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Abstract 

The brain is a nonlinear and highly Recurrent Neural Network (RNN). This RNN is 

surprisingly plastic and supports our astonishing ability to learn and execute complex 

tasks. However, learning is incredibly complicated due to the brain’s nonlinear nature 

and the obscurity of mechanisms for determining the contribution of each synapse to 

the output error. This issue is known as the Credit Assignment Problem (CAP) and is 

a fundamental challenge in neuroscience and Artificial Intelligence (AI). 

Nevertheless, in the current understanding of cognitive neuroscience, it is widely 

accepted that a feedback loop systems play an essential role in synaptic plasticity. 

With this as inspiration, we propose a computational model by combining Neural 

Networks (NN) and nonlinear optimal control theory. The proposed framework 

involves a new NN-based actor–critic method which is used to simulate the error 

feedback loop systems and projections on the NN’s synaptic plasticity so as to ensure 

that the output error is minimized.  
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1. Proposed framework 

In this section, we propose a novel brain-inspired learning rule. The main idea is to 

use a RL-based method to control synaptic plasticity. Fig. 1 illustrates the main ideas 

underlying this computational model that applied in a time series classification task. 

In the proposed framework, synaptic plasticity reformulated as an optimal tracking 

problem. For this purpose, the one-hot output vector representing the true class of 

each time series pattern is imitated, similar to the length of each time series pattern, 

and is considered the reference trajectory as illustrated in Fig. 1 (C) bottom subplot. 

Since the reservoir is a special class of high-dimensional nonlinear dynamic systems, 

where both state and time are continuous. Therefore, continuous-time formulation of 

the HJB equation and ADP can be applied to derive the learning rule (optimal control 

law). The derived learning rule forces the proposed framework's output (predicted 

class in classification tasks) to mimic the reference trajectory (true class in 

classification tasks) that implicitly minimized the cross-entropy. The following 

subsections elaborate on the network architecture, and the learning rule in further 

detail. 

1.1 Network architecture and dynamics 

The proposed framework consists of a feedforward and feedback pathway. The 

main parts of the feedforward module are:  

 Input data encoding layer.  

 Recurrent neural network (RNN). 

 Linear classifier (output function).  

The feedback module is composed of:  

 Critic RC. 

 Actor RC. 

Fig. 1 shows the block diagram of the proposed framework architecture. The 

functionality of the proposed architecture is based on the following steps: 

a. The encoding layer projects input patterns 𝑥(𝑡) into the RNN. In spiking neural 

networks, each real-value of a data vector is converted into discrete spike trains, 
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suitable for processing in the spike network as spike neural networks can only 

process discrete spike trains.  

b. In the pertaining process, a supervised learning algorithm like Gradient descent, 

Ridge, etc., is employed to adjust the decoder parameters associated with each 

training sample. Once the decoder is trained, it is considered constant during the 

reservoir training process.  

c. In the RNN training process. An RL-based algorithm proposed in subsection 1.2 

is applied to make the RNN learn temporal relations between the input patterns 

𝑥(𝑡)  and desired output 𝑦(𝑡) by adjusting the parameters in the RNN using a 

novel ADP approach. In the proposed ADP mechanism, two RC-based actor and 

critic are utilized to approximate true reservoir parameters. 

d. Model recall on new data. 

The feedforward pathway resembles the structure of traditional neural networks, 

however the methodology of the feedback pathway especially proposed in this study 

differs significantly from classical artificial intelligence approaches.  

Remark 1 For the sake of brevity, time dependence is suppressed while denoting 

variables of dynamical systems. For instance, the notations 𝑥(𝑡), 𝑦(𝑡), 𝑢(𝑡), 𝑣(𝑡) and 

𝑒(𝑡) are rewritten as 𝑥, 𝑦, 𝑢, 𝑣  and 𝑒. 

 



 

Fig. 1. A schematic of the proposed architecture (plastic weights in red). (A) The feedforward pathway 
consists of an encoding layer with fix and random parameters, a RNN with trainable parameter and a 

decoder layer, which is trained in the pre-training process and stay constant during the RNN training 

process. (B) In the feedback pathway, the nonlinear optimal control is applied for estimating RNN 
parameters. It consists of actor and critic neural networks. (C) The bottom subplot shows the reference 

trajectories, and the top subplot shows the learned trajectories. 

