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Abstract

A non-minimal approximation for effective masses of light and
heavy neutrinos in the framework of a type-I seesaw mechanism with
three generations of sterile Majorana neutrinos is considered. The
main results are: (a) the next-order corrections to the effective mass
matrix of heavy neutrinos due to terms O(θMD) are obtained, which
modify the commonly used representation for the effective mass (MD

is a Dirac neutrino mass when the electroweak symmetry is sponta-
neously broken); and (b) the general form of the mixing matrix is
found in non-minimal approximation parametrized by a complex 3×3
matrix satisfying a nontrivial constraint. Numerical analysis within
the νMSM framework demonstrates the very small effect of new con-
tributions of direct collider observables as opposed to their possible
significance for cosmological models.
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1 Introduction

Numerous consequences of the exceptionally successful standard model (SM)
of elementary particle physics based on the gauge symmetry SU(3)×SU(2)L×
U(1) have been confirmed by experiments on colliders and extracted particle
beams. No significant deviations from the SM predictions were found, as a
result of which it is considered as a mathematically consistent effective field
theory for a very large energy scale. At the same time, it is obvious that SM is
not a complete theory, since it cannot explain a number of observed phenom-
ena not only in particle physics, but also in astrophysics and cosmology. One
of the most well-known problems of SM is the problem of neutrino masses
and neutrino oscillations [1–5], which will be considered in this paper. The
essense of the problem is the absence of clarity concerning what mechanism
provides the observed neutrino mass spectrum and how neutrinos of one fla-
vor disappear and turn into neutrinos of another flavor. Some still-unknown
particles would be needed to analyse the neutrino puzzle. Let us mention
that the solution of other equally well-known problems of SM, which are the
problem of dark matter and dark energy in the Universe, as well as the prob-
lem of its baryon asymmetry (BAU) generation, like the neutrino problem,
can also be associated with the SM extension by new particles and/or inter-
actions. The inability of modern collider experiments to detect new particles
may be due not only to their large masses, but also to extremely elusive in-
teractions with SM particles, making their production extremely rare events.
In other words, to detect feebly interacting particles, the requirements for
the integrated luminosity of the beam(s) in the experiment must cross the
’intensity frontier’.

A well-known example of a field-theoretic model, within the framework of
which it is possible to solve a significant part of the above-mentioned prob-
lems by extending the set of SM particles with relatively light and weakly
interacting new particles of the lepton sector, is the νMSM model (neu-
trino minimal standard model) [6, 7]. It is an extension of the SM with the
help of three Majorana neutrinos whose flavor states do not participate in
gauge interactions (so-called sterile neutrinos, also called heavy neutral lep-
tons, HNL). The masses of sterile neutrinos do not exceed the electroweak
scale O(102) GeV and at the same time significantly exceed the value of
the mass parameter Fv (F is the neutrino Yukawa coupling constant and
v is the Higgs field vacuum expectation value equal to 174 GeV), as a re-
sult of which the mass generation mechanism (known as the seesaw type-I
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mechanism [8–11], see Section 2 below) works well for neutrino. Within the
framework of the νMSM, it is not necessary to introduce a new mass scale for
heavy fermions, the Majorana masses are comparable to the masses of light
quarks and charged leptons. The number of sterile neutrinos should be at
least three. At least two states of sterile neutrinos are necessary to explain
the known experimental parameters ∆m2

atm and ∆m2
sol. However, none of

these states are suitable for the role of a dark matter particle, since (1) their
Yukawa constants are not sufficiently limited to form a moderate amount
of dark matter within the framework of the Dodelson–Widrow mechanism
[12], and (2) the one-loop radiative decays of such states in the subdominant
channel N2,3 → νγ with the energy Eγ = 1/2M2,3 [13, 14] would produce
too many gamma rays compared to the available astrophysical experimental
data1. For these reasons, one more sterile neutrino (the HNL of the first
generation2 added to the νMSM provides a suitable candidate for the role of
dark matter.

Adding three HNLs introduces 18 new parameters, 3 Majorana masses
and 15 parameters of the Yukawa coupling matrix F . The mass of a DM
sterile neutrino can be varied in the range ∼1–50 keV in the case of νMSM
[17, 18]. The baryogenesis of the νMSM is provided by the oscillation mech-
anism [17]. In the following, three generations of HNL are considered, which
makes it possible to explain simultaneously the origin of the masses of stan-
dard (or active) neutrinos due to the seesaw mechanism, the existence of a
dark-matter particle and the generation of baryon asymmetry. Significant
limitations on the mixing parameter value for HNL in the νMSM model, as
well as on the second- and third-generation HNL masses, which should be
split very weakly [19], are reviewed in [17].

