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Chirality transfer from the level of molecular structure up to mesoscopic lengthscales of
supramolecular morphologies is a broad and persistent theme in self-assembled soft materials, from
biological to synthetic matter. Here, we analyze the mechanism of chirality transfer in a prototypical
self-assembly system, block copolymers (BCPs), in particular, its impact on one of the most complex
and functionally vital phases: the cubic, triply-periodic, gyroid network. Motivated by recent exper-
imental studies, we consider a self-consistent field model of ABC* triblock copolymers possessing an
end-block of chain chemistry and examine the interplay between chirality at the scale of networks,
in alternating double network phases, and the patterns of segmental order within tubular network
domains. We show that while segments in gyroids exhibit twist in both polar and nematic segmental
order parameters, the magnitude of net nematic twist is generically much larger than polar twist,
and more surprising, reverses handedness relative to the sense of polar order as well as the sense
of dihedral twist of the network. Careful analysis of the intra-domain nematic order reveals that
this unique chirality transfer mechanism relies on the strongly biaxial nature of segmental order in
BCP networks and relates the biaxial twist to complex patterns of frame rotation of the principal
directors in the intra-domain texture. Finally, we show that this mechanism of twist reversal leads
to chirality selection of alternating gyroid networks in ABC* triblocks, in the limit of very weak
chirality .

I. INTRODUCTION

Chirality transfer, from local interactions between con-
stituents to complex and self-organized patterns of order
on larger length scales, pervades material systems [1, 2],
from chiral magnets [3] to biological [4–7] and syn-
thetic [8] self-assemblies. Perhaps the simplest example is
the cholesteric phase [9, 10], where non-centrosymmetric
interactions of anisotropic subunits, such as rod-like
mesogens or biopolymers, stabilize states of mean align-
ment in which a molecular director rotates helically along
an axis perpendicular to itself. Remarkably, the templat-
ing to orientation order (handedness and pitch of this
rotation) is manifested at length scales several orders of
magnitude larger than those molecular constituents. In
self-organized states with both positional and orienta-
tional order, like twist-grain boundary (SmC*) [11, 12],
helical nanofilament [13, 14] and blue phases [15], the
mechanisms and outcomes of chirality transfer are often
far more complex owing to additional levels of hierarchy
introduced in multiple, coupled order parameters.

In this article we describe the mechanisms of chirality
transfer to triply periodic network phases of soft, self-
assembling molecules, focusing on a particular example
of block copolymer (BCP) melts [16]. On one hand,
BCPs provide a prototypical system for understanding
self-assembly in a much broader class of supramolecular
systems [17, 18]. Beyond this, the chemical versatility
of BCPs [19, 20] enables numerous routes to engineering
nanostructured materials with controlled functions that

rely on their complex self-assembled structures.

Even in the absence of intrinsic chirality, triply-
periodic networks [21, 22] – like the double-gyroid (DG),
double-diamond (DD), or double-primitive (DP) phases
– are among the most structurally intricate and function-
ally vital states that form in BCPs and soft supramolecu-
lar systems more broadly. Grossly speaking, these phases
are composed of two networks of tubular domains that
are divided by a slab-like matrix domain [23, 24], the
undulating shape of which closely approximates a finite-
thickness variant of the associated triply periodic mini-
mal surface [25] (e.g. G or D minimal surfaces, respec-
tively). The tubular domains – of distinct chemical com-
position from the matrix region – connect in multi-valent
junctions (e.g. 3- and 4-valent connections), with each
single constituent network interlinking with its partner
to form an intercatened double network [18, 26]. The
unique combination of nanoscopic dimensions, polycon-
tinuous topology, and triply periodic symmetries of self-
assembled double networks imbue them with remark-
able functionality[27], from photonic architectures ap-
pearing in birds, beetles, and butterflies [28, 29], to hy-
brid plasmonic or photonic metamaterials [30, 31]. No-
tably the most exotic of these targeted properties, such
as topologically-protected wave propagation and nega-
tive refraction, require control over the centrosymmetry
of the networks, in other words, they require chirality at
the network scale [32–34].

Among the cubic double-network phases, gyroid net-
works possess a unique capacity for chirality, in that
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FIG. 1. Chirality selection in alternating double-
gyroids of ABC* triblock copolymers. (A) A schematic
illustration of ABC* copolymer possessing a chiral A (pur-
ple) block and two achiral B (green) and C (gold) blocks. (B)
shows alternating double gyroid (aDG) with domains colored
according to end blocks composing the chiral single gyroid
networks and mid-block composting the slab-like matrix. (C-
D) illustrate the mesoscopic chirality of the single-gyroids,
with skeletal graphs the networks highlighted as red and blue,
repsective, from right- and left-handed chiral. The network
chirality can be associated with handedness of the dihedral
twist between two adjoining 3-valent nodes of the network, as
shown in (D).

each constituent single-gyroid network is chiral [35, 36].
However, in the simplest case, i.e. linear AB diblock
where the composition of each tubular network is the
same (say, A-type), the stable DG phase is achiral with
two enantiomeric single-gyroid domains arranged in an
inversion-symmetric fashion according to the Ia3̄d sym-
metry [23]. Introducing more components, such as linear
ABC triblocks, opens up the possibility of breaking this
“exchange symmetry” between network domains, leading
to alternating double networks where one tubular net-
work domain is A-type, its complement is C-type, both
of which are divided by a B-type matrix [37]. Indeed,
experimental [38] and theoretical [39, 40] studies of ABC
melts show windows of alternating DG (aDG), the mor-
phology shown in Fig. 1, the chirality of this structure
can be identified as right- or left-handed, according to
the sense of dihedral rotation between the 3-fold axes
of adjacent nodes in a single network domain [41, 42].
Although each tubular domain of the aDG is chiral at
the mesoscopic network scale(with space group I4132)
nearly all triblock systems are achiral at the molecular
level. Hence, for achiral BCP the chirality of the phase
that forms is determined randomly via spontaneous sym-
metry breaking [31, 43], limiting possibilities to exploit
the functional utility of the chiral variant of this complex
nanostructure.