 

As illustrated in Fig. 1, The central element of the proposed framework is a RNN, 

i.e., a recurrent network with a structure denoted by the adjacency matrix 𝑊𝑟 ∈

ℝ𝑛𝑟×𝑛𝑟
. Here, the RNN consists of 𝑛𝑟 neurons, for which the membrane potential 

dynamics are described as: 

(1) �̇� 𝑖
= ψ(𝑣𝑖) + Ι𝑖  

 

(2) 𝐼𝑖 = 𝑊𝑖
𝐸∅(𝑣 

𝐸) + 𝑊𝑖
𝑟∅(𝑣 

 𝑟)  

 

,where 𝜐 = [𝜐1. 𝜐2. ⋯ . 𝜐𝑛𝑟]  ∈ ℝ𝑛𝑟
 is the state or membrane potential of the RNN 

neurons,  ∅(∙) is a Lipschitz nonlinear dendrite such as 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(∙). 𝑇𝑎𝑛ℎ(∙), and, 

ψ(𝜐): ℝ𝑛𝑟
→ ℝ𝑛𝑟

 is a Lipschitz leak-term where we used −𝛼𝑙𝑣, 𝑣 
𝐸 , 𝑣 

 𝑟 in non-

spiking neurons are directly equal to input 𝑥 and RNN state 𝜐, and in spiking neurons 

𝑣𝑖
  shows the filtered spike activity of neuron 𝑖. 𝑆𝑖

 
 
(𝑡) is the spike train of the neuron 𝑖 

and modelled as a sum of Dirac delta-functions: 
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(3) 𝑞𝑖
 = (𝑆𝑖

 
 
∗ 𝜅)(𝑡) = ∫ 𝑆𝑖

 (𝑠)𝜅(𝑡 − 𝑠)𝑑𝑠
𝑡

−∞
    

 

(4) 𝜅(𝑡) = exp (−𝑡/𝜏)/𝜏     

Moreover, a linear decoder is assumed as: 

(5) �̂� = ℎ(𝑣) = 𝑊𝐷𝑣      

1.2 Synaptic plasticity law 

According to the equations mentioned in subsection 1.1, the RNN synaptic 

plasticity law can be modeled as a dynamical system. Consequently, principles of 

optimal control theory can be applied to derive a learning rule (optimal control law). 

For this purpose, we reformulate the AI tasks as a control problem. Thus, the output 

error were considered as follows: 

(6) 𝑒 = �̂� − 𝑦 ∈ ℝ𝑐
  

, where 𝑐 is a number of classes, 𝑦 ∈ ℝ𝑐 denotes the desired output for the input 

pattern at time 𝑡, and �̂� ∈ ℝ𝑐 is the corresponding predicted output. By derivation of 

Eq. (6) with respect to  𝑡, the error dynamics can be described as: 

(7) �̇� = �̇̂� − �̇�  ∈ ℝ𝑐
         

 

Given that the decoder weights 𝑊𝐷 are assumed constant during the RNN training 

process, consequently, the classification error dynamics only depend on the RNN 

neural dynamics. Rewriting the neural space equations (1) and (2) in the form of Eq. 

(7) gives: 

 

(8) 
�̇� = 𝑊𝐷�̇� − �̇� = 𝑊𝐷(ψ(𝑣) + 𝑊𝐸∅(𝑣 

𝐸) + 𝑊𝑟∅(𝑣 
 𝑟)) − �̇�

= 𝑓(𝑣) + 𝑔(𝑣)𝑢𝑟 − 𝑓𝑑(𝑣) − 𝑔𝑑(𝑣)𝑢𝑑
𝑟  

 

 

neural space Eq. (8) can be considered as the following affine sate space equation 

from: 



(9) �̇� = 𝑓(𝑒) + 𝑔(𝑒)𝑢    

Where the control input is considered as part of parameters of the RNN, which the 

number is selected according to the problem and training data: 

(10) 𝑢𝑟 = [𝑢𝑓; 𝑢] = 𝑣𝑒𝑐(𝑊 
𝑟) ∈ ℝ𝑁𝑟

      