In extensions of the SM lepton sector, the active neutrino flavor states
and mass states can be related with the help of Pontecorvo–Maki–Nakagawa–
Sakata mixing matrix UPMNS, νlL(x) =

∑

i(UPMNS)liνiL(x), where νlL is the
left-handed (LH) component of the flavour field, νiL is the LH component
of the state possessing a mass mi, i = 1, 2, 3, and l = e, µ, τ [1–5, 20].
The exact values of neutrino masses are unknown, but it follows from the

1Note that the unidentified spectral line at the energy E ∼ 3.5 keV in the stacked
X-ray spectra of dark-matter-dominated objects has been observed [15, 16]. The signal
distribution over the sky and the ratios of its strengths are consistent with predictions for
decaying dark matter with the mass M1 ≃ 7.1± 0.1 keV [17].

2Throughout the paper we will assume that there is a normal ordering in the HNL
sector, i.e., M1 < M2 ≤ M3.
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existing data that there are at least three active neutrino mass eigenstates,
neutrinos must be light, |(mν)ll′| ≤ 1 eV (l, l′ = e, µ, τ), [21, 22] and the
neutrino mass values are rather strongly split. The differences between them
measured experimentally give the central values of mass parameters squared
∆m2

sol ≈ 7.54 × 10−5 eV2 and ∆m2
atm ≈ 2.43 × 10−3 eV2 [23]. This leaves

two different possibilities of neutrino mass ordering: normal ordering (NO)
m1 < m2 ≪ m3 or inverse ordering (IO) m3 ≪ m1 < m2. The mass of the
lightest neutrino m0 may vary from zero to 0.03 eV (NO) or 0.015 eV (IO)
allowed by cosmological observations [24] (see also [25]). Within the νMSM,
the lightest active neutrino is lighter than O(10−5) eV [6, 7, 26]. The HNL
masses responsible for active neutrino mass generation are rather strongly
constrained both by direct searches [27–30] and cosmological considerations
[31–33]. The analysis of lepton universality within the νMSM shows that
M2,3 > 173 MeV (264 MeV) for NO (IO) [34], see also [35]. The recent
investigation of BAU [36] implies the masses of HNL to be M2,3 ≥ O(3)
GeV.

Historically, the motivation for considering right-handed (RH) neutrinos
have appeared from the left-right symmetric extension of the SM [37] where
the electroweak group of symmetry SU(2)L × U(1)Y was extended to the
SU(2)L × SU(2)R × U(1)B−L. The observed left chirality of the low-energy
weak interactions in the model with left–right symmetry, usually attributed
to the spontaneous breaking of this symmetry, implies the existence of a
right-handed neutrino.

It is commonly assumed that the effective mass (mν)ll′ can be presented
as

(mν)ll′ = −MDM
−1

M MT
D (1)

in the limit MD ≪ MM , where MD,MM are Dirac and Majorana mass
matrices of the LH and RH neutrinos (see details below). However, Eq. (1)
is a standard approximation of a more complicated expression including an
additional 3× 3 matrix θ (|θ| ≪ I) describing mixing of the active neutrinos
with HNL. The contribution of the next-order terms in effective neutrino
mass representations requires a separate study. In the following, Section 2,
we investigate the standard approach for the type-I seesaw mechanism and
consider the non-minimal approximations for effective masses of the active
and sterile neutrinos. Nonstandard parametrization of the mixing inspired
by diagonalization of the active-sterile neutrino mass matrix in the approach
of [38] and a nontrivial relation for the parametrization matrix Ωnm have been
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obtained. The numerical analysis within the νMSM framework is performed
in Section 3. Results are discussed in Section 4. A symmetric structure of
effective and Majorana mass matrices as well as relations forMDθ

T and θ†MD

are analyzed in Appendix A. Simple representations for the matrix Ωnm are
considered in Appendix B. A form of effective mass matrix of active neutrinos
mν as function of UPMNS in standard and non-minimal approximations is
derived in Appendix C.

2 A model with three right-handed neutrinos

The lagrangian of the SM extension by three right-handed neutrinos νR has
the form (see e.g., [39])

L = LSM + iνR∂µγ
µνR −

(

F lLνRH̃ +
MM

2
νc

RνR + h.c.

)

, (2)

where lL = (νL eL)
T is the left-handed lepton doublet, νR is the right-handed

neutrino [(νR)
c ≡ CνT

R, where C = iγ2γ0 is the charge conjugation matrix], H
is the Higgs doublet (H̃ = ǫijH

†, ǫij antisymmetric tensor), F is the neutrino
Yukawa coupling matrix, and MM is the 3× 3 Majorana mass matrix of the
RH neutrinos, which does not break the SM gauge symmetry.

