
Topological phase transitions, invariants and enriched bulk-edge correspondences in
fermionic gapless systems with extended Fermi surface

Fadi Sun1,2 and Jinwu Ye1,2,3

1 The School of Science, Great Bay University, Dongguan 523000, Guangdong, China
2 Institute for Theoretical Sciences, Westlake University, Hangzhou 310024, Zhejiang, China

3 Department of Physics and Astronomy, Mississippi State University, MS 39762, USA
(Dated: March 14, 2023)

Topological phases and topological phase transitions (TPT) are among the most fantastic phe-
nomena in Nature. Here we show that injecting a current may lead to new topological phases,
especially new gapless topological metallic phases with extended Fermi surfaces (FSs) through novel
class of TPTs in the bulk or the boundary. Specifically, we study the quantum anomalous Hall
(QAH) system in a square lattice under various forms of injecting currents. In addition to the
previously known Chern insulator ( which will be called even Chern insulator here ), band insulator
and band metal (BM), we find three new topological phases we name as: the gapped odd Chern
insulator (Odd CI), the gapless odd Chern metal (Odd CM) and even Chern metal (Even CM). The
Chern number may not be effective anymore in characterizing the topological gapless phases with
extended FS. It is the Hall conductance which acts as the new topological invariant in such gapless
systems. Its jump is a universal integer or non-integer across the even CM/BM or odd CM/BM
TPT respectively where there is also a corresponding TPT in the Longitudinal (L-) edge modes.
The Odd/even CM to BM transition is a novel class of TPT without any non-analyticity in the
ground state energy density. This presents the first example of a TPT which is not a quantum
phase transition (QPT). The original bulk-edge correspondence is enriched into bulk/Longitudinal
(L-)/Transverse (T-) edge correspondence. The L- edge reconstruction may happen earlier, later or
at the same time as the bulk TPT respectively in the even CI/odd CI/odd CM sequence with the
edge dynamic exponent zL = 3, in the even CI/even CM/odd CM sequence with zL = 2 or a direct
even CI/odd CM with a flat edge. The disappearance of the T- edge always happen at the same time
as the bulk TPT with a universal edge critical behaviour. We classify all the possible bulk and edge
TPTs and also evaluate the thermodynamic quantities such as the density of states, specific heat,
compressibility and the Wilson ratio in all the phases and also their quantum scaling forms near all
these TPTs. The methods may be applied to explore new topological phases of other Hamiltonians
in any lattice in any dimension in any forms of injecting current. Doing various experiments by
injecting different sorts of currents may become an effective way to drive various topological phases
to new topological gapped or gapless metallic phases through novel bulk or edge TPTs.

I. INTRODUCTION

The Anomalous Hall Effect(AHE) due to the Berry
phase of itinerant electrons in a quantum Ferromagnet in
real space [1] or in momentum space [2, 3] has been under
intense investigations since more than 20 years ago. It
involves the spin-orbit coupling which couples the orbital
motion of electrons to the spin polarization[4]. The AHE
in a metallic Ferromagnet is in general, not quantized,
so can take any value. However, it can be quantized in
an insulator, called Quantum Anomalous Hall (QAH) ef-
fect. The original QAH was proposed [5] even earlier in
a honeycomb lattice model soon after the discovery of in-
teger and fractional quantum Hall effects (FQHE). Since
the first experimental realization of the quantum anoma-
lous Hall (QAH) effect in Cr doped Bi(Sb)2Te3 thin films
[8, 9], it has also been observed in many other mate-
rials such as both Cr doped and V doped (Bi,Sb)2Te3

films [10]. More recently, it was also discovered in the
twisted bilayer graphene [11]. It was realized with cold
atoms with the fermions 40K in [12]. The bosonic version
of QAH was also implemented with spinor bosons 87Rb
in [13]. The connections between the non-interacting
fermionic QAH and the interacting bosonic version of

QAH and various quantum or topological phase transi-
tions in interacting bosonic systems were explored in [28].

It turns out that the FQHE and QAH are just two
early members of the vast number of topological quan-
tum matter [14–17]. The topological quantum matter
is one of the main themes in condensed matter physics,
lattice gauge theories and topological quantum field the-
ories [14–17]. It not only contain new physical concepts,
rich and profound phenomena with deep mathematical
structures, but may also have some potential industry ap-
plications such as dissipationess transmissions, quantum
communications and topological quantum computing.

There have been flurries of classifications of both
gapped and gapless topological phases [14–17]. In the
known non-interacting gapless case, the gapless source
comes from the Dirac fermions, Weyl fermions and var-
ious line/ring nodes in the bulk. We call this class of
bulk gapless system with Fermi points or lines, linear
dispersion ω ∼ k and vanishing density of states (DOS)
D(ω) ∼ ω as having the dynamic exponent z = 1. There
are still little works on how to characterizing a bulk
topological gapless system with extended Fermi surface
(FS), neither much work on topological phase transitions
(TPT) between various topological phases. Furthermore,
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how to define topological invariants to characterize a bulk
gapless system with extended FS and what are the associ-
ated edge modes remain outstanding problems. Because
these extended FS originates from point-like Fermi points
with quadratic band touching ω ∼ k2 and constant DOS
D(ω) ∼ const. at a TPT, we call such class of gapless sys-
tems as having the bulk dynamic exponent z = 2 which
are the main focus of the present work.

There are two complementary approaches to address
these outstanding problems. One way is to use SPT
or SET to classify by various mathematical tools such
as Co-homology, K-theory (for non-interacting fermions),
Co-bordisms and tensor categories or its higher order ver-
sions [16, 17]. Another is to start from a concrete par-
ent Hamiltonian hosting various topological phases, then
explore its topological phases and TPTs under various
deformations breaking different symmetries [5, 16, 18–
22]. Here we take the second approach, but limit to
non-interacting fermionic systems[5]. We focus on the
simplest and widely experimentally realized topologi-
cal phase: the quantum anomalous Hall (QAH) phase
[5, 8–10, 12, 28] and also establish its connection to the
un-quantized AHE. Specifically, we start from a QAH
Hamiltonian which hosts some known gapped topological
phases such as Chern insulator and band insulator and
see how a Parity (P-) breaking injecting current Fig.1a,b
or a P- persevering chemical potential or energy disper-
sion drives the parent QAH Hamiltonian into new topo-
logical gapped or gapless phases through new classes of
topological phase transitions (TPT). We also define the
new ”topological bulk invariants” of these z = 2 topolog-
ical gapless phase, investigate the associated new edge
state structure, explore enriched bulk-edge correspon-
dence and new longitudinal/transverse edge-edge corre-
spondence. During this establishment, we propose a clas-
sification of the QAH insulators and AHE metals in Fig.2.
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FIG. 1. New topological phases and bulk or edge TPTs
are generated by (a) Injecting a longitudinal current into the
QAH sample in a strip geometry. (b) Injecting a transverse
current into the QAH sample in a strip geometry.

This work contains 3 parts. In part I, under an inject-
ing current (Fig.1a,b), we evaluate the Hall conductivity
at both zero and finite temperatures. Then we study
the non-analytical behaviours of the ground state energy
and map out the global phase diagram in the Zeeman
field/injecting current plane Fig.3. The 2 old phase turn
into 4 phases: the old (even) Chern insulator with the
Chern number Ch− = ±1 and quantized Hall conductiv-

ity σxy = ±1×e2/h when c < v, a new z = 2 Odd Chern
metal (OCM) phase with Ch− = ±1, extended Fermi
surfaces (FS) and un-quantized universal Hall conduc-
tivity |σxy| = v/c < 1 (in the unit of e2/h) when c > v.
The emergence of the particle and hole FS in the Odd
Chern metal phase is responsible for the reduced Hall
conductivity which is still independent of h/t and many
other microscopic details of the Hamiltonian. The old
band insulator with Ch− = 0, σxy = 0 and a new band
metal phase with Ch− = 0, σxy = 0 with extended FSs.
The TPT from the Chern insulator to the band insulator
is a 3rd order with the dynamic exponent z = 1, while
both the Chern insulator to Odd Chern metal, and the
band insulator to band metal are second order ones with
z = 2. Strikingly, the TPT from the Odd Chern metal
to the band metal is novel: it has no non-analyticity to
infinite order in the ground state energy, but the Chern
number of the band jumps ∆Ch− = ±1 and the Hall con-
ductivity has a universal non-integer jump ∆σxy = v/c.
This presents the first example of a TPT from both bulk
and associated edge properties, but not a QPT in con-
ventional wisdom [24, 29, 30]. We also evaluate various
thermodynamic quantities such as the density of states,
specific heat, compressibility and Wilson ratio at a finite
T in all the 4 phases and also their quantum scaling forms
near all these bulk TPTs.

Then we study the edge states in a strip geometry when
the injecting current is either parallel (longitudinal) or
transverse to the edge, from both the lattice model and
from the effective low energy theory. During the bulk
TPT from the even Chern insulator to the Odd Chern
metal, the edge in a parallel injection also undergoes very
unusual edge TPT: Inside the Chern insulator c < v be-
fore the TPT, the two edge modes on the two opposite
sides of the sample (Fig.1c) flow along the opposite di-
rections vL > 0, vR < 0, but one side flow slower than the
other side |vR| < |vL|. Only the edge mode contributes
to σH = ±1. At the TPT c = v, one edge mode becomes
completely flat with zero velocity vR = 0 which can be
viewed as a fine tuning to a multi-critical point (Fig.2).
Inside the odd Chern metal after the TPT c > v, the two
opposite sides of the sample start to flow along the same
direction vL > 0, vR > 0, but one side flows much slower
than the other side |vR| � |vL|. Both bulk and edge
contribute to the transport. However, in a transverse
boost, the edge mode velocity behaves as

√
v2 − c2 be-

fore the TPT c < v, but were squeezed out after the TPT
c > v, so no T-edge modes in the Odd Chern metal any-
more. Only the bulk contributes to the transport. So the
z = 2 Odd Chern metal has the exotic edge modes with
vLvR > 0 in a parallel injection (Fig.1a), but not in a
transverse injection (Fig.1b). We may call this new phe-
nomenon a new longitudinal ( L-) /transverse( T-) edge
correspondence under the current injection. As alerted in
the last paragraph, the novel bulk TPT from Odd Chern
metal to band metal can also be viewed from the edge
in a parallel boost: the former has one edge mode with
vLvR > 0, the latter none. Obviously, the Odd Chern
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FIG. 2. The six-fold hexagon phase diagram of the 6 quan-
tum/topological phases: 3 insulators: BI: band insulator,
Even CI: even Chern insulator, Odd CI: odd Chern insula-
tor; 3 metals: BM: band metal, Even CM: even Chern metal,
Odd CM: odd Chern metal are sitting in the 6 vertices of
the hexagon. z = 1, 2 are the dynamic exponent of the bulk
QPT, zL = 2, 3 are the dynamic exponent of the longitu-
dinal edge TPT. The bulk TPT from the even or odd CM
to the BM is infinite order with the unit jump in the Hall
conductance ∆σH = ±1 or non-integer ∆σH = ±v/c < 1
respectively. It is ∆σH which plays the role of topological
invariants in the 3 metal phases. It maybe the first example
of a TPT which is not a QPT. The TPT/QPT from the even
CI to the odd CM usually goes in two steps: even CI/odd
CI/odd CM (the longitudinal-edge TPT happens earlier than
the bulk) or even CI/even CM/odd CM (the L- edge TPT
happens later than the bulk) with the odd CI or the even CM
as the intermediate phase respectively[27], but it could also
go directly (the L-edge TPT happens at the same time as the
bulk QPT) with z = 2 and completely flat L- edge shown in
Fig.3. The direct TPT/QPT may be viewed as a fine tun-
ing or a multi-critical point. The Transverse (T-) edge mode
disappears always at the same time as the bulk TPT with its
velocity vanishing as

√
v2 − c2. All the metallic phases have

no T-edge mode. Due to the absence of C− symmetry, the
even CM to the even CM transition is absent. The Universal
Hall conductance jump from the odd CM to its T-reversal
odd CM partner is twice of that from the odd CM to the BM.
Some BM may also have non-vanishing Chern number and
associated floating edge modes above the bulk modes. But
practically, it is the same phase as the BM except it has a
larger AHE. If no lines connecting two phases, then it means
there is no direct transition between the two except through
some fine tuned multi-critical point.

metal with z = 2 is clearly different from the previously
known topological semi-metals such as Dirac metal or
Weyl semi-metal with z = 1 [16].

It maybe necessary to stress that one need to dis-
tinguish two mathematical quantities which have differ-
ent physical meanings inside different phases: the Chern
number Ch− versus the Hall conductivity σxy. They are
the same in the Chern insulator, but different in the Odd
Chern metal: the Chern number is defined for a band
only, therefore independent of the filling of the band [47].
Even so, it still has a clear physical meaning when the
boost is parallel to the edge in a strip geometry even in
a Odd Chern metal: it stands for the contribution from

the edge states in both Chern insulator and Odd Chern
metal. Inside the Chern insulator c < v, this is the only
contribution to the σxy, but inside the Odd Chern metal
c > v, due to the gapless extended FS in the bulk, the
bulk states also contribute, so one have the decompo-
sition σxy = 1 + (v/c − 1) = v/c < 1 where the first
term comes from the edge state which is quantized, the
second term is from the bulk FS which is un-quantized.
So when the boost is parallel to the edge, there is an
enriched bulk-edge correspondence inside the topological
Odd Chern metal: the Chern number defined for the bulk
band gives the quantized edge contribution, independent
of the fillings of the band. But the Hall conductivity σxy
receives the total contribution from the edge + the bulk,
depends on the fillings, so not quantized. However, when
the boost is perpendicular to the edge, the Chern number
defined for a band only has mathematical sense, but no
physical meaning in the Odd Chern metal phase. In this
case, there is no edge state anymore, so no contributions
from the edge, σxy = 0 + v/c completely comes from the
bulk.

In Part II which is on the gauge-invariant current in-
jection case, one need to consider the combined effects of
the two currents, the first is a NN n = 1 Non-Abelian
gauge-invariant current term, the second is a NNN n = 2
(higher order) current term. The first term can be
treated exactly in a transformed basis by combining it
with the NN hopping and SOC term in the original QAH
Hamiltonian. It leads to a very counter-intuitive effect:
an band insulator near the TPT from the Chern insulator
to the band insulator in the lab frame turns into a Chern
insulator, but not the other way around. In the trans-
formed basis, if treating the NNN n = 2 current term
as an independent one just like a NNN injecting current,
the results achieved on NN n = 1 injecting current in the
Part-I can be applied here with some notable differences:
(1) The Global phase diagram changes to Fig.24 where
one can see that a new topologically gapped phase we
named odd Chern insulator phase intervening between
the the even CI and the odd CM in Fig.3. It has the
same bulk properties as the even Chern insulator, but
with different edge properties. Its L- edge modes satisfy
the exotic relation vLvR > 0 similar to the odd CM, its
T- edge modes satisfy the conventional relation vLvR < 0
just as in the even Chern insulator. So the direct TPT
from the Even CI to the odd CM in Fig.3 splits into
two in Fig.24: In the L- edge, the edge mode undergoes
its own edge TPT from the even Chern insulator to the
odd Chern insulator with an L- edge dynamic exponent
zL = 3 before the bulk TPT from the odd CI to the odd
CM. (2) The TPT from the odd CI to the odd CM does
not happen at a constant c = v, but depends on the Zee-
man field h/t in a lobe shape. The Odd Chern metal’s
Hall conductivity is not just given by v/c, but also de-
pends on the Zeeman field h/t. The band metal’s Hall
conductivity is not zero anymore, but also depends on
the Zeeman field h/t. (3) Remarkably, the Hall conduc-
tivity jump from the odd Chern metal to the band metal
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remains the same universal number as the n = 1 case. So
does the jump from the odd Chern metal to its T-reversal
odd Chern number partner which is twice as that from
the OCM to the BM. This could be a universal salient
feature of the odd Chern metal (Fig.2) ! This fact estab-
lish the Hall conductivity jump as the new ”topological
invariants” characterizing the gapless topological phases
with extended FS. (4) Due to the n = 2 NNN feature,
the Doppler shift in the 4 nodes become the same sign.
This is contrast to the n = 1 NN injecting current case
where the 4 nodes have 2+ and 2- Doppler shifts.

As a byproduct, taking some results from [23], for the
QAH or AHE due to the artificially generated SOC which
is a non-relativistic effect, we find that a Galileo boost v
on a lattice leads to the n = 1 NN gauge-invariant current
and n = 2 NNN current. So the results achieved in Sec.V
and Sec.VI can also be applied to a moving sample. So
if an insulator is band or Chern type may depend on if
the observer is moving relative to the lattice. Then after
absorbing the n = 1 NN gauge-invariant current into the
QAH Hamiltonian by a unitary transformation, the NNN
current term in the transformed basis changes sign after
some critical boost velocity vc ∼ 1cm/s solely determined
by the Wannier functions. So does the Doppler shift near
the four nodes. All these new features are subject to the
scattering measurements in the moving frame in Fig.34.

In terms of the SPT language, despite the original
QAH Hamiltonian breaks the time-reversal symmetry ex-
plicitly, it still has a charge (C-) conjugation symmetry
and also a parity (P-) symmetry. An injecting current
or a moving sample breaks P-symmetry, but keeps the
C-symmetry. Because it is a non-interacting system, the
C-symmetry is never broken during the evolution, so it is
the C-symmetry protected topological phases and TPTs
driven by the n = 1 and n = 2 current.

In part III, we study the P-preserving deformation
such as an energy dispersion. It leads to a even Chern
metal phase which has the same bulk properties as the
odd Chern metal. But the Universal Hall conductance
jump from the even CM to the band metal is an inte-
ger number. It also has a dramatically different L-edge
mode properties than the odd CM: the L-edge mode sat-
isfies the conventional vLvR < 0 instead of the exotic
vLvR > 0. A real material contains both P-breaking
and P-persevering components and is examined in Sec.
VIII. We find that as the parameter changes, the generic
AHE will be either in even-like Chern metal or odd-
like Chern metal: there is a edge reconstruction between
the two with a L- edge exponent zl = 2. We propose
a complete classification of AHE metals leading to un-
quantized QAH effect as the Band metal (BM), odd
Chern metal and even Chern metal, while the gapped
phases leading to quantized QAH effect as BI, CI and odd
CI (Fig.2). The BM is nothing but the previously well
studied one contributing to the un-quantized AHE [2, 3].
While the itinerant metal contributing the AHE due to
the Berry phase acquired by electrons moving in the non-
coplanar spin texture in the real space in a Ferromagnet

does not fall into this non-interacting classification [1].
Experimentalists got used to apply magnetic field, elec-

tric field, or strain, pressure, neutron scattering, muon
spin rotation, etc. Here, we show that injecting various
forms of currents may be an effective way to bring out
a lot of information on the topological phases, also drive
them to new phases through novel TPTs. Alternatively,
for SOC which is a non-relativistic effect, putting the
sample in a strip shape to move in a trail, then perform
various scattering experiments such as neutron, X-ray
scattering or ARPES may also be helpful for artificially
generated QAH systems.

The rest of the paper is organized as follows: we will
first study the QAH under a P-breaking injecting cur-
rent ( Fig.1a,b ). We will study the bulk properties of
both systems via lattice theory and continuum effective
theory in the thermodynamic limit, then investigate the
corresponding edge properties in a strip geometry in both
longitudinal and transverse edge via also both lattice the-
ory and the continuum effective theory. Then in the
first two appendices, we investigate the QAH under a
P-preserving chemical potential or energy dispersion by
the similar approaches. The P-breaking and P-preserving
Hamiltonian are two different kinds of deformations lead-
ing to different bulk phases and topological phase transi-
tions, also different edge properties. A real material con-
tains both and will be examined in Sec.VIII. In Sec.IX,
we summarize ”Topological invariants” and the enriched
bulk/L-edge/T-edge correspondence in gapless fermionic
systems with extended Fermi surface. The experimental
detections are analyzed in Sec.X.

II. THE BULK PROPERTIES: THE
MICROSCOPIC LATTICE THEORY

The quantum anomalous Hall model on a square lattice
takes the form

HQAH = −
∑
i

[c†i (tσz − itsσx)ci+x+c†i (tσz − itsσy)ci+y

+ h.c.]− h
∑
i

(ni↑ − ni↓) + U
∑
i

n2
i − µ

∑
ni . (1)

Without loss of generality, we assume that t > 0 and
ts > 0. In this work, we focus on the non-interacting
limit U = 0, but the chemical potential can be zero or
non-zero.

Under an injecting current (for its motivation from a
Galileo transformation, see appendix E), one obtains the
injected Hamiltonian:

Hinj = HQAH +
∑
i

(itb,xc
†
i ci+x + itb,yc

†
i ci+y + h.c.) (2)

The non-injected Hamiltonian Eq.1 has the Charge
conjugation C-symmetry and the parity P-symmetry
kx → −kx, ky → −ky;σx → −σx, σy → −σy. but
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FIG. 3. The global Phase diagram of the Lattice Hamilto-
nian Eq.2 with a fixed ts/t = 1. The phase diagram does
depend on the ratio ts/t. For simplicity, we take ts/t = 1 in
this figure only. Then the black phase boundary is a straight
line. But ts/t is taken as any value in the continuum ef-
fective actions. The topological metal phases are named as
A1,A2,B1,B2,C1,C2. Green means the Particle (P-) FS, the
yellow Hole (H-) FS. The inserts plot the Fermi surface of
different metal phases within the 1st Brillouin Zone, where
we use the notation A1/B1 for the phase boundary between
A1 and B1, etc. The first box stands for the band insula-
tor where there is no FS, the second is the metal-insulator
transition where there are two Fermi points (one P-, one H-)
emerging with the quadratic band touchings (so the dynamic
exponent z = 2), they evolve into two (one P-, one H-) Fermi
pockets in the band metal. Then they touch quadratically at
(0, 0) in the A1-CM/BM QCP with not any non-analyticity.
A1 corresponds to Fig.9d, A1/B1 to Fig.13d. The P- FS ex-
pands to A1/C1, the bottom part of the FS becomes straight
in A1/B1/C1. B1 corresponds to Fig.13e. The collision of the
two P- FS from B1 leads to B1/C1. B1/B2 differs from B1
by the conic touching of P- and H- Fermi pocket at (0, π) and
(π, 0) with not any non-analyticity. Then the split between
the P- and H- FS from C1/C2 leads to C1. See also Fig.12,
13 and Fig.16, 17 near h/t = ±4 and h/t = 0 respectively in
the continuum calculation. See also Fig.23 for higher order
n = 2 boost.

no Time Reversal T-symmetry. The injected Hamilto-
nian Eq.2 breaks the P-symmetry, still respects the C-
symmetry: σxK,(K denotes the complex conjugate),

(σxK)H(k)(σxK) = −H(−k) (3)

The C-symmetry guarantees a relation between upper
band and lower band E+(k) = −E−(−k), and the Berry
curvature Ω+(k) = −Ω−(−k). We also have Ω±(k) =
Ω±(−k). Note that the QAH belongs to the Class A,
but still with the particle number conserved. Because

this C-symmetry does not conserve the particle number,
so it can not be understood as the existence of an an-
ticomutating symmetry operators, otherwise the system
would belong to the Class D instead of the Class A [16].

For simplicity, we study the injection along the y di-
rection, thus tb,x = 0 and tb,y = tb. It can be easily gen-
eralized to any injection direction. In momentum space,
the Hamiltonian becomes

Hinj =
∑
k

c†k{− [h+ 2t(cos kx + cos ky)]σz + 2ts sin kxσx

+ 2ts sin kyσy − 2tb sin kyσ0}ck (4)

The Diagonalization of Eq.(4) leads to the two bands

E±(k) = −2tb sin ky

±
√

[h+ 2t(cos kx+cos ky)]2+4t2s(sin
2 kx+sin2 ky) (5)

Since E+(k) ≥ E−(k) always holds for a fixed k, we
will call the E+ the upper band and the E− the lower
band. When tb is sufficiently small, it is in a insulating
phase; When tb/ts is sufficiently large, it is in a metal-
lic phase, with hole surface is given by E−(k) = 0 and
electronic surface given by E+(k) = 0.

The critical tb are determined by the minimization
problem mink E+(k; tb) = 0. In the full range of tb/ts,
the Fermi surfaces (FS ) can be rather complicated, see
Fig.3.

When 4t > h > 0, it is in the Chern insulator
phase. At the critical tb/ts = 1 and the Fermi points
are located at (π, arccos( 2t−h

2t )), it moves into the A1
Odd Chern metal phase, then as tb increases further to
tb =

√
t2s + h(h+ 4t)/4, the previous Fermi points grow-

up into a Fermi surface with the emergence of the other

Fermi point at (0, arccos[ −t(2t+h)
2(t2+t2b−t2s)

]) ( See A1/B1 ), it

moves into the B1 Odd Chern metal phase. When t > tb
increases further, these two Fermi surfaces can collide at
B1/C1 to move into the C1 phase.