, in which 𝑁𝑟 = 𝑛𝑟 × 𝑛𝑟 is the number of RNN parameters, 𝑣𝑒𝑐(∙) is vectored 

form of a matrix, 𝑢𝑓 ∈ ℝ𝑁𝑟−𝑁 is fixed RNN parameters, 𝑢 ∈ ℝ𝑁 is the RNN plastic 

synapse or the control input and [𝑢𝑓; 𝑢] is combination of 𝑢𝑓and 𝑢. Therefore, we 

have the following nonlinear continuous-time equations: 

 

(11) 

𝑓1(𝑣) = 𝑊𝐷 (𝑊𝐸∅(𝑣 
𝐸) + ψ(𝑣) + 𝑊𝑓∅(𝑣 

 𝑓)) = 𝑓𝐸(𝑣) + 𝑓𝑓(𝑣) 

𝑓𝐸(𝑣) = 𝑊𝐷𝑊𝐸∅(𝑣 
𝐸) 

𝑓𝑓(𝑣) = 𝑊𝐷(ψ(𝑣) + 𝑊𝑓∅(𝑣 
 𝑓)) 

 

 

(12) 𝑔(𝑣) = 𝑊𝐷∅(𝑣)  

, where 𝑓(𝑒): ℝ𝑐 → ℝ𝑐 is the drift dynamic of the system, and 𝑔(𝑒): ℝ𝑐 → ℝ𝑐×𝑁 is 

the input dynamic of the system. A common and recommended action in this regard is 

to add noise into 𝑢 and 𝑔(𝑒) to realize the Persistence of Excitation (PE) condition [1] 

to collect sufficient information about the unknown parameters and make 𝑔(𝑣) full 

rank.  

In all tasks of AI, the goal of learning is to adapt the RNN’s parameters 𝑊𝑟  such 

that the error in each timestamp of the input pattern is minimized and the RNN’s 

parameters or control input remains bounded. Thus, the following cost function was 

defined: 

 

(13) min
𝑢(∙)∈𝑈

ℑ(𝑢(∙). 𝑒(∙)) = ∫ ℓ(𝑒(𝜏). 𝑢(𝜏))𝑑𝜏
𝑡𝑓

𝑡
     

 

(14) ℓ(𝑒. 𝑢) = 𝜂𝑒𝑇𝑒 + 𝑢𝑇𝑅𝑢    

 

, wherein ℓ(∙.∙) is the utility function, 𝑡𝑓 is the last element of input patterns, 𝑅 

symmetric positive definite matrix and 𝜂 is a constant positive hyper-parameter for 
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ensuring that the error in cost function is sufficiently affective. Hence, the optimal 

value function can be written: 

 

(15) 𝑉(𝑒) = 𝐼𝑛𝑓
𝑢(∙)∈𝑈

ℑ(𝑢. 𝑒)    

Under typical assumptions, 𝑓(0) = 0 and 𝑓(𝑣) + 𝑔(𝑣)𝑢 is Lipschitz continues on 

a set Ω ϵ ℝ𝑛 that contains the origin. Ultimately, it is desirable to achieve an optimal 

input control (weight update law) 𝑢∗ that stabilizes the system Eq. (11) and minimizes 

the cost function Eq. (15). This kind of input control 𝑢 is called admissible control 

[2].  

Now, the learning rule has been formulated given the error dynamic in Eq. (11) and 

the cost function Eq. (15). To solve this dynamic optimization problem, the HJB 

equation is utilized, so the Hamiltonian of the cost function Eq. (15)  associated with 

control input 𝑢 is defined as: 

 

(16) ℋ(𝑒. 𝑢. 𝑉𝑒
  ) = ℓ(𝑒. 𝑢) + 𝑉𝑒

𝑇(�̇�)  

 

, where 𝑉𝑒
 = 𝜕𝑉/𝜕𝑒 is the partial derivative of the cost function, for admissible 

control policy 𝜇 we have: 

 

(17) ℋ(𝑒. 𝜇. 𝑉𝑒
  ) = 0  

The present study assumed that the solution to Eq. (17) is smooth giving the 

optimal cost function: 

(18) 𝑉∗(𝑒) = min
𝑢

(∫ ℓ(𝑢(𝜏). 𝑒(𝜏))𝑑𝜏
𝑡𝑓

𝑡

)  

 

, which satisfies the HJB equation 

 