Recent experiments by Wang et al. [44] give evidence
that the left- vs. right- symmetry is broken in triblocks
possessing a chiral A- block (which we refer to as ABC*

triblocks), in their case stereopure polylactide (PLLA).
Depending on whether the polylactides are D- or L-type,
the P(D/L)LA blocks have a preference to compose the
single-gyroid domain of a particular handedness, in effect
selecting the net chirality of the formed aDG from the
chirality of the molecular constituents. This observation
raises a basic question: How does the left- vs. right-
gyroid network symmetry couple to the organization of
chiral chain segments within those domains?

Prior studies of chiral diblocks have shown the ability
to transfer the chirality of a chain backbone to colum-
nar phases, known as helical cylinder H* phase [45, 46].
These observations have been rationalized by the orien-
tational self-consistent field (oSCF) theory of chiral di-
blocks, that couples the statistical confirmations of ran-
dom walking BCPs with gradient free energy of chiral
segments within nanophase-separated domains [47, 48].
This oSCF theory links the mesoscopic helicity of H* do-
mains with the threading of handed cholesteric segment
twist within the tubular domains of the chiral block, pro-
vided that the preference for chiral twist of those seg-
ments (i.e. the preferred inverse cholesteric pitch) is suf-
ficiently strong [49].

In this article, we describe the mechanism of chirality
transfer from the segment-scale to the mesoscale network
chirality in this class of chiral ABC BCP based on the ori-
entational self-consistent field (oSCF) theory. We show
that segmental twist is most pronounced in the (tenso-
rial) nematic order, and surprisingly, reverses the hand-
edness of not only the polar segmental order but also the
mesoscopic twist of the single-gyroid domain itself. We
show that this chirality reversal derives from unique fea-
tures of twist in a biaxial order parameter field. Finally,
we show that the thermodynamics of the subdomain pat-
tern of twist has the ability to select the equilibrium chi-
rality of aDG phases of ABC* triblocks, even in the limit
of weakly-anisotropic segmental interactions.

II. SELF-CONSISTENT FIELD THEORY OF
INTRA-DOMAIN SEGMENT TEXTURE

We begin by analyzing the intrinsic patterns of seg-
mental order in alternating networks of ABC triblocks
with isotropic interactions (see Appendix A for details of
oSCF theory). In this limit, the enthalpy of segment in-
teractions is described by local coupling of purely scalar
composition fields, φα(x), the volume fraction of type-
α(=A,B,C) segments at x, with a mean-field free energy
of the standard Gaussian chain BCP form [39],

Fiso

kBT
= ρ0

∫
d3x

{
χABφAφB+χBCφBφC+χACφAφC

}
− ρ0V

N
S
[
φA, φB , φC

]
, (1)

where ρ0 is the segment density, N is the total seg-
ment number in chain, V is the total volume and χαβ
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is the Flory-Huggins parameter describing (scalar) in-
teractions between α- and β-type segments. The in-
homogeneous composition profiles in combination with
the incompressibility constraint,

∑
α φα(x) = 1, lead

self-consistently to spatially varying chemical potentials
for segments that reduce the random-walk entropy of
the total ρ0V/N chains in the system, encoded in the
mean-field entropy functional S

[
φA, φB , φC

]
. We con-

sider a melt of ABC triblocks composed of Nα = fαN
α-type segments, where N is the total chain length.
We focus mainly on the case of symmetric end blocks
fA = fC = (1 − fB)/2, equal segment lengths a in
each block, and the possibility of segmental chirality only
in the A block. For given (scalar) interaction parame-
ters and block lengths, self-consistent solutions of this
isotropic model, eq. (1), solve the equilibrium compo-
sition profiles as well as the end-distribution functions
q±(x, n), which gives the partial statistical weight of
random-walk chain segments diffusing from its respec-
tive A or C free ends to the n segment at position x,
from which the mean-field partition function of the en-
tire chain is Z =

∫
d3x q+(x, n)q−(x, n) [17]. End-

distributions determine not only the scalar composition
profiles, φα(x) = V

NZ
∫
n∈α dn q

+(x, n)q−(x, n), but also

mean-field orientational order parameters [50, 51]: the
(vectorial) polar order,

pα(x) =
V a

NZ

∫
n∈α

dn J(n,x) (2)

where J(n,x) = (q+∇q−−q−∇q+)/6; and the (tensorial)
nematic order,

Qα(x) =
V a2

NZ

∫
n∈α

dn

(
K(n,x)− I

3
Tr
[
K(n,x)

])
, (3)

with the tensor elements Kij =
(
q+∂i∂jq

−+ q−∂i∂jq
+−

∂iq
+∂jq

− − ∂iq
−∂jq

+
)
/60, where I is the identity and

i, j, k are spatial indices [52]. Notably, spatially mod-
ulated phases imply anisotropy in the chain configura-
tions, hence all ordered phases imply non-vanishing pat-
terns of both polar and nematic order in the underly-
ing segments, even in the absence of explicit segmental
anisotropy. While pα(x) tracks the orientation of seg-
ments by distinguishing between the “head to tail” ori-
entation of segments along the chain, the tensorial order
parameter Qα(x) tracks only the axis of segment align-
ment, as is familiar to molecular theories of liquid crys-
tallinity [53].