After spontaneous electroweak symmetry breaking, the full neutrino mass
term in Equation (2) can be presented as

1

2
(νLνc

R)M
(

νc
L

νR

)

, where M =

(

0 MD

MT
D MM

)

, (3)

MD = Fv is a 3 × 3 neutrino Dirac mass matrix (v=174 GeV is a vacuum
expectation value of the Higgs doublet), and MD,MM are complex-valued
in the general case. In the neutrino mass basis with the help of a unitary
matrix U

U = W · diag(Uν , U
∗
N), (4)

(Uν , UN on the one hand side and W on the other hand side are 3 × 3 and
6× 6 matrices, respectively), one can define the diagonal mass matrix [39]

U †MU∗ =

(

m̂ 0

0 M̂

)

,
m̂ = diag(m1, m2, m3),

M̂ = diag(M1,M2,M3),
(5)
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where mi,Mi are masses of light and heavy neutrinos. The unitary diagonal-
ization matrix W formally expressed as the exponential of an antihermitian
matrix, see [38],

W = exp

(

0 θ
−θ† 0

)

(6)

(where θ is a 3×3 complex matrix) converts the matrixM to a block diagonal
form

W †
(

0 MD

MT
D MM

)

W ∗ =

(

mν 0
0 MN

)

≡ M̃. (7)

Here, mν ,MN are effective Majorana mass terms for the LH and RH flavour
neutrinos (see, e.g., [40, 41]) which are related with m̂ and M̂ by

mν = Uνm̂UT
ν , MN = U∗

NM̂U †
N . (8)

The flavour states νL and νR and the mass states ν and N then can be
related as [39]

(

νL
νc
R

)

= PLU
(

ν

N

)

, (9)

where PL is a left-helicity projector.

2.1 Standard approximation

Assuming that θ is “small,” it is sufficient to expand the rotation matrix (6)
up to O(θ2) terms

W = exp

(

0 θ
−θ† 0

)

≃
(

1− 1

2
θθ† θ

−θ† 1− 1

2
θ†θ

)

, (10)

thus, using (7) and the requirement M̃12 = 0, one can relate Dirac, Majorana
and θ matrices

θ ≃ MDM
−1

M , (11)

which yields the expressions

mν ≃ −MDθ
T ≃ −MDM

−1

M MT
D , (12)

MN ≃ MM +
1

2
(θ†θMM +MT

MθT θ∗) ≃ MM , (13)
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where, in some cases, the terms O(θ2) in (13) are omitted, so Majorana mass
matrices before and after rotation coincide. One can represent (13) in terms
of θ and MD using the relations (61) and (63) (see Appendix A)

MN ≃ (θ−1 + θ†)MD. (14)

In the representation (10), the flavour states of active neutrinos can be
expressed as [see (9)]

νL ≃
(

1− 1

2
θθ†

)

UννL + θU∗
NNL, (15)

νc
R ≃ −θ†UννL +

(

1− 1

2
θθ†

)

U∗
NNL, (16)

where terms in front of νL and NL have to be identified with PMNS and
mixing matrices3

UPMNS ≃ (1 + η)Uν , Θm ≃ θU∗
N . (17)

Here, the parameter η = −1/2(θθ†) is considered as a deviation from the
unitarity.

2.2 Non-minimal approximation

One can, however, consider the expansion of the matrix W , see Equation (6),
up to O(θ3)-terms

W ≃
(

1− 1

2
θθ† θ − 1

6
θθ†θ

−θ† + 1

6
θ†θθ† 1− 1

2
θ†θ

)

, (18)

3In general, the PMNS matrix can be presented as UPMNS = U
†
l (1 + η)Uν [41], where

Ul diagonalizes the charged lepton mass matrix ml, Ulmlm
†
lU

†
l = diag(m2

e,m
2
µ,m

2
τ ), but

throughout the paper, we assume that Ul = I.
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where again, |θ| ≪ I. Then, the corresponding expressions (7) can be pre-
sented as

M̃11 = −(θMT
D +MDθ

T ) + θMMθT +
1

6
(θθ†θMT

D +MDθ
T θ∗θT )

+
1

2
(θθ†MDθ

T + θMT
Dθ

∗θT ) ≃ mν , (19)

M̃22 = MM + (θ†MD +MT
Dθ

∗)− 1

2
(θ†θMM +MMθT θ∗)

− 1

2
θ†(θMT

D +MDθ
T )θ∗ − 1

6
(θ†θθ†MD +MT

Dθ
∗θT θ∗) ≃ MN , (20)

M̃12 = MD − θMM − 1

2
(θθ†MD +MDθ

T θ∗)