When h > 4t, it is in the band insulator phase. At
the critical tb =

√
t2s + h(h− 4t)/4, the Fermi points are

located at (0, arccos( 2t
h−2t )), it moves into the band metal

phase.
The TPTs in Fig.3 can be classified into 4 classes: (1)

The linear band touching due to the Dirac points are 3rd
TPT with z = 1. In the tb = 0, it is a Dirac point with
emergent Lorentz invariance. The tb 6= 0 drives it into
a boosted Dirac point. (2) The emergency of the P- or
H- Fermi point in insulator/metal, A1/B1 are quadratic
band touching 2nd order TPT with the dynamic expo-
nent z = 2. (3) Band metal/A1, B1/B2,C1/C2, even the
M point B1/B2 (C1/C2) can be understood as the the
conic band touching between the P- and the H- FS. They
do not have any non-analyticity in the ground state en-
ergy. (4) The P-/P- FS ( equivalently H-/H- FS ) collision
in A1/C1, B1/C1 are TPT with universal sub-leading
scalings [30, 36].
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TABLE I. The classification of bulk QPT or TPT.

4 classes TPTs CI-BI CI-OCM OCM-BM P-FS/P-FS collision
Dynamic exponent z = 1 z = 2 No saddle point cone

Order 3rd 2nd Infinite order 3rd, 5th..
Scaling Yes Yes No sub-leading

RW = Tκu/Cv
2 ln 2
9ζ(3)

3
π2

3
π2 sub-leading

where we only list one representative of CI-BI, CI-CI in
the second column, CI-OCM, BI-BM, OCM-OCM in the
3rd column, OCM-BM, OCM-OCM in the 4th column,
H-FS/H-FS in the 5th column. The Odd CM can also be
replaced by the Even CM except the ECM-ECM transi-
tion does not exist as demonstrated in Sec.VII and VIII (
See Fig.29 and Fig.37 ). The Wilson ratio (WR) was eval-
uated in the lattice in Sec.II-C-3 and in the continuum
effective theories in Sec.III-A-3c and III-B-3c. The WR
for all the gapped phases ( CI and BI ) RW = (T/∆̃)2 (
See Eq.19 ) is not listed in the Table. In fact, RW = 3

π2

also holds inside the all the gapless phases ( CM and BM
), because the OCM to the BM transition has no ana-
lyticity anyway. We did not list the edge reconstruction
transition from the CI to odd CI in Fig.23 and even CM
to odd CM in Fig.29 with the longitudinal dynamic ex-
ponent zL = 3 and zL = 2 respectively. For the bulk or
edge properties of these phases, see Table II.

In fact, as elucidated in Fig.3, if one look at B1 →
B1/C1 → C1, the B1/C1 QCP is reached by the colli-
sion of the two P- FS (or equivalently, the two H-FS) from
B1, so this class of TPT can be similarly investigated by
the method developed in [30], universal subleading scal-
ings can be derived. One can also similarly study the
TPT from A1 → A1/C1 → C1. In the following, we
are mainly interested in the experimentally most rele-
vant case tb/ts is not too large, so focus on A1,A2,B1,B2
phases and class-1 and class-2 TPTs, but do not discuss
C1 and C2 phase and the class-3 TPT in any details.
The A1,A2,B1,B2 phases can be distinguished by σxy
and Fermi surfaces (FS) topology: The A1 phase has
0 < σxy < 1 and the FS is just one part, the B1 phase
has 0 < σxy < 1 and the FS consists of two disconnected
parts. A2(B2) have the same FSs as A1(B1), but with
opposite sign of σxy.

A. The quantum Hall response at zero and finite
temperature: Topological phase transitions (TPT).

In order to calculate Berry connections A and Berry
curvatures Ω, it is convenient to rewrite the boosted QAH

Hamiltonian Eq.(2) in terms of (d0, ~d) vectors:

H(k) = d0(k)σ0 + dx(k)σx + dy(k)σy + dz(k)σz,

d0(k) = −2tb sin ky, d = (dx, dy, dz)

dx(k) = 2ts sin kx, dy(k) = 2ts sin ky,

dz(k) = −[h+ 2t(cos kx + cos ky)] (6)

Then the Berry Connections and Berry curvatures can
be evaluated as:

A±,i(k)= i〈±,k|∂ki |±,k〉 =
(dy∂kidx − dx∂kidy)

2|d|(|d| ± dz)

Ω±,xy(k)=∂kxA±,y−∂kyA±,x=∓ 1

2|d|3d·∂xd×∂yd (7)

Since the tb term is proportional to the unit matrix σ0, so
it does not affect the eigenvectors, then the Berry connec-
tions and Berry curvatures are exactly the same as tb = 0
case. Note that σxy is related to Ω±,xy and σyx = −σxy is
related to Ω±,yx. For later calculations on Hall response,
we will only consider σxy and drop subscript xy in Ω.

1. Zero temperature Hall conductance and TPT

As long as h 6= 0,±4t, the upper band and the lower
band are well separated, thus one can calculate the Chern
number of the lower band via integrating the Berry cur-
vature Ω−(k) over the entire Brillouin zone (BZ) which
is a torus T2:

Ch−=
1

2π

∫
T2

d2k Ω−(k) =


0, |h/t| > 4;

+1, 4 > h/|t| > 0;

−1, 0 > h/|t| > −4;

(8)

In the insulating phase, only the lower band is full
occupied, thus the Chern number is the zero temperature
Hall conductance in unit e2/h, that is σH = Ch−. In
the metallic phase, both band are partially filled, thus
the zero temperature Hall conductance reduces to σH =
Ch− × |ts/tb|.

In any case, the zero temperature Hall conductance
can be expressed as

σH =
1

2π

∫
T2

d2k
∑
s=±

Ωs(k)Θ(−Es(k))

= Ch− ×min(1, |ts/tb|) . (9)
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As shown in Fig.4, the Hall conductivity show plateau
structure during the scanning of h: it is zero for band in-
sulator and band metal, show a plateau with value −ts/tb
for A2 phase and B2 phase, show a plateau with value
ts/tb for A1 phase and B1 phase, becomes zero again for
band insulator and band metal.

We conclude that the zero temperature Hall conduc-
tance in the metallic phase is reduced by a factor |ts/tb| <
1 relative to its quantized value in the Chern insulator
phase ( Fig.4 ). In both the insulting phase and metal-
lic phase, they are not that sensitive to the microscope
details. As to be shown in the following sections, they
can all be reproduced via the analytical evaluations of
relevant integrals in the continuum theory.

2. Finite temperature Hall conductance

At finite temperature, one only need to replace the step
function in Eq.9 by the Fermi distribution function

σH(T ) =
1

2π

∫
T2

d2k
∑
s=±

Ωs(k)f(Es(k))

=
1

2π

∫
T2

d2kΩ−(k)[f(E−(k))− f(E+(k))]

= Ch− +
1

π

∫
T2

d2kΩ+(k)f(E+(k)) (10)

where f(E) = 1/[exp(E/T ) + 1]. The finite T Hall con-
ductances as varying parameters of h/t or tb/ts are plot-
ted in Fig.5

B. The ground-state energy and Quantum phase
transitions (QPT)

We are interested in the non-analytical behaviours in
the ground-state energy density on the lattice which can
be numerically calculated via

E
(lat)
GS =

∫
T2

d2k

(2π)2
[E+(k)Θ(−E+(k)) + E−(k)Θ(−E−(k))]

(11)

The quantum phase transitions can be driven either by
tuning by the Zeeman field h/t or the boost tb/t.

1. QPTs driven by the boost tb/t

In the insulating phase, the lower band is full occupied,
the ground-state energy density is

E
(lat)
GS =

∫
T2

d2k

(2π)2
E−(k; tb)=

∫
T2

d2k

(2π)2
E−(k; tb=0) (12)

where the last equality is due to that the tb-dependent

part in Eq.5 is odd in ~k, so vanishes after integration
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FIG. 4. The zero temperature T = 0 Hall conductance σH as
a function of h/t for fixed tb/ts = 0, 1.2 in (a) Across the 3rd
order TPT with z = 1 from BI/CI, CI/CI, CI/BI, the σH(T =
0) has an integer jump ∆σH = −1, 2, 1 respectively, (b) As
shown in Fig.9, there is no non-analytical behaviours ( infinite
order ) for the BM/A2, B1/B2, A1/BM TPTs, but σH(T =
0) still has a universal non-integer jump ∆σH = −ts/tb =
−1/1.2 = −5/6, 2× 5/6, 5/6 respectively, independent of any
other microscopic details. When across the 2nd order TPT
with z = 2 from the BI/BM, A2/B2, and A1/B1, σH(T = 0)
has no changes. In a generic case, the BM should contribute
to a un-quantized AHE ( See Fig.24 and Table 1 ), but it
vanishes in this particular n = 1 case due to some fine tuning.
As a function of tb/ts for fixed h/t = 1, 5 in (c) a 2nd order
QPT with z = 2 and (d) σH = 0 in both the BI and BM.
We expect the class-3 TPT of B1/C1 and A1/C1 [30] has
no changes in σH(T = 0) either. See also Fig.14 and Fig.18
near h/t = ±4 and h/t = 0 respectively in the continuum
calculations.
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FIG. 5. The finite temperature T > 0 Hall conductance σH
as a function of h for fixed tb/ts = 0, 1.2 in (a) and (b) and
as function of tb/ts for fixed h/t = 1, 5 in (c) and (d), where
we also choose t = ts = 1, thus T = 0.1 means kBT/t = 0.1.
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over entire Brillouin zone (BZ). Thus the E
(lat)
GS is inde-

pendent of tb in the insulating phase. However, in the
metallic phase, due to the partial filling of the upper and

lower bands, the E
(lat)
GS does depend on tb. Thus near the

insulating-metallic transition driven by tb at some critical

value tb,c, the ground-state energy density E
(lat)
GS,I = const

in the insulating side (tb < tb,c), E
(lat)
GS,M ∝ (tb − tb,c)α in

the metallic side (tb > tb,c). The index α > 0 indicates
the order of the phase transition is dαe. For example, if
α ≤ 1, then is the first order transition with a cusp at
tb = tb,c; if 1 < α ≤ 2, then is the second order QPT
shown in Fig.6,7.

Chern Insulator A1 B1 C1

0.5 1.51.0 2.0

–1

–2

–3

Chern Insulator A1 B1 C1

0.5 1.51.0 2.0

– 0.2

– 0.4

– 0.6

– 0.8

Chern Insulator A1 B1 C1

–1

–2

–3

0.5 1.51.0 2.0

tb/ts

E(tb) ∂E(tb)/∂tb ∂2E(tb)/∂t
2
b

tb/ts tb/ts

(a) (b) (c)

FIG. 6. The ground-state energy density E
(lat)
GS as the function

of tb/t, with fixed t = ts = 1 and h = 0.5 in Fig.3. From

(a),(b),(c) are E
(lat)
GS ’s zeroth-/first-/second-order derivative

with respect to tb. The vertical dashed lines correspond to
the critical tb, which separate the Chern insulator, A1,B1 and
C1. An obvious second order QPT discontinuity is shown at
tb = 1.0, 1.25 both with z = 2, the cusp at tb = 1.44 shows a
third order one in the class-3 [30] respectively. See also table
I.

tb/ts

∂E(tb)/∂tb

Band Insulator
Band Metal

0.5 1.51.0 2.0

– 0.1

– 0.2
∂2E(tb)/∂t

2
b

tb/ts

Band Insulator Band Metal

– 0.1

– 0.2

– 0.3

0.5 1.51.0 2.0

tb/ts
0.5 1.51.0 2.0

E(tb)

BandInsulator Band Metal

–1

–2

–3

–4

–5

(a) (b) (c)

FIG. 7. The same as Fig.6, but with h = 4.5 in Fig.3. The
only vertical dashed line corresponds to the critical tb which
separates the band insulator from the band metal. An obvious
second order QPT discontinuity with z = 2 is shown at tb =
1.25.

Because any phase transitions are independent of how
they are approached or scanned, so scanning tb/t or h/t
should research consistent results. That is indeed the
case as shown in the following section.

2. QPTs driven by h/t

We first study the TPT between band insulator and
Chern Insulator. Because EGS is tb independent in the
insulating phases, so the TPTs are the same as the no-
boost tb = 0 case. In Fig.8 we numerically evaluate the
ground-state energy Eq.(12) as a function of scanning
−6 < h/t < 6 with fixed tb = 0 which is identical to

the tb/t < 1 case. An obvious third order discontinu-
ity is shown between the band insulator and the Chern
insulator.

Now we study TPTs between metals where EGS be-
comes tb independent. Scanning −6 < h/t < 6 with
fixed tb > ts, we meet consecutively band insulator,
band metal, A2 Odd Chern metal, B2 Odd Chern metal,
B1, A1, band metal, band insulator. In the Fig.9, a
clear second order discontinuity appears between band
insulator/band metal A2/B2 phase, and A1/B1 phase.
However, no any order discontinuity is found The band
metal/A2, B2/B1, A1/band metal transitions, so they
could be just infinite-order TPT. But they can still be
distinguished by the Hall conductance shown in Fig.4.
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FIG. 8. The ground-state energy density EGS as function of
h, with fixed t = ts = 1, tb = 0. From left to right are EGS’s
0th-/1st-/2nd-/3rd-order derivative with respect to h. The
vertical dashed lines correspond to the critical h, which sep-
arate band insulator, Chern insulator (-1), Chern insulator
(+1), band insulator. An obvious 3rd order QPT discontinu-
ity with z = 1 is shown at h/t = −4, 0,+4.
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FIG. 9. The ground-state energy density EGS as function of
h, with fixed t = ts = 1, tb = 1.2. From left to right are
EGS’s 0th-/1st-/2nd-/3rd-order derivative with respect to h.
The vertical dashed lines correspond to the critical h, which
separate band insulator, tribal metal, A2, B2, B1, A1, band
metal, band insulator. A clear 2nd order QPT discontinuity
with z = 2 is obtained between band insulator/band metal
A2/B2, A1/B1 phase. However, no non-analytical behaviours
are found for the BM/A2, B2/B1, A1/BM transitions, even
in the third-order derivatives and beyond. The underlying
physical mechanisms for these infinite order TPT are explored
from the continuum effective theory in Sec.III-A and III-B.

C. Thermodynamic Quantities

We will first discuss the density of states ( DOS ),
then use it to compute several experimentally measurable
quantities.
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1. The density of states (DOS)

From the Hamiltonian (6), one can find the Matsubara
Green’s function

G(k, iωn) = [iωn −H(k)]−1

=
P+(k)

iωn − E+(k)
+

P−(k)

iωn − E−(k)
(13)

where P± = 1
2 [1±d ·σ/|d|] are the projection operators

onto the s = ± upper/lower bands and P+ + P− = 1.
The total DOS D(ω) = D+(ω) +D−(ω) is

D(ω) = − 1

π

∫
d2k

(2π)2
ImTr[GR(k, ω)]

=

∫
d2k

(2π)2
[δ(ω − E+(k)) + δ(ω − E−(k))] (14)

It should be convenient to introduce the DOS for each
band

D±(ω) =

∫
d2k

4π2
δ(ω − E±(k)), (15)

The DOS on a lattice contain some van-Hove singu-
larities when ω far away from 0, which makes numerical
calculation on DOS time consuming. The lattice DOS is
plotted in Fig.10. For ω ∼ 0, in a metallic phase where
tb/t > 1, the DOS is nearly, but not exactly a constant.

(a)

0 2 4 6

ω

tb/ts=0.5 0.2

0 0.5–0.5

1.0

0.8

0.6

0.4

0.2

–2–4–6

D(ω) D(ω)
1.0

0.8

0.6

0.4

0.2

tb/ts=1.0

ω

(b)

0 2 4 6–2–4–6

D(ω)

ϵ

tb/ts=1.16

D(ω)
1.0

0.8

0.6

0.4

0.2

(c)

0 2 4 6–2–4–6

ω

FIG. 10. At fixed t = ts = 1 and h = 1, the density of states
(DOS) of Eq.(4) at different tb/ts values: (a) tb/ts = 0.5 in
Chern insulator, (b) tb/ts = 1.0 on the QCP between Chern
Insulator and A1 Odd Chern metal with z = 2, (c) tb/ts =
1.16 inside the A1 Odd Chern metal. The cusps are Van-Hove
singularities. Note that (c) inset is showing the total density
of states is nearly, but not exactly flat near ω = 0. Compare
to Fig.15 and Fig.19 near h/t = ±4 and h/t = 0 respectively
in the continuum calculation.

2. The specific heat and compressibility

Here, we will make use of the DOS to evaluate the
two conserved quantities, then compute the Wilson ratio.
The Helmholtz free energy density

F (T ) = −T
∫

d2k

(2π)2
ln[2(1 + cosh(E+(k)/T ))]

=EGS+

∫
d2k

(2π)2
(|E+(k)|−T ln[2(1+cosh

E+(k)

T
)]) (16)

where the zero temperature part of F (T ) is nothing but
the ground-state energy density EGS in Eq.11.

The specific heat (at a constant volume) Cv(T ) =

−T ∂2F
∂T 2 :

Cv(T ) =

∫
d2k

(2π)2

[E+(k)]2

T 2[1 + cosh(E+(k)/T )]

=

∫
dω ω2D+(ω)

T 2[1 + cosh(ω/T )]
=

∫
dω ω2D(ω)

2T 2[1 + cosh(ω/T )]
(17)

The (isothermal) uniform compressibility κu(T ) =∑
s=±

∫
d2k

(2π)2
∂f(Es,k)
∂Es,k

is

κu(T ) =

∫
d2k

(2π)2

[E+(k)]2

T 2[1 + cosh(E+(k)/T )]

=

∫
dω D(ω)

2T [1 + cosh(ω/T )]
=

∫
dω D+(ω)

T [1 + cosh(ω/T )]
(18)

Below we discuss their low temperature behaviours.
In the gapped phases, i.e. Chern insulator or band

insulator, we denote the gap as

∆̃ = min
k
E+(k) > 0, (19)

then D(ω) = 0 for entire −∆̃ < ω < ∆̃ and D(∆̃) =
D2 > 0 at the gap edge ( Fig.10a ), thus Cv(T ) =

2D2∆̃2T−1e−∆̃/T . Similarly, κu(T ) = 2D2Te
−∆̃/T .

Both are exponentially suppressed in T .
In the gapless phases, i.e. A or B Odd Chern metal

phase or band metal phase, we have ∆̃ = mink E+(k) < 0

and D(0) = D0 > 0 ( Fig.10c ), thus Cv(T ) = π2

3 D0T ,
linear in T . Similarly, κu(T ) = D0 + · · · where the sub-
leading T dependence · · · can be best evaluated in the
continuum theory to be evaluated in Sec.III.

For the 3rd order QCPs with h = 0,±4t and tb/t < 1,

we have ∆̃ = mink E+(k) = 0 and D(ω) = D1ω for small
ω just like a Dirac fermion, thus Cv(T ) = 9ζ(3)D1T

2

where ζ(3) ≈ 1.2021 is the Riemann Zeta function:

ζ(s) =

∞∑
n=1

1/ns =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx (20)

Similarly, κu(T ) = 2 ln 2D1T where ln(2) ≈ 0.6931.

For the other QCPs which are 2nd order, i.e. ∆̃ = 0
and tb/ts > 1, or at the boundary between A1 and B1,
we always have non-zero D(0) = D0 > 0( Fig.10b ) , thus

Cv(T ) = π2

3 D0T . Similarly, κu(T ) = D0 + · · · . where
again the sub-leading T dependence · · · can also be best
evaluated in the continuum theory to be evaluated in
Sec.III.

3. The Wilson ratio

The Wilson ratio is defined as the ratio of the two con-
served quantities RW = Tκu/Cv which has the following
low temperature behaviours.
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In the gapped phases, i.e. Chern insulator phase or
band insulator phase, RW = (T/∆̃)2 where ∆̃ is given in
Eq.19.

In the gapless phases, i.e. A or B Odd Chern metal
phase or band metal phase, RW = 3

π2 ≈ 0.3040.
For the 3rd order QCP with z = 1 near h = 0,±4t and

tb/ts < 1, RW = 2 ln 2
9ζ(3) ≈ 0.1281.

For the other QCP which are 2nd order with z = 2,
RW = 3

π2 ≈ 0.3040.
These results will also be confirmed by the analytic

calculations from the continuum theory in Sec.III-A-3(c)
near h/t = ±4 and III-B-3(c) near h/t = 0 respectively.
They are also listed in the last line of the Table-I.

So we conclude the Wilson ratio can be used to distin-
guish all the gapped, gapless and QCPs. However, one
need Ch− or σH , especially the longitudinal/transverse
edge to be discussed in Sec.V and VI to distinguish the
topology.

D. QPT versus TPT

Quantum phase transition (QPT) is characterized by
the change of the ground state energy as shown in Sec.II-
B. One diagnose the QPT by the non-analytical be-
haviours of ground state energy density: namely, by tak-
ing consecutive derivatives on the ground state energy
density at T = 0 with respect to the tuning parame-
ter such as the injection/boost or the Zeeman field until
hitting the singularity [24, 29, 30]. The number of deriva-
tives needed to reach the singularity gives the 1st, 2nd,
or higher order QPT. The DOS and the dynamic expo-
nent z can also be extracted. Then at a finite T near
the QPT, various physical quantities such as the specific
heat, compressibility and Wilson ratio satisfy the corre-
sponding scaling functions or sub-leading scalings [30].

While Topological phase transition (TPT) is charac-
terized by the change of topological invariants such as
the Chern number Ch− and quantum Hall conductance
as shown in Sec.II-A. For the non-interacting Fermi sys-
tem [29–31], there is also the corresponding changes in
the Fermi surface topology as shown in Fig.3.

QPT, especially in interacting bosonic or quantum spin
system may not necessarily be a TPT. For example, the
QPT from the BI-BM in Fig.12 is a pure 2nd order QPT
with z = 2 which is not a TPT. Of course, the well known
SF-Mott QPT, AFM to VBS, etc are not TPT [24]. How-
ever, the QPT from CI to OCM is also a 2nd order one
with z = 2, but despite there is no change in the Chern
number Ch−, there is also a corresponding changes in
both longitudinal and transverse edge modes. So it is
also a TPT. However, in general, a TPT must be also
a QPT. For example, the TPT from the CI to BI is a
TPT where the Chern number Ch− and the Hall con-
ductance σH changes by ±1. Of course, there is also an
corresponding changes in the edge modes due to the con-
ventional bulk-edge correspondence. At the same time,
it is also a 3rd order QPT with z = 1. Of course, the

well-known TPT from FQH to insulator transition [23] is
also a QPT with z = 1. However, for the very first time,
we discover an counter-example to this general believe:
the TPT from the OCM to the BM is not a QPT ! This
maybe the very first example of a TPT which is NOT
a QPT. Similar classifications also apply to Fig.16. See
also Table I and Table II. See also Sec.VIII-C for more
concrete discussions.

III. THE BULK EFFECTIVE THEORY IN THE
CONTINUUM LIMIT

In the momentum space, Eq.2 becomes:

H(k) = −[h+ 2t(cos kx + cos ky)]σz + 2ts sin kxσx

+ 2ts sin kyσy − 2tb sin kyσ0 (21)

When h ∼ 4t, there are low-energy excitations near K3 =
(π, π), it reduces to

H3(K3 + k) = −[h− 4t+ t(k2
x + k2

y)]σz − 2tskxσx

− 2tskyσy + 2tbkyσ0 (22)

When h ∼ 0, there are low-energy excitations near both
K1 = (π, 0) and K2 = (0, π), it reduces to

H1(K1 + k) = −[h+ t(k2
x − k2

y)]σz − 2tskxσx

+ 2tskyσy − 2tbkyσ0

H2(K2 + k) = −[h− t(k2
x − k2

y)]σz + 2tskxσx

− 2tskyσy + 2tbkyσ0 (23)

When h ∼ −4t, there are low-energy excitations near
K0 = (0, 0), it reduces to

H0(k) = −[h+ 4t− t(k2
x + k2

y)]σz + 2tskxσx + 2tskxσx

− 2tbkyσ0 (24)

The low-energy physics near all the 4 Dirac points can
be written in a generic form

H(k) =(∆ + αxk
2
x + αyk

2
y)σz+ vxkxσx+ vykyσy− ckyσ0

(25)

where the velocities vx,y and “mass” αx,y must be non-
zero. In this work, all the above equations correspond to
the isotropic case |vx| = |vy| and |αx| = |αy|. As stressed
below Eq.2, both the C-symmetry (charge symmetry)
and P-symmetry (parity symmetry) exist at c = 0, and
P-symmetry is broken at c 6= 0, but the C-symmetry still
holds at c 6= 0.

Diagonalization of the effective Hamiltonian leads to
the energy dispersion

ε±(k)=±
√

(∆+αxk2
x+αyk2

y)2+v2
xk

2
x+v2

yk
2
y−cky (26)

The half-filling condition and C-symmetry ensure the
Fermi energy is always zero. By examining the minima



11

of upper band mink ε+(k), there exists a critical velocity
c0 and c < c0 the ε+ is empty and the system is in an
insulating phase; and c > c0 the ε+ is partially filled and
the system is in a metallic phase; When αy∆ > 0, the

critical velocity is c0 =
√
v2
y + 4αy∆; when αy∆ < 0, the

critical velocity is c0 = |vy|. See Fig.11 for a geometric
interpretation of the critical velocity in the two cases.

Focus

X = k2y

Y = (∆+ αyk
2
y)

2

Y = (c2 − v2)k2y

Y Y

X = k2y

Y = (∆+ αyk
2
y)

2

Y = (c2 − v2)k2y

(a)               caseαy∆ > 0 (b)               caseαy∆ < 0

Focus

FIG. 11. Geometric determination of the critical velocity (a)
α∆ > 0 and (b) α∆ < 0. The condition 0 = mink ε+(k) is
equivalent to 0 = mink[(∆ +αyk

2
y)2 − (c2 − v2)k2y]. The sym-

metry axis of the parabola is k2y = −∆/α. In both cases, the

two Fermi points are located at momentum ±
√
|∆/α| shown

in Fig.13. It may be contrasted the Geometric determination
of the critical velocities inside a superfluid with or without a
roton minimum [23].