However, because these order parameters encode dis-
tinct orientational symmetries (i.e. head-to-tail vs. ax-
ial orientation) they exhibit quite distinct spatial pat-
terns and magnitudes, even in the same ordered mor-
phology [50]. Crudely speaking, the polar order tends
to splay from the center of domains, roughly normally
to the inter-material dividing surface (IMDS) between
them. Nematic order is far more complex, showing a nar-
row zone of tangential alignment at the IMDS as well as
a director that shows predominantly normal alignment

deep in the brush zone. Even more significant is that
intrinsic nematic order becomes biaxial in curved mor-
phologies, exhibiting a secondary (minor) director field
along the axis of convex curvature, in addition to princi-
pal normal alignment of the brush-like domains. Given
the coexistence of both types of order and the distinctions
between their patterns, it is not a priori clear whether
the thermodynamically relevant measure of segment chi-
rality derives from polar or nematic order.

III. INTRINSIC TWIST OF ALTERNATING
NETWORK DOMAINS: POLAR VS. NEMATIC

We compare the twist of both polar and nematic order
parameters, of the A end block, defined in the case of
liquid crystals as the lowest-order pseudo-scalar gradients
of pA and QA [15],

Twp ≡ pA · (∇× pA); TwQ ≡ QA · (∇×QA), (4)

For the most commonly studied chiral texture, the uni-
axial cholesteric, both Twp and TwQ have a simple in-
terpretation – the (+/-) sign indicates (right/left) hand-
edness of the director winding and the magnitude is in-
versely proportional to the pitch [1]. Here, we focus on
the twist of end-block, A, segments composing a tubular
network domain, but in Appendix B we analyze an exam-
ple of twist in matrix domains, as well as computational
details.

In Fig. 2A-B, we compare the distributions of po-
lar and nematic twist of the A-domain in three SCF-
predicted alternating network phases of ABC triblocks,
right- and left-handed aDG (denoted as aDGr and aDGl)
and the alternating double-diamond (aDD), for the com-
mon parameters χABN = χBCN = 0.37χACN = 41 and
fA = fC = 0.24. First, we note from the spatial maps
(projected on the AB IMDS) that there is a coexistence
of regions of positive and negative twist (both polar and
nematic) for all networks. As the aDGr and aDGl are
related by an inversion symmetry, local regions of posi-
tive twist on one structure map onto regions of negative
twist on the corresponding (inverted) enantiomeric net-
work domain.

Fig. 2C plots the spatial average of the A segments of
both types of twist as a function of segregation strength
for all three networks. First, we note that there is zero net
twist in aDD, which derives from the fact that as a mirror
symmetric structure, Fd3̄m, any local “patch” of positive
segment twist maps onto an equivalent patch of negative
segment twist. For the chiral aDG domains, on the other
hand, positive and negative twist do not balance, and
each domain includes an enantiomeric excess of one sign
of twist. The net polar twist, which increases with inter-
block segregation strength, is equal and opposite on the
two aDG domains following the same sign of twist as the
dihedral twist itself (i.e. 〈Twp〉 < 0 in the left-handed
network domain and vice versa).
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FIG. 2. Intradomain twist in alternating double networks. (A) shows maps of the local (polar and nematic) segment
twist density in tubular network domains for χABN = χBCN = 0.37χACN = 41 and fA = fC = 0.24: A-component forming a
right-handed network of alternating gyroid (aDGr); A-component forming a left-handed network of alternating gyroid (aDGl);
and A-component forming a 4-valent network of alternating double diamond (aDD). (B) highlights the difference in spatial
patterns of polar vs. nematic twist on a 2-node region of the aDGl structure. Notably, the contours of locally right-/left-handed
segment polar twist follow the dihedral rotation between nodes, while the corresponding patterns of nematic twist wind counter
to the node twist. (C) plots the mean segment twist of A-domains in aDGr, aDGl and aDD versus segregation strength for
χABN = χBCN = 0.37χACN and fA = fC = 0.24. While aDD has regions of local segment twist, as an achiral morphology,
the mean twist is zero. In contrast, mean polar and nematic twist are non-zero for gyroidal domains, but of distinct magnitudes
and signs.

The nematic twist is similarly non-zero and increasing
with segregation strength for the chiral aDG domains.
However, it exhibits two key differences from the po-
lar twist. First, the magnitude of the mean twist, when
rescaling for the intrinsic dependencies on the character-
istic chain dimension aN1/2, is significantly greater for
nematic order than for polar order. Second, the net sign
of nematic twist is reversed relative to the polar twist as
well as relative to the sense of dihedral rotation of the
gyroid network itself (i.e. 〈TwQ〉 > 0 in the left-handed
network domain and vice versa).

To understand the stronger magnitude and reversed
sense of nematic twist relative to polar, it is illustrative
to consider the twist textures in cross-sections of the A-
block domain strut of aDGl (the planar cut shown in
Fig. 3C). First, we note that polar order (Fig. 3A) tends
to orient radially away from the strut axis in Appendix C.
To be more precise, as described previously [50] and ana-
lyzed in Appendix C, polar order predominantly follows

the gradients of segment composition, so that to a first
approximate pA ∝ −∇φA, which can be expected purely
on symmetry grounds for sufficiently weak segregation,
and broadly due to the extension of chain trajectories
normal to the IMDS. Because ∇× (∇φA) = 0, the polar
twist is only non-zero if the polar director deviates from
−∇φA. As these deviations are evidently quite small (see
Fig. 8), it follows that the degree of polar twist is van-
ishingly small in aDG domains, as well as for any other
ordered BCP domain structure, in the absence of orien-
tational segment interactions.

Fig. 3B shows the the spatial pattern of nematic
twist in aDGl domain, for comparison. We note again
the larger magnitude of scaled nematic twist, but also,
and more striking, the spatial regions of local left- vs.
right-handed twist in the strut cross-section have largely
swapped places relative to polar twist. For example,
along the semi-major directions of the elliptical domain
sections, the polar twist is negative (i.e. left-handed) fol-
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FIG. 3. Subdomain patterns of network twist. Heat maps of local segment twist density are shown for polar twist (A)
and nematic twist (B) in the cross-section of the A-segment gyroid network of the aDGl phase, for a the planar cut normal to
the strut, as illustrated in (C). Arrows indicate the local polar orientation in (A), while principal directions of nematic tensor
are highlighted by yellow, green and blue lines in (B). In (D), the components of nematic twist, defined in eq. (6), are mapped
to the strut cross-section. In (E), the corresponding maps of major director twist, minor director twist and biaxial frame twist,
are shown for the strut section.

lowing the dihedral twist of the domain. In contrast, the
semi-minor directions of the cross-section exhibit positive
(i.e. right-handed) nematic twist. We next consider the
origins of this reversal of segmental twist.