− θMT
Dθ

∗ +
1

2
θMMθT θ∗ +

1

6
θθ†θMM ≃ 0. (21)

One can note that the relation between Dirac, Majorana, and θ matrices
can be defined in the form [see (21)]

MM− 1

2
MMθT θ∗− 1

6
θ†θMM ≃ θ−1MD

(

1− 1

2
θT θ∗

)

− 1

2
θ†MD−MT

Dθ
∗, (22)

which is more complicated than the expression (11) of the standard approx-
imation and can be converted to it if O(θ2)-terms are neglected. As one can
see, the relation between two mass scales MD, MM and θ is not so obvious,
but analyzing the relation (22) one can note that (see Appendix A)

O(θ2MM) ∼ O(θMD). (23)

This allows one to express Equations (19) and (20) in terms of O(θnMD),
where n = −1, 1, 2, 3. However, the O(θ2MD) and O(θ3MD) terms are much
smaller than O(θMD), so in the following we will consider only the last one.
Thus, the expressions for mν ,MN and MM take the forms

mν ≃ −θMT
D ≃ −MDθ

T , (24)

MN ≃
(

θ−1 − 1

3
θ†
)

MD ≃ MM + θ†MD, (25)

where the right forms can be obtained if one takes into account the relations
(61) and (63), see Appendix A.
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Analyzing the representation for the flavour states (9)

νL ≃
(

1− 1

2
θθ†

)

UννL +

(

θ − 1

6
θθ†θ

)

U∗
NNL, (26)

νc
R ≃

(

−θ† +
1

6
θ†θθ†

)

UννL +

(

1− 1

2
θ†θ

)

U∗
NNL, (27)

one can identify the PMNS and active-sterile mixing matrices with

UPMNS ≃
(

1− 1

2
θθ†

)

Uν , Θnm ≃
(

θ − 1

6
θθ†θ

)

U∗
N . (28)

As far as |θ| ≪ 1, one can omit the terms O(θn), n > 1 in the expressions
(28), so these forms coincide with ones of the standard approximation, see
(17).

Using (14) and (25), one can obtain the difference between the effective
mass of heavy neutrinos in standard and non-minimal approximations

MNm −MNnm =
4

3
θ†Fv. (29)

2.3 Parametrization of the mixing matrix Θ

2.3.1 Standard approximation

The expression I = MNM
−1

N , with the help of (8), (12), (13) and the as-
sumption UPMNS ≃ Uν can be presented as

I = −MT
DU

∗
PMNSm̂

−1U †
PMNS

MDUNM̂
−1UT

N . (30)

One can rewrite (30) in the form

I = −(
√

M̂−1UT
NM

T
DU

∗
PMNS

√
m̂−1)(

√
m̂−1U †

PMNS
MDUN

√

M̂−1) = ΩT
mΩm,

(31)
where

Ωm = i
√
m̂−1U †

PMNS
MDUN

√

M̂−1 (32)

is an arbitrary complex orthogonal matrix (ΩT
mΩm = I). Thus, the Dirac

matrix can be parametrized as [38]

MD = −iUPMNS

√
m̂Ωm

√

M̂U †
N , (33)

which together with (11) leads to the expression for the mixing matrix

Θm ≃ θU∗
N ≃ −iUPMNS

√
m̂Ωm

√

M̂−1. (34)
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2.3.2 Non-minimal approximation

The same procedure I = MNM
−1

N in the non-minimal case MM ∼ O(θMD)
leads to

−
[

√

M̂−1UT
N

(

θ−1 − 1

3
θ†
)

Uν

√
m̂

]

[√
m̂UT

ν (θ
T )−1UN

√

M̂−1

]

≃ I, (35)

where M−1

N ≡ UNM̂
−1UT

N and MN is defined by Equations (25) and (24). If
one denotes the expression in the right brackets of (35) as Ωnm

Ωnm = i
√
m̂UT

ν (θ
T )−1UN

√

M̂−1 (36)

and takes into account that the left side of (35) concerns the unit matrix,
then one can conclude using the identity Ω−1

nmΩnm = I that the expression in
left brackets is Ω−1

nm. Then, from Equation (35) one can find the relation for
Ωnm

Ω−1
nm = ΩT

nm +
1

3
M̂−1(Ω−1

nm)
∗m̂. (37)

Defining θ with the help of (36)