(19) 𝑚𝑖𝑛
𝑢 

 ℋ(𝑒. 𝑢. 𝑉𝑒
∗ ) = 0  

Assuming that the minimum on the left hand side Eq. (19) exists then by applying 

stationary condition 𝜕ℋ (𝑒. 𝑢. 𝑉𝑒
  ) 𝜕⁄ 𝑢 = 0, the learning rule (optimal control)  can 

be obtained as: 



(20) 𝑢∗(𝑒) = −
1

2
𝑅−1𝑔𝑇(𝑒) 𝑉𝑒

∗  

The optimal value function can be obtained as: 

(21) 𝑉∗(𝑒) = min
𝑢

(∫ 𝜂𝑒𝑇𝑒 + 𝑢∗𝑇𝑅𝑢∗𝑑𝜏
𝑡𝑓

𝑡

)  

Inserting this optimal learning rule Eq. (20) into nonlinear Lyapunov equation 

Eq.(16) gives the formulation of the HJB equation Eq.  (19) in terms of 𝑉𝑒
∗ 

 

(22) 0 = 𝜂𝑒𝑇𝑒 + 𝑉𝑒
∗𝑇(𝑒)𝑓(𝑣) −

1

4
𝑉𝑒

∗𝑇(𝑒)𝑔(𝑒)𝑅−1𝑔𝑇(𝑣)𝑉𝑒
∗(𝑒)  

 

Finding the learning rule for the RNN requires solving the HJB equation for the 

value function and then substituting the solution to obtain the desired learning rule. 

Although HJB gives the necessary and sufficient condition for optimality of a learning 

rule (control law) with respect to a loss function; Unfortunately, due to the nonlinear 

characteristics of the RNN, solving the HJB equation in explicit form is difficult or 

even impossible to derive for systems of interest in practice. Thus, the proposed 

framework focuses on the ADP method to approximate its solution. Thus, we will 

focus on the ADP method to approximate its solution. To address this issue, with the 

inspiration of the dopaminergic region structure and conformity with the Weierstrass 

high-order approximation theorem [3], we proposed a novel actor-critic based on the 

s-RC. Succinctly, the objective of tuning the critic weights is to minimize the Bellman 

equation error, and the objective of tuning the actor weights is to minimize the 

approximate value. 

1.2.1 Critic network design 

In this subsection, a s-RC is exploited as critic NN to approximate the derivatives 

of the value function as follows: 

 

(23) 

𝑉𝑒
  (𝑒) = 𝑊𝑐

𝐷 
𝑧𝑐 + 𝜀𝑐 ∈ ℝ𝑐×1 

𝑧𝑐 ∈ ℝ𝑛𝑐×1 

𝑊𝑐
𝐷 ∈ ℝ 𝑐×𝑛𝑐 
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Where 𝑧𝑐 is the new representation of input 𝑒, which is generated by the RNN and 

𝑊𝑐
𝐷 is the decoder weight matrix.  

As far as the weights of critic decoder provide the best approximate solution for the 

Hamiltonian function Eq. (16) are unknown. So, it estimated with �̂�𝑐
𝐷: 

(24) �̂�𝑒
 (𝑒) = �̂�𝑐

𝐷𝑧𝑐  

It is desired to select the weights of the critic network to minimize the loss function 

of the critic is defined as follows: 

 (25) 𝐸𝑐(�̂�𝑐
𝐷) =

1

2
𝑒𝑐

𝑇𝑒𝑐  

Where for given any admissible policy 𝑢 the residual error: 

(26) ℋ(𝑒. 𝑢. 𝑉𝑒
  ) = ℋ(𝑒. 𝑢. �̂�𝑐

𝐷 ) = η𝑒𝑇𝑒 + 𝑢𝑇𝑅𝑢 + (�̂�𝑐
𝐷𝑧𝑐)𝑇(�̇�) = 𝑒𝑐  

So,  �̂�𝑐
𝐷 → 𝑊𝑐

𝐷 and 𝑒𝑐 → 𝜀𝑐.  