IV. CHIRALITY REVERSAL VIA BIAXIAL
TWIST

The nature of nematic twist in aDG domains is far
more complex because segmental order is biaxial. Unlike
biaxial nematic phases of mesogens [54, 55], here biaxial-
ity derives from the anisotropically curved domain shapes
realized by BCP packing [50]. A biaxial order parame-
ter [56] can be decomposed into the degree of alignment
S along a major axis n and a weaker degree of alignment
0 < R < S along a minor axis m ⊥ n, where these direc-
tions correspond to the principal directions of QA with
the largest two eigenvalues,

(QA)ij = S
(
ninj −

1

3
δij

)
+R

(
mimj −

1

3
δij

)
. (5)

Note that both the directors (n and m) and the order
parameter magnitudes (S and R) can vary spatially ac-

cording to the directions and degree of segmental align-
ment. Note also that the first two directors define a third
axis l ≡ n ×m [57]. Given this parameterization, the
nematic twist can be split into three contributions (see
Appendix D for details) ,

TwQ = S2n ·(∇×n)+R2m ·(∇×m)+2SRm
[
(l ·∇)n

]
.

(6)
The first two terms represent the twist of the major
and minor director, respectively, while the third term
is unique to the biaxial textures (i.e. S and R are non-
zero). We refer to this as biaxial twist, and it measures
the rate of rotation of major and minor directors along
the mutually perpendicular co-director l, as well as the
degree of biaxial order.

Figure 3D-E plots the nematic twist and these three
constituent components in the cross-section of the aDGl

strut in the core of A domain (i.e. in the region φA ≥
0.9). Notably, the spatial pattern and sign of nematic
twist follows closely to the polar twist, consistent with
the fact that in the core of the domain, the principal
nematic director aligns with the polar order parameter
(as shown in Fig. 8B). Similar tendency of n to lock in
orientation along composition gradients also implies a rel-
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FIG. 4. Winding of biaxial twist along inter-node gyroid struts. (A) shows an integral curve of the co-director
l = n × m computed from the biaxial nematic texture of (left-handed) A domain of aDGl, with regions colored red/blue
corresponding to local right-/left-handed frame twist. The geometry of frame-twist is illustrated for a highlighted loop in (B),
the major (n) and minor (m) directors winding around the l along the looping trajectory. Along this trajectory the degree
of biaxiality, as measured by S × R, varies as shown in (C). (D) plots net rotation of the director frame along the “orbiting”
integral curves of l versus the projected location along the strut (normalized by the node-node separation). This plot shows
multiple curves corresponding to the increasing mid-strut radial distance of the curve from strut r, normalized by the distance
to the IMDS, rIMDS. (E) gives the 2-point density histogram of values of director frame-twist (m

[
(l ·∇)n

]
) and biaxiality (SR),

with colored contours constant biaxial twist (2SRm
[
(l · ∇)n

]
) overlaid.

atively weak measure of major twist, consistent with the
vanishingly small magnitude of n · (∇ × n) in Fig. 3E.
On the other hand, While there is a reasonably strong
degree of minor director twist, m · (∇ ×m), as shown
in Fig. 3E, the magnitude of alignment in the minor di-
rection is relatively weak (i.e. R2 � S2) and the net
contribution from minor twist is negligible. Finally, the
distribution of biaxial twist, in Fig. 3D, shows that it is of
a substantially larger magnitude and reversed in sense of
chirality from major and minor twist. From Fig. 3E, we
observe that the frame twist, m

[
(l · ∇)n

]
, is comparable

in magnitude to the twist of the minor director (with a
reversed sense), but as this term is weighted by the prod-
uct of the magnitude of major and minor axis alignment
(i.e. S × R) it dominates the over minor twist. Because
the contribution from biaxial twist dominates over the
negligible contributions from the major and minor twist,
it sets the net nematic twist and accounts for the reversal
of chirality in the nematic order of segments relative to
the mesoscopic twist of the aDG networks themselves.

The geometry of biaxial twist can be illustrated in
terms of the integral curves of the co-director l, with
the local twist corresponding to the frame rotation of n
and m along these curves. Fig. 4A shows one such curve
within an A domain of aDGl, which spans between dihe-
dral nodes and winds, like a solenoid, around the strut.
Along these solenoidal trajectories, the rotation of the n
and m frame experiences both left- and right-handed re-
gions of twist, as highlighted in Fig. 4B, but notably, the
degree of biaxiality, as measured by the product S × R
also varies around this looping “orbit” as shown 4C. The
accumulated rotation of the frame (i.e. integrating the
director frame twist along the curves) is plotted in Fig.
4D, for a series of varying radial distances r (mid-strut)
of orbits relative to the strut. Notably, the frame ro-
tation is net negative, consistent with the overall left-
handed writhing of grossly helically winding around the
left-handed network strut. However, the biaxial order
in these curves is relatively larger in regions of counter-
rotating, right-handed, frame twist, which correspond to
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the red “top/bottom” portions of the looping paths in
Fig. 4A-B.