θ ≃ −iUν

√
m̂(Ω−1

nm)
T
√

M̂−1UT
N (38)

and using the definition of the mixing matrix Θ, Equation (17), one can write

Θnm ≃ θU∗
N ≃ −iUPMNS

√
m̂(Ω−1

nm)
T
√

M̂−1, (39)

where again it was assumed that Uν ≃ UPMNS. Note that the mixing matrix Θ
in approximations where MM ≃ θ−1MD and MM ≃ O(θMD) is parametrized
in the same way. The difference is in the presence of requirements that must
be met by an arbitrary 3× 3 matrix Ω. The corresponding Yukawa coupling
matrix in terms of Ωnm can be presented as

F ≃ i

v
UPMNS

√
m̂Ωnm

√

M̂U †
N . (40)

Note that the Dirac matrix in non-minimal approximation differs from (33)
by the parametrization matrix Ωnm and the sign because sign(Ωnm) 6= sign(Ω−1

nm)
whereas sign(Ωm) = sign(Ω−1

m ), see (32) and (36).
There is an infinite set of Ω matrices leading to the observed neutrino

parameters [41]. In various mixing scenario frameworks, the matrix Ωm can
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be parametrized by means of three Euler angles (complex-valued in general),
see [42, 43]; one complex angle ω and the sign factor ξ = ±1 [25, 36], or just by
the unit matrix, see, e.g., [42, 44]. It is desirable to relate a minimal and non-
minimal matrices Ωm and Ωnm in order to consider the limit of the discussed
approximations. However, one can find that the simple representation

Ωnm = Ωn + Ωm, (41)

where ΩmΩ
T
m = I, ΩnΩ

T
n 6= I is not relevant, see Appendix B.

2.4 Interactions of the Majorana fields with SM par-

ticles

The charged-current (CC) and the neutral-current (NC) interactions of the
Majorana fields with SM particles in terms of mixing parameter and UPMNS

can be obtained as follows (see also [44]). Using the SM normalization con-
ventions of [39]

− g√
2
νLγ

µlLW
+
µ − g√

2
lLγ

µνLW
−
µ − g

2 cos θW
νLγ

µνLZµ, (42)

where θW is the Weinberg angle, one can write the corresponding neutral
and charged currents in the mass basis

Lν

NC =
g

2cW
νLγ

µU †
PMNS

UPMNSνLZµ, (43)

Lν

CC = − g√
2
lLγ

µUPMNSνLW
−
µ + h.c., (44)

LN
NC = − g

2cW
NLγ

µΘ†ΘNLZµ −
(

g

2cW
νLU

†
PMNS

γµΘNLZµ + h.c.

)

,(45)

LN
CC = − g√

2
lLγ

µΘNLW
−
µ + h.c., (46)

where Θ is a minimal Θm or a non-minimal Θnm mixing matrix.
It is instructive to note that the active neutrino mass matrix mν has the

same representation for both MM ≃ θ−1MD and MM ∼ O(θMD) approxi-
mations (see Appendix C)

mν ≃ UPMNSm̂UT
PMNS. (47)
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3 Numerical examples

As mentioned above, signals of sufficiently light HNL’s are not observed in
collider or beam-dump experiments. Experimental information is reduced to
exclusion contours generated on the mass-mixing plane for different detectors.
It should be noted that these exclusion contours use a model-independent
phenomenological approach, in which only one HNL gives the observed signal,
and the remaining two are strongly decoupled and practically do not affect
the analysis. Within the framework of this approach, only two independent
parameters are considered, the HNL mass and its coupling constant with an
active neutrino, the generation of exclusion contours is carried out for the
square of the mixing parameter as a function of mass for one flavor only, while
the mixing for other flavors is assumed to be zero. Assumptions of this kind
seem to be very strong and need to be translated for the case of a specific
model. Suffice it to note that, even in the simple case of one generation of
Majorana neutrinos [45], the mixing parameter U = MD/MN depends on the
mass of HNL, as a result of which the mapping of the active neutrino mass—
HNL mass plane to the mixing squared—HNL mass plane is a triangle, not a
rectangle. A part of the triangle for a limited region of HNL masses may look
approximately like a rectangle due to the low mass of the active neutrino.

In the following instructive example, we will vary the masses of the lightest
neutrino and heavy neutrinos in the ranges (see [6, 7, 26])

m0 : 0− 10−5 eV, (48)

Mi : 1− 50 keV for M1, 1− 100 GeV for M2,3, (49)

parametrize the masses of active neutrinos asm2
1 = m2

0, m
2
2 = m2

0+∆m2
sol, m

2
3 =

m2
0 + ∆m2

sol + ∆m2
atm for NO or m2

1 = m2
0 + ∆m2

sol, m
2
2 = m2

0 + ∆m2
sol +

∆m2
atm, m

2
3 = m2

0 for IO and use the present central values of the known
active neutrino sector parameters [23]. In addition, we will use phenomeno-
logically convenient quantities (see, e.g., [25])

U2
αI = |ΘαI |2, U2

I =
∑

α

U2
αI , U2 =

∑

I

U2
I . (50)

Among the infinite set of Ωm matrices satisfying the requirement ΩT
mΩm =

11



Table 1: Numerical estimations of diagonal elements (mν)ee, (mν)µµ and
(mν)ττ in units of 10−2 eV for explicit forms Ωm: Ω

′

,Ω
′′

,Ω
′′′

, see (52). Here,
m0 and M1,M2,M3 are defined by (48) and (49).