When re-write the continuum Hamiltonian Eq.25 in
the form of Eq.6:

H(k) = d0(k)σ0 + dx(k)σx + dy(k)σy + dz(k)σz,

d0(k) = −cky, d = (dx, dy, dz)

dx(k) = vxkx, dy(k) = vyky,

dz(k) = ∆ + αxk
2
x + αyk

2
y (27)

and then the Berry Connections and Berry curvatures
stay the same form as in Eq.7:

A±,i(k) =
(dy∂kidx − dx∂kidy)

2|d|(|d| ± dz)

Ω±,xy(k) = ∓ 1

2|d|3d · ∂xd× ∂yd (28)

which takes the identical form as Eq.7. But it is inte-
grated over R2 here, while it is over a Torus T2 there.

It can be written in an explicit form

A±(k) =
vxvy(ky,−kx)

2
√
A2 + k̄2[

√
A2 + k̄2 ±A]

Ω±,xy(k) = ∓vxvy(∆− αxk2
x − αyk2

y)

2[A2 + k̄2]3/2
(29)

where A = ∆ + αxk
2
x + αyk

2
y, k̄

2 = v2
xk

2
x + v2

yk
2
y.

Since the c boost term does not affect the eigenvectors,
the Berry connections and Berry curvatures are exactly
the same as c = 0 case.

Because the upper band and lower band are always
separated either directly or indirectly, thus a Chern num-
ber of lower band, independent of its filling, can always

be evaluated via the integral Ch− = 1
2π

∫
R2 Ω−(k)d2k,

which gives

Ch−=sgn(vxvy)[2 sgn(∆)−sgn(αx)−sgn(αy)]/4, (30)

where sgn() denotes the sign function [26].
The band Chern number, which is independent of the

filling, is closely related to the zero temperature Hall con-
ductance which does depend on the filling. The linear
response theory gives the intrinsic Hall conductance [25]
in the unit e2/h as

σH =
1

2π

∫
R2

∑
s=±

Ωs(k)Θ(−εs(k))d2k (31)

where the unit step function Θ(ε) = 1 when ε > 0 and
= 0, when ε ≤ 0. it just replaces the T2 in a lattice Eq.9
by R2 in the continuum.

Due to the C-symmetry, the intrinsic Hall conductance
can be separated into two parts

σH =
1

2π

∫
R2

Ω−(k)d2k +
1

π

∫
R2

Ω+(k)Θ(−ε+(k))d2k

= Ch− + νb (32)

whose interpretation in terms of the edge states in a strip
geometry will be given in Sec.IV-A-1.

When max ε−(k) < 0 < min ε+(k), νb = 0 and σH =
Ch−. However, when min ε+(k) < 0 < max ε−(k), the
evaluation of the second integral in Eq.(32) gives

νb = sgn(Ch−)
sgn(αy∆)− 1

2

c− |vy|
c

(33)

which indicates that νb and Ch− always have opposite
sign. So |σH | is always smaller than |Ch−|.

Using Eq.(30), one can reproduce the correct Chern
number calculated from the lattice Hamiltonian Eq.6.

I) When h ∼ 4t, ∆ = 4t− h, αx = αy = −t,vx = vy =
−2ts, thus Ch− = [sgn(4t− h) + sgn(t)]/2;

If t > 0, Ch− = +1 when h < 4t (aka h/|t| < 4), 0
otherwise;

If t < 0, Ch− = −1 when h > 4t (aka h/|t| > −4), 0
otherwise.

II) When h ∼ 0, ∆1 = ∆2 = −h, α1x = −α1y =
−α2x = α2y = t, v1x = −v1y = −v2x = v2y = 2ts, thus
Ch− = Ch1− + Ch2− = − sgn(−h) = sgn(h);

III) When h ∼ −4t, ∆ = −4t − h, αx = αy = t,
vx = vy = 2ts, thus Ch− = [sgn(−4t− h)− sgn(t)]/2;

If t > 0, Ch− = −1 when h > −4t (aka h/|t| > −4), 0
otherwise;

If t < 0, Ch− = +1 when h < −4t (aka h/|t| < 4), 0
otherwise.

These I),II),III) are indeed consistent with Eq.(8)
achieved on a lattice. Notice that Ch−, if it is not zero,
only depends on sgn(h), but independent of sgn(t) and
sgn(ts).
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The αxαy > 0 case corresponding to |h/t| ∼ 4 tran-
sition, and αxαy < 0 case corresponding to |h/t| ∼ 0
transition. Since the sign of αxαy makes the topological
property dramatically different, in the following, we will
discuss αxαy > 0 and αxαy < 0 separately.

A. The bulk topological transitions near |h/t| = 4
(the αxαy > 0 case)

Without loss of generality, we consider h/t ∼ −4 and
near K0 = (0, 0) case, which belongs to the αxαy > 0
case,

H0(k) = [∆ + α(k2
x + k2

y)]σz + vkxσx + vkyσy − ckyσ0

(34)

where ∆ = −(h+ 4t), α = t, v = 2ts, c = 2tb. Diagonal-
ization of Eq.(34) leads to two bands

ε±(k) = ±
√
v2k2 + (∆ + αk2)2 − cky (35)

As shown in Fig.11, when α∆ > 0, the critical velocity
c0 =

√
v2 + 4α∆. When α∆ < 0, the critical velocity

c0 = |v|. The phase diagram of Eq.(34) is given in Fig.12.
At a fixed ∆, when c → c0, energy bands overlap.

There is an electron pocket near k = (0,
√
|∆/α|) with

z = 2 in the ky > 0 regime and the corresponding hole

pocket near k = (0,−
√
|∆/α|) with z = 2 in the ky < 0

regime. When |c − c0| � v, the gap in Eq.19 vanishes
linearly as c→ c0 with

∆̃ = min
k
ε+(k) =

√
|∆/α|(c− c0) + · · · (36)

At a fixed c < v, when ∆ → 0, then the upper band
and lower band conic touch at k = 0 with z = 1. When
|∆| � v2/α, the gap vanishes also linearly as ∆→ 0 with

∆̃ = min
k
ε+(k) =

√
1− c2/v2|∆|+ · · · (37)

Both Eq.36 and Eq.37 will be used in evaluating various
thermodynamic quantities in Sec.III-A-3.

1. Hall conductance at zero and finite temperatures

We will also evaluate the Hall conductance at zero and
finite T respectively.

(a). Zero temperature Hall conductance
When c < c0, the T = 0 intrinsic Hall conductance in

unit e2/h can be evaluated as σH = 1
2π

∫
R2 Ω−(k)d2k

σH = Ch− = [sgn(∆)− sgn(α)]/2

= sgn(∆)[1− sgn(α∆)]/2 (38)

which can be obtained by just setting sgn(αx) = sgn(αy)
in Eq.30. It suggests that σH = −1 for h < −4t and
σxy = 0 for h > −4t If choosing t > 0, this is consistent
with calculation on lattice scale.

Band insulator

Chern insulator Chern metal

 Band metal

α∆/v2

c/v

z=1

z=2

z
=

2

(odd)

FIG. 12. The phase diagram of Eq.(34). It is the part near
h/t ∼ ±4 in the global phase diagram in Fig.3 where the Odd
Chern metal is the A1 phase. Thick/thin/dashed line are
2nd/3rd/infinite order Topological phase transitions (TPTs)
respectively. The Chern insulator with Ch− = 1, σH = 1 to
the insulator with Ch− = 0, σH = 0 is 3rd order TPT due to
the linear band touching of the Dirac fermion with z = 1. The
Dirac fermion at c/v = 0 has the emergent Lorentz invariance
which is broken by any 0 < c/v < 1. The Chern insulator to
the Odd Chern metal with Ch− = 1, σH < 1 and z = 2
transition can be read from Fig.13. The band insulator to
the band metal transition with z = 2 can be read from the
first 3 boxes in Fig.3. The dashed line from the Odd Chern
metal to the band metal with Ch− = 0, σH = 0 due to the
conic band touching between the P- and the H- FS is infinite
order and can be read from the 3rd to the 5th boxes in Fig.3.
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ϵ+

ϵ–

(a) (b)

(c) (d)

FIG. 13. The dispersion ε±(k) as function of ky with fixed
kx = 0 and v = 1, ∆ = 1/5, α = −1/2, c = 0, 0.5, 1.0, 1.1.
(a) it has a direct gap at ky = 0, (b) it has an indirect gap
at ky 6= 0, (c) it becomes gapless and shows Fermi points at
ky = ±k0 with the quadratic band touching and z = 2, (d) it
becomes gapless and show finite Fermi pockets. It is the A1
phase in Fig.3.

When c > c0, there is an electron pocket near k =
(0,
√
|∆/α|) in the ky > 0 regime, and a hole pocket

near k = (0,−
√
|∆/α|) in the ky < 0 regime ( Fig.13 ).

Both +/− band contribute to the Hall conductance as
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shown in Eq.32.

σH =
1

2π

∫
R2

Ω−(k)d2k +
1

π

∫
R2

Ω+(k)Θ(−ε+(k))d2k

(39)

Because the electron FS is a simple closed loop, Eq.39
can be expressed as the Berry phase for an adiabatic path
around the FS [3]

σH = Ch− +
1

π

∮
dkF ·A+(kF ) = Ch− +

φ+

π
. (40)

Evaluation of the integral Eq.39 or Eq.(40) leads to the
same result

σH = Ch−[1 +
c− v
c

Θ(c− v)Θ(−α∆)]

= sgn(∆)×min(1, v/c) if α∆ < 0 (41)

otherwise 0. The Hall conductance developed a cusp at
the critical velocity c = v as shown in Fig.14.

|σH|

1.0

0.5

0.5–0.5 0.0

Chern insulator (odd) Chern metal

|σH|
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0.5

0.50.0

Band insulator

B
an

d
 m

e
ta

l

1.0

α∆/v2 α∆/v2

–0.5

Band insulator

5/6≈0.83

|σH|

c/v

1.0

0.5

1.50.50.0 1.0

Chern insulator (odd) Chern metal

|σH|

c/v

1.0

0.5

1.50.50.0 1.0

band insulator band metal

(a) (b)

(c) (d)

FIG. 14. The Hall conductance of Eq.(34) at different
α∆/v2 or c/v values: Varying α∆/v2 in (a) and (b): (a) fix-
ing c/v = 0.5, (b) fixing c/v = 1.2, There is a jump from Odd
Chern metal to the band metal with the magnitude v/c = 5/6.
However, as indicated in Fig.12, it is infinite order. Vary-
ing c/v in (c) and (d): (c) fixing α∆/v2 = −0.1, (d) fixing
α∆/v2 = +0.1. Again, as already alerted in Fig.4d, in a
generic case, the BM should contributes to a un-quantized
AHE ( See Fig.24 and Table 1 ). But it vanishes in this par-
ticular n = 1 case due to the fine tuning. They match all the
TPTs achieved on the lattice shown in Fig.4, so the captions
of Fig.4 on the universality classes of the TPTs also apply
here.

(b). Finite temperature Hall conductance
When c < c0, the intrinsic Hall conductance [25] in

unit e2/h can be evaluated as

σH(T ) =
1

2π

∑
s=±

∫
R2

d2kΩs(k)f(εs(k)) (42)

which is just replacing T 2 in Eq.10 by R2.
Due to the C-symmetry, the finite temperature Hall

conductance can be expressed as

σH(T ) = Ch− +
1

π

∫
R2

d2k Ω+(k)f(ε+(k))

= Ch− + ν(T ) (43)

which is also just replacing T 2 in Eq.10 by R2.
The ν(T = 0) and Ch− has been evaluated in Eq.30

and Eq.33 respectively. At low temperature T where T
is the lowest energy scale, one can get a low tempera-
ture expansion of ν(T ). By keeping the leading low T
dependence, assuming |α∆/v2| � 1/2, we have

1) When α∆ > 0 in the band insulating phase, ν(T )−
ν(T = 0) ∝ − sgn(∆)Te−|∆̃|/T ; − sgn(∆)T 2; −
sgn(∆)T 2 at c < c0, c = c0, c > c0 respectively.

2) When α∆ < 0 in the Chern insulating phase,

ν(T )−ν(T = 0) ∝ − sgn(∆)Te−|∆̃|/T ; − sgn(∆)T ; −
sgn(∆)T 2 at c < c0, c = c0, c > c0 respectively.

2. Ground-state energy density and topological phase
transitions

When c < c0, min ε+ ≥ 0 ≥ max ε−, the lower
band is full occupied and the upper band is complete
empty, thus the ground-state energy density is EGS =
(4π2)−1

∫
R2 d

2k ε−(k). The integral is divergent in R2,
we need a cut-off Λ for k. Due to its odd property, the
cky part in Eq.35 drops off, one obtain

E0 = − |∆|
3

6πv2
+ EΛ (44)

where EΛ is Λ, α∆ and v dependent function which is
differentiable up to 3 degrees of differentiation, but may
contain higher order non-analyticity.

When c > c0, min ε+ < 0 < max ε−, both the
lower band and the upper band are only partially oc-
cupied, thus the ground-state energy density becomes
EGS = (4π2)−1

∑
s=±

∫
R2 d

2k εs(k)Θ(−εs(k)). Due to
the C-symmetry, it can be expressed as EGS = E0 +
E1Θ(c − c0), where the c-dependent part is E1 =
(2π2)−1

∫
R2 d

2k ε+(k)Θ(−ε+(k)). The integral is conver-
gent, we obtain

E1 = − 1

16πα3
[
1

4
(c2 − c20)(c2 + c20 − 4v2 − 8α∆)

+ v2(v2 + 4α∆) ln(c/c0)] (45)

In the following, we study the possible TPT encoded
in the ground state energy density.

(a). Band insulator to Chern insulator transition
In the range c < v and tuned by ∆, one only have the

E0 part. It is easy to see a third-order non-analytical
behaviour at ∆ = 0,

EGS = − |∆|
3

6πv2
+ · · · (46)
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which has the dynamic exponent z = 1.
(b). Band metal to Odd Chern metal transition:
In the range c > v and tuned by ∆, one need both

E0 and E1 part. It is easy to see the third-order non-
analytical behaviour at ∆ = 0 in the two parts gets can-
celed:

EGS = − |∆|
3

6πv2
+
|∆|3
6πv2

+ · · · (47)

Carefully treating the exact results EGS = E0 +E1Θ(c−
c0) tells EGS is smooth at ∆ = 0, which is consistent
with numerical result’s infinite order differentiable. This
fact explains why the 3rd order TPT across the green
line changes to infinite order across the red dashed line
in Fig.12. Even so, as shown in Fig.13b, there is still a
universal jump ∆σH = v/c, so it is still a TPT.

(c). Band insulator to band metal transition:
In the range α∆ > 0 and tuned by either ∆ or c. It

is easy to tell a second-order non-analytical behaviour at
∆ = (c2 − v2)/(4α) when tuning ∆,

EGS =E0 −
c2−v2

4πc2
(∆− c

2−v2

4α
)2Θ(c2−v2−4α∆) (48)

and also a second-order non-analytical behaviour at c =√
v2 + 4α∆ when tuning c,

EGS =E0−
∆

4πα2
(c−
√
v2+4α∆)2Θ(c2−v2−4α∆) (49)

which has the dynamic exponent z = 2.
(d). Chern insulator to Odd Chern metal transition
In the range α∆ < 0 and tuned by c. It is easy to see

a second-order non-analytical behaviour at c = v,

EGS = E0 +
α∆

4π|α|3 (c− v)2Θ(c2 − v2) + · · · (50)

which has the dynamic exponent z = 2.
In summary, transitions (c) and (d) are second-order

QPT with z = 2; (a) is third-order QPT with z = 1.
(b) is infinite-order without any non-analyticity. These
are consistent with the results achieved in a lattice in
Sec.II-B.

3. Thermodynamic Quantities

(a). The density of states
From the Hamiltonian (25), the Matsubara Green’s

function

G(k, iωn) =
P+(k)

iωn − ε+(k)
+

P−(k)

iωn − ε−(k)
(51)

where Ps are the projection operators onto s = ± bands
and P+ + P− = 1.

The total DOS is

D(ω) =

∫
d2q

(2π)2
[δ(ω − ε+(k)) + δ(ω − ε−(k))] (52)

It would be convenient to introduce the DOS for each
band D(ω) = D+(ω) +D−(ω):

D±(ω) =

∫
d2k

4π2
δ(ω − ε±(k)), (53)

Due to the C-symmetry, D+(ω) = D−(−ω).

D+(ω) =
1

4π|α| [1 + ρ(ω)]Θ(ω −min ε+) (54)

For some reason related to the C-symmetry, ρ(ε) =
−ρ(−ε) is an odd function. The odd property leads
to flat feature of the total DOS near ω = 0 when
min ε+ < 0 < max ε−,

D(ω) =
1

2π|α| , if min ε+ < ω < max ε− (55)

The DOS is plotted in Fig.15.
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FIG. 15. Density of states (DOS) of Eq.(34) at different c/v
values: (a) c/v = 0.5 in Chern Insulator, (b) c/v = 1.0 on
the QCP between Chern insulator and Odd Chern metal, (c)
c/v = 1.5 in Odd Chern metal. Here, we fixed v = 1, α = −1,
∆ = 1 in Fig.12. Note that ε±(k) is quadratic in k at the band
minimum in Fig.13, which leads to a finite DOS at the band
edge and z = 2. So the DOS at ω = 0 in (b) is finite. The
flat feature of total DOS near ω = 0 is a result of truncation
of H(k) at the k2 order. Indeed, the lattice calculations on
DOS in Fig.10 shows that it is not a constant anymore. It
matches Fig.10 very well near the low energy ω ∼ 0.

(b). The specific heat and Compressibility
Here, we will make use of the DOS to evaluate the

two conserved quantities, then compute the Wilson ratio.
The Helmholtz free energy density (taking kB = 1)

F (T ) = −T
∫

d2k

(2π)2
ln[2(1 + cosh(ε+(k)/T ))] (56)

where the zero temperature part of F (T ) is nothing
but the ground-state energy density EGS calculated in
Sec.III-A-2. The specific heat (at constant volume) is
given by

Cv(T ) =

∫
d2k

(2π)2

[ε+(k)]2

T 2[1 + cosh(ε+(k)/T )]
(57)

The dynamic density-density response function is

χ00(q, iωn) = −T
∑
ivm,k

Tr[G(iωn + ivm, k + q)G(ivm, k)]

(58)
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Taking the ωn → 0 , then q → 0 limit in χ00(q, iωn) gives
the (isothermal) uniform compressibility

κu(T )=
∑
s=±

∫
d2k

(2π)2

∂f(εs,k)

∂εs,k
=

∫
dωD+(ω)

T [1 + cosh(ω/T )]
(59)

and the zero temperature limit ∂f(ε)
∂ε = δ(ε) recovery the

well-known relation between compressibility and DOS
κu(T ) = D(0).

At low temperature T � |∆|, v2/|α|, c2/|α|, |(c2 −
v2)/α|, one can get a low temperature expansion of Cv(T )
and κu(T ) [38]. We do not need to distinguish α∆ > 0
or α∆ < 0, but need to care if ∆ = 0 or not. By keeping
the leading low T dependence, assuming |α∆/v2| < 1/2
to simply the technical calculations [37], we have

∆ 6= 0 case in Fig.12
At c < c0, we have ∆̃ = mink ε+(k) > 0 and D(ω) = 0

for |ω| < ∆̃ and D(∆̃) > 0 at the gap edge ( Fig.15a ),

thus Cv(T ) = 2D(∆̃)∆̃2T−1e−∆̃/T . Similarly, κu(T ) =

2D(∆̃)Te−|∆̃|/T .

At c = c0, we have ∆̃ = mink ε+(k) = 0 and D(ω) =
D(0) +D′(0+)|ω| for small |ω| ( Fig.15b ), thus Cv(T ) =
π2

3 D(0)T . Here D′(0+) means the right derivatives of
D(ω) at 0. Similarly, κu(T ) = D(0) + 2 ln 2D′(0+)T ;

At c > c0, we have ∆̃ = mink ε+(k) < 0 and D(ω) =
1

2π|α| for |ω| < |∆̃| in Eq.55 and D(∆̃) > 0 ( Fig.15c

), thus Cv(T ) = π2

3 D(0)T . Similarly, κu(T ) = D(0) +

2[D(∆̃)−D(0)]Te−|∆̃|/T .
∆ = 0 case in Fig.12
At c < c0, we have ∆̃ = mink ε+(k) = 0 and D(ω) =

D′(0+)|ω| for small ω, thus Cv(T ) = 9ζ(3)D′(0+)T 2

where ζ(3) ≈ 1.2021. Similarly, κu(T ) = 2 ln 2D′(0+)T .

At c = c0, we have ∆̃ = mink ε+(k) = 0 and D(ω) =

D(0) +A|ω|2/3 > 0 for small ω, thus Cv(T ) = π2

3 D(0)T .

Similarly, κu(T ) = D(0) + 1.1486AT 5/3.

At c > c0, we have ∆̃ = mink ε+(k) < 0 and D(ω) =

const. for |ω| < |∆̃|, thus Cv(T ) = π2

3 D(0)T . Similarly,

κu(T ) = D(0) + 2[D(∆̃)−D(0)]Te−|∆̃|/T .
When taking only the leading term in the low-

temperature specific heat and compressibility, we have:

When ∆ 6= 0: at c < c0, Cv(T ) = 2D(∆̃)∆̃2T−1e−∆̃/T

and κu(T ) = 2D(∆̃)Te−|∆̃|/T ; at c ≥ c0, Cv(T ) =
π2

3 D(0)T and κu(T ) = D(0).

When ∆ = 0: at c < c0, Cv(T ) = 9ζ(3)D′(0+)T 2 and

κu(T ) = 2 ln 2D′(0+)T ; at c ≥ c0, Cv(T ) = π2

3 D(0)T
and κu(T ) = D(0).

(c). Wilson ratio
The Wilson ratio is defined as RW = Tκu/Cv which

has the following low temperature behaviours:
∆ 6= 0 case
At c < c0, RW = (T/∆̃)2; At c ≥ c0, RW = 3/π2.
∆ = 0 case
At c < c0, RW = 2 ln 2/(9ζ(3)) ≈ 0.1281; At c ≥ c0,

RW = 3/π2.

These results are consistent with those achieved di-
rectly on the lattice in Sec.II-C-3 and also listed in the
last line of Table-I.

B. The bulk topological phase transitions near
|h/t| ∼ 0 (the αxαy < 0 case).

When h ∼ 0 and near the two valleys K1 = (π, 0) and
K2 = (0, π), we have

H1 =[∆−α(k2
x − k2

y)]σz−vkxσx+vkyσy−ckyσ0

H2 =[∆+α(k2
x − k2

y)]σz+vkxσx−vkyσy+ckyσ0 (60)

where ∆ = −h and other parameters are the same as the
h ∼ 4t case discussed in Sec.III-A. Note the opposite sign
of the velocities v between kx and ky and opposite sign
of α between k2

x and k2
y indicating αxαy < 0.

Due to the two valleys, we obtain four bands

εi,± = ±
√
v2k2 + [∆ + ηiα(k2

x − k2
y)]2 + ηicky , (61)

where ηi = (−1)i and i = 1, 2. It can be compared to
Eq.35 in the αxαy > 0 case. So the two cases should
have quite different physical properties.

When α∆ < 0, the two critical velocities c1 = |v| <
c2 =

√
v2 − 4α∆. When

√
v2 − 4α∆ > c > |v|, Thus

only H1 becomes metal. When c > max(c1, c2), both H1

and H2 become metal.
When α∆ > 0, the two critical velocities c1 =√
v2 + 4α∆ > c2 = |v|. When

√
v2 + 4α∆ > c > |v|,

Thus only H2 becomes metal. When c > max(c1, c2),
then both H1 and H2 become metal.

Another new feature of αxαy < 0 is that the FS ex-

tends to infinity when c ≥
√

2|v|. The divergent kF sug-
gests a FS collision between the two valleys, which is
consistent with the existence of phase C1 or C2 in the
global lattice phase diagram Fig.3. Below, we will not
discuss the C- phase, so restrict c <

√
2|v|. If c >

√
2|v|,

it leads to the class-3 TPT discussed in [30] and reviewed
in Sec.II.

1. Hall conductance at zero and finite temperatures

(a). Zero temperature
When c < min(c1, c2), the Hall conductance σH of

each valleys gives σ
(i)
H = − sgn(∆)/2, adding the two

contributions together leads to

σH = σ
(1)
H + σ

(2)
H = − sgn(∆) (62)

which indicates σH = −1 for ∆ > 0 and σH = +1 for
∆ < 0.