The weight update law for the critic weights is gradient descent algorithm, that is: 

(27) 

�̇̂�𝑐
𝐷 = −𝛼𝑐

𝜕𝐸𝑐

𝜕�̂�𝑐
𝐷

= −𝛼𝑐(𝑓(𝑒) + 𝑔(𝑒)𝑢)𝑧𝑐
𝑇 𝑒𝑐

= −𝛼𝑐𝜎𝑐(𝜎𝑐
𝑇�̂�𝑐

𝐷 + η𝑒𝑇𝑒 + 𝑢𝑇𝑅𝑢) 

 

Where 𝛼𝑐 > 0 is learning rate and 𝜎𝑐 = (𝑓(𝑒) + 𝑔(𝑒)𝑢)𝑧𝑐
𝑇. 

1.2.2 Actor network design 

Similar to the critic, another s-RC is used as the actor to approximate the synaptic 

plasticity rule (feedback control policy): 

(28) 𝑢(𝑒) = 𝑊𝑎
𝐷 

𝑧𝑎 + 𝜀𝑎 ∈ ℝ𝑁×1 

𝑧𝑎 ∈ ℝ𝑛𝑎×1 

𝑊𝑎
𝐷 ∈ ℝ𝑁×𝑛𝑎  

 

 

Let 𝑧𝑎 be the new representation of input 𝑒,   �̂�𝑎
𝐷 an estimation of unknown matrix 

𝑊𝑎
𝐷 based on existing training data, so the feedback control policy can be expressed 

as:  

(29) �̂�(𝑒) = �̂�𝑎
𝐷𝑧𝑎  



The loss function for the actor is defined: 

(30) 𝐸𝑎(�̂�𝑎
𝐷) =

1

2
𝑒𝑎

𝑇𝑒𝑎  

Where 𝑒𝑎 is define to be the difference between Eq. (29) and Eq. (20) 

(31) 𝑒𝑎 = �̂� − 𝑢 = �̂�𝑎
𝐷𝑧𝑎 +

1

2
𝑅−1𝑔𝑇(𝑒)(�̂�𝑐

𝐷𝑧𝑐)  

By applying the gradient descent, a weight update expression for the actor can be 

written as follows: 

(32) �̇̂�𝑎
𝐷 = −𝛼𝑎

𝜕𝐸𝑎

𝜕�̂�𝑎
𝐷

= −𝛼𝑎(�̂�𝑎
𝐷𝑧𝑎 +

1

2
𝑅−1𝑔𝑇(𝑒)(�̂�𝑐

𝐷𝑧𝑐))𝑧𝑎
𝑇  

Where 𝛼𝑎 > 0 is learning rate. 

Finally, the RNN parameters update rule can be derived as follows: 

 

(33) 𝑣𝑒𝑐(�̂� 
𝑟) = �̂�(𝑒)  

 
This completes the RNN learning rule.   

During the RNN learning process, the feedback pathway via actor-critic NNs 

forces the output of the network (estimated class) to follow the reference trajectory 

(true class), an effect that is widely used in control theory. After a sufficiently long 

learning time, the feedforward pathway without feedback can classify input patterns 

with acceptable accuracy. 

1.3 The Analysis of stability and convergence 

In this subsection, the stability and convergence of the entire proposed framework 

and classification error will be analyzed. For this purpose, we need to show 

lim
𝑡→∞

||�̃�𝑐
𝐷|| = lim

𝑛𝑒→∞
||�̃�𝑐

𝐷|| → 0, lim
𝑡→∞

||�̃�𝑎
𝐷|| = lim

𝑛𝑒→∞
||�̃�𝑎

𝐷|| → 0  and lim
𝑡→∞

||𝑒|| =

lim
𝑛𝑒→∞

||𝑒|| → 0. In offline problems, 𝑡 = 𝑛𝑒𝑛𝑙(𝑛𝑠 − 1) + 𝑖  where 𝑛𝑒 is the number of 

the epochs, 𝑛𝑠 is the number of samples, 𝑛𝑙 is the time series length, and 𝑖 is the index 

of the current time series element. Since in offline problems the training dataset 𝑛𝑠𝑛𝑙 

is fixed so 𝑡 → ∞ as 𝑛𝑒 → ∞. 



11 

 

To prove asymptotically converge of the proposed framework, firstly, we need to 

show that the classification error 𝑒 and the RNN critic and actor decoder weight 

estimation errors �̃�𝑐
𝐷, �̃�𝑎

𝐷 are uniformly ultimately bounded (UUB). Therefore, we 

consider the following Lyapunov and, to facilitate the UUB analysis, the following 

assumption is made, which can reasonably be satisfied under the current problem 

settings. 