Ordering l = e l = µ l = τ
NO 0.4 2.7 2.6
IO 4.9 1.9 2.6

I, we consider the following explicit forms

Ω
′

= I, Ω
′′

= −







1√
2

−1

2
−1

2
1

3
√
2

5

6
−1

2
2

3

1

3
√
2

1√
2






, (51)

Ω
′′′

NO =





1 0 0
0 0 1
0 −1 0



 , Ω
′′′

IO =





0 0 1
0 −1 0
1 0 0



 , (52)

where Ωm = Ω
′

corresponds to a naive explicit form used, e.g., in [42, 44];
the form Ωm = Ω

′′

is not motivated by any special physical scenarios and
used for numerical estimations in this section only; and Ωm = Ω

′′′

is a form
inspired by a parametrization in [36] with fixed parameters ω = π/2, ξ = 1
which (as was determined numerically) maximize the CP -asymmetry. The
non-minimal parametrization matrix satisfying (37) is chosen as (see, also,
Appendix B)

Ωnm = diag(ω1, ω2, ω3), where ωi =

√

1− 1

3

mi

Mi

. (53)

Results of evaluations for diagonal elements (mν)ee, (mν)µµ, (mν)ττ with
explicit forms Ωm as Ω

′

,Ω
′′

,Ω
′′′

are presented in Table 1, where first MD

is found using (33) then (mν)ll is evaluated with the help of (8) and (12).
The results for all cases coincide [in accordance with (47)] and are below the
present experimental bounds.

The dependence of U2 as a function of masses of heavy neutrinos M1 and
M2 = M3 = M at m0 = 10−5 eV for NO is presented in Figure 1a, where one
can see that its values are O(10−9) and practically constant for all M . The
qualitative behavior is similar for other cases. As a rule, the contributions
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(a) (b)

Figure 1: Mixing parameter estimations for NO: (a) the dependence of U2 as
a function of masses of heavy neutrinos M1 and M2 = M3 = M at m0 = 10−5

eV, Ωm = Ω
′

; (b) the relative difference in U2 obtained in minimal and non-
minimal approximations as a function of M2 = M3 = M at BP1: m0 = 0,
M1=1 keV in units of 10−12 (black dotted line); BP2: m0 = 10−5 eV, M1=1
keV in units of 10−9 (red dashed line); BP3: m0 = 0, M1=50 keV in units
of 10−12 (green solid line); and BP4: m0 = 10−5 eV, M1=50 keV in units of
10−11 (blue dot-dashed line).

of M1 to U2 are neglected (as was assumed e.g., in [36]); however, Figure 1a
demonstrates that the dependence U2(M1) can be sizable in some cases. One
can note that the minimal (maximal) value of U2 is achieved at benchmark
point BPmin (BPmax), where

BPmin: m0 = 0, M1=50 keV, M=100 GeV,
BPmax: m0 = 10−5 eV, M1=1 keV, M=1 GeV.

Numerical estimations of U2 for different Ωm (Ω
′

,Ω
′′

,Ω
′′′

) can be found
in Table 2; based on these numbers, it is possible to come to a conclusion
about the great complexity of heavy Majorana neutrinos observation.

The relative difference |U2
nm − U2

m|/U2
nm for NO, IO and different Ωm

(Ω
′

,Ω
′′

,Ω
′′′

) at BPmin (BPmax) is presented in Table 3. One can see that
it is quite small for Ω

′

,Ω
′′′

NO and is very large for Ω
′′

NO, which is a consequence
of different representations for Ωm and Ωnm. Thus, the most relevant com-
parison can be performed for Ωm = Ω

′

and Ωnm defined by (52) and (53)
since for such representations of the parametrization matrix, it is possible to
trace the limit from the standard approximation to the non-minimal one.

The relative difference of U2 obtained in the minimal and non-minimal

13



Table 2: Results for U2 in the case of NO and IO for different Ωm: Ω
′

,Ω
′′

,Ω
′′′

,
see (52). Here, m0 and M1,M2,M3 are defined by (48) and (49).

