscillating SOT field is an
intermediate quantity generated by Ẽeiωt—the true driving
force. To detect the SOT-induced resonance electronically, we
should also consider the inverse effect of the SOT.

Adiabatic charge pumping.—As the SL-dependent magne-
tization is driven into motion, the precessing magnetic mo-
ments will in turn generate a pure adiabatic current according
to Eq. (3b) [56–58]. In contrast to transport currents, an adi-
abatic current is not accompanied by Joule heating (i.e., it is
dissipationless) and it decays rapidly when the system goes
off-resonance [59–61]. Therefore, in our pure voltage-driven
system, the pumped adiabatic current Jp directly signals the
onset of magnetic resonances. The overall effect combining
the SOT, LLG equations, and adiabatic charge pumping man-
ifests as a linear response relation: J̃P

µ(ω) = σ̃µν(ω)Ẽν(ω).
For the 3-SL case, by eliminating the magnetic degrees of
freedom, we obtain the ac conductivity as

σ̃xx(ω) = iωχ̃∥(ω)
2e2a2

0
h̄S

〈
Tr(Ωkm1

xx )
〉2

, (6a)

σ̃yx(ω) = iωχ̃⊥(ω)
2e2a2

0
h̄S

〈
Tr(Ωkm1

yy )
〉2

, (6b)

where ⟨· · · ⟩ = 1/(2π)2 ∫ d2k f (k)(· · ·) denotes the average

FIG. 3. (a) Resonance frequencies of a 3-SL MnBi2Te4 varying with
a perpendicular magnetic field (scaled into ω0 = γH0). (b) An illus-
tration of SL-specific magnetic precessions in each eigenmode. (c)
σ̃xx, and (d) σ̃yx, plotted for their amplitudes (solid red) and phases
(dashed blue) as functions of the driving frequency f = ω/2π for a
3-SL MnBi2Te4. Parameters: αG = 0.01 (damping), γex = 75 meV,
h̄ωE = 0.272 meV and h̄ωA = 0.084 meV [32].

over the first Brillouin zone [45]. We plot the amplitude and
phase of σ̃xx and σ̃yx as functions of the driving frequency
f = ω/2π in Fig. 3(c) and (d), respectively. Remarkably,
the amplitude |χ̃∥(⊥)(ω)| only has a single peak at ωr

3, indi-
cating that the SOT exclusively excites the ωr

3 mode; it does
not drive the ωr

1 and ωr
2 modes at all [62]. This confirms our

expectation based on the symmetry of SOT. By contrast, a
microwave source can only drive ωr

1 and ωr
2 but not ωr

3 (see
Fig. S8). Overall, the system behaves as an insulator off res-
onance while it admits pure adiabatic current on resonance.
Similar to the SOT, the pumped current is significantly sup-
pressed in the topological trivial regime.

Mechanical efficiency.—The phase of σ̃xx varying over ω

has profound physical implications. For instance, the electric
response of a 3-SL sample [shown in Fig. 3(c)] turns from
capacitance-like into inductance-like as ω crosses ωr

3, resem-
bling the behavior of a parallel LC-resonance [45]. By acquir-
ing an emergent reactance (capacitance and inductance) origi-
nating from the combined action of the SOT and its reciprocal
effect, the system can function as an adiabatic quantum mo-
tor bearing zero Ohm’s conduction, thus converting all input
electric power into magnetic dynamics [59–61] without loss.
In other words, energy is consumed only by the Gilbert damp-
ing but not through Joule heating. To confirm this remarkable
property, we benchmark the time-averaged power consump-
tion of the magnetic dynamics PM = αGh̄S(lxly/a2

0)∑ j |ṁ j|2

against the average input electric power PJ ≡ Jp
x Exlxly (with lx

and ly labeling the lateral dimensions), which gives rise to a
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mechanical efficiency [45]

ξ = PM/PJ = αGω
(
|χ̃∥|2 + |χ̃⊥|2

)
/|Im(χ̃∥)|= 1, (7)

in the absence of leakage currents and other imperfections. As
a comparison, ξ is only on the order of 1% in current-driven
3D heterostructures where Joule heating dissipates most of the
input electric power [61].
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thank F. Xue, H. Zhang, B. Lian, E. Del Barco, A. Kent, Y.-H.
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