If c > min(c1, c2), then we need to discus α∆ > 0 or
α∆ < 0 separately.
Case α∆ < 0 :
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Chern insulator (–1)

A2 metal

α∆/v2

c/v

Chern insulator (+1)

A1 metal

B1 metal

B2 metal

z=1

z=2

z=2z
=

2
z

=
2

(odd CM)

(odd CM)

(odd CM)

(odd CM)

FIG. 16. The phase diagram of Eq.(60). It is the part
near h/t ∼ ±0 in the global phase diagram in Fig.3. Similar
to Fig.12, Thick/thin/dashed line are 2nd/3rd/infinite order
Topological phase transitions (TPTs) respectively. The con-
secutive Chern insulator to A1 Odd Chern metal, then to B1
Odd Chern metal transitions can be read from Fig.17. The
dashed line from the B1 Odd Chern metal to the B2 Odd
Chern metal can be read from the B1 box and B1/B2 box on
the right in Fig.3. Similar to A1 Odd Chern metal to band
metal transition in Fig.12, it is also induced by the conic
touching of the P- and H- FS and also infinite order.
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FIG. 17. The dispersion εi,±(k) as function of ky with
fixed kx = 0 and v = 1, ∆ = 1/5, α = −1/2 < 0,
c = 0, 0.5, 1.0,

√
1.4, 1.3. (a) both H1 and H2 has a direct

gap at ky = 0; in Chern insulator phase. (b) Due to the
opposite boost velocity in Eq.61, the dispersion at K1 and
K2 shift to the opposite directions. both H1 and H2 has an
indirect gap at ky 6= 0; (c) H1 becomes gapless and shows
two Fermi points at ky = ±k0 with z = 2, but H2 still has
an indirect gap. It corresponds to A1/B1 in Fig.3. (d) H1

becomes gapless and show two finite Fermi pockets, but H2

becomes gapless and shows two Fermi points still at ky = ±k0
also with z = 2 after subtracting the non-critical H1 part; (e)
both H1 and H2 are gapless and show finite Fermi pockets
[35]. It corresponds to B1 in Fig.3.

If c2 > c > c1 = |v|, H1 first develops an instability
while H2 remains gapped.

σ
(1)
H = − sgn(∆)/2 + sgn(∆)

c− v
c

Θ(v − c),

σ
(2)
H = − sgn(∆)/2 (63)

If c > c2, both H1 and H2 are gapless, however, σ
(2)
xy

remains the same as c = 0 as dictated by Eq.33. Thus,

we arrive at

σH = sgn(∆) min(1, v/c) (64)

Case α∆ > 0 :
If c1 > c > c2 = |v|, H2 first develops an instability

while H1 remains gapped.

σ
(1)
H = − sgn(∆)/2,

σ
(2)
H = − sgn(∆)/2 + sgn(∆)

c− v
c

Θ(v − c) (65)

If c > c1, both H1 and H2 are gapless, however, σ
(1)
xy

remains the same as c = 0 as also dictated by Eq.33.
Thus, we also arrive at Eq.64.

So we always have the Hall conductance Eq.64, no mat-
ter in the insulating phase or the metallic phase which is
independent of many microscopic details.

σH
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0.5–0.5

–1.0

Chern insulator (+1)

α∆/v2

Chern insulator (–1)

σH

1.0

0.5–0.5

–1.0

α∆/v2

5/6≈0.83

A1
B1

B2
A2

|σH|

c/v

1.0

0.5

1.50.50.0 1.0

Chern insulator (odd) Chern metal(odd) Chern metal

|σH
(1)|

|σH
(2)|

|σH
(total)|

A B

(a) (b) (c)

FIG. 18. The Hall conductance of Eq.60 at different α∆/v2

or c/v values: varying α∆/v2 in (a) and (b): (a) fix c/v = 0.5
(b) fix c/v = 1.2. There is a jump from B2 to B1 with the
magnitude 2 × v/c = 2 × 5/6, but no change from B1 to A1
Odd Chern metal phase. However, as indicated in Fig.16, the
former is infinite order, the latter is 2nd order with z = 2. See
also Fig.4b on a lattice. Varying c/v in (c) fix α∆/v2 = −0.1,
σ1
H stays as a constant. But σH = σ1

H + σ2
H = v/c.

(b). Finite temperature Hall conductance
Similar to the αxαy > 0 case in Eq.43, the finite tem-

perature Hall conductance at the valley i is

σ
(i)
H (T ) = σ

(i)
H (T = 0) +

1

π

∫
R2

d2k Ωi,+(k)

× [f(εi,+(k))−Θ(−εi,+(k))]

= Chi,− +
1

π

∫
R2

d2k Ωi,+(k)f(εi,+(k)) (66)

Thus, the total Hall conductance is:

σH(T ) = σ
(1)
H (T ) + σ

(2)
H (T )

= Ch1,− + Ch2,− + ν1(T ) + ν2(T ) (67)

where Chi,− and νi(T = 0) has been studied in Sec.III-
A-1.

At a low temperature T which is the lowest energy
scale, one can get a low temperature expansion of νi(T ).
Without loss of generality, we choose α∆ < 0 case, the
two critical velocities c1 = |v| < c2 =

√
v2 − 4α∆ =√

v2 + 4|α∆|. By keeping the leading low T dependence
and assuming |α∆/v2| � 1/2, we have
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At c < c1, H1 has a gap 2∆̃1 and H2 has a
bigger gap 2∆̃2 > 2∆̃1. Thus, ν1(T ) − ν1(T =

0) ∝ − sgn(∆)Te−|∆̃1|/T and ν2(T ) − ν2(T = 0) ∝
− sgn(∆)Te−|∆̃2|/T ;

At c = c1, H1 is critical with ∆̃1 = 0 and H2 still has
a gap 2∆̃2. Thus, ν1(T ) − ν1(T = 0) ∝ − sgn(∆)T and

ν2(T )− ν2(T = 0) ∝ − sgn(∆)Te−|∆̃2|/T ;
At c2 > c > c1, H1 is gapless and H2 still has a gap

2∆̃2. Thus, ν1(T )−ν1(T = 0) ∝ − sgn(∆)T 2 and ν2(T )−
ν2(T = 0) ∝ − sgn(∆)Te−|∆̃2|/T ;

At c = c2, H1 is gapless and H2 is also critical with
∆̃2 = 0. Thus, ν1(T ) − ν1(T = 0) ∝ − sgn(∆)T 2 and
ν2(T )− ν2(T = 0) ∝ − sgn(∆)T ;

At c > c2, both H1 and H2 are gapless. Thus,
ν1(T ) − ν1(T = 0) ∝ − sgn(∆)T 2 and ν2(T ) − ν2(T =
0) ∝ − sgn(∆)T 2.

In summary, if we only need the leading behaviors of
ν(T ) = ν1(T ) + ν2(T ), then we have:

At c < c1, ν(T ) − ν(T = 0) ∝ − sgn(∆)Te−|∆̃1|/T ; at
c = c1, ν(T ) − ν(T = 0) ∝ − sgn(∆)T ; at c2 > c >
c1, ν(T ) − ν(T = 0) ∝ − sgn(∆)T 2; at c = c2, ν(T ) −
ν(T = 0) ∝ − sgn(∆)T ; at c > c2, ν(T ) − ν(T = 0) ∝
− sgn(∆)T 2.

2. Ground-state energy density and topological phase
transitions

When c < min(c1, c2), min εi,+ ≥ 0 ≥ max εi,−, both
valley 1&2’s lower band is full occupied and 1&2’s upper
band is complete empty, thus the ground-state energy
density is EGS = (4π2)−1

∫
R2 d

2k [ε1−(k) + ε2−(k)]. The
integral is divergent, we need a cut-off Λ for k. Due to its
odd property, the cky part in Eq.61 drops off, one obtain:

E0 = − |∆|
3

3πv2
+ EΛ (68)

where EΛ is Λ, α∆ and v dependent C3 function. Note
that EΛ in the αxαy < 0 case is dramatically different
from that in the αxαy > 0 case listed in Eq.44.

When max(c1, c2) > c > min(c1, c2), one of ε1,− and
ε2,− are partially filled, then there is another parts E1

and EGS = E0 + E1; When c > max(c1, c2), both ε1,−
and ε2,− are partially filled, then there is also one more
part E2 and EGS = E0 +E1 +E2, where E1 and E2 are
slightly more complicated than that in the αxαy > 0 case
listed in Eq.45:

E1 =
−π

32|α|3 [8α∆v2 + 2v4(arcsin
c√
2v
− π

4
)

+ c
√

2v2 − c2(v2 − 8α∆− c2)]

E2 =
−π

32|α|3 [4α∆
√
v4 − 16α2∆2

+ 2v4(arcsin
c√
2v
− 1

2
arccos

4α∆

v2
)

+ c(v2 − 8α∆− c2)
√

2v2 − c2] (69)

(a). Chern insulator (+1) to Chern insulator (-1) tran-
sition:

In the range c < v and tuned by ∆, one only have the
E0 part which has a third-order non-analytical behaviour
at ∆ = 0,

EGS = − |∆|
3

3πv2
+ · · · (70)

which has the dynamic exponent z = 1.
(b). B1 Odd Chern metal to B2 Odd Chern metal

transition:
In the range c > v and the driven parameter is ∆.

Now we have both E0 and E1 +E2 part, the third-order
non-analytical term at ∆ = 0 from the two parts gets
canceled,

EGS = − |∆|
3

3πv2
+
|∆|3
3πv2

+ · · · (71)

which explainers why the 3rd order TPT across the green
line changes to infinite order across the red dashed line
in Fig.16. Even so, as shown in Fig.17b, there is still a
universal jump ∆σH = 2v/c, so it is still a TPT.

(c). Odd Chern A metal to Odd Chern B metal tran-
sition

In the range α∆ > 0 and tuned by either ∆ or c, one
finds a second-order non-analytical behaviour at ∆ =
(c2 − v2)/(4α) tuned by ∆,

EGS =
v2 − c2

4πα
√
c2(2v2 − c2)

[∆− (c2 − v2)/(4α)]2

×Θ(c2 − v2 − 4α∆) + · · · (72)

and also a second-order non-analytical behaviour at c =√
v2 + 4α∆ tuned by c,

EGS = − ∆
√
v2 + 4α∆

4πα
√
v2 − 4α∆

(c−
√
v2 + 4α∆)2

×Θ(c2 − v2 − 4α∆) + · · · (73)

which has the dynamic exponent z = 2.
(d). Chern insulator to A Odd Chern metal transition:
In the range α∆ > 0 and tuned by c, one finds a

second-order non-analytical behaviour at c = v,

EGS = E0 −
(c− v)2∆

4πα2
Θ(c− v) + · · · (74)

which has the dynamic exponent z = 2.
In summary, (c) and (d) are 2nd-order with z = 2; (a)

is 3rd-order with z = 1; (b) is infinite-order.

3. Thermodynamic quantities

(a). The density of states
From the Hamiltonian (25), the Matsubara Green’s

function

Gi(k, iωn) =
Pi,+(k)

iωn − εi,+(k)
+

Pi,−(k)

iωn − εi,−(k)
(75)
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where Pi,s are the projection operators onto s = ± bands.

The total DOS for each flavor is

Di(ω) =

∫
d2q

(2π)2
[δ(ω − εi,+(k)) + δ(ω − εi,−(k))] (76)

It would be convenient to introduce the DOS for each
band Di(ω) = Di,+(ω) +Di,−(ω):

Di,±(ω) =

∫
d2k

4π2
δ(ω − εi,±(k)), (77)

Due to the C-symmetry, Di,+(ω) = Di,−(−ω). Similar
to Eq.54, we also have

Di,+(ω)=
1

4π|α|

√
c2

2v2−c2 [1+ρi(ω)]Θ(ω−min εi,+) (78)

where ρi(ω) = −ρi(−ω) is an odd function. When
min εi,+ < 0 < max εi,−, the odd property leads to the
flat feature of total DOS D(ω) = D1(ω) + D2(ω) for Hi

near ω = 0 ( Fig.19 ):

Di(ω)=
1

2π|α|

√
c2

2v2− c2 ,min εi,+ < ω < max εi,− (79)

where as alerted below Eq.61, we restrict c <
√

2v, so
that the DOS remain finite. Otherwise, one must resort
to the lattice calculations in Sec.II.
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FIG. 19. The Density of states D1(ω) and D2(ω) of Eq.(60)
at different c/v values: (a) c/v = 0.5, (b) c/v = 1.0, (c)
c/v =

√
1.4 ≈ 1.18, (d) c/v = 1.4. Here, we fixed v = 1,

α = 1/2, ∆ = 1/5. In (c) and (d), the central plateau DOS
value is given in Eq.79. Again, similar to Fig.15, the flat
feature of total DOS near ω = 0 is a result of truncation of
H(k) at k2 order, and the lattice DOS shown in Fig.10 is not
a constant anymore. The total DOS D(ω) = D1(ω) +D2(ω)
is just the sum of the two.

(b). The specific heat and compressibility

The Helmholtz free energy density F (T ) = F1(T ) +
F2(T ):

Fi(T ) = Ei,GS +

∫
d2k

(2π)2

(
|εi,+(k)|

− T ln[2(1 + cosh(εi,+(k)/T ))]
)

(80)

where the zero temperature part of F (T ) is nothing
but the ground-state energy density EGS calculated in
Sec.III-B-2. The specific heat (at constant volume) is
given by Cv(T ) = Cv,1(T ) + Cv,2(T ):

Cv(T ) =

∫
d2k

(2π)2

∑
i=1,2

[εi,+(k)]2

T 2[1 + cosh(εi,+(k)/T )]
(81)

Similarly, the (isothermal) uniform compressibility
κu(T ) = κu,1(T ) + κu,2(T ) is

κu(T ) =
∑
i,s

∫
d2k

(2π)2

∂f(εi,s(k))

∂εi,s(k)
=

∫
dωD(ω)

2T (1 + cosh(ω/T ))

(82)

where Di(ω), D(ω) are listed in Eq.79.

Its zero temperature limit ∂f(ε)
∂ε = δ(ε) recovers the

well-known relation between the compressibility and the
DOS κu(T ) = D(0).

At low temperature T which is the lowest energy scale,
one can get a low temperature expansion of Cv(T ) and
κu(T ). Without loss of generality, we choose α∆ < 0
case in Fig.16, the two critical velocities c1 = |v| < c2 =√
v2 − 4α∆ =

√
v2 + 4|α∆|. By keeping the leading low

T dependence and assuming |α∆/v2| < 1/2, we have
∆ 6= 0 cases:
At c < c1, H1 has a gap 2∆̃1 > 0 and H2 has a

bigger gap 2∆̃2 > 2∆̃1, Di(ω) = 0 for |ω| < ∆̃i (

Fig.19a ). Thus, Cv,i(T ) = 2Di(∆̃i)∆̃
2
iT
−1e−|∆̃i|/T , so

Cv(T ) = 2D1(∆̃1)∆̃2
1T
−1e−|∆̃1|/T . Similarly, κu,i(T ) =

2Di(∆̃i)Te
−∆̃i/T , so κu(T ) = 2D1(∆̃1)Te−∆̃1/T . Both

Cv(T ) and κu(T ) are dominated by the node 1.

At c = c1, H1 is critical with ∆̃1 = 0 and H2 still has a
gap 2∆̃2 > 0, D1(ω) = D1(0) + D′1(0+)|ω| for small |ω|,
D2(ω) = 0 for |ω| < ∆̃2 ( Fig.19b ). Thus, Cv,1(T ) =
π2

3 D1(0)T and Cv,2(T ) = 2D2(∆̃2)∆̃2
2T
−1e−|∆̃2|/T , so

Cv(T ) = π2

3 D1(0)T . Similarly, κu,1(T ) = D1(0) +

2 ln 2D′1(0+)T and κu,2(T ) = 2D2(∆̃2)Te−∆̃2/T , so
κu(T ) = D1(0) + 2 ln 2D′1(0+)T . Both Cv(T ) and κu(T )
are still dominated by the node 1.

At c2 > c > c1, H1 is gapless with ∆̃1 < 0 and

H2 still has a gap 2∆̃2 > 0, D1(ω) = 1
2π|α|

√
c2

2v2−c2

in Eq.79 for |ω| < |∆̃1|, D2(ω) = 0 for |ω| <

∆̃2. Thus, Cv,1(T ) = π2

3 D1(0)T and Cv,2(T ) =

2D2(∆̃2)∆̃2
2T
−1e−|∆̃2|/T , so Cv(T ) = π2

3 D1(0)T . Sim-

ilarly, κu,1(T ) = D1(0) + 2[D1(∆̃1) − D1(0)]Te−|∆̃1|/T

and κu,2(T ) = 2D2(∆̃2)Te−|∆̃2|/T , so κu(T ) = D1(0) +
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2[D1(∆̃1)−D1(0)]Te−|∆̃1|/T +2D2(∆̃2)Te−|∆̃2|/T . How-

ever, the relative magnitude of |∆̃1| and |∆̃2| depends on
c, so one can not tell which is smaller in general.

At c = c2, H1 is gapless with ∆̃1 < 0 and H2 be-

comes critical with ∆̃2 = 0, D1(ω) = 1
2π|α|

√
c2

2v2−c2

in Eq.79 for |ω| < |∆̃1|, D2(ω) = D2(0) + D′2(0+)|ω|
for small |ω| ( Fig.19c ). Thus, Cv,1(T ) = π2

3 D1(0)T

and Cv,2(T ) = π2

3 D2(0)T , so Cv(T ) = π2

3 D(0)T . Sim-

ilarly, κu,1(T ) = D1(0) + 2[D1(∆̃1) − D1(0)]Te−|∆̃1|/T

and κu,2(T ) = D2(0) + 2 ln 2D′2(0)T , so κu(T ) = D(0) +
2 ln 2D′2(0)T .

At c > c2, H1 is gapless with ∆̃1 < 0 and H2 is also

gapless with ∆̃2 < 0, D1(ω) = 1
2π|α|

√
c2

2v2−c2 in Eq.79

for small |ω| < |∆̃1|, D2(ω) = 1
2π|α|

√
c2

2v2−c2 in Eq.79 for

small |ω| < |∆̃2| ( Fig.19d ). Thus, Cv,1(T ) = π2

3 D1(0)T

and Cv,2(T ) = π2

3 D2(0)T , so Cv(T ) = π2

3 D(0)T . Sim-

ilarly, κu,1(T ) = D1(0) + 2[D1(∆̃1) − D1(0)]Te−|∆̃1|/T

and κu,2(T ) = D2(0) + 2[D2(∆̃1)−D2(0)]Te−|∆̃2|/T . so

κu(T ) = D(0) + 2[D2(∆̃1)−D2(0)]Te−|∆̃2|/T .
∆ = 0 cases:
In this case, c1 = c2 = c and H1 and H2 have exactly

the same spectrum.
At c < v, Di(ω) = D′i(0)|ω| for small |ω|, thus

Cv,1(T ) = Cv,2(T ) = 9ζ(3)D′i(0
+)T 2 and Cv(T ) =

9ζ(3)D′(0+)T 2. Similarly, κu,1(T ) = κu,2(T ) =
2 ln 2D′i(0)T and κu(T ) = 2 ln 2D′(0)T .

At c = v and ∆ = 0, Di(ω) = Di(0) + Ai(0)|ω|2/3
for small |ω|, thus Cv,1(T ) = Cv,2(T ) = π2

3 Di(0)T and

Cv(T ) = π2

3 D(0)T . Similarly, κu,1(T ) = κu,2(T ) =

Di(0) + 1.1486AiT
5/3 and κu(T ) = D(0) + 1.1486AT 5/3.

At c > v and ∆ = 0, Di(ω) = Di(0) for small

|ω|, Cv,1(T ) = Cv,2(T ) = π2

3 Di(0)T and Cv(T ) =
π2

3 D(0)T . Similarly, κu,1(T ) = κu,2(T ) = Di(0) +

2[Di(∆̃i) − Di(0)]Te−|∆̃i|/T and κu(T ) = D(0) +

2[D(∆̃)−D(0)]Te−|∆̃|/T .
If we only consider the leading low temperature be-

haviors of Cv(T ) = Cv,1(T ) + Cv,2(T ) and κu(T ) =
κu,1(T ) + κu,2(T ), one can summarize these results as:

When ∆ 6= 0 : at c < c1, Cv(T ) =

2D1(∆̃1)∆̃2
1T
−1e−|∆̃1|/T and κu(T ) = 2D1(∆̃1)Te−∆̃1/T ;

at c ≥ c1, Cv(T ) = π2

3 D(0)T and κu(T ) = D(0).
When ∆ = 0 : at c < v, Cv(T ) = 9ζ(3)D′(0+)T and

κu(T ) = 2 ln 2D′(0)T ; at c ≥ v, Cv(T ) = π2

3 D(0)T 2 and
κu(T ) = D(0).

(c). The Wilson ratio
The Wilson ratio is defined as RW = Tκu/Cv which

has the following low temperature behaviours.
∆ 6= 0 case:
When c < c0, RW = (T/∆̃)2; when c ≥ c0, RW =

3/π2.
∆ = 0 case:

When c < c0, RW = 2 ln 2/(9ζ(3)) ≈ 0.1281; when
c ≥ c0, RW = 3/π2.

These results are consistent with those achieved di-
rectly on the lattice in Sec.II-C-3 and also listed in the
last line of Table-I.

IV. THE CHIRAL EDGE PROPERTIES IN A
STRIP GEOMETRY

Following the approach used in the bulk properties, we
will first study the edge properties from the lattice sys-
tem, then investigate them from the continuum effective
theory, then contrast the two complementary approaches.

A. Edge states from the microscopic lattice theory

For the periodic boundary condition in the y-direction
and open boundary condition in the x-direction, ky is
a good quantum number, the Hamiltonian in the mixed
(i, ky) representation becomes

H=
∑
ky,i,j

c†i,ky{[−(h+2t cos ky)σz+2ts sin kyσy+2tb sin kyσ0]δi,j

+ (tσz−itsσy)δi,j+1 + (tσz+itsσy)δi,j−1}cj,ky (83)

For the periodic boundary condition in the x-direction
and open boundary condition in the y-direction, kx is
a good quantum number, the Hamiltonian in the mixed
(kx, i) representation becomes:

H=
∑
kx,i,j

c†kx,i{[−(h+ 2t cos kx)σz + ts sin kxσx]δi,j

+(tσz−itsσy−itbσ0)δi,j+1+(tσz+itsσy+itbσ0)δi,j−1}ckx,j
(84)

In the Fig.20 and 21, we show the numerical results on
the lattice edge states.

1. Interpretation of the Hall conductance in terms of the
edge states, enriched bulk-edge and new L/edge-T/edge

correspondences

The bulk-edge correspondence in a static frame is also
enriched under the injection or in a moving sample: Rel-
ative to the injection or boost, there is a longitudinal or
transverse edge, so the original bulk-edge correspondence
is enriched to the bulk to longitudinal/or transverse edge
correspondence, then the longitudinal edge to transverse
edge correspondence.

In the longitudinal injecting case, the edge state al-
ways exist, so its contribution to σH remains quantized
as σH = Ch− = 1 throughout the TPT at (c1). However,
there is no bulk contributions in the Chern insulator, but
the bulk starts to contribute σH = νb = v/c − 1 in the
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FIG. 20. The edge states of the lattice Hamiltonian in a
strip geometry. We fixed h = −0.5. From left to right, the
parameter tb/ts is 0, 0.5, 1.0, 1.1, respectively. (Top) Longi-
tudinal injection: With the periodic boundary condition in
the y-direction and the open boundary condition in the x-
direction. The edge modes always exist, but undergoes the
edge reconstruction at ts/t = 1. The two edges move along
the opposite directions when ts/t < 1 in (a1) and (b1) in the
CI, then one edge becomes flat at ts/t = 1 in (c1), then two
edges move along the same direction when ts/t > 1 in (d1)
in the odd CM, (Bottom) Transverse injection: Exchanging
the role of x and y direction. The edge modes exist only when
ts/t < 1 in (a2) and (b2), but squeezed out at ts/t = 1 in (c2)
where the direct bulk gap closes, completely disappear when
ts/t > 1 in (d2) in the odd CM. Although the edge modes
show quite different behaviours in the line 1 and the line 2,
there seems a one to one Longitudinal/Transvese edge-edge
correspondence between them. In both figures, one can shift
k → k + π to reach h = +0.5 results. See also Fig.22 and
Fig.23 for the continuum calculations. See also Fig.S1 for the
expanded figure.
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FIG. 21. The same situation as in Fig.20 except at a fixed
h = −3.5. In both figures, one can shift k → k + π to reach
h = +3.5 results. It shows qualitatively the same edge TPTs
as those in Fig.20. See also Fig.S2 for the expanded figure.

Odd Chern metal phase. The two parts lead back to
Eq.32 evaluated in the bulk:

σH =
1

2π

∫
R2

Ω−(k)d2k +
1

π

∫
R2

Ω+(k)Θ(−ε+(k))d2k

= Ch− + νb (85)

In the transverse injecting case, the edge states exist
only before the TPT at (c2), so its contribution to σH
remains quantized as σH = Ch− only before the TPT
at (c2). There is no bulk contributions in the Chern
insulator before (c2). However, after (c2), the edge states
emerge into the bulk and disappear. All the contributions
come from the bulk as σH = v/c < 1.

B. Solving the edge states from the effective
theory in the continuum

We will solve the edge states with the periodic bound-
ary condition in the y-direction and the open boundary
condition in the x-direction, then vice versa.