We note that these counter-twisting regions corre-
spond to the most eccentric regions of the elliptical
cross-sections in Fig. 3, in other words, regions of
highly anisotropic domain curvature. As described pre-
viously [50], anisotropic domain curvature is directly cor-
related with degree of biaxial segment order in BCP
domains. Hence, the co-location of counter-twist and
enhanced biaxiality leads these “counter-revolutionary”
pockets of segmental order to dominate the net nematic
twist in gyroidal networks, that is, they make left-handed
network domains overall more favorable to right-handed
twist. This bias of strong biaxiality in counter-twisting
regions is evident in the 2-point histograms within the
A domain of aDGl showing the frequency of points as a
function of both their frame twist, m

[
(l·∇)n

]
, and S×R.

While points are apparently nearly evenly distributed be-
tween right- and left-handed frame twist, right-handed
twist regions tend to skew towards larger biaxial order,
biasing the product of these quantities (the biaxial twist)
to positive (i.e. right-handed) values for a left-handed gy-
roid network domain. Overall, this analysis reveals how
biaxiality, qualitatively and quantitatively, alters the na-
ture of chiral organization, particularly in cases where the
principal director is predominantly locked to the normals
of iso-density in a SmA-like fashion.

V. THERMODYNAMICS OF ALTERNATING
NETWORKS IN ABC* TRIBLOCKS: WEAK

CHIRALITY

With the analysis for the intrinsic twist in ABC net-
works (i.e. with isotropic segment interactions) in mind,
we consider the thermodynamic consequences for the
coupling of self-assembly to segmental chirality in ABC*
triblocks. The dominance of nematic twist over the polar
twist in aDG domains argues that the most significant
anisotropic chiral interactions have nematic symmetry,
and to a good approximation the effects of potentially
polar interaction terms can be neglected. As such, the
minimal free energy model includes the lowest gradients
in QA familiar from the Q-tensor theories of chiral meso-
gens (e.g. blue phases) [15],

F ∗nem[QA] =
1

4

∫
d3x

{
K0

[
(∇ ·QA)i

]2
+K1

[
(∇×QA)ij + 2q0(QA)ij

]2}
, (7)

where (∇ · Q)i = ∇jQij , (∇ × Q)ij = εilk∇lQkj and
summation over repeated indices is implied. Here K0

and K1 are elastic constants for divergence and curl of
QA, which we set onto an equal value K = K0 = K1 for
this study [58]. Segmental chirality, q0 6= 0, parameter-
izes the free energy preference for non-zero segment twist:
q0 > 0 corresponds to a preference for 〈TwQ〉 < 0, which

is a thermodynamic bias for left-handed cholesteric twist.
Incorporating chiral (nematic) segment interactions leads
to a total free energy that combines the (mean-field) en-
thalpy and entropy of the scalar BCP melt model, eq.
(1), with the chiral nematic gradient free energy of eq.
(7),

Ftot = Fiso + F ∗nem. (8)

In general, anisotropic segment interactions lead to a
self-consistent coupling of random-walk chain configura-
tions and the orientational order parameters, which take
the form of self-consistent locally-aligning fields [47, 51].
However, for the purposes of the present study, we re-
strict our attention to the limit of weakly-anisotropic seg-
mental interactions. As described in Appendix E, for-
mally this limit corresponds to a thermodynamic expan-
sion in the elastic constant K, where the lowest order
term derives simply from computing chiral nematic gra-
dient contribution in eq. (7) above, from the intrinsic
nematic texture, i.e. the biaxial state QA(K → 0), ana-
lyzed above in Figs. 2- 4.

To assess the thermodynamic consequence of intrinsic
twist on the assembly of alternating networks of ABC*
triblocks, we consider two regions of the large parameter
space of ABC triblocks [39, 40], in particular symmetric
end-block composition (fA = fC), with unfrustrated in-
teractions (χABN = χBCN = 0.37χACN), for relatively
weak (χABN = 16) and intermediate (χABN = 26) seg-
regation strengths, and for a range of effective chiral cou-
pling strengths q0 (see Appendix E). We first discuss the
intermediate segregation, shown in Fig. 5A. As in the
case of purely scalar interactions, studied previously in
ref. [40], with increasing mid-block fraction, we observe
a sequence of alternating lamellar (Lam) to aDG - al-
ternating (square) cylinder (aCyl) to alternating (BCC)
spheres (aSph) phases. However, it is important to note
that for any q0 6= 0 the left vs. right aDG degeneracy
is broken, and again, due to the predominance of biaxial
twist in aDG domains, the thermodynamically selected
network chirality is of the reversed handedness with re-
spect to the sense of cholesteric segment twist preferred
by same sign of q0. The expansion of the windows of sta-
ble chiral aDG phases relative to achiral competitors with
increasing strength of segmental chirality q0, is another
notable effect which derives from the unique natural twist
of segment packing in gyroidal domains, even in the ab-
sence of chirality in constituent segments themselves.

Fig. 5B shows a similar composition-chirality plane
for weaker segregation, as previously reported [40], this
regime includes a stability window of aDD intermediate
to aDG and aSph. Again, we note that outward tilt of
aDG/aDD phase boundaries with increasing q0. Given
the appearance of a triple point between aDGr, aDGl and
aDD in this phase diagram, it is interesting to note that
Wang et al. observe that PI-PS-PLA with racemic lactic
acid blocks form at aDD phase, while the stereopure (L
or D type) PLA blocks lead to chiral aDG phases [44].
This suggests that the experimental system may be sim-
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FIG. 5. Phase behavior of ABC* triblock melts in the
limit of weakly anisotropic interactions. oSCF phase
diagrams for symmetric end-block composition (fA = fC)
unfrustrated interactions (χABN = χBCN = 0.37χACN),
showing regions of stable morphologies: lamellar (Lam), al-
ternating (square) cylinder (aCyl), alternating (BCC) spheres
(aSph), alternating double-diamond (aDD) and right and left
handed alternating double-gyroid (aDG). (A) and (B) corre-
spond to intermediate-segregation (χABN = 26) and weak-
segregation (χABN = 16), respectively. The strength and
handedness of chiral interactions is modulated by q0 the in-
verse pitch of preferred cholesteric order. Here, the Frank
constants are set to an equal value K/(ρ0a

2N2) = kBT/2.

ilarly placed close to a triple point between these three
phases, though it remains to be understood how to pre-
cisely map the magnitudes of chiral nematic free energy
parameters onto this experimental system, and more gen-
erally, how the broader structure and stability of alter-
nating diblock phases will vary as segmental interactions
become larger. For sufficiently strong anisotropic and
chiral interactions, it can be expected that the twist in
segment packing alters the shape of the composition pro-
files themselves away from the intrinsic, or isotropic, SCF
model predictions [48, 59].