Ordering Ω
′

Ω
′′

Ω
′′′

NO 10−12 − 10−8 10−7 − 10−5 10−12 − 10−8

IO 10−6 − 10−5 10−6 − 10−5 10−12 − 10−8

Table 3: The relative difference |U2
nm−U2

m|/U2
nm for NO, IO and different Ωm

(Ω
′

,Ω
′′

,Ω
′′′

) (52) at BPmin (BPmax).

Ordering Ω
′

Ω
′′

Ω
′′′

NO 10−13 (10−9) 106 (103) 10−13 (10−9)
IO 10−7 (10−5) 0.1 (0.1) 1 (1)

approximations as a function of M2 = M3 = M for Ω
′′′

in the NO case
is presented in Figure 1b. As one can see, the results for BP1 and BP3
coincide which is explained by the choice m0=0 and the explicit form of
Ω

′′′

. The behavior of the relative difference of U2 at m0 = 0 and m0 6= 0
is different due to the contributions of M1 to the mixing parameter. Thus,
the approximation with two RH neutrinos is quite reliable at m0=0 and Ω

′′′

,
while one should use a model with three HNL at m0 6= 0. The relative
difference for NO is rather small. Thus, in the cases where the limit of
discussed approximations can be traced, the phenomenological consequences
with a mixing parameter obtained in the non-minimal approximation can be
hardly distinguished from the results of a standard approach (see examples
in [42, 44, 46]) at present or future facilities.

4 Conclusions

The paper is devoted to the investigation of the SM extension by the three
generations of sterile Majorana neutrinos which recover the left–right sym-
metry between quarks and leptons. Experimental detection of particles of
this kind would greatly affect our understanding of particle physics and cos-
mology. The analysis carried out is especially significant for models in which
there is no additional nonstandard scale of particle masses, so that a well-
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known ’model-independent approach’ to calculating constraints for the model
parameter space may not be directly relevant to reality. A non-minimal ap-
proximation for effective masses of light and heavy neutrinos in the framework
of a type-I seesaw mechanism with three generations of right-handed Majo-
rana neutrinos was considered. It was found that the obtained next-order
corrections to the effective mass matrix of HNL can influence the well-known
results of the current order modifying them with O(θMD) corrections. Ad-
ditional contributions to the effective masses of neutrinos were analysed and
the regimes when they can be significant were defined. Following the method
proposed in [38], a parametrization of the mixing matrix was performed with
the help of a complex 3× 3 matrix Ωnm satisfying a nontrivial relation (37)
in the non-minimal approximation. The structure of effective and Majorana
mass matrices was scrutinised and it was demonstrated that they are sym-
metric matrices, a fact which has not been discussed before. Useful relations
were found for MDθ

T and θ†MD, which allow one to express effective masses
in a simple form. It is interesting to note that the modification of the mix-
ing matrix does not change results for the effective mass matrix of active
neutrinos mν in the non-minimal case.

The obtained results were analyzed in detail within the νMSM framework.
It was demonstrated that the approximation with two RH neutrinos is quite
reliable at m0=0, while one should use a model with three HNL at m0 6= 0.
New additional corrections to effective masses can be more pronounced when
heavy neutrino masses are small and the lightest mass of active neutrino is of
O(10−5) eV. Numerical examples demonstrate that the relative difference in
the mixing parameter obtained in standard and non-minimal approximations
is negligibly small for all benchmark scenarios of the model where the limit of
the discussed approximations can be traced. Thus, phenomenological conse-
quences for the mixing parameter obtained in the minimal and non-minimal
approximations can be hardly distinguished at current and future facilities.

The question of the explicit form of the parametrization matrix Ω in
standard and non-minimal approximations is still ambiguous. Various forms
satisfying the requirement |θ| ≪ I and ΩmΩ

T
m = I were considered with

significantly different results. Effective masses of HNL in the standard and
non-minimal approximations demonstrate noticeable differences due to new
sizeable terms of effective heavy neutrino mass matrix. Note that O(θMD)
corrections to the splitting of eigenvalues ofMM andMN matrices can impact
both the lepton-number-violating event rates at colliders [47] and leptogenesis
in the early Universe [48] (see also [25]).
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A Symmetric matrices mν,MN ,MM and re-

lations for MDθ
T and θ†MD

The elements of the matrix M̃, see (7), have the forms

M̃11 = W †
11MDW

∗
21 +W †

21(M
T
DW

∗
11 +MMW ∗

21) ≡ mν (54)

M̃22 = W †
12MDW

∗
22 +W †

22(M
T
DW

∗
12 +MMW ∗

22) ≡ MN , (55)

M̃12 = W †
11MDW

∗
22 +W †

21(M
T
DW

∗
12 +MMW ∗

22) ≡ 0, (56)

M̃21 = W †
12MDW

∗
21 +W †

22(M
T
DW

∗
11 +MMW ∗

21) ≡ 0. (57)

Analysing (54)–(57), one can note that mν ,MN and MM are symmetric
matrices

mν = mT
ν , MN = MT

N , MM = MT
M , (58)

where for the last expression the relaton M̃12 − M̃T
21 = 0 was used.