1. Solving the edge states in the longitudinal injection

We will solve the model in a strip geometry [31] with
the periodic boundary condition in the y-direction and
open boundary condition in the x-direction. The contin-
uum Hamiltonian in the mixed (∂x, ky) representation:

H(∂x, ky) = (∆− αx∂2
x)σz − ivx∂xσx

+ αyk
2
yσz + vykyσy − ckyσ0 (86)

The problem will first be studied in the ky = 0 limit
where H1D = (∆−αx∂2

x)σz−ivx∂xσx, and then extended
to finite ky 6= 0. Due to the C-symmetry, the edge mode
ψ(x, ky = 0) is expected to exist at zero energy, therefore
H1Dψ = 0. Multiplying both side by σz gives [(∆ −
αx∂

2
x) + vx∂xσy]ψ = 0. Choosing σyψ± = ±ψ± with

ψ± = 1√
2
(φ,±iφ)ᵀ, or ψ± = φχ± with

χ± = 1√
2
( 1
±i ) (87)

then the coupled differential equations can be reduced to
a second order homogeneous ordinary differential equa-
tion

[(∆− αx∂2
x)± vx∂x]φ = 0 . (88)

Substituting the ansatz φ ∝ e−λx leads to a character
equation αxλ

2 ± vxλ−∆ = 0 with the solutions:

λ
(s)
1,2 =

−svx ±
√
v2
x + 4αx∆

2αx
, (89)

where s = ± corresponding to the choice of ± in Eq.88.
Thus, the general solution can be written as

φ = c1e
−λ1x + c2e

−λ2x . (90)

Due to the C-symmetry, one only need to consider one
edge. Choosing the left edge and imposing the wave func-
tion to vanish at x = 0 and x = +∞ requires c1 = −c2
and Reλ1,2 > 0. Thus, we have φL(x) ∝ (e−λ1x−e−λ2x),

where λ1,2 denote either λ
(+)
1,2 or λ

(−)
1,2 in Eq.89 whichever

have positive real parts.
The condition for Reλ1,2 > 0 is analyzed as:
If vx > 0, αx > 0, ∆ < 0, the localized edge state is

ψL(x) ∝ (e−λ
(−)
1 x − e−λ(−)

2 x)χ−.
If vx > 0, αx < 0, ∆ > 0, the localized edge state is

ψL(x) ∝ (e−λ
(+)
1 x − e−λ(+)

2 x)χ+.
If vx < 0, αx > 0, ∆ < 0, the localized edge state is

ψL(x) ∝ (e−λ
(+)
1 x − e−λ(+)

2 x)χ+.
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If vx < 0, αx < 0, ∆ > 0, the localized edge state is

ψL(x) ∝ (e−λ
(−)
1 x − e−λ(−)

2 x)χ−.
Otherwise, there is not any localized edge state.
In short, the left localized edge state exists when

αx∆ < 0 and ψL = + sgn(vx∆)ψL. The C-symmetry
indicates that the right localized edge state also exists
when αx∆ < 0 and σyψR = − sgn(vx∆)ψR.

When extending the results at ky = 0 to finite ky case,
one can just replace ∆ → ∆ + αk2

y in Eq.89, and then

ψL(x, y) ∝ ψL(x)eikyy is an eigenstate of H(∂x, ky). [It is
obvious to see that the exact spectrum is the same as that
achieved by treating ky-dependent part perturbatively.
Note that χ± is not eigenstate of αxk

2
xσz.] Therefore, we

get the edge effective Hamiltonian including both left ψL
and right ψR edge:

Hedge(ky)=sgn(vx∆)[(vy−c)kyψ†LψL−(vy+c)kyψ
†
RψR]

(91)

which shows the dispersion relations for the edge states
at the open x-boundary are

εL(ky) = + sgn(vx∆)(vy − c)ky,
εR(ky) = − sgn(vx∆)(vy + c)ky (92)

Meanwhile, the bulk spectrum is continuous, which is
given by

ε±bulk(ky)=±
√

(∆+αxk2
x+αyk

2
y)2+v2

xk
2
x+v2

yk
2
y−cky (93)

where kx is a continuous real parameter.
The edge state extends in a finite regime around

ky = 0 which can be estimated by when the energy
of edge state first enter into the bulk spectrum. Solv-
ing minkx ε

+
bulk(ky) = εL(ky) gives the max kx. Thus

when α∆ < 0, the edge state survives in the regime
|ky| <

√
−∆/α which is also independent of boost c.

Which shows one edge state becomes zero slope at the
QPT, then reverses its slope after. We plot bulk states
and edge states in Fig.22.

Putting c = 0 in Eq.91 recovers the edge theory with-
out the injection. Then directly performing a Galileo
boost along the edge leads to Eq.91.

2. Solving the edge states in the transverse injection

Similarly, we can also consider the model in a strip
geometry [31] with the periodic boundary condition in
the x-direction and open boundary condition in the y-
direction. The continuum Hamiltonian in the mixed
(kx, ∂y) representation:

H(kx, ∂y) = (∆− αy∂2
y)σz − ivy∂yσy + ic∂yσ0

+ αxk
2
xσz + vxkxσx (94)

The problem will first be studied in the kx = 0 limit
where H1D = (∆ − αy∂

2
y)σz − ivy∂yσy + ic∂yσ0, and
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FIG. 22. Longitudinal (L-) edge: The spectrum of the Hamil-
tonian H1D(∂x, ky) in Eq.86 with periodic boundary condi-
tion in the y-direction and open boundary condition in the x-
direction. From left to right, the parameter c is 0, 0.5, 1.0, 1.1,
respectively. Other parameters are fixed as vx = vy = 1,
αx,y = 1, ∆ = −0.1. The left/right edge mode is highlighted
in the red/green color. The results are consistent with those
on the lattice in Fig.20, 21 with the same boundary condi-
tions.

then extended to finite kx 6= 0. Due to the C-symmetry,
the edge mode ψ(kx = 0, y) is expected to exist at zero
energy, thus H1Dψ = 0. Multiplying both side by σz
gives [∆+(icσz−vyσx)∂y−α∂2

y ]ψ = 0. Choosing (icσz−
vyσx)ψ± = ±

√
v2
y − c2ψ± with ψ± = φχ± where the two-

component spinor is

χ± = 1√
2
( 1
ξ± ), ξ± = (ic∓

√
v2
y − c2)/vy (95)

which depends on the transverse boost c explicitly. Then
the coupled differential equation also can be reduced to
a second order ordinary differential equation

(∆±
√
v2
y − c2∂y − αy∂2

y)φ = 0, (96)

where ± corresponding to the choice of ψ±. Substituting

the ansatz φ = e−λy leads to αyλ
2 ±

√
v2
y − c2λ−∆ = 0

with the roots:

λ
(s)
1,2 =

−s
√
v2
y − c2 ±

√
v2
y − c2 + 4αy∆

2αy
, (97)

where s = ± corresponds to the choice of ± in Eq.96.
Thus, the general solution can be written as

φ = c1e
−λ1y + c2e

−λ2y (98)

Due to the C-symmetry, one only need consider one
edge. Choosing the bottom edge, imposing the wave
function to vanish at y = 0 and y = +∞ requires
c1 = −c2 and Reλ1,2 > 0. Thus, we have φB(y) ∝
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(e−λ1y − e−λ2y) where λ1,2 denote λ
(+)
1,2 or λ

(−)
1,2 in Eq.97

whichever have positive real parts.
The condition for Reλ1,2 > 0 is analyzed as:
If v2

y > c2, αy > 0, ∆ < 0, the localized edge state is

ψB(y) ∝ (e−λ
(−)
1 y − e−λ(−)

2 y)χ−;
If v2

y > c2, αy < 0, ∆ > 0, the localized edge state is

ψB(y) ∝ (e−λ
(+)
1 y − e−λ(+)

2 y)χ+;
Otherwise, there is not any localized edge state.
In short, the Bottom localized edge state exists when

αy∆ < 0 and c2 < v2
y, and (icσz − vyσx)ψB =

+ sgn(∆)
√
v2
y − c2ψB . The C-symmetry indicates that

the Top localized edge state exists when αy∆ < 0 and

c2 < v2
y, and (icσz − vyσx)ψT = − sgn(∆)

√
v2
y − c2ψT .

When extending to finite kx case, one need replace
λ1,2 → λ1,2(kx) and χ± → χ±(kx), then redo the
eigenvalue problem. [After tedious algebra, we find it
gives the same spectrum as treated the kx-dependent
part as perturbation.] Alternatively, one may just take
ψB(x, y) = ψB(y)eikxx and use the first order perturba-

tion theory. Due to 〈χ±|σx|χ±〉 = ∓
√
v2
y − c2/vy and

〈χ±|σz|χ±〉 = 0, we find the edge effective Hamiltonian
including both the bottom ψB and the top ψT edge state

Hedge(kx) = − sgn(vy∆)vx

√
1− c2/v2

ykx[ψ†BψB − ψ†TψT ]

(99)

which indicates the dispersion relations for the edge
states at the y-boundary:

εB(kx) = − sgn(vy∆)vx

√
1− c2/v2

ykx,

εT (kx) = + sgn(vy∆)vx

√
1− c2/v2

ykx (100)

Meanwhile, the bulk spectrum is continuous, which is
given by

ε±bulk(kx)=±
√

(∆+αxk2
x+αyk

2
y)2+v2

xk
2
x+v2

yk
2
y−cky

(101)

where ky is a continuous real parameter. The edge state
usual extent in a finit regime around kx = 0, which can
be estimated by when the energy of edge state first en-
ter into the bulk spectrum. Solving minky ε

+
bulk(kx) =

εB(kx) gives the max kx. Thus when α∆ < 0 and
|vy| > |c|, the edge state survives in the regime |kx| <√

(c2/v2
y − 1)∆/α, and the regime is decrease as increas-

ing the boost c.
Which shows edge states do not exist anymore after

the bulk QPT. We plot bulk states and edge states in
Fig.23.

Putting c = 0 in Eq.99 recovers the edge theory with-
out the injection. However, in contrast to Eq.91, one
may not achieve Eq.99 by directly performing a Galileo
boost. Naively, a direct boost may lead to

√
v2 + c2 in-

stead of
√
v2 − c2. To achieve Eq.99, one may still need

to solve the bulk + the transverse boundary condition

as done here and find that one must substitute c → ic
in the naive Galileo boost results to reach the correct
transverse boot result. While the i in the substitution
in c → ic stands for the decay of edge mode along the
boost direction. Eq.99 indicates that the two perpendic-
ular motions: the spinor edge wave propagation along
the x-edge and the boost along the y- axis are coupled to
each other through the SOC which breaks the GI explic-
itly. Indeed, its 2-component spinor χ± does depend on
the transverse boost sensitively.
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FIG. 23. The transverse (T-) edge: spectrum of the Hamil-
tonian H1D(kx, ∂y) in Eq.94. with periodic boundary condi-
tion in the x-direction and open boundary condition in the y-
direction. From left to right, the parameter c is 0, 0.5, 1.0, 1.1,
respectively. The T-edge disappears at the same time as the
bulk TPT with its velocity vanishing as

√
v2 − c2. Other pa-

rameters are fixed as vx = vy = 1, αx,y = 1, ∆ = −0.1. The
Top/Bottom edge mode is highlighted in the red/green color.
The results are consistent with those on the lattice in Fig.20,
21 with the same boundary conditions.

C. The bulk-edge correspondence from the
continuum edge theory

We will discuss the bulk-edge correspondence near h ∼
−4t and h ∼ 0 respectively.

1. The bulk-edge correspondence near h ∼ −4t case

In the h ∼ −4t case, there is only one valley at K0 =
(0, 0), the bulk effective Hamiltonian is:

H0 =[∆ + α(k2
x+k2

y)]σz+vkxσx+vkyσy−ckyσ0, (102)

where ∆ = −4t− h, α = t, v = 2ts, c = 2tb,
Since we choose t, ts, tb > 0, thus h < −4t leads to

∆ > 0 and α∆ > 0, no edge states. h > −4t leads to
∆ < 0 and α∆ < 0. Edge state is possible.
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(a) Open boundary condition in the x-direction: longi-
tudinal injection

When h < −4t, there is no edge state;
When h > −4t, there is always one localized edge state

which is given by the continuum theory near K0 = (0, 0)
and exists near K0y = 0.
(b) Open boundary condition in the y-direction: trans-

verse injection
If α∆ < 0 and v2 > c2, then H0 has one localized edge

state.
Thus, h < −4t, there is no edge state;
When h > −4t, if c2 < v2, there is one localized edge

state which is given by the continuum theory near K0 =
(0, 0) and exists near K0x = 0. If c2 > v2, there is still
no edge state.

These results in (a) and (b) are consistent with those
on a lattice reached in Sec.IV-A.

2. The bulk-edge correspondence near h ∼ 0 case

In the h ∼ 0 case, there are two valleys at K1, K2, the
bulk effective Hamiltonian are:

H1 =[∆− α(k2
x − k2

y)]σz−vkxσx+vkyσy−ckyσ0

H2 =[∆ + α(k2
x − k2

y)]σz+vkxσx−vkyσy+ckyσ0 (103)

where ∆ = −h, α = t, v = 2ts, c = 2tb, written in the
generic form of Eq.25:

H1 =(∆+α1xk
2
x + α1yk

2
y)σz+v1xkxσx+v1ykyσy+c1kyσ0

H2 =(∆ + α2xk
2
x+α2yk

2
y)σz+v2xkxσx+v2ykyσy+c2kyσ0

(104)

which leads to the relations:

α1x=−α, α1y=+α, v1x=−v, v1y=+v, c1 =−c
α2x=+α, α2y=−α, v2x=+v, v2y=−v, c2 =+c (105)

If α1x∆ > 0, then α2x∆ < 0, α1y∆ < 0, α2y∆ > 0,
which means only one valley may have one edge state for
a given type of boundary. Since we choose t, ts, tb > 0,
thus h > 0 leads to ∆ < 0 and α∆ < 0; h < 0 leads to
∆ > 0 and α∆ > 0.

(a) Open boundary condition in the x-direction: longi-
tudinal injection

If α∆ > 0, then α1x∆ < 0 which means H1 has one
localized edge state;

If α∆ < 0, then α2x∆ < 0 which means H2 has one
localized edge state.

Thus, there is always one edge state. When h > 0,
there is one edge state given by the continuum theory
near K2 = (0, π) and exists near K2y = π. This is ex-
pected, because it is smoothly connected to the edge state
near h < 4t where there is only one valley at K3 = (π, π)
and one edge states exists near K3y = π.

When h < 0, there is one edge state given by the con-
tinuum theory near K1 = (π, 0) and exists near K1y = 0.

This is expected, because it is smoothly connected to the
edge state near h > −4t where there is only one valley at
K0 = (0, 0) and one edge states exists near K0y = 0.
(b) Open boundary condition in the y-direction: trans-

verse injection
If c2 > v2, then there is not any localized edge state.

If c2 < v2 and α∆ > 0, then α2y∆ < 0 which means H2

has one localized edge state; if c2 < v2 and α∆ < 0, then
α1y∆ < 0 which means H1 has one localized edge state.

Thus, there is one edge state only if tb < ts.
When h > 0, there is one edge state given by the con-

tinuum theory near K1 = (π, 0) and exists near K1x = π.
This is expected, because it is smoothly connected to the
edge state near h < 4t where there is only one valley at
K3 = (π, π) and one edge states exists near K3x = π.

When h < 0, there is one edge state given by the con-
tinuum theory near K2 = (0, π) and exists near K2x = 0.
This is expected, because it is smoothly connected to the
edge state near h > −4t where there is only one valley at
K0 = (0, 0) and one edge states exists near K0x = 0.

These results in (a) and (b) are consistent with those
on a lattice reached in Sec.IV-A.

V. GAUGE INVARIANT CURRENT: BULK
PROPERTIES

Injecting currents into the system could result in the
following form:

Hinj,x = −[κb1
∑
i

Jix+i

∞∑
n=2

(tbn/n)c†i ci+nx]+h.c. (106)

where Jix is the NN gauge-invariant current, the other
terms n = 2, 3, · · · are NNN, NNNN,.... κb1 is dimen-
sionaless and tbn, n ≥ 2 carry the same dimension as the
hopping.

To capture the physics, one only need to include the
NN and the n = 2 NNN term ( which can also be called
higher order current ). We still take the “divide and
conquer” strategy to treat the two terms separately and
differently. As shown in Fig.19-22, for the n = 1 case,
the bulk TPT and the edge reconstruction happens at
the same time. But this coincidence could be due to
the n = 1 case which maybe a fine tuning phase. It
is not protected by any symmetry. So they can split
in a more general case. If so, the edge reconstruction
must happen earlier than the bulk TPT, not the other
way around. Then, there must be an intermediate phase
between the bulk TPT and the edge reconstruction, we
call such a phase an odd Chern insulator phase which has
the same bulk properties as the ordinary Chern insulator,
but different edge properties: Its longitudinal edge modes
satisfy the exotic relation vLvR > 0, its transverse edge
modes satisfy the conventional relation vLvR < 0. In
the longitudinal edge, the edge mode undergoes its own
edge TPT with an longitudinal edge dynamic exponent
zL = 3 instead of being exactly flat for the n = 1 even
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inside the Chern insulator before the bulk TPT. So there
is an even enriched surface TPT before the bulk TPT.
As to be shown in Sec.VII and Sec.VIII, this case also
provide another example of odd Chern metal. The BM
also leads to a non-vanishing AHE. Remarkably, the σH
jump from the odd Chern metal to the BM remains the
same universal non-integer number as n = 1.

A. The NN gauge-invariant current and the NNN
current term

Due to the commutation relation

[c†i,σci,σ,
∑
j

c†j,αTαβcj+δ,β ]=c†i,αTαβci+δ,β−c†i−δ,αTαβci,β

(107)

where the summation over spin indices σ, α, β is implied.
Given a general Hubbard Hamiltonian with SOC on a

square lattice

H0 =
∑
jδ

[c†j,αT
δ
αβcj+δ,β + h.c.] +

∑
j

Un2
j − µ

∑
j

nj

− h
∑
j

(nj↑ − nj↓) (108)

where δ = x̂, ŷ and U is Hubbard interaction. The
quantum anomalous Hall model Eq.1 is just a special
case of the general Hamiltonian in Eq.(108), with T x =
−t0σz + its0σ

x and T y = −t0σz + its0σ
y.

Combining the Heisenberg equation of motion and the
continuity equation

d

dt
ni = i[H0, ni] = −∇ · Ji

i[H0, ni] =
∑
αβδ

[i(c†i,αT
δ
αβci+δ,β − c†i−δ,αT δαβci,β) + h.c.]

∇ · Ji = Jxi − Jxi−x + Jyi − Jyi−y (109)

Thus one can identify the gauge-invariant current as

Jxi = −ic†i,αT xαβci+x,β + h.c.

Jyi = −ic†i,αT yαβci+y,β + h.c. (110)

which is different from the injecting current Eq.2.
The total number conservation follows:

d

dt

∑
i

ni =
∑
i

(Jxi − Jxi−x + Jyi − Jyi−y) = 0 (111)

However,
∑
i J

x
i 6= 0 and

∑
i J

y
i 6= 0.

Consider a new HamiltonianHinj = H0−
∑
i(κb1,xJ

x
i +

κb1,yJ
y
i ),

Hinj =
∑
jδ

[κδe
iφδc†j,αT

δ
αβcj+δ,β + h.c.] +

∑
j

Un2
j

− µ
∑
j

nj − h
∑
j

(nj↑ − nj↓) (112)

where κδ =
√

1 + κ2
b1,δ and φδ = arg(1 + iκb1,δ), tanφδ =

κb1,δ. The phase factor eiφδ can be transformed away
via:

c̃j = e−i(jxφx+jyφy)cj (113)

This is expected based on the fact that the gauge-
invariant current has the same structure as the hopping
and the SOC term, so can be absorbed by a transfor-
mation like Eq.113, but leave the interaction U and the
chemical potential µ un-touched. This absorbtion does
not happen for the injecting current Eq.2.

Now we study the Hamiltonian in the c̃j basis and
incorporate the NNN n = 2 boost term

Hinj = H̃0 +
∑
i

[i(tb/n)c̃†i c̃i+ny + h.c.] (114)

where t = t0
√

1 + κ2
b1, ts = ts0

√
1 + κ2

b1. For simplicity,
we assume t0 = ts0, so

t = ts = t0

√
1 + κ2

b1 (115)

Then in the c̃j basis, the n = 2 term tb becomes effec-
tively as:

tb =
1− κ2

b1

1 + κ2
b1

tb2 (116)

where tb has the same sign as tb2 only when 0 ≤ κb1 < 1,
vanishes at κb1 = 1, but becomes opposite to tb2 after
κb1 > 1. This sign change reflects the underlying lattice
effects. Setting κb1 = 0 reduces to the pure tb2 case
without any NN current term.

In the following, we set U = 0 and µ = 0 and study
the effects of this NNN boost term. We treat tb/t as an
independent parameters to tune various TPTs in Fig.24.

B. The lattice theory

In the momentum space, the Hamiltonian Eq.114 be-
comes ( dropping˜for notational simplicity )

Hinj =
∑
k

c†k{−[h+ 2t(cos kx + cos ky)]σz + 2ts sin kxσx

+ 2ts sin kyσy − 2(tb/n) sin(nky)σ0}ck (117)

where the two competing scales are listed in Eq.116 and
Eq.115 respectively.

Diagonalization of Eq.(117) leads to two bands

E±(k) = −2(tb/n) sin(nky)

±
√

[h+2t(cos kx+cos ky)]2+4t2s(sin
2kx+sin2ky) (118)

Since E+(k) ≥ E−(k) always holds for a fixed k, we will
call the E+ the upper band and the E− the lower band.
When tb is sufficiently small, it is in an insulating phase;
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FIG. 24. The global phase diagram of the Lattice Hamiltonian
(117) with n = 2 and t = ts under the n = 1 gauge-invariant
injecting current. Setting tb = 0 recovers dropping the n = 2
term. The horizontal dashed line h = −0.5 corresponds to
the edge mode in Fig.27. The new phase is the odd Chern
insulator phase in the shaded lobe. The vertical dashed line
indicates the edge TPT with the parallel edge dynamic ex-
ponent zL = 3. It happens earlier than the orange solid line
which is the bulk TPT with the bulk dynamic exponent z = 2
from the bulk Chern insulator to Odd Chern metal also shown
in Fig.27b1. Now the band metal has a nonzero Hall conduc-
tance, A1(A2) phase has one electronic/hole Fermi surface
(FS) with positive(negative) Hall conductance. B1(B2) phase
has two electronic/hole FSs with positive(negative) Hall con-
ductance in Fig.26. While the C1 and C2 phases in Fig.3 do
not exist anymore when n > 1. The phase boundary is related
by the Mirror reflection with respect to h↔ ±4− h with the
mirror symmetric (MS) point at h = ±2. However, the MS
only holds at the phase boundary when t = ts. Compared to
Fig.3.

When tb is sufficiently large, it is in a metallic phase, with
hole FS given by E−(k) = 0 and electronic FS given by
E+(k) = 0.

In fact, Sec.II-IV correspond to the n = 1 case. Here
we will briefly explore the n = 2 cases. The first critical
tb (let us call it tb,c1) are determined by the global min-
imization problem mink E+(k; tb) = 0. When tb > tb,c1,
the energy bands overlap and Fermi surface ( FS) start
to appear. It was shown in Sec.II that when n = 1, the
critical tb,c1 = ts for 4t > h > 0 ( Fig.3 ). However, when
n > 1, tb,c1 is more complicated. For example, when
n = 2, the critical tb,c1 > ts for 4t > h > 0. When h ∼ 0,
the second critical tb (let us call it tb,c2 ) are determined
by the local minimization problem mink E+(k; tb) = 0
with k near (0, π) and (π, 0). When tb > tb,c2, the en-
ergy bands overlap and two FSs start to appear. Unlike
the n = 1 case, if t > tb,c2 these two Fermi surfaces do
not collide with each other, so no C phases in Fig.3 ex-
ist here. But when tb > tb,c2, the FS can collide with

itself, namely become extensive in kx to cover the entire
kx ∈ [−π, π]. The extensive FS is signaled by the di-
vergence of kF in continuum theory. The global phase
diagram of the Lattice Hamiltonian (117) with n = 2 is
shown in Fig.24

1. The universal conductance jump of zero temperature
Hall conductance

On the lattice scale, the value of Hall conductance σH
of the insulator phases of n > 1 case is the same as those
in the n = 1 case; but its value in the metal phase of n > 1
case is different from that in the n = 1 case at least in
the following ways: 1) The σH in the band metal phase is
not zero anymore in the former, but it is identically zero
in the latter. 2) The σH in the Odd Chern metal phase
is not ±ts/tb anymore in the former, but it is ±ts/tb in
the latter. We show an example of Hall conductance as
a function of h in Fig.25.

h/t
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FIG. 25. The Hall conductance σH with a higher order boost
n = 2 as a function of h with fixed t = 1, ts = 1, and tb/ts =
1.3. There is an intermediate odd Chern insulator. The σH
of band metal is not zero, and σH of the odd Chern metal A1
or B1 is not ±ts/tb. However, the jump in σH from A1 odd
Chern metal to the band metal remains ts/tb, that from B2
to B1 odd Chern metal remains 2ts/tb. Compared to Fig.4b,
σH is no longer a simple step function when n > 1. However,
all the jumps stay the same as the n = 1 case, indicating its
universal feature.