VI. CONCLUSION

In summary, we have shown that chirality transfer in
alternating network phases of BCPs falls into an un-
usual category. The preference for handed rotation at the
molecular level (backbone orientation of chiral blocks) is
a reverse sense of the thermodynamically selected meso-
scopic twist of the cubic network (inter-node dihedral).
The scenario relies on the fact that the twist of both the
polar order parameter and the principal director of the
nematic order parameter are screened by strong SmC-
like anchoring to the scalar composition gradients. The
residual, dominating twist, therefore, emerges from the
strongly biaxial texture of segmental order in BCP gy-
roids, and its specific chiral gradients. Notably this “anti-
sense” coupling to mesoscopic chirality of the network is
also distinct from recently explored mechanisms of meso-
genic packing and chirality transfer in gyroidal liquid
crystal phases [60–62], wherein the principal director is
understood to co-rotate with the “easy” 70.5◦ inter-nodal
twist shown in Fig. 1.

We also note that this mechanism of chirality trans-
fer is distinct from previously studied mechanisms for
BCP*s, notably for H* and DG phases of chiral di-
blocks [48, 59]. In those cases, in the absence of seg-
mental chirality, the equilibrium phases are achiral. To
overcome the entropic coupling that locks the director to
composition gradients, the free energy gain for threading
chiral segment packing must be sufficiently strong. This
leads to a threshold value of q0 below which the struc-
ture remains mesoscopically achiral; and above which it
breaks inversion symmetry. In this case, equilibrium al-
ternating networks of ABC triblocks spontaneously break
chiral symmetry. The preference for chiral segment pack-
ing needs to only tip the balance between otherwise ther-
modynamically degenerate enantiomeric phases. Hence,
at the mean-field level, chirality transfer occurs in the
limit of arbitrarily weak chiral strength. It remains to be
studied, how the domain shapes of alternating networks
are modified in the presence of strong nematic chiral cou-
plings, which could, in principle, “unwind” the handed-
ness reversal effect studied here for weak chirality and
would be consistent with the twist preferences of (polar)
strongly chiral diblocks in the DG assemblies [59]. If that
were the case, it would suggest an even more complex
scenario, where the left vs. right. handedness selection
of network formed by the chiral block in alternating gy-
roids is itself a function of the chiral strength, switching
from anti-chiral to homo-chiral transfer when going from
weakly to strongly chiral BCP* systems.
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Appendix A: Orientational self-consistent field
theory

Here we summarize the key theoretical ingredients for
the oSCF theories of ABC triblocks with generalized cou-
plings between freely-jointed chain random walks and ei-
ther polar or nematic orientational field interactions. The
complete details and derivations of this formalism can be
found in refs. [47, 50, 51]. Here, we describe only ele-
ments necessary to analyze chirality transfer in the limit
of weakly anisotropic couplings.

In general, we consider mean-field interactions of the
form described by local functions of the order parame-
ters. For example, the standard (Flory-Huggins) model
of chain mixtures includes an enthalpic free energy of in-
teractions between unlike components in terms of overlap
between scalar composition profiles, φα(x), which for the
case of ABC copolymers, this takes the form,

Fscal

[
φα(x)

]
= ρ0

∫
d3x
{
χABφAφB + χBCφBφC

+ χCAφCφA

}
. (A1)

Additionally, we consider the possibility of orientational
interactions described by functionals of either vector
(polar) or tensorial (nematic) form, Fpol

[
pα(x)

]
and

Fnem

[
Qα(x)

]
, respectively. Where these functionals de-

pend on local values of the order parameters and their
gradients. These orientational couplings give rise to
self-consistent vectorial and tensorial fields, which are
denoted as wα and Wα respectively, representing the
anisotropic interactions between chain segments at the
mean-field level, and derive from the saddle point equa-
tions:

wα,i(x) = ρ0
δFpol

δpα,i(x)
, (A2)

and

Wα,ij(x) = ρ0
δFnem

δQα,ij(x)
, (A3)

where index α refers to chemical component (i.e. A, B, or
C type) and i and j are spatial indices. These anisotropic
interaction fields bias the random-walk chain statistics
through diffusion-like equations for the segment distri-
butions, q±(x, n), given respectively by,

±∂q
±

∂n
=

1

6

[
a∇−wα(x)

]2
q±−ωα(x)q±, (polar) (A4)

and

±∂q
±

∂n
=
a2

6
∇2q±−a

2

15
∂i
[
W̃α,ij(x)∂jq

]
−ωα(x)q±, (nematic),

(A5)

where W̃ij = (Wij − Wji)/2 − (δij/3) Tr[W] is the
traceless, symmetric part of Wij and ωα(x) is the self-
consistent chemical potential fields that couple to the
scalar composition profiles for component α. The self-
consistency conditions for the ωα(x) fields follow from
the standard saddle-point conditions relating to the func-
tional derivatives δFscal/δφα(x) and the incompressibil-
ity constraint,

∑
α φα(x) = 1. As the anisotropic self-

consistent fields bias the random walk statistics of chains,
they couple to the mean-field orientational order param-
eters, providing a complete set of self-consistency condi-
tions for the generalization of block copolymer melts to
the case of anisotropic interactions:

pα(x) =
V

6NZ

∫
n∈α

dn
[
aJ(x, n)−2w(x)q+q−

]
, (polar)

(A6)
and

Qα(x) =
V

NZ

∫
n∈α

dn

{
a2
(
K(x, n)− I

3
Tr
[
K(x, n)

])
− 8W̃(x)q+q−

}
, (nematic) (A7)

where J(x, n) and K(x, n) are vectorial and tensorial
segment-flux operators defined in the main text.