In the standard approximation, a requirement M̃12 = 0 [see (7)] has a
form

θMM ≃ MD − 1

2
(θθ†MD +MDθ

T θ∗)− θMT
Dθ

∗. (59)

Multiplying (59) by θT from the right side

θMMθT ≃ MDθ
T − 1

2
(θθ†MDθ

T +MDθ
T θ∗θT )− θMT

Dθ
∗θT (60)

and omitting terms O(θ3) (as far as |θ| ≪ I), one can find

MDθ
T ≃ θMT

D , (61)

where the relation θMMθT = (θMMθT )T [see (58)] was applied. The same
relation (61) takes place for the non-minimal approximation, where instead
of (59) one should use Equation (22).

Multiplying (59) by θ−1 from the left side

MM ≃ θ−1MD − 1

2
(θ†MD + θ−1MDθ

T θ∗)−MT
Dθ

∗ (62)
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and using the relation (61), one can rewrite the requirement MM = MT
M in

the form
θ†MD ≃ MT

Dθ
∗. (63)

The relation (63) is also relevant in the non-minimal approximation. The
expression (22) can be written as

θ†θMM − 1

2
θ†θMMθT θ∗ − 1

6
θ†θθ†θMM ≃

θ†MD − 1

2
θ†θθ†MD − 1

2
θ†MDθ

T θ∗ − θ†θMT
Dθ

∗, (64)

so, in the limit O(θMD)

θ†θMM ≃ θ†MD, MMθT θ∗ ≃ MT
Dθ

∗, (65)

which allows one to express (22) as

MM ≃ θ−1MD − 1

3
θ†MD − 1

2
MT

Dθ
∗ − 1

2
θ−1MDθ

T θ∗. (66)

The requirement MM = MT
M , (58), with the help of (61), leads to

θ−1MD +
2

3
θ†MD ≃ MT

D(θ
−1)T +

2

3
MT

DR
∗. (67)

Multiplying (67) by θ and θT from the left and right sides, one can obtain

θθ†MDθ
T ≃ θMT

Dθ
∗θT , (68)

which leads to the relation (63).

B A simple representation for the matrix Ωnm

Suppose that
Ωnm = Ωn + Ωm, (69)

where ΩmΩ
T
m = I, ΩnΩ

T
n 6= I. Inserting (69) into (37), one can find

Ωm = 3m̂−1[(Ω−1
n )† − Ω∗

n]M̂ − (Ω−1
n )T , (70)

which must satisfy the requirement Ω−1
m = ΩT

m, i.e.,

3M̂−1[Ω†
n − (Ω∗

n)
−1]m̂− ΩT

n = 3M̂ [(Ω−1
n )∗ − (Ω∗

n)
T ]m̂−1 − Ω−1

n . (71)
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Assuming
A = ΩT

n − Ω−1
n , A 6= 0, (72)

Equation (71) takes the form

3M̂−1A∗m̂+ 3M̂A∗m̂−1 −A = 0. (73)

One can note that there is no matrix A satisfying the relation (73). Thus,
the matrix Ωnm cannot be expressed by the form (69).

However, if one assumes that Ωnm is a diagonal matrix, then its form is
defined explicitly as

Ωnm = diag(ω1, ω2, ω3), where ωi =

√

1− 1

3

mi

Mi

. (74)

C The effective masses of active neutrinos in

standard and non-minimal approximations

In the standard approach using the relations (11), (13), (34) and ΩmΩ
T
m = I,

one can find

mν ≃ −MDθ
T ≃ −θMNθ

T ≃ −θU∗
NM̂U †

Nθ
T = −ΘM̂ΘT ≃ UPMNSm̂UT

PMNS.(75)

In the non-minimal approximation, the expression for mν , (24), with the
help of (25), is

MD ≃
[

θ − 1

3
(θ†)−1

]

MN , (76)

and (8) can be presented as

mν ≃ −
[

θ − 1

3
(θ†)−1

]

U∗
NM̂ΘT . (77)

Using (38) and (39), one can find

mν ≃ −i2Uν

√
m̂Ωnm

√

M̂−1UT
NU

∗
NM̂

√

M̂−1Ω−1
nm

√
m̂UT

ν

≃ UPMNSm̂UT
PMNS, (78)

where, as far as |θ| ≪ 1, one can assume Uν ≃ UPMNS, see (28).
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