Assumption 1 Assume the following conditions: 

a. We assumed 𝑔(∙) is bounded to positive constants  i.e., 𝑔 ≤ ‖𝑔(𝜒)‖ ≤

𝑔  therefore we have 𝐺 ≤ 𝐺 ≤ 𝐺 where 𝐺 = 𝑔𝑅−1𝑔𝑇 . 

b. The ideal weights of the critic and actor RNN decoder are upper 

bounded so that ‖𝑊𝑐
𝐷‖ ≤ 𝑊𝑐

𝐷  and ‖𝑊𝑎
𝐷‖ ≤ 𝑊𝑎

𝐷. 

c. The approximation errors are upper bounded i.e., ‖𝜀𝑐‖ ≤ 𝜀𝑐, ‖𝜀𝑎‖ ≤

𝜀𝑎. 

d. The outputs of the RNNs critic, actor are bounded i.e., 𝑧𝑐 ≤ ‖𝑧𝑐‖ ≤

𝑧𝑐, 𝑧𝑎 ≤ ‖𝑧𝑎‖ ≤ 𝑧𝑎. 

According to PE assumption 𝜎𝑐 = (𝑓 + 𝑔𝑢)𝑧𝑐
𝑇 is bounded i.e., 𝜎𝑐 ≤ ||𝜎𝑐|| ≤ 𝜎𝑐 . 

Now, we consider the following Lyapunov function: 

(34) 

𝐿(𝑡) = 𝐿�̃�𝑐
𝐷(𝑡) + 𝐿�̃�𝑎

𝐷(𝑡) + 𝐿𝑒(𝑡)

=
1

2𝛼𝑐

𝑡𝑟 {�̃�𝑐
𝐷𝑇

�̃�𝑐
𝐷} +

𝛼𝑐

2𝛼𝑎

𝑡𝑟 {�̃�𝑎
𝐷𝑇

�̃�𝑎
𝐷}

+ 𝛼𝑐𝛼𝑎(𝑒𝑇𝑒 + 𝑉(𝑒)) 

 

Where 𝛼 > 0, and  �̃�𝑐
𝐷 is the weight estimation error of the critic decoder, which 

is defined as: 

(35) 
�̃�𝑐

𝐷 = �̂�𝑐
𝐷 − 𝑊𝑐

𝐷 
 

 

In addition, the dynamics of �̃�𝑐
𝐷 is expressed as: 

(36) 
�̇̃�𝑐

𝐷 = −𝛼𝑐(𝜎𝑐𝜎𝑐
𝑇�̃�𝑐

𝐷 + 𝜎𝑐𝜀𝐻) 
 

 

Where 



(37) 𝜀𝐻 = −𝜀𝑐(𝑓 + 𝑔𝑢) 
 

 

Moreover, the actor weight estimation error is define as: 

(38) 
�̃�𝑎

𝐷 = �̂�𝑎
𝐷 − 𝑊𝑎

𝐷 
 

 

Combining (23) and (28) with (32) yields: 

(39) 

�̇̃�𝑎
𝐷 = −𝛼𝑎 (�̃�𝑎

𝐷𝑧𝑎 + 𝜀𝑎 +
1

2
𝑅−1𝑔𝑇(𝑒)(�̃�𝑐

𝐷𝑧𝑐 + 𝜀𝑐)) 𝑧𝑎
𝑇

= −𝛼𝑎 (�̃�𝑎
𝐷𝑧𝑎 +

1

2
𝑅−1𝑔𝑇(𝑣)(�̃�𝑐

𝐷𝑧𝑐) + 𝜀′𝑎) 𝑧𝑎
𝑇 

 

 

Which 𝜀′𝑎 becomes: 

(40) 𝜀′𝑎 = −(𝜀𝑎 +
1

2
𝑅−1𝑔𝑇(𝑒)𝜀𝑐)  

 

Thus, the time derivative of 𝐿(𝑡) is: 

(41) 

�̇�(𝑡) = �̇��̃�𝑐
𝐷(𝑡) + �̇��̃�𝑎

𝐷(𝑡) + �̇�𝑒(𝑡)