C. The continuum limit

In the momentum space, Eq.(117) becomes

H(k) = −[h+ 2t(cos kx + cos ky)]σz + 2ts sin kxσx

+ 2ts sin kyσy − 2(tb/n) sin(nky)σ0 (119)

when h ∼ 4t, low-energy excitations exist near K3 =
(π, π)

H3(K3 + k) = −[h− 4t+ t(k2
x + k2

y)]σz − 2tskxσx

− 2tskyσy − (−1)n2tbkyσ0 (120)
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when h ∼ 0, low-energy excitations exist near both K1 =
(π, 0) and K2 = (0, π)

H1(K1 + k) = −[h+ t(k2
x − k2

y)]σz − 2tskxσx + 2tskyσy

− 2tbkyσ0

H2(K2 + k) = −[h− t(k2
x − k2

y)]σz + 2tskxσx − 2tskyσy

− (−1)n2tbkyσ0 (121)

when h ∼ −4t, low-energy excitations exist near K0 =
(0, 0)

H0(k) = −[h+ 4t− t(k2
x + k2

y)]σz

+ 2tskxσx + 2tskxσx − 2tbkyσ0 (122)

Thus only even or odd nature of n is important.
The continuum theory with just one valley is identical

to that in the injecting case with n = 1. So we only need
to look at the continuum theory near the two valleys K1

and K2:

H1 = [∆− α(k2
x − k2

y)]σz − vkxσx + vkyσy − ckyσ0

H2 = [∆ + α(k2
x − k2

y)]σz + vkxσx − vkyσy − ckyσ0

(123)

where ∆ = −h, α = −t, v = 2ts and c = 2tb. Note the
different sign of velocities v between kx and ky and differ-
ent sign of α between k2

x and k2
y. Most importantly, the

Doppler shifts are identical in the two nodes, in contrast
to Eq.61 where they are opposite in the two nodes.

Due to the extra two degree of freedom, we obtain the
four bands

εi,± = ±
√
v2k2 + [∆ + (−1)iα(k2

x − k2
y)]2 + cky , (124)

where i = 1, 2. Due to c1 = c2, the electron Fermi mo-
mentum of ε1,2 will have the same sign. We show the
evolution of the FS of H1 and H2 in Fig.26.

Another important feature of αxαy < 0 is that the FS

extends to infinity when c ≥
√

2|v|. The divergent kF
hints the FS is extensive in kx, which covers the entire
kx ∈ [−π, π].

VI. THE TOPOLOGICAL PHASES IN THE
GAUGE INVARIANT CURRENT: EDGE

PROPERTIES

Following the approach used in the Sec.IV for the n =
1 case, we will first study the edge properties from the
lattice system, then investigate them from the continuum
effective theory, then contrast the two complementary
approaches.

A. New bulk-edge correspondence from the lattice
theory

For the periodic boundary condition in the y-direction
and open boundary condition in the x-direction, ky is
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FIG. 26. εi,±(k) with even n as function of ky with fixed kx =
0 and v = 1, ∆ = 1/5, α = −1/2, c = 0, 0.5, 1.0,

√
1.4, 1.3.

(a) both H1 and H2 has a direct gap at ky = 0; in the Chern
Insulator phase (b) Due to the same sign of the boost velocity
in Eq.124, H1 and H2 shift to the same direction, so has an
indirect gap at ky 6= 0; (c) H1 becomes gapless and shows
two Fermi points at ky = ±k0 with z = 2, but H2 still has
an indirect gap. This is in the A1 phase in Fig.24. (d) H1

becomes gapless and show finite Fermi pockets, H2 also be-
comes gapless and shows two Fermi points still at ky = ±k0
with z = 2 after subtracting the non-critical contributions
from H1; (e) both H1 and H2 are gapless and show finite
Fermi pockets. This is in the B1 phase in Fig.24. Compared
to Fig.17. H1 and H2 may collide with each other ( namely,
hit the BZ boundary, not shown in Fig.23 ) instead of colliding
with each other as in Fig.17.

a good quantum number, the Hamiltonian in the mixed
(i, ky) representation becomes

H=
∑
ky,i,j

c†i,ky{[−(h+ 2t cos ky)σz

+2ts sin kyσy+tb sin 2kyσ0]δi,j

+ (tσz−itsσy)δi,j+1 + (tσz+itsσy)δi,j−1}cj,ky (125)

For the periodic boundary condition in the x-direction
and open boundary condition in the y-direction, kx is
a good quantum number, the Hamiltonian in the mixed
(kx, i) representation becomes:

H=
∑
kx,i,j

c†kx,i{[−(h+ 2t cos kx)σz + ts sin kxσx]δi,j

+ (tσz−itsσy)δi,j+1 + (tσz+itsσy)δi,j−1

− itbσ0(δi,j+2 − δi,j−2)/2}ckx,j (126)

We show the numerical results on the lattice edge
states in the Fig.27 and 28.

When comparing the n = 2 case with previous n = 1
case, We discover several new surface TPT and novel
bulk-edge correspondence:

(a) Longitudinal injection
We first choose periodic boundary condition in the y-

direction and open boundary condition in the x-direction.
For n = 1 case and tb/ts = 1, the bulk is critical. The
n = 1 edge mode is almost flat due to the cancelation of
ω ∼ ts sin ky − tb sin ky = 0. So the TPT happens in the
edge and the bulk at the same time. However, for n = 2,
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FIG. 27. The edge state of the lattice Hamiltonian Eq. (117).
From (a) to (d), the parameter tb/ts is 0.5, 1.0, 1.17, 1.3, re-
spectively. We fixed h = −0.5. (Top) Longitudinal boost:
With periodic boundary condition in the y-direction and open
boundary condition in the x-direction. The edge modes al-
ways exist in this case. The two edge mods move in the op-
posite direction near ky = 0 in (a1) Chern Insulator where
tb/ts < 1, then one edge mode’s slope vanishes in (b1) where
tb/ts = 1 with the edge dispersion ω ∼ k3y, namely the lon-
gitudinal edge dynamic exponent zL = 3. then the two edge
modes move along the same direction near ky = 0 in (c1)
odd Chern insulator where tb/ts = 1.17 > 1. At the same
time, the system’s (in-direct) gap vanishes which corresponds
to the z = 2 bulk TPT from the C = −1 odd Chern insu-
lator to A2 Odd Chern metal in Fig.24. It gets to the Odd
Chern metal phase in (d1) where tb/ts = 1.3 > 1.17, the two
edge modes still move along the same direction. (Bottom)
Transverse boost: Exchanging the role of x− and y− direc-
tion. The edge mode exists upto (c2) where tb/ts = 1.17 > 1.
So the odd CI between (b2) and (c2) still has the transverse
edge mode. At (c2), the system’s direct gap vanishes which
corresponds to the TPT from the C = −1 odd Chern insu-
lator to A2 Odd Chern metal in the bulk in Fig.24. It is in
the Odd Chern metal phase in (d2) where tb/ts = 1.3 > 1.17,
no edge mode. The T-edge disappears at the same time as
the bulk TPT with its velocity still vanishing

√
v2 − c2 as in

Fig.23. One can shift k → k + π to reach h = +0.5 results.
See also Fig.S3 for the expanded figure.

the TPT splits into two with the odd Chern insulator in-
tervening between: the reconstruction in the edge always
happens earlier than in the bulk. When tb/ts < 1, the
two edge modes in the Left and Right move along the
opposite direction. When tb/ts > 1, the two edge modes
in the Left and Right move along the same direction. At
the QCP tb/ts = 1, the n = 2 edge mode is not flat, due
to the edge dispersion relation

ω ∼ ts sin ky − (tb/2) sin 2ky

= (ts − tb cos ky) sin ky ∼ k3
y (127)

which is shown in Fig.27b1. So the CI to odd CI transi-
tion indeed happens at tb/ts = 1 with the dynamic expo-
nent zL = 3 due to the longitudinal edge reconstruction.
The bulk remains gapped despite the edge mode recon-
struction at the QCP . Then as tb/ts increase further, the
bulk gap closes and also undergoes a TPT at tb/ts = 1.17
in Fig.27c. It corresponds to nothing but the bulk TPT
from the C = 1 odd Chern insulator to the A1 Odd Chern
metal in Fig.24 and Fig.26c.

(b) Transverse injection:
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FIG. 28. The same situation as Fig.27 except h = −3.5 which
is Mirror reflected image of h = −0.5. As alerted in Fig.24,
despite the bulk phase boundary in Fig.24 has such a Mirror
symmetry at t = ts, it is not persevered in the presence of the
strip boundaries. One can shift k → k + π to reach h = +3.5
results which is Mirror reflected image of h = 0.5. It shows
qualitatively the same edge TPTs, odd CI and odd CM as
those in Fig.27. See also Fig.S4 for the expanded figure.

Then we choose the periodic boundary condition in
the x-direction and open boundary condition in the y-
direction. For n = 1 case and tb/ts = 1, the bulk is
critical. The n = 1 edge mode is also squeezed away. So
the TPT happens in the edge and the bulk at the same
time. However, for n = 2, one can find the edge mode
of the odd CI still exists at tb/ts = 1 in Fig.27-b2. So
the transverse edge mode of the odd CI survives always
before the bulk gap closing. So we conclude that the odd
CI has the longitudinal edge modes satisfying the exotic
vLvR > 0, but the transverse edge modes satisfying the
conventional vLvR < 0. Eq.99. break down and need to
be replaced by more refined edge theory by incorporating
high order derivatives in the continuum theory.

B. New bulk-edge correspondence from the
continuum theory

Because h/t ∼ −4 case with only one valley is similar
to the injecting case with n = 1 on the long-wave length
limit, so we only need to focus on the h ∼ 0 case with
two valleys when n = 2.

When h ∼ 0, the effective Hamiltonians near the two
valleys K1, K2 are:

H1 =[∆− α(k2
x − k2

y)]σz−vkxσx+vkyσy−ckyσ0

H2 =[∆ + α(k2
x − k2

y)]σz+vkxσx−vkyσy−ckyσ0 (128)

where ∆ = −h, α = t, v = 2ts, c = 2tb. In fact, all the 4
nodes suffer the same sign of Doppler shifts when n = 2
case.

It can be rewritten in the generic form of Eq.104

H1 = (∆ + α1xk
2
x + α1yk

2
y)σz + v1xkxσx + v1ykyσy

− c1kyσ0

H2 = (∆ + α2xk
2
x + α2yk

2
y)σz + v2xkxσx + v2ykyσy

− c2kyσ0 (129)
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which leads to the relations

α1x = −α, α1y = +α, v1x = −v, v1y = +v, c1 = +c

α2x = +α, α2y = −α, v2x = +v, v2y = −v, c2 = +c
(130)

If α1x∆ > 0, then α2x∆ < 0, α1y∆ < 0, and α2y∆ > 0,
which means only one of the valleys may have one edge
state for a given type of boundary. Further discussions
on the long-wavelength limit to the quadratic order are
the same as Sec.IV-C-2. For example, if one keeps only
upto the quadratic order, then both n = 1 and n = 2
gives zero slope when tb/ts = 1.

However, to check against the new bulk-edge corre-
spondence discovered on the lattice theory in Sec.VI-A,
one may need to go to higher order derivatives in the con-
tinuum edge theory. For example, to find the dynamic
exponent zL = 3 in the longitudinal boost, one needs
to go to at least the cubic order in Eq.127. Similarly,
one need to push Eq.99 to higher order derivatives to de-
scribe the edge states evolution in Fig.27 and 28 under
the transverse boost. More works need here to discern
the fine structures of the edge states by going to high
order in the momentum.

VII. THE CLASSIFICATION OF EVEN/ODD
CHERN METAL AND BAND METAL

So far, we only consider the case where the Hamil-
tonian respects the C-symmetry, but breaks the P-
symmetry, namely, odd under the P. We call it the
odd Chern metal. In the Appendix A and B, we dis-
cuss the complimentary cases: respects the P-symmetry,
but breaks the C-symmetry. We call it the even Chern
metal which will be shown to show dramatically different
behaviours than the odd Chern metals. In this section,
we classify Chern metals as even and odd. In the next
section, we discuss the general case which breaks both
the C-symmetry and P-symmetry.

The generic Hamiltonian in a material consists of two
parts

H(k) = ε0(k)σ0 +HQAH(k), (131)

where the HQAH(k) part respects both C-symmetry in
Eq.3 and P-symmetry. An even function ε0(k) breaks
the C-symmetry, but keeps the P-symmetry, In the ap-
pendix A and B, we consider the two typical even cases
respectively: (I) ε0(k) = −µ = −tb and (II) ε0(k) =
−2tb(1 − cos ky). More general case ε0(k) = −2tb(1 −
cos kx + 1 − cos ky) can be straightforwardly extended
to. To break both the C-symmetry and P-symmetry, we
choose ε0(k) = −2tb(sin ky + 1 − cos ky) as a concrete
example to discuss in Sec.VIII.

Varying the strength of ε0(k) drives an Chern insula-
tor to a Chern metal with Fermi surfaces. Both carry
non-vanishing Chern number. If keeping C-symmetry,
tentatively, we name the Chern metal as “odd” Chern

metal; If keeping P-symmetry, tentatively, we name the
Chern metal as “even” Chern metal. If no symmetries is
kept, then it could be either odd-like or even-like Chern
metal.

In the following, we will only focus on exploring the dif-
ferences between odd and even Chern metal in the phase
diagram and the Hall conductance from both the bulk
and edge picture.

A. Phase diagram: TPT from (odd) Chern
Insulator to odd/even Chern metal due to the

competition between the P-even and P-odd
component

In the global phase diagram, due to its topological pro-
tection, the Chern insulator remains the same in both P-
breaking and P-preserving deformation. Even the band
insulator remains the same. However, the metallic phases
may differ. The big differences between odd and even
Chern metals can be best seen around the critical points
at h = ±4t, 0. In the odd Chern metal, as shown in
Fig.2 ( also Fig.11 and Fig.15 ) and Fig.23, the QPTs
at h = ±4t and 0 ( Dirac theory ) with z = 1 is stable,
which means the TPT from the CI to the odd CM needs
a sufficiently large enough tb even near h = ±4t and 0.
The energy scale of the critical tb is comparable to the
Fermi velocity of the Dirac cone, which is of the energy
scale ts. As demonstrated in the previous sections, there
is a universal non-integer jump from the odd Chern metal
to the band metal. The longitudinal edge modes in the
odd CI and odd CM on the two opposite side of a sample
move along the same direction. These salient bulk and
edge properties make it very easy to distinguish an odd
CM from the BM.

In the even Chern metal, as shown in Fig.37a, the crit-
ical points at h = 4t with the Dirac point at (π, π) and
h = 0 ( with the two Dirac points at (π, 0) and (0, π)
) with z = 1 is not stable, even a small tb drives a
TPT from the CI to even CM near h = 4t and 0. Then
the energy scale of transition tb is comparable with the
gap of the Dirac cone, which is of the energy scale t or
h ± 4t. This has been demonstrated in the appendix B.
However, the critical points at h = −4t with the Dirac
point at (0, 0) remains stable. So due to C- symmetry
breaking by the P- preserving energy dispersion, the CM
at 0 < h/t < 4 behave very differently than that at
−4 < h/t < 0: the former is essentially the same as BM,
the latter is the true CM with edge modes well separated
from the bulk. So the naively thought even Chern metal
at 0 < h/t < 4 turns out to be the same phase as BM (
Table II ).

B. Universal Hall conductance jump: bulk picture

It was well-known that there is an integer (quantized)
Hall conductance jump between Chern insulator and
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band insulator, or different Chern insulators ( see also
Fig.2 ). As shown in the previous sections and elucidated
further in the appendix C, a non-integer (unquantized
but universal v/c ) Hall conductance jump from odd or
odd-like Chern metal to itself or to a band metal. As
shown in the appendix A, B and Sec.VIII, there may be
an integer (quantized) Hall conductance jump from even
or even-like Chern metal to itself or to a band metal.

In the bulk picture, the Universal Hall conductance
jump across the two metallic phases ( either even/odd
Chern metal or a band metal ) at h = hc can be under-
stood as follows: it is the sum of the upper and lower
bands ∆σ = ∆σ− + ∆σ+, where

∆σs(hc) = lim
h→h+

c

1

2π

∫
k filled

d2k Ωs(k;h)

− lim
h→h−

c

1

2π

∫
k filled

d2k Ωs(k;h) (132)

where s = ± stands for the upper/lower band respec-
tively.

CI

CI

BI

BI

BM

BM

CM

CM

CM

BM

CM

CM

h/t

0

2

4

6

–2

–4

–6

0.5 1.0 1.5
tb/t

CM

even-like odd-like
6–6

ΔσH=1

ΔσH=1

ΔσH=1

ΔσH≈0.66

ΔσH=0

σH

tb=0.25
tb=0.5

tb=1.0

tb=1.5

h/t

(a) (b)

FIG. 29. (a) The global phase diagram of the Lattice Hamilto-
nian (135) of the even-odd mixing Chern metal. The even-like
CM or odd-like CM exist when −4 < h/t < 0 with an edge
reconstruction between the two with the dynamic longitudi-
nal exponent zL = 2 in Eq.134. In the even CM vLvR < 0,
in the odd CM vLvR > 0. At the zL = 2 edge reconstruction
point, vLvR = 0. While all the CM at 0 < h/t < 4 are es-
sentially the same as the BM despite superficially their bands
have a non-vanishing Chern number, practically also larger
AHE. Due to this superficial and practical difference, we still
keep the symbol CM in the figure, but they really belong to
the same phase. (b) The Hall conductance as a function of
h/t for various fixed values of tb/t = 0.25, 0.50, 1.00, 1.50. The
other parameters are t = ts = 1. The Hall conductance only
shows a jump at h/t = −4 and h/t = 0. For example, the
tb/t = 0.25 curve shows a unit jump near h/t = 0 from the
even-like CM to a BM and also a unit jump near h/t = −4
from the CI to a BI which always has σH = 0; On the other
hand, tb/t = 1.5 curve shows a universal non-integer jump
near h/t = 0 and also near h/t = −4 from the odd-like CM
to a BM. Note that due to the absence of even CM to even
CM transition here, the factor of 2 in the odd CM to odd CM
transition in Fig.25 does not appear here. Near h/t ∼ 0−, it is
easy to reach the even-like CM from the CI due to tb/t→ 0−,
but it still need tb/t = 1 to reach the odd-like CM.

As shown in the appendix D, When h → hc, Ωs(k;h)
will show a singularity or a Berry phase at the corre-

sponding Dirac points.

h→ +4|t|, 1

2π
Ωs(k;h)→ +(s/2)sgn(4|t| − h)δ(k−K3)

+ F (k),

h→ 0,
1

2π
Ωs(k;h)→ (s/2)sgn(h)[δ(k−K1)

+ δ(k−K2)] + F (k),

h→ −4|t|, 1

2π
Ωs(k;h)→ −(s/2)sgn(4|t|+ h)δ(k−K0)

+ F (k), (133)

where K3 = (π, π),K1 = (π, 0),K2 = (0, π) and K0 =
(0, 0) as listed in Sec.III.

Note that the limit of Ωs(k;h) has both a discontinuous
δ-function and a continuous part F (k). The latter is a
non-universal function which depends on the microscopic
details, but it has no contribution to the Universal Hall
conductance jump. When tuning h across hc, there are
three situations:

1) The FS includes the singularity of Ωs(k;h);
2) The FS excludes the singularity of Ωs(k;h);
3) The FS does not include (or exclude) the singularity

of Ωs(k;h) when h 6= hc, but approaches it as h→ hc.
In the case 1) and 2) which belongs to the even Chern

metal case, one can interchange the limit with the in-
tegral in Eq.132 which is an integration over the δ-
functions. Then a simple counting tells the Universal
Hall conductance jump is zero or an integer which is in
the same class after modula an integer Z.

For the case 3) which belongs to the odd Chern metal
case, one can not interchange limit with the integral in
Eq.132, so one must do the integral first, then take the
limit. This order gives a non-integer number which is
found to be a universal number v/(2c) with c > v for each
singularity point, where c and v are the two parameters
of the boosted continuum Dirac theory in Eq.24. For the
specific lattice Hamiltonian Eq.131 v/(2c) = ts/(2tb).

C. Universal Hall conductance jump: the edge
picture and the bulk-edge correspondence in the

even/odd Chern metal

Because as the transverse edge mode behave similarly
( see Fig.26 and Fig.27 ) in all the cases: it disappears
at the same time as the bulk TPT with the edge velocity
vanishing as

√
v2 − c2. So we only consider the longitu-

dinal case in the edge mode. Near the QPTs h = ±4t
or 0 and tb = 0, there might be edge states near the
momentum where the direct band gap closes at K3 =
(π, π),K1 = (π, 0),K2 = (0, π),K0 = (0, 0). When
h/t < −4, there is no edge states; when −4 < h/t < 0,
there is an edge state near ky = 0; when 0 < h/t < +4,
there is an edge states near ky = π; when h/t > +4, there
is no edge states. To judge the Universal Hall conduc-
tance jump from the edge picture, one need to identify
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the relation between the Fermi energy and the edge states
near the two minima ky = 0 and ky = π.

We reach the following conclusion: When tuning h
across the critical points h = ±4t or 0, If the Fermi energy
cuts edge states near the two minima in one phase, but
not the other, then there is a Universal Hall conductance
jump. Otherwise the Hall conductance jump is zero. As
−4 < h/t < 0 goes to 0 < h/t < +4, because the change
near the minimum ky = 0 to near the minimum ky = π

in the momentum space, one may need to keep track of
the changing of edge states near both minima.

One may also tell the difference between an integer
jump in the even Chern metal and a non-integer jump in
the odd Chern metal by the following criterion: In the
even vLvR < 0, in the odd vLvR > 0 when h → ±4t or
0 ( Table II ), where vL and vR denote the velocities of
the left and right edge modes respectively. Recall that
v = ∂εky/∂ky|εky=εF=0.

TABLE II. The classification of unquantized Anomalous Hall effect. The Bulk σH jump is defined across the TPT from the
corresponding phase to the band metal phase. As shown in Table III, the integer jump from the BM to the even Chern metal
is equal to that of Chern number near h = −4t, but only one half of that of Chern number near h = 0.

AHE metal Band metal Even Chern metal Odd Chern metal
Symmetry No C- No, P -Yes C-Yes, P -No

Chern number 0 or ±1 ±1 ±1
Bulk σH jump 0 Integer non-integer

Longitudinal Edge no edge or floating edge edge velocities vLvR < 0 edge velocities vLvR > 0

Where we did not list the quantized AHE phases: CI and
odd CI which has the L/T edge vLvR < 0 and L/T edge
vLvR > / < 0 respectively. The trivial BI is not listed
either. For the bulk TPT or edge TPT between any of
the two phases, see the Table I.

The Time reversal symmetry is always spontaneously
broken. The bulk jump σH is from the BM to the even
or odd CM. Note that (1) All the three metals have no
transverse edges. (2) Even or odd CM must have a non-
vanishing Chern number for the relevant energy bands,
but the band metal may or may not have a non-vanishing
Chern number. So Chern number becomes an irrelevant
topological number in this classification of gapless metal-
lic phases.

We did not list the even-like CM or Odd-like CM to be
examined in the next section which breaks both C- and
P-, because they qualitatively belong to either even or
odd CM. At the edge QCP tb/ts = 1 from the even-like
to odd-like Chern metal, the edge mode is not flat, due
to the edge dispersion relation

ω ∼ ts sin ky − tb(sin ky + 1− cos ky)

= −tb(1− cos ky) ∼ −k2
y < 0 (134)

which leads to the dynamic longitudinal edge exponent
zL = 2 from the even-like CM to the odd-like CM ( Fig.31
and Fig.33 ). It can be contrasted to the longitudinal
edge exponent zL = 3 from the Chern insulator to the
odd Chern insulator in Fig.26 and Fig.27. The former
is inside the gapless metallic phase, the latter is inside
the gapped insulating phase. However, both have the
same bulk, but different edges. At both QCPs, vLvR = 0
which dictates the boundary.

The BM in this table is nothing but the previously
well studied one contributing to the un-quantized AHE
[2–4]. The even CM with the conventional edge modes
vLvR < 0 may probably have appeared in the context of
bilayer Kagome metals [39] or twisted bilayer graphene
[40]. Unfortunately, neither bulk nor edge properties of
this possible even Chern metal, its distinctions with the
band metal have been discussed in any depth in these ab
initio density functional theory calculations. The odd
CM with the exotic edge modes vLvR > 0 for n = 1
in Sec.II-IV and for n = 2 in Sec. V-VI are discovered
and investigated systematically here. While the itiner-
ant metal contributing the AHE due to the Berry phase
acquired by electrons moving in the non-coplanar spin
texture from the monopoles in the real space in a Ferro-
magnet [1] does not fall into this Table which is only for
non-interacting fermions.

In the appendix A and B, we demonstrate the above
general statements and Table II for two specific examples
of the even Chern metal. In the next section, we do it
for a concrete example of the generic case in any material
which is a mixing of even-odd Chern metal, but still show
either even-like or odd-like Chern metal features.

VIII. THE EVEN-LIKE AND ODD-LIKE
CHERN METALS

In any real material, there exist both the even and
odd component. So in this section, we study the even-
odd mixing case ε0(k) = −2tb(sin ky + 1− cos ky) which
break both the C-symmetry and P-symmetry.
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FIG. 30. The Berry curvature Ω+(k) and the Fermi surfaces
(FS) of the even-like Chern metal, it leads to ∆σ+ in the Table
III. Other parameters are t = 1, ts = 1, tb = 0.75 < 1. The
black curve is the contour of Ω+(k) = 0, which separates the
positive part denoted by “+” from the negative part denoted
by “-”. The red × denotes the singular part of Ω+(k) listed
below Eq.132. The green line denotes the electron FS. Top:
near h/t = −4, the upper band FS always excludes the singu-
larity of Ω+(k) leading to ∆σ+ = 0, thus the Universal Hall
conductance jump is 1; Middle: near h/t = 0: the upper band
FS only encloses one of the two singularities of Ω+(k) leading
to ∆σ+ = −1, thus the Universal Hall conductance jump is
also 1; Bottom: near h/t = +4, the upper band FS always
enclose the singularity of Ω+(k) leading to ∆σ+ = 1, thus the
Universal Hall conductance jump is 0 ( Table III ). The lower
band is always occupied, so always encloses the singularity of
Ω−(k), it leads to ∆σ− in the Table III. These features are
essentially the same as those in the even Chern metal case
shown in Fig.38, so the metallic phase in −4t < h < 0 can be
called even-like Chern metal.