In the limit where the anisotropy goes to zero (i.e.
Fpol → 0 and Fnem → 0), the self-consistent vectorial
and tensorial fields vanish. In this case, pα Qα derive
only from spatial derivatives of q±(n,x), corresponding
to the form of the “intrinsic” polar and nematic order
parameters given in the main text eqs. (2) and (3).

We note that these intrinsic order parameters have an
explicit dependence on N which can be deduced by con-
sidering the natural length scales of the microphase sep-
aration. The characteristic size of BCP domains scale
with the r.m.s. size of an unperturbed Gaussian chain,
N1/2a, with an additional dependence on values of χαβN
and fα. This implies that all spatial variation in q± oc-
curs on a length scale that grows as N1/2a. Hence, spa-
tial derivatives of the form that enter eqs. (2) and (3) in
the main text are made dimensionless by multiplication
by N1/2a (i.e. ∂̄i → N1/2a∂i). Recasting these deriva-
tive conditions in terms of reduced coordinates, it is clear
that N1/2pα and NQα are functions that only depend
on χαβN and fα.

Appendix B: Intrinsic order parameter and twist

To evaluate the intrinsic order parameters, and the
sub-domain patterns of twist, we compute the chain dis-
tribution functions q±(n,x) for ABC triblocks using the
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PSCF code [63]. We then compute the polar and ne-
matic order parameters using eqs. (A6) and (A7), and a
finite-difference approximation to the spatial derivatives
of q±(n,x) defined on the computational grid of the SCF
solution.

Polar and nematic order parameters require spatial
derivatives of q±(n,x) and the resolution of segment
twist is another spatial derivative of the order param-
eter. Thus, converged oSCF solutions require especially
high grid resolution, even beyond the demands for the
free energy of standard SCF theory (i.e. isotropic Flory
interactions) [51]. To determine the resolution limits of
twist calculations we analyze the nematic twist (which
requires higher resolution than polar twist) as a function
of the grid resolution in Fig. 6. We observe that nematic
twist eventually converges with sufficiently large numbers
of spatial grid points, in a way that increases with the
segregation strength. Fitting that limiting convergence
to an asymptotic power law, we extrapolate to limiting
values in the hypothetical infinite grid resolution limit.
Results for Fig. 2C are based on 3203 grid elements, while
the phase diagrams, at much lower segregation strengths,
are based on 1923 spatial grids.

In Fig. 7, we consider the mean nematic twist in all
three domains of an aDG phase for the variable asymme-
try between the end blocks for a fixed midblock fraction
fB = 0.52. This shows that when fA 6= fC the matrix
itself also develops a net chirality in segment twist. No-
tably, the decreasing length relative length one of the two
ends (say, the A block) leads to a transfer to the chiral-
ity of twist from the tubular domain to the matrix. For
example, when fA < fC the net twist of the matrix layer
has the sign of the A domain twist, and this behavior
inverts when fA > fC .

Appendix C: Alignment of polar and nematic
directors with composition gradients

Ref. [50] described the general “anatomy” of the seg-
mental order parameters of BCP domains in detail. Here
we focus on the relative alignment between polar order
parameter and isocontours of segment composition for
the A domain, composing a single gyroid domain of aDG.
The isocontours of density are normal to −∇φA/|∇φA|,
and in Fig. 8A we plot the histogram of the dot product
of p̂A and these isocontour normals, showing that these
directions are predominantly parallel. The principal di-
rector of nematic order is in general more complex due to
a strong tangential alignment effect that takes place at
the IMDS. However, as the interface between network A
and matrix B is very narrow is well-segregated morpholo-
gies, this tangentially aligning zone makes up a small
fraction of the morphology. As a consequence polar, and
principal directors of the nematic, are on average very
well aligned, as shown in Fig. 8B.

Appendix D: Decomposition of biaxial twist

We decompose the twist of a biaxial nematic order pa-
rameter parameterized by a principal director, n, and bi-
axial director, m, which are mutually perpendicular (i.e.
n ·m = 0), and the Qij tensor,

Qij = Qnij +Qmij , (D1)

where,

Qnij = S
(
ninj −

δij
3

)
; Qmij = R

(
mimj −

δij
3

)
, (D2)

where magnitudes S and R, along with directors, may
vary in space. We can relate this description to the three
principal eigenvalues of Qij ,

λ1 =
1

3
(2S −R); λ2 =

1

3
(2R− S); λ3 = −1

3
(S +R).

(D3)
From this we compute the twist of the tensor OP,

Q·
(
∇×Q

)
= Twn+Twm+Qn·

(
∇×Qm

)
+Qm·

(
∇×Qn

)
,

(D4)
where Twµ = Qµ ·

(
∇ ×Qµ

)
is simply the twist of the

principal or secondary (biaxial) director, e.g.

Twn = Qnijεjk`∂kQ
n
`i

= Qnijεjk`

[
(∂kS)

(
n`ni −

δ`i
3

)
+ S

(
ni∂kn` + n`∂kni

)]
=
S(∂kS)

3
εjk`

(
n`nj +

δ`j
3

)
+

2S2

3
njεjk`∂kn`

− S2

3
εjk`n`∂knj = S2n · (∇× n) (D5)

where we used the fact that terms that are symmetric
in any two indices vanish when contracted with εjk`.
Note that the index µ = n,m refers to the princi-
pal or secondary component of Q. Likewise, Twm =
R2m · (∇×m). Notice that gradients of the OP magni-
tudes do not generate unaxial twist.