=
1

𝛼𝑐

𝑡𝑟 {�̃�𝑐
𝐷𝑇

�̇̃�𝑐
𝐷} +

𝛼𝑐

𝛼𝑎

𝑡𝑟 {�̃�𝑎
𝐷𝑇

�̇̃�𝑎
𝐷} + 𝛼𝑐𝛼𝑎(2𝑒𝑇�̇�

+ �̇�(𝑒)) 

 

Substituting Eq. (36) into �̇̃�𝑐
𝐷 in Eq. (41), and assume ‖𝜎𝑐

𝑇�̃�𝑐‖ > 𝜀𝐻 the �̇��̃�𝑐
𝐷 

becomes: 

(42) 

�̇��̃�𝑐
𝐷(𝑡) =

1

𝛼𝑐

𝑡𝑟 {�̃�𝑐
𝐷𝑇

�̇̃�𝑐
𝐷}

= −
1

𝛼𝑐

𝑡𝑟 {𝛼𝑐�̃�𝑐
𝐷𝑇

𝜎𝑐𝜎𝑐
𝑇�̃�𝑐

𝐷} −
1

𝛼𝑐

𝑡𝑟 {𝛼𝑐�̃�𝑐
𝐷𝑇

𝜎𝑐𝜀𝐻}

≤ −(𝜎𝑐
2)‖�̃�𝑐

𝐷‖
2

+ 𝜀𝐻
2 

 

Substituting Eq. (39) into �̇̃�𝑎
𝐷 in Eq. (41), the second term becomes: 

(43) 

�̇��̃�𝑎
𝐷(𝑡) =

𝛼𝑐

𝛼𝑎

𝑡𝑟 {�̃�𝑎
𝐷𝑇

�̇̃�𝑎
𝐷}

= −
𝛼𝑐

𝛼𝑎

𝑡𝑟 {�̃�𝑎
𝐷𝑇

[𝛼𝑎 (�̃�𝑎
𝐷𝑧𝑎 +

1

2
𝑅−1𝑔𝑇(𝑒)(�̃�𝑐

𝐷𝑧𝑐)

+ 𝜀′
𝑎) 𝑧𝑎

𝑇]} 
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According to Eq. (20), Eq. (29), and  �̃�𝑎
𝐷𝑧𝑎 = −

1

2
𝑅−1𝑔𝑇(𝑒)(�̃�𝑐

𝐷𝑧𝑐)  

,we have: 

 

(44) �̇��̃�𝑎
𝐷(𝑡) ≤ −(𝛼𝑐𝑧𝑎

2)‖�̃�𝑎
𝐷‖

2
+

𝛼𝑐

4𝛼𝑎

‖𝑅−1‖2𝑔
2

𝑧𝑐
2

‖�̃�𝑐
𝐷‖

2
+

𝛼𝑐

𝛼𝑎

𝜀′
𝑎

2
  

 

Substituting Eq. (29) into the error dynamics Eq. (11), and based on Assumption 1 

a., third term of Eq. (41) become: 

 

(45) 

�̇�𝑒(𝑡) = 𝛼𝑐𝛼𝑎(2𝑒𝑇�̇� + �̇�(𝑒)) = 2𝛼𝑐𝛼𝑎𝑒𝑇�̇� + 2𝛼𝑐𝛼𝑎𝑉𝑒
𝑇�̇� 

 

Substituting �̇� with Eq. (9) and 𝑉𝑒
𝑇�̇� with −(𝜂𝑒𝑇𝑒 + 𝑢𝑇𝑅𝑢) and 

according to Eq. (16) and Eq. (17): 

 

�̇�𝑒(𝑡) = 2𝛼𝑐𝛼𝑎𝑒𝑇(𝑓(𝑒) + 𝑔(𝑒)𝑢) − 𝛼𝑐𝛼𝑎(𝜂𝑒𝑇𝑒 + 𝑢𝑇𝑢) 

 

Substituting 𝑢 with Eq. (20) and Eq.(24) which will be equal to 𝑢 =

−
1

2
𝑅−1𝑔𝑇(𝑣) �̂�𝑐

𝐷𝑧𝑐: 

�̇�𝑒(𝑡) = 2𝛼𝑐𝛼𝑎𝑒𝑇 (𝑓(𝑒) −
1

2
𝑔(𝑒)𝑅−1𝑔𝑇(𝑒) �̂�𝑐

𝐷𝑧𝑐)

− 𝛼𝑐𝛼𝑎(𝜂𝑒