The total Hamiltonian takes the form:

H(k) = −2tb(sin ky + 1− cos ky) +HQAH(k) (135)

The two energy bands are:

E±(k) = ±EQAH(k)− 2tb(sin ky + 1− cos ky) (136)

At the QPT from the Chern metal phase to the band
metal, there is no Hall conductance jump at h/t = 4, but
a Hall conductance jump at h/t = −4 and 0. To exam
the Hall conductance jump, by tracing the location of the
FS, we find it can still be classified into the even-like or
odd-like Chern metals.
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FIG. 31. The longitudinal edge structure of the even-like
Chern metal at different h/t values. Other parameters are
t = 1, ts = 1, tb = 0.85 < 1. Top (a) h/t = −4.5, no edge
state, bulk FS, just a band metal (b) h/t = −3.5, an edge
state at Fermi energy near ky = 0, bulk FS, even-like Chern
metal. There is TPT from (a) to (b) and an associated unit
Hall conductance jump due to the useful edge mode in (b).
Middle (a) h/t = −0.5, an edge state at Fermi energy near
ky = 0, even-like Chern metal (b) h/t = +0.5, there is an
edge state near ky = π, but it is well below the Fermi energy.
So despite there is an edge mode floating around the vast
majority of bulk states. It is a BM. There is a TPT from (a)
to (b) and an associated unit Hall conductance jump due to
the useful edge mode in (a). Bottom (a) h/t = +3.5, there
is an edge state near ky = π, but it is well below the Fermi
energy, a BM (b) h/t = +4.5, no edge state, a BM. There is no
Hall conductance jump. Inside the even-like Chern metal, the
edge modes at the Fermi energy near ky = 0 satisfy vLvR < 0,
thus the Hall conductance jump is an integer. These features
are essentially the same as those in the even Chern metal
shown in Fig.39, so can be called even-like Chern metal.

A. The even-like Chern metal

When tb ≤ ts, the situation is similar to the even case
II presented in the appendix B, thus there is no Hall con-
ductance jump at h/t = 4, but a unit Hall conductance
jump at h/t = −4 and 0. It is shown in Table III which
is identical as the Table V for the even Chern metal, so
the metallic phase in −4t < h < 0 can be called even-like
Chern metal. The change of Chern number ∆Ch− can
be read from Fig.1, which is independent of σ0 term.

TABLE III. The Universal Hall conductance jump from the
even-like Chern metal to BM extracted from Fig.30. It is
defined as that of BM subtracts that of the even CM.

h ∆σ− ∆σ+ ∆σ ∆Ch−
−4|t| +1 0 1 1

0 +2 -1 1 2
+4|t| -1 +1 0 -1
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FIG. 32. Berry curvature Ω+(k) and the FS of the odd-like
Chern metal: Other parameters are t = 1, ts = 1, tb = 1.25 >
1. The black curve, the red × and the green line denote
the same information as Fig.36. However, the main difference
than Fig.30 is that the lower band is not always occupied, then
the orange line denotes the hole FS of the lower band which
is small and magnified in the figure. Top: near h/t = −4: the
upper band FS inclined to enclose the singularity of Ω+(k),
it leads to ∆σ+ in the first line in Table III. the lower band
FS inclined to exclude the singularity of Ω−(k), it leads to
∆σ− in the first line in the Table III. thus the Universal Hall
conductance jump is a non-integer; Middle: near h/t = 0: the
upper band FS inclined to enclose one of the two singularities
of Ω+(k), the lower band FS inclined to exclude one of the two
singularities of Ω−(k), thus the Universal Hall conductance
jump is a non-integer; Bottom: near h/t = +4: the upper
band FS always enclose the singularity of Ω+(k), the lower
band is full occupied, thus the Hall conductance jump is 0.
As shown in Table IV, Fig.33 and appendix C, the metallic
phase in −4t < h < 0 can be called odd-like Chern metal.

B. The odd-like Chern metal

When tb > ts, the situation is similar to the main
text “odd” case. thus there is no Hall conductance jump
at h/t = 4 and non-integer Hall conductance jump at
h/t = −4 and 0. The value of non-integer is nothing but
ts/tb.

TABLE IV. The Universal Hall conductance jump of the
odd-like Chern metal to BM. The change of Chern number
∆Ch− is the same as that in Table-III.

h ∆σ− ∆σ+ ∆σ
−4|t| ts/(2tb) ts/(2tb) ts/tb

0 +1 + ts/(2tb) −1 + ts/(2tb) ts/tb
+4|t| -1 +1 0
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FIG. 33. The longitudinal edge of the odd-like Chern metal
in a stripe geometry at different h/t values. Other parameters
are t = 1, ts = 1, tb = 1.25 > 1. Top (a) h/t = −4.5, no edge
state, a bulk FS, a BM. (b) h/t = −3.5, an edge state at Fermi
energy near ky = 0, a bulk FS, an odd-like Chern metal. Due
to the useful exotic edge mode in (b), there is a universal
non-integer Universal Hall conductance jump across the TPT
from the BM to the odd-like CM. Middle (a) h/t = −0.5,
an edge state at Fermi energy near ky = 0, a bulk FS, an
odd-like Chern metal. (b) h/t = +0.5, there is an edge state
near ky = π, but it is well below the Fermi energy. despite an
edge mode floating around the vast majority of bulk modes.
Due to the useful exotic edge mode in (a), there is a universal
non-integer Universal Hall conductance jump across the TPT
from (a) to (b). Bottom (a) h/t = +3.5, there is an edge
state near ky = π, but it is well below the Fermi energy, a
BM. (b) h/t = +4.5, no edge state, a BM . There is no Hall
conductance jump. Inside the odd-like CM, the exotic edge
modes at the Fermi energy near ky = 0 satisfy vLvR > 0,
thus the Universal Hall conductance jump is a universal non-
integer.

which is identical to the odd-Chern metal presented
in Secs.II-VI, so the metallic phase below −4t < h < 0
can be called odd-like Chern metal. Note that due to
the C- symmetry, the jump from one odd Chern metal
to another odd Chern metal near h = 0 is “twice” that
from the odd CM to BM ( Fig.24 ). Here, due to the
absence of the C- symmetry, there is only TPT from an
odd CM to a BM, the TPT from one odd CM to another
odd CM is absent, so does the “doubling”.

IX. ”TOPOLOGICAL INVARIANTS” AND
BULK-EDGE CORRESPONDENCE IN GAPLESS

FERMIONIC SYSTEMS WITH EXTENDED
FERMI SURFACE

Table I shows that the Chern number ( or Chern num-
ber jump ) may not be an effective way to distinguish
even/odd Chern metal from the band metal. Because as
shown in the appendix A and B, the band metal could
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also have non-vanishing Chern number. There could also
be Chern number jump across two band metals which
are essentially the same quantum phase. The band metal
and even/odd CM themselves all have non-vanishing Hall
conductances ( Only in the fine tuning case addressed in
Sec.II and Sec.III, the band metal itself has zero Hall con-
ductance ). It is the Universal Hall conductance jump
which plays the role of the ”topological invariant ” to
distinguish phases with different topological properties.
However, they may not be an integer anymore: it re-
mains an integer at the TPT from ECM to band metal.
However, it becomes any number at the TPT from OCM
to band metal. Chern number or its jump are not exper-
imentally measurable, but the Hall conductance jumps
are. There are also corresponding TPT in the L-edge
mode. However, as shown in Table 1, these TPTs are
not QPT. So far, they present the very first example of
TPT which is not a QPT. These salient features describe
completely the unique properties of ”topological invari-
ants” and bulk/edge correspondence in gapless topolog-
ical phases with extended FS. Of course, the topologi-
cal gapless phases studied in this manuscript have no in-
direct gaps, but still direct gaps which give the room for
bulk ”topological invariants” and the associated L-edge
modes.

A. Chern number (jump) versus the Hall
conductance (jump)

It was known that the topological invariant can not
be experimentally measured directly. What can be ex-
perimentally measured directly is the Hall conductance
σH . As shown in the introduction, there are intricate
relations between the two [34]: in the gapped insulating
phases such as the even Chern insulator, odd Chern in-
sulator and band insulator, they are the same, but in the
gapless metal phases such as Band metal, even CM and
odd CM, they maybe different: the Chern number Ch−
is evaluated over a given band, independent of the fillings
of the band, so can only be an integer [47]. But the Hall
conductance σH depends sensitively on the filling of the
band, so need not to be quantized and can be any number
even at T = 0. One can also evaluate σH(T ) at a finite T
by incorporating the Fermi distribution functions on the
fillings of the band at a finite T . Most importantly, there
are enriched bulk-edge correspondences across the bulk
TPT from the even Chern insulators to odd Chern Insu-
lator, then to Odd Chern metals or an alternative path
from the even CI to even CM, then to Odd CM shown
in Fig.2. The differences between Ch− and σH , espe-
cially their jumps in the Odd/Even Chern metal phases
can be fully appreciated in both longitudinal edge and
transverse edge.

B. A first example of TPT without a QPT

It is interesting to dig further from Sec.II-D on the
universal unit conductance jump from the even CM to
the BM listed in Table III and the universal non-integer
conductance jump from the odd CM to the BM listed
in Table IV. Just from the change in the ground state
energy which reflects the quantum fluctuations, it is not
a QPT. As demonstrated in the last section, both odd
and even CM have a non-vanishing Chern number and
associated edge modes near the Fermi energy inside the
gap. But some BM also has non-vanishing Chern number
and some floating L-edge modes near the Fermi energy
only.

However, from the change in the bulk Berry curvature,
especially near the Dirac points, which reflects the global
topological features, it does show the universal Hall con-
ductance jump. So it is clearly a TPT.

From the change in the edge modes which also reflects
the global topological features, it does show the change
in the edge mode: the even CM has edge modes at the
Fermi energy near the projection of the Dirac points on
the edge satisfying vLvR < 0. the odd CM has edge
modes at the Fermi energy near the projection of the
Dirac points on the edge satisfying vLvR > 0. These
Dirac points are also the bulk singularities in the bulk
Berry curvature. The even CM and odd CM have the
same bulk, but different edge with an edge reconstruction
dynamic exponent zL = 2. While the BM does not have
such edge modes except some floating edge modes away
from these projection points.

It is also instructive to compare this universal Hall con-
ductance jump to the universal jump in the superfluid
density across the KT transition ∆ρs/kBT = π/2. It is
a topological phase transition driven by vortex binding-
unbinding, no order parameters, no symmetry breaking,
has an essential singularity in free energy and also an infi-
nite order transition. Numerically, we are not able to tell
if there is also such a essential singularity in the ground
state energy across the even/odd CM to BM transition.

In summary, this maybe the very first example of a
TPT with the corresponding edge reconstruction, but
not a QPT. So far, all the previous known examples are
TPT is always accompanied by a QPT [30]. Namely, any
changes in topology and topological invariants is also ac-
companied by the change in the ground state energy. Of
course, a QPT need not necessarily a TPT. This very first
example maybe contrasted to the bosonic 2d KT which
is in its own class in 2d classical and 1+1 d quantum
critical phenomena.

X. EXPERIMENTAL DETECTIONS BY
INJECTING CURRENT OR IN A MOVING

SAMPLE

This work consists of two parts. In the first part, we
explore the QAH in a NN injecting current. In the sec-
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ond part, we examine the QAH subject to a NN gauge
invariant current plus a NNN current. As shown in [23]
and reviewed in the appendix E, the second part may
also apply to the QAH in cold atom systems where the
SOC is generated artificially, therefore non-relativistic.
In this section, we discuss the experimental detections in
the following three different and complementary set-ups
respectively.

1. In a NN injecting current

The first experiment to do is to directly inject current
into the QAH systems shown in Fig.1a,b. In fact, the
injecting current is nothing but the d0(k) term in Eq.6
in the momentum space which breaks the Parity. Of
course, as alerted at the very beginning, a parity-even
component ε0(k) = −2te(2 − cos kx − cos ky) may also
exist in any real material in the first place. Its effects
can be addressed similarly as in Sec.VII-VIII. Injecting
currents maybe just the most effective way to tune this
P- breaking term to drive the TPTs in Fig.3 or Fig.29.
As shown in Fig.3, it needs tb/t = 1 to reach the odd
CM directly from the even CI. As shown in Fig.29. Near
h/t ∼ 0−, it is easy to reach the even-like CM from the
even CI due to tb/t → 0−, but it still needs tb/t = 1 to
reach the odd-like CM.

All the measurements can be routinely performed in a
static sample. The whole global phase diagram Fig.3 and
Fig.29 can be explored by just tuning the strength of the
injecting current tb. For example, various light [32, 33],
atom, X-ray ( or ARPES ) and neutron scattering can
be used to detect the bulk FS geometry, the bulk exci-
tation spectrum and the associated edge reconstructions
in all the phases in Fig.24 and Fig.29. The conventional
2-terminal or 4- terminal transport measurements can
be applied to measure the Hall conductance σH and its
jump ∆σH from even/odd CM to the band metal. The
specific heat Cv, the compressibility κu and the Wilson
ratio Rw can be separately measured by various estab-
lished thermodynamic measurements in both materials
and cold atom systems.

2. In a NN gauge invariant current plus NNN current

The injecting current term could also be the gauge-
invariant current in Eq.106. We assume the NN dimen-
sionless ratio κb1 and the NNN hopping tb2 in Eq.106 can
be controlled independently. Then the full phase diagram
Fig.24, especially the odd CI phase and its associated
edge modes can be explored.

From Eq.115, one can see that the band insulator with
Ch− = 0 in the absence of the current near the phase
boundary h/t ∼ ±4 can be transformed to the Chern in-
sulator with Ch− = ±1 by injecting the current Eq.106.
This is because the gauge-invariant current effectively in-
creases the hopping t and the SOC strength ts accord-

ing to Eq.115, therefore reduces the critical value of h/t.
This qualitative change of ground state can be detected
by measuring the Hall conductance σH and also detecting
the edge modes by ARPES. tb term Eq.116 leads to the
Doppler effect in the electronic spectrum which changes
sign when κb1 = 1. This sign change can be captured
by the various light scattering detections. By keeping
κb1 � 1, increasing the NNN tb2 current will drive the
even CI to odd CI, then the odd CI to odd CM in Fig.24 .
It needs tb/t = 1 to reach the odd CI, then a even larger
tb/t > 1 to reach the odd CM. The evolution of edge
states, the edge reconstruction, the enriched bulk-edge
correspondence, especially in the odd CI and odd/even
CM can be mapped out by light scattering detections in
the longitudinal or transverse moving sample in Fig.27
and 28.

3. In a moving sample for the artificially generated QAH

As discussed in [23], if the SOC is artificially created in
cold atom system [12, 13, 28], it is not a relativistic effect.
The spin in the SOC is just a pseudo-spin consisting of
two hyperfine states. Then the gauge invariant current
plus a NNN current in Eq.106 can be generated by a
Galileo transformation (GT) as analyzed in the appendix
E, except the two terms are not independent anymore.
So some of the results achieved in Sec.V and VI can be
adopted to this case also with some stringent restrictions.

Emitter
Detector

Track v

QAH Strip

Reservoir

FIG. 34. Light ( ARPES), atom or neutron scattering on
a moving QAH sample with a strip geometry and a velocity
~v. The longitudinal moving means the sample edge is along
the velocity ~v. The transverse moving means the sample edge
is normal to the velocity ~v. As shown in Sec.V, VI and ap-
pendix E, the edge states show quite different behaviours in
the longitudinal or the transverse moving case which can be
detected by the scattering cross sections. The multiple irra-
diating lines from the emitter declinate the irradiation regime
where the sample enter and leave, then the scattered beams
can be detected by the receiver. In a grand canonical ensem-
ble, the Reservoir shows exchange particles with the sample
through the chemical potential µ.

From Eq.E5, one can see that the band insulator with
Ch− = 0 in the static frame v = 0 near the phase bound-
ary h/t ∼ ±4 can be transformed to the Chern insu-
lator with Ch− = ±1, but not the other way around.
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This counter-intuitive phenomenon can be best read from
Eq.E5: the Galileo boost effectively increases the hopping
t and the SOC strength ts, therefore reduces the critical
value of h/t. However, due to tb/t � 1, one is not able
to even get close to the phase boundaries from the CI to
odd CI, let alone the odd CI to odd CM in Fig.24 which
all happen when tb/ts > 1. So the NNN tb term can
only introduce a small Doppler effect in the electronic
spectrum.

Even so, we still have the three interesting results ac-
cessible to the detection in Fig.34: (1) The band insu-
lator near the 3rd order TPT from the Chern insula-
tor to the band insulator will turn into a Chern insula-
tor (2) There is a Doppler shift term in the fermionic
spectrum in the moving sample which changes sign when
v = vc = t0/tb1. For the cold atom systems in an opti-
cal lattice, the characteristic velocity can be estimated as
vc ∼ 1cm which is easily within experimental reach [23].
(3) The shifted edge dispersions Eq.92 in the longitudi-
nal edge and Eq.100 in the transverse edge. These three
predictions can be detected in the moving sample Fig.34
by taking advantages of both bulk and longitudinal or
transverse edge properties.

First thing to try is to set the sample static in the lab
frame S, but observed in the moving frame S′. In prac-
tice, the sample is very small, but the detecting device
is usually heavy. Because exchanging the role of the lab
and moving frame does not change the results, because
both are related by Galileo transformation (GT) anyway.
So, in a practical scattering detection experiment shown
in Fig.34, it is more convenient to set the emitter and
the receiver static and make the sample moving with a
constant velocity ~v. Due to the small size of the sample,
it is not easy to focus the beam on the sample when it is
moving. To overcome this difficulty, one may just contin-
uously shine the emitting beam, only when the sample
move into its shadow, it will be scattered and collected
by the detector. When it moves out of the shadow, there
is no scattered beam anymore.

However, when setting the sample moving with a con-
stant velocity v in Fig.34, some of the measurements such
as transports may become hard to implement. The Chern
number Ch− is not experimentally measurable in any in-
ertial frames anyway. Fortunately, all kinds of scatter-
ing experiments mentioned in 1 and sketched in Fig.34
remain applicable. One simply perform all the measure-
ments in the lab frame S, so for the light scattering,
there is no need to consider the relativistic Doppler shift
of the photon. Unfortunately, it seems difficult to mea-
sure the free energy, therefore the specific heat in the
moving sample. Even more difficult things to measure
is the Hall conductance σH which can be used to distin-
guish the Chern insulator from the band insulator, also
the Odd Chern metal from the band metal. Fortunately,
they can still be detected by the edge states either in
longitudinal or transverse moving shown in Fig.34.

XI. CONCLUSIONS AND PERSPECTIVES

The global phase diagram Fig.3 due to the injecting
current and Fig.24 due to the gauge invariant current or a
moving sample contain several novel TPT/QPT. Several
new concepts also emerge from these phase diagrams: en-
riched bulk/L-edge/T-edge correspondences which lead
to intervening new topological phases such as OCI and
ECM, the L-edge dynamic exponent such as zL = 2, 3,
the T-edge critical behaviour such as ∼

√
v2 − c2, the

Universal Hall conductance jump replace the Chern num-
ber as ”topological invariants”, especially a TPT which
is not a QPT such as the OCM to BM and ECM to BM
transition, etc.

It is instructive to compare the non-interacting spin-
1/2 SOC fermionic TPTs in Fig.3 with that of the inter-
acting spin-0 bosonic Mott to the superfluid (SF) QPT
with z = 1 in [23]. One can make the following loose anal-
ogy between the two systems: h/t ∼ U/t, band insulator
∼ Mott phase, Chern insulator ∼ SF phase, Odd Chern
metal/band metal phase ∼ Boosted SF (BSF) phase.
Here it has no symmetry breaking, the continuous U(1)
symmetry and the discrete C-symmetry are never bro-
ken, so no order parameters. The change of FS topology
and geometry across TPTs can be characterized by the
topological invariants such as the Universal Hall conduc-
tance jump ∆σH . There are also corresponding edge-
states through the enriched bulk-edge correspondences.
However, in the interacting bosonic case, the continuous
U(1) symmetry and the discrete C- symmetry can be bro-
ken and characterized by various order parameters: the
U(1) is broken in the SF, both U(1) and C- are broken
in the BSF phase. There are no non-trivial edge modes,
let alone any edge reconstructions in such topologically
trivial interacting bosonic systems. The boost favors the
SF phase in the boson case. Here it favors the Chern
insulator. For the interacting bosons, moving away from
the C- symmetric point corresponds to z = 2. In Sec.II-
VI, we focus on the half filling µ = 0 case which respects
the C-symmetry. In appendix A, we study the µ 6= 0 case
by doping the QAH materials. We also investigate the
much more interesting cases of breaking the C-symmetry
in the appendix B and Sec.VII-VIII.

The Universal Hall conductance jump ∆σH replace the
Chern number jump to become the new bulk topological
invariant involved in the even/odd CI and the even/odd
CM discovered in this work ( Fig.2 ). There is also
corresponding new enriched bulk/L-edge/T-edge corre-
spondence. It is these combined features which lead to a
likely complete classification of quantized, especially un-
quantized AHE metals. It is constructive to compare to
the 3d Weyl metals where there is no new topological
invariant involved, but a new structure of edge modes
called Fermi-arc. It also contributes to a un-quantized
3d AHE σxy = e2/h× (2k0) where 2k0 is the momentum
distance along ẑ between the + and − Weyl point. As
mentioned in the introduction, our approach to the clas-
sification of gapless AHE metallic phase is complemen-



36

tary to the traditional one using SPT or SET to clas-
sify gapped or gapless topological phases: We start from
the known parent Hamiltonian whose topological phases
are known, then add various symmetry breaking pertur-
bations to drive the known topological phases to new
topological phases through new TPTs. Here, we add the
P-breaking currents leading to the odd Chern Insulator
or odd Chern-metal. We also add the C- breaking energy
dispersion leading to possible even Chern metals. This
specific Hamiltonian based classification scheme has the
advantages to discover new topological phases through
possible novel TPTs, so can be used to classify topolog-
ical phases and TPTs at the same time. Furthermore it
also automatically leads to various deformed Hamiltoni-
ans hosting these phases, so may be directly connected
to experimental realizations. The disadvantages is that
it is hard to prove it is a complete and exhaustive classifi-
cations. It remains to show its completeness from a sym-
metry based approach such as K-theory on the Wannier
basis [43]. However, it remains very challenging to clarify
completely and exhaustively topological gapless phases
with extended FS with z = 2 from such an abstract al-
gebraic/topological K-theory approach, and also classify
the bulk TPTs and the edge reconstructions among these
phases.

Recently, there are also new advances in the classifica-
tion of 1d gapless interacting topological phases [44–46]
where 2d CFT and boundary CFT can be a useful tool.
Due to the lack of local CFT, its extension to higher
dimensions is more challenging. Here, we attempt a clas-
sification of 2d gapped Chern insulators and 2d gapless
AHE metals with extended FS and z = 2. Obviously, it
has no conformal invariance in the first place, so 2d CFT
and boundary CFT may not apply. It may also tempting
to study the effects of the Hubbard interaction U in both
the weak U/t � 1 and strong coupling U/t � 1 limit
in Eq.1 under an injecting current or in a moving sam-
ple. In the strong coupling limit and at integer fillings,
both the bosonic and fermionic Hubbard model leads to
various quantum spin models. Drawing the insights here
achieved on the non-interacting topological phases, we
expect that Similar methods may also be applied to study
the strongly interacting SPT and SET, an injecting cur-
rent will also drive SPT/SET to new SPT/SET through
some novel TPTs. SPT/SET near a TPT may also de-
pend on sensitively the observer in an inertial frame.
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Appendix A: ” Even Chern metal ” Case I:
ε0(k) = −tb = −µ

As defined in Sec. VII, a even Chern metal breaks the
C-symmetry, but keeps P-symmetry. The simplest even
case is to choose ε0(k) = −tb = −µ in Eq.131. However,
in this appendix, we show that simply doping the Chern
insulator only leads to a band metal (BM). The naively
thought even Chern metal is nothing but the same phase
as the BM. As stressed in Sec.IX, this is also the simplest
example to show the Chern number and its jump may not
be effective anymore in characterizing gapless fermionic
topological phases with extended FS.

This corresponds to the doped case away from the
charge neutral point µ = 0. The total Hamiltonian
Eq.131 takes the form

H(k) = HQAH(k)− µ (A1)

where the chemical potential µ is tuned by the reservoir
in Fig.34.

At the QPT from the even Chern metal phase to the
band metal, there is no singularity in the ground-state
energy density and no Hall conductance jump. The two
energy bands are

E±(k) = ±EQAH(k)− µ (A2)

where EQAH(k) =
√

[h+ 2t(cos kx + cos ky)]2 + 4t2s(sin
2 kx + sin2 ky).