Now we examine the cross term, Qm ·
(
∇ ×Qn

)
, be-

ginning with the curl tensor,

(
∇×Qn

)
ij

= εjk`

[
(∂kS)

(
n`ni−

δ`i
3

)
+S
(
ni∂kn`+n`∂kni

)]
,

(D6)
When we contract the first term with Qmij we get

R(∂kS)εjk`
(
mimj −

δij
3

)(
n`ni −

δ`i
3

)
= −R(∂kS)

3
εjk`(n`nj +m`mj) = 0 (D7)

where we have used n · m = 0 and the symmetry of
(n`nj + m`mj) under the interchange of indices. Now
contracting Qmij with the second term in the curl tensor
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FIG. 6. In (A) we plot the mean nematic twist in the A network domain for SCF grids of variable grid resolution, and a
sequence of segregation strengths given by the points in (B). In (B) we plot the mean twist as a function of segregation strength,
for the sequence of increasing grid resolutions plotted in (A). The extrapolated limit is shown on a log-log plot on the inset,

suggesting a power law scaling of (χABN)5/2. Here, we consider the case of fA = fC = 0.24

FIG. 7. A plot of mean nematic twist of all three domains for
χABN = χBCN = χACN/2.7 = 41 as function of end-block
fraction fA for a fixed midblock fraction fB = 0.52. Note that
end block compositions are symmetric when fA = 0.24.

(
∇×Qn

)
ij

SRεjk`
(
mimj −

δij
3

)
ni∂kn` = −SR

3
εjk`nj∂kn`

= −SR
3

n · (∇× n). (D8)

Contracting Qmij with the third term in the curl tensor(
∇×Qn

)
ij

gives

SRεjk`
(
mimj −

δij
3

)
n`∂kni

= SR
[
mi(∂kni)εjk`mjn` −

1

3
εjk`n`∂knj

]
= SR

{
m ·

[
(l · ∇)n

]
+

1

3
n · (∇× n)

}
, (D9)

where

l = n×m, (D10)

is the eigendirection of the smallest eigenvalue of Q.
Combining all three terms we have,

Qm ·
(
∇×Qn

)
= SR m ·

[
(l · ∇)n

]
. (D11)

For the other “cross twist” term we have

Qn ·
(
∇×Qm

)
= SRni(∂kmi)εjk`njm`

= −SRn ·
[
(l · ∇)m

]
= SRm ·

[
(l · ∇)n

]
, (D12)

where we used the fact that ∂i(m ·n) = 0 so, n ·
(
∂im

)
=

−m ·
(
∂in
)
.

Thus, putting the pieces together we have three total
terms in the OP twist,

Q·
(
∇×Q

)
= S2 n·(∇×n)+R2 m·(∇×m)+2SRm·

[
(l·∇)n

]
.

(D13)

Appendix E: Mean field thermodynamics of chiral
nematic ABC* triblock melts: weakly-anisotropic

limit

Here we derive the weakly-anisotropic limit of the chi-
ral nematic model of ABC triblocks described in the main
text, summarized by the gradient free energy expression
in eq. (7) (i.e. with chiral anisotropic mean-field interac-
tions in A block only). Following the eq. (A3), we have
the self-consistent tensorial field equation

WA,ij(x) = ρ0
δFnem

δQA,ij(x)

= ρ0K
{
− 1

4
∇2(QA)ij + 2q0(∇×QA)ij + q20(QA)ij

}
(E1)
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FIG. 8. Histograms of the relative alignment of isodensity contours and polar order (A) and polar and nematic order (B) for
the single-gyroid A domain of an aDG phase. Here we analyze the same structure shown in Fig.2A.

where again we are considering the single constant ap-
proximation K0 = K1 = K.

We now consider solutions of the self-consistent equa-
tions in the limit of weakly-anisotropic interactions,
which is based on a thermodynamic perturbation ex-
pansion around the K → 0 limit, which is the case of
the standard (purely scalar) SCF theory [51], referred
to here as the “intrinsic field” limit. Following standard
perturbation theory approaches, we denote the values of
self-consistent fields g(x) as an expansion in powers of
K,

g(x) = g(0)(x) +Kg(1)(x) +K2g(2)(x) . . . (E2)

where g(M)(x) describes the KM order correction to the
intrinsic field limit of the field g(x). Based on this def-
inition and the form of eq. (E1), it is clear that in-
trinsic limit of tensorial self-consistent field vanishes, i.e.

W
(0)
A = 0, where as all other self-consistent field quanti-

ties remain non-zero in this limit, most notably the ne-

matic tensor field itself (i.e. Q
(0)
A is given by equation

(3) in the main text). The total free energy then has the

form,

F = F (0) +
K

4

∫
d3x

{
K0

[
(∇ ·Q(0)

A )i
]2

+K1

[
(∇×Q

(0)
A )ij + 2q0(Q

(0)
A )ij

]2}
+O(K2) (E3)

with the second term corresponding to the lowest order
non-vanishing correction to the intrinsic field limit due
to anisotropic segment interactions. Note that because
the intrinsic limit is a saddle point with respect to the
scalar fields, corrections to the free energy due to first-
order corrections in φα and ωα lead to corrections of the
mean-field free energy at O(K2). Therefore, in the limit
of K → 0, we consider only the first-order contribution
of anisotropy, as in eq. (E3), deriving from the chiral

nematic gradient free energy of the intrinsic field Q
(0)
A .

To evaluate the free energies of competing morpholo-
gies in Fig. 5, we compute the intrinsic limit SCF solu-
tions for competing phases for a variable range of domain
periodicities centered around the equilibrium state (i.e.
in the absence of anisotropic interactions). We then eval-
uate the nematic order parameters of the A block and
compute the gradient free energy contributions from eq.
(7). Combining these with the isotropic mean free ener-
gies in eq. (E3), we minimize the total free energy over
the domain periodicities, which may shift the equilibrium
domain spacing by a few percent.
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