To exam if there is a Universal Hall conductance jump,
without loss of generality, we take µ > 0. Near h/t = −4,
the Berry curvature singularity is located at K0 = (0, 0),
E±(K0) = −µ < 0, both upper band and lower band
Fermi Surface (FS) enclose the K0. So according to
Eq.132, the Universal Hall conductance jump eventually
cancels as shown in the Table V. Similar situation
happens for h/t = 0 and +4.
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FIG. 35. (a) The global phase diagram of the Lattice Hamil-
tonian (A1) for the even Chern Metal I. (b) The Hall con-
ductance as a function of h/t for various fixed values of
µ/t = 1.0, 1.5, 2.0, 2.5. The Hall conductance shows no jump
at h/t = −4, 0,+4. As shown in this appendix, the “ even ”
Chern metal phase is essentially the same as the band metal
phase, except it may just has a larger AHE than the BM.
One may simply call all the metallic phase just BM. For a
similar analog in the interacting bosonic quantum anomalous
Hall system, see [28].
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FIG. 36. The Berry curvature Ω+(k) and the Fermi surfaces
(FS) of the even Chern metal case I: Other parameters are t =
1, ts = 1, µ = 1. The black curve is the contour of Ω+(k) = 0,
which separates the positive part denoted by “+” from the
negative part denoted by “-”. The red × denotes the singular
part of Ω+(k) listed in Eq.133. The green line denotes the
electron FS. Top, near h/t = −4, Middle, near h/t = 0,
Bottom, near h/t = +4. The upper band FS always encloses
the singularity of Ω+(k). They lead to ∆σ+ in the Table V.
The lower band is always occupied, so always encloses the
singularity of Ω−(k), it leads to ∆σ− in the Table V. Thus
there is no Hall conductance jump ∆σ = ∆σ+ + ∆σ− as
shown in the Table V. One may simply call all the metallic
phase just as BM.

TABLE V. The Table of the Universal Hall conductance jump
of the even Chern metal case I. The change of Chern number
∆Ch− is the same as that in Table-III.

h ∆σ− ∆σ+ ∆σ
−4|t| +1 -1 0

0 +2 -2 0
+4|t| -1 +1 0

which shows there is no difference between the “even”
Chern metal here and the BM. So One may simply call
all the metallic phase as just BM.

The bulk-edge correspondence in this simplest even-
Chern metal case can be extracted from Fig.20 and Fig.21
at tb = 0 by cutting the edge modes at the chemical
potential µ > 0 instead of at µ = 0. Because tb = 0, there
is no difference between longitudinal and transverse. If
the cut remains inside the bulk gap, it is still a Chern
insulator phase. When it also cuts some bulk states, it
moves into the “even” Chen metal phase. Then it never
cuts any edge mode near ky = 0 when h < 0 or ky = π
when h > 0, so there is no jump in the Hall conductance,
as indicated in Sec.VII-C. One may still see one edge
mode floating above the vast majority of bulk modes, the

edge mode does not play any significant role anymore. In
fact, this floating edge mode can be simply absorbed into
the vast majority of bulk modes.

In summary, there is no ground state energy singular-
ity, no Hall conductance jump from the tentative “even”
Chern metal to the band metal. Despite to so called
“even” Chern metal has a non-vanishing Chern number
in its whole band structure, there is really no any physi-
cal measurable bulk or edge quantities to distinguish the
two phases, they are really the same phase which is noth-
ing but the conventional BM phase. So there are only
three phases in Fig.35: CI, BI and BM. In fact, simi-
lar phenomenon also happens in the interacting bosonic
quantum anomalous Hall (QAH) system, see [28].

Appendix B: Even Chern metal Case II:
ε0(k) = −2tb(1− cos ky).

In the last appendix, we show that simply doping the
Chern insulator may not lead to a real even Chern metal.
Here we discuss a second example by choosing ε0(k) =
−2tb(1 − cos ky) which does lead to a real even Chern
metal The total Bloch Hamiltonian takes the form

H(k) = −2tb(1− cos ky) +HQAH(k) (B1)

At the QPT from the even Chern metal phase to the
band metal, there is no Hall conductance jump at h/t = 4
but a unit Hall conductance jump at h/t = −4 and 0.
The two energy bands are

E±(k) = ±EQAH(k)− 2tb(1− cos ky) (B2)

To exam the Hall conductance jump, we just exam-
ine the FS according to Eq.132. At h/t = −4, the
Berry curvature singularity is located at K0 = (0, 0) and
E±(K0) = 0. For h/t ≈ −4, E+(K0) > 0, E−(K0) < 0,
the upper band FS does not enclose the K0, but the lower
band FS encloses the K0. Thus, there is a unit Hall con-
ductance jump. At h/t = 0, the Berry curvature sin-
gularity is located at K1 = (π, 0) and K2 = (0, π), thus
E±(K1) = 0 and E±(K2) 6= 0. For h/t ≈ 0, E+(K1) > 0,
E−(K1) < 0, the upper band FS does not enclose the
K1, but the lower band FS encloses the K1. Meanwhile,
E±(K2) always greater than 0 or smaller than 0, the up-
per band and the lower band FS both enclose or exclude
the K2. Thus, there is a unit Hall conductance jump
contribution from K1. At h/t = +4, the Berry curvature
singularity is located at Kπ = (π, π) and E±(Kπ) 6= 0.
For h/t ≈ +4, E+(Kπ) always greater than 0 or smaller
than 0, the upper band and the lower band FS both en-
close or exclude Kπ. Thus, there is no Hall conductance
jump. In short, only the metallic phase below h = 0 can
be named as even Chern metal, all the other metallic
phases are just BM.

Due to the C- symmetry breaking, h → −h is not
related by the Time-reversal transformation anymore.



38

0.5 1.0 1.5

BI

CI

CI

BI

0

2

4

6

–2

–4

–6

h/t

tb/t

CM

CM

CM

CM
CM

BM
BM

BM

even
even

σH

tb=0.25

h/t

ΔσH=1

ΔσH=0

tb=0.5

tb=1.0

tb=1.25

(a) (b)

FIG. 37. In both (a) and (b), we also fixed t = ts = 1. (a)
The global phase diagram of the Lattice Hamiltonian (B1) for
the even Chern metal case II. The even CM exist when −4 <
h/t < 0. While all the CM at 0 < h/t < 4 are essentially the
same as the BM despite superficially their bands have a non-
vanishing Chern number. Due to this superficial difference
and its relatively larger AHE, we still keep the symbol CM in
the figure. See also Fig.29 which also hosts odd-like CM. (b)
The Hall conductance as a function of h/t for various fixed
values of tb/t = 0.25, 0.50, 1.00, 1.25. The Hall conductance
only shows a unit jump at h/t = −4, 0. Especially, the tb/t =
0.25 curve shows a unit jump near h/t = 0 from the even CM
to a BM , and also a unit jump near h/t = −4 from the CI to
BI; the tb/t = 1.25 curve shows the even CM to a BM with
a unit jump near h/t = 0 and h/t = −4 ( see Table VI and
Fig.39 ). As shown in Table VI and Fig.39, only the metallic
phase −4t < h < 0 can be named as even Chern metal, all
the other metallic phases are just BM. Near h/t ∼ 0−, it is
easy to reach the even CM from the CI due to tb/t→ 0−.

TABLE VI. The Universal Hall conductance jump of the even
Chern metal case II to BM in the bulk. It has the same ∆σ−
as those in Table V. But ∆σ+ is different, so the total ∆σ is
different. The change of Chern number ∆Ch− is the same as
that in Table-III.

h ∆σ− ∆σ+ ∆σ
−4|t| +1 0 1

0 +2 -1 1
+4|t| -1 +1 0

Appendix C: The universal non-integer Hall
conductance jump of the “odd” Chern metal

We also have a graphics interpretation of the Hall con-
ductance of “odd” Chern metal discussed in the main
text. The Hall conductance is an integral of Berry cur-
vature over occupied states. The zero temperature Hall
conductance can be evaluated as σH = σ− + σ+:

σs =
1

2π

∫
R2

Ωs(k)Θ(−εs(k))d2k (C1)

where we have use the continuum theory to demonstrate
the results.

Due to the C-symmetry in the odd Chern metal, the
zero temperature Hall conductance can be also rewritten
as

σH = Ch− + 2σ+ (C2)
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FIG. 38. Berry curvature Ω+(k) and the FS of the even Chern
metal case II, it leads to ∆σ+ in the Table VI. Other param-
eters are t = 1, ts = 1, tb = 1.25. The black curve, the red
× and the green line denote the same information as Fig.36.
Top: near h/t = −4: the upper band FS always excludes the
singularity of Ω+(k) leading to ∆σ+ = 0, thus the Hall con-
ductance jump is 1; Middle: near h/t = 0: the upper band
FS only encloses one of the two singularities of Ω+(k) lead-
ing to ∆σ+ = −1, thus the Hall conductance jump is also 1;
Bottom: near h/t = +4: the upper band FS always encloses
the singularity of Ω+(k) leading to ∆σ+ = 1, thus the Hall
conductance jump is 0. The lower band is always occupied,
so always encloses the singularity of Ω−(k), it leads to ∆σ−
in the Table VI. Only the metallic phase at −4t < h < 0 can
be named as even Chern metal, all the other metallic phases
are just BM.

Note that due to the role played by the C-symmetry,
Eq.C2 does not hold in the even Chern metal presented
in the appendix A and B or odd-even mixed case stud-
ied in Sec.VIII. So it only applies to the odd CM here.
of course, the evaluations in the appendix A and B and
Sec.VIII also applies here.

Below we will consider the αxαy > 0 case and αxαy <
0 case separately.

1. αxαy > 0 case: from the odd CM to the BM

Without loss of generality, we consider h/t ∼ −4 cases,
which belongs to the αxαy > 0 case in Eq.34,

H0(k) = [∆ + α(k2
x + k2

y)]σz + vkxσx + vkyσy − ckyσ0

(C3)

where ∆ = −(h+ 4t), α = t, v = 2ts, c = 2tb.
The distribution of the Berry curvature Ω+(k) and the

electron Fermi surface is shown in Fig. 40. Without
loss of generality, we have fixed αx = αy = 1, v = 1,
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FIG. 39. The longitudinal edge structure in a stripe geom-
etry of the even Chern metal case II at different h/t values.
Other parameters are t = 1, ts = 1, tb = 1.25. Top (a)
h/t = −4.5, no edge state, has a bulk FS, it is a BM. (b)
h/t = −3.5; an edge state at Fermi energy near ky = 0, also
a bulk FS. It is a even Chern metal phase. Due to the use-
ful edge state in (b), there is a unit Hall conductance jump
across the TPT from the BM to the even Chern metal phase.
Middle (a) h/t = −0.5, an edge state at Fermi energy near
ky = 0, also a bulk FS. It is a even Chern metal phase. (b)
h/t = +0.5; there is an edge state near ky = π, but it is
well below the Fermi energy. Despite there is an edge mode
floating near the vast majority of bulk modes. It is still a
BM. Due to the useful edge state in (a), there is a unit Hall
conductance jump across the TPT from the even Chern metal
to the BM phase. Bottom (a) h/t = +3.5, there is an edge
state near ky = π, but it is well below the Fermi energy. it
is a BM. (b) h/t = +4.5, no edge state. It is also a BM. As
expected, there is no Hall conductance jump from the BM to
the BM. Inside the even Chern metal, the edge modes at the
Fermi energy near ky = 0 satisfy vLvR < 0. The Universal
Hall conductance jump from the even Chern metal to the BM
is an integer.

c = 1.3. When ∆ > 0 in the BM, Ω+(k) over FS con-
tains positive part and negative part, thus the integral σ+

is almost get cancelled, (exactly cancelled when n = 1),
which suggests a negligible Hall conductance contribu-
tion from the upper band. Since the Ch− = 0, thus the
total Hall conductance is negligible. When ∆ < 0 in the
odd CM, Ω+(k) over the FS only contains positive part,
thus the integral σ+ is also a positive number. Due to
the Ω+(k) over entire k gives +1, if c/v is not too large,
we also know that σ+ � 1. Since the Ch− = −1, thus
σH = Ch− + 2σ+ = −1 + 2σ+ is still a negative num-
ber, and the total Hall conductance takes a non-negligible
negative value. As varying ∆ from positive to negative
values, the Hall conductance has to show a jump in order
to connecting a non-negligible value to a negligible value.
This is the case for the Hall conductance jump around
h/t = ±4.
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FIG. 40. According to Eq.C2, these pictures explain the
universal non-integer Hall conductance jump around h/t =
±4. The distribution of the Berry curvature Ω+(k) and the
electron FS at fixed αx = αy = 1, v = 1, c = 1.2 and varying
(a) ∆ = +0.1 in the BM (b) ∆ = 0 (c) ∆ = −0.1 in the
Odd CM. The black curve is the contour of Ω+(k) = 0, which
separates the positive part denoted by “+” from the negative
part denoted by “-”.

2. αxαy < 0 case: from odd CM to its the
time-reversal partner odd CM.

When h ∼ 0 and near the two valleys K1 and K2, we
have

H1 = [∆− α(k2
x − k2

y)]σz − vkxσx + vkyσy − ckyσ0

H2 = [∆ + α(k2
x − k2

y)]σz + vkxσx − vkyσy + ckyσ0

(C4)

where ∆ = −h and other parameters are the same as the
h ∼ 4t case discussed in Sec.III-A. Note the opposite sign
of the velocities v between kx and ky and opposite sign
of α between k2

x and k2
y indicating αxαy < 0.

One may also identify the relation between H1 and H2,
Ω1,+(k; ∆) = −Ω2,+(k;−∆), and σ1,+(∆) = −σ2,+(−∆)
Thus the total Hall conductance is

σH = Ch− + 2σ+, Ch− = Ch1,− + Ch2,−,

σ+ = σ1,+ + σ2,+ = σ2,+(∆)− σ2,+(−∆) (C5)

The distribution of the Berry curvature Ω2,+(k) and
the electron Fermi surface is shown in Fig. 41. Without
loss of generality, we have fixed αx = −αy = 1, v = 1,
c = 1.2. When ∆ > 0 in the odd CM, Ω2,+(k) over the
FS only contains positive part, thus the integral σ2,+ is
also a positive number. When c/v is not too large, we also
know that σ2,+ � 1. When ∆ < 0 in the time-reversal
partner of the odd CM, Ω2,+(k) over the FS contains
positive part and negative part, thus the integral σ2,+

is almost get cancelled, (exactly cancelled when n = 1).
Combining ∆ > 0 and ∆ < 0 case, we conclude: if ∆ > 0,
σ+(∆) = σ2,+(∆) − σ2,+(−∆) ≈ σ2,+(∆); if ∆ < 0,
σ+(∆) = σ2,+(∆) − σ2,+(−∆) ≈ −σ2,+(−∆). We also
know Ch− = − sgn(∆), so the total Hall conductance is:

σH ≈ − sgn(∆) + 2 sgn(∆)σ2,+(|∆|)
= − sgn(∆)[1− 2σ2,+(|∆|)] (C6)

When c/v is not too large, σ2,+(|∆|) is a small quantity,
thus the Hall conductance has to show a jump in order
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to connecting a positive value to a negative value from
the odd CM to its the time-reversal partner. This is
the case for the Hall conductance jump around h/t = 0
from OCM/OCM which is twice the value of OCM/BM
discussed in the last subsection.
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FIG. 41. According Eq.C5, these pictures explain the uni-
versal non-integer Hall conductance jump around h/t = 0.
The distribution of the Berry curvature Ω2,+(k) and the elec-
tron FS at fixed αx = −αy = 1, vx = vy = 1, c = 1.3 and
varying (a) ∆ = +0.1, odd CM (b) ∆ = 0 (c) ∆ = −0.1, the
time-reversal partner of the odd CM.

Appendix D: The Berry phase ( or singularity ) of
the z = 1 Dirac point

Consider the doped ( even ) case,

H(k) = (∆ + αxk
2
x + αyk

2
y)σz + vxkxσx + vykyσy − µ ,

(D1)

For simplicity, we can use the simplified version for αx =
αy = 0:

H(k) = ∆σz + vkxσx + vkyσy − µ , (D2)

For µ < |∆|, the Berry curvature takes the form:

Ω±(k) = ∓ ∆

2(∆2 + k2)3/2
(D3)

Under the limit ∆→ 0, the Ω±(k) becomes a δ-function.
From the definition, we can check that lim∆→0 Ω±(k) =
∓πsgn(∆)δ(k−0) which is the well known π Berry phase
for a Dirac point. In order to see this, we only need
to verify two conditions 1) lim∆→0 Ω±(k) = 0 when
k 6= 0 and lim∆→0 Ω±(k) = ∓sgn(∆)∞ when k = 0;
2)
∫
d2kΩ±(k) = ∓πsgn(∆). The condition 1) is ob-

vious, the condition 2) is due to the well-known result
1

2π

∫
d2kΩ±(k) = ∓sgn(∆)/2. They were used to eval-

uate the bulk Universal Hall conductance jump in Sec.
VII-B.

Note that if one introduces α 6= 0, then
lim∆→0 Ω±(k) 6= 0 when k 6= 0, which means
lim∆→0 Ω±(k) is not just a pure δ-function.

For µ > |∆|, we can solve kF =
√
µ2 −∆2 in the

upper band. The Berry curvature from the lower band

φ− which is always occupied and the upper band φ+

which has a FS are

φ+ =

∫ kF

0

2πkdkΩ+(k) = −π(1− |∆/µ|) sgn(∆) (D4)

φ− =

∫ ∞
0

2πkdkΩ−(k) = +π sgn(∆) (D5)

and then:

φ = φ+ + φ− = π|∆/µ| sgn(∆) = π∆/|µ| = π∆/µ
(D6)

which leads to the Hall conductance σH = φ
2π = ∆/2µ.

Appendix E: Galileo transformation for the
artificially generated non-relativistic QAH

As discussed in [23], if the SOC is artificially created in
cold atom system [12, 13, 28], it is not a relativistic effect.
The spin in the SOC is just a pseudo-spin consisting of
two hyperfine states. Then the gauge invariant current
plus a NNN current in Eq.106 can be generated by a
Galileo transformation (GT). However, the QAH in real
materials [9–11] comes from the relativistic effect at the
order of (v/c)2. So the conventional GT does not apply
anymore, one need to apply a low velocity expansion of
the Lorentz transformation (LT) upto the order of (v/c)2

where the time contraction effects of the LT must be
taken into account. So here we only focus on the QAH
in artificial materials in a moving sample, leave how the
QAH in real materials change in a moving sample to a
future publication.

To perform a GT on the lattice, the first thing to do
is to do it directly one the QAH model Eq.1. The action
corresponding to the QAH model Eq.1 is:

SQAH =

∫
dτ
∑
i

c†i∂τ ci +HQAH [c†i , ci] (E1)

In the continuum theory, a Galilean boost with a constant

velocity ~vb will lead to ∂τ → ∂τ+i~vb·~∇. In the lattice the-
ory, one need replace the spatial derivative ∂µ̂ by its dis-
crete version (lattice derivative) ∆µ̂ via ∂µ̂φi → ∆µ̂φi =
a−1(φi+µ̂ − φi) + · · · and ∆∗µ̂φi = a−1(φi − φi−µ̂) + · · · ,
where a is the lattice constant where · · · means that one
should add infinite number of higher order terms which
still lead to the same contume limit

Thus, under a Galilean boost, the lattice action can be
written as

LQAH,b =
∑
i

c†i∂τ ci + i

∞∑
n=1

[tbn,xc
†
i ci+nx + tbn,yc

†
i ci+ny]

+ h.c.+HQAH [c†i , ci] (E2)

which sets up the form of the Boosted QAH model.
In principle, one need to include the infinite sum of
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terms. The simplest thing to do is to include only the

n = 1 NN term i(tb1,xc
†
i ci+x + tb1,yc

†
i ci+y − h.c.) where

tb,x = ~vb,x/(2a) and tb,y = ~vb,y/(2a) has the energy
dimension.

For the interacting bosonic system studied in [23], this
leading term is proportional to the U(1) conserved cur-
rent term, so can be absorbed by a unitary transforma-

tion into the hopping term in HBH [b†i , bi]. So one need
also consider also the subleading term n = 2 NNN current
term in the series. Unfortunately, one can not determine
the ratio of tb2/tb1 just from the substitution. One need
to repeat the derivation from the ionic model to the BH
model to determine the whole series in Eq.E2. This was
achieved in [23].

For the present non-interacting fermionic QAH, the
n = 1 term is not proportional to any conserved current
term, one can just take it as an injecting current as done
in Sec.II which leads to various new phases and TPTs in
the main text. However, the Galilean boost in a lattice
in the presence of SOC ( or Non-Abelian gauge field )
should take the different form Eq.E3 where the n = 1
term is indeed the NN gauge invariant current. Then it
still can be absorbed into the SOC term in HQAH by the
unitary transformation Eq.113. Then one must consider
the n = 2 NNN current term. So under a GT boost with
the velocity v relative to the lattice along the x̂ direction,

Eq.106 need to be replaced by:

Hbx = −v[
tb1
t0

∑
i

Jix + i

∞∑
n=2

(tbn/n)c†i ci+nx] + h.c. (E3)

where Jix is the NN gauge-invariant current and tb1, tb2
are completely determined by the Wannier functions
φ(|~x|) of the lattice system:

tbn = ~
∫
d2xφ(|~x|) ∂

∂x
φ(|~x+ nax̂|), n = 1, 2 (E4)

where tbnv carry the dimension of the hopping ( for
notational simplicity, we still use the same symbols as
in Eq.E2). So tb1, tb2 are not dependent anymore with
tb1 � tb2 in the tight-binding limit.

One can adopt the derivation in [23] straightforwardly
by identifying:

t = ts = tb1
√
v2 + v2

c , vc =
t0
tb1

tb =
v2
c − v2

v2
c + v2

vtb2 (E5)

where v is the velocity of the moving frame, vc is the
characteristic velocity where tb changes sign. It was used
in the main text Sec.IX-3. As shown in Sec.V, tb cause
the same Doppler shift to the 4 nodes as expected for a
moving observer.
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Supplemental Materials

In the supplemental materials, we provide the enlarged picture for the edge modes in Fig.20, 21 and Fig.27, 28
respectively.
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FIG. S1. The edge states of the lattice Hamiltonian in a strip geometry. We fixed h = −0.5. From left to right, the parameter
tb/ts is 0, 0.5, 1.0, 1.1, respectively. (Top) Longitudinal injection: With the periodic boundary condition in the y-direction
and the open boundary condition in the x-direction. The edge modes always exist, but undergoes the edge reconstruction at
ts/t = 1. The two edges move along the opposite directions when ts/t < 1 in (a1) and (b1) in the CI, then one edge becomes flat
at ts/t = 1 in (c1), then two edges move along the same direction when ts/t > 1 in (d1) in the odd CM, (Bottom) Transverse
injection: Exchanging the role of x and y direction. The edge modes exist only when ts/t < 1 in (a2) and (b2), but squeezed
out at ts/t = 1 in (c2) where the direct bulk gap closes, completely disappear when ts/t > 1 in (d2) in the odd CM. Although
the edge modes show quite different behaviours in the line 1 and the line 2, there seems a one to one Longitudinal/Transvese
edge-edge correspondence between them. In both figures, one can shift k → k + π to reach h = +0.5 results. See also Fig.22
and Fig.23 for the continuum calculations.
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FIG. S2. The same situation as in Fig.20 except at a fixed h = −3.5. In both figures, one can shift k → k + π to reach
h = +3.5 results. It shows qualitatively the same edge TPTs as those in Fig.20.
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FIG. S3. The edge state of the lattice Hamiltonian Eq. (117). From (a) to (d), the parameter tb/ts is 0.5, 1.0, 1.17, 1.3,
respectively. We fixed h = −0.5. (Top) Longitudinal boost: With periodic boundary condition in the y-direction and open
boundary condition in the x-direction. The edge modes always exist in this case. The two edge mods move in the opposite
direction near ky = 0 in (a1) Chern Insulator where tb/ts < 1, then one edge mode’s slope vanishes in (b1) where tb/ts = 1
with the edge dispersion ω ∼ k3y, namely the longitudinal edge dynamic exponent zL = 3. then the two edge modes move along
the same direction near ky = 0 in (c1) odd Chern insulator where tb/ts = 1.17 > 1. At the same time, the system’s (in-direct)
gap vanishes which corresponds to the z = 2 bulk TPT from the C = −1 odd Chern insulator to A2 Odd Chern metal in
Fig.24. It gets to the Odd Chern metal phase in (d1) where tb/ts = 1.3 > 1.17, the two edge modes still move along the same
direction. (Bottom) Transverse boost: Exchanging the role of x− and y− direction. The edge mode exists upto (c2) where
tb/ts = 1.17 > 1. So the odd CI between (b2) and (c2) still has the transverse edge mode. At (c2), the system’s direct gap
vanishes which corresponds to the TPT from the C = −1 odd Chern insulator to A2 Odd Chern metal in the bulk in Fig.24.
It is in the Odd Chern metal phase in (d2) where tb/ts = 1.3 > 1.17, no edge mode. The T-edge disappears at the same time
as the bulk TPT with its velocity still vanishing

√
v2 − c2 as in Fig.23. One can shift k → k + π to reach h = +0.5 results.
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FIG. S4. The same situation as Fig.27 except h = −3.5 which is Mirror reflected image of h = −0.5. As alerted in Fig.24,
despite the bulk phase boundary in Fig.24 has such a Mirror symmetry at t = ts, it is not persevered in the presence of the
strip boundaries. One can shift k → k + π to reach h = +3.5 results which is Mirror reflected image of h = 0.5. It shows
qualitatively the same edge TPTs, odd CI and odd CM as those in Fig.27.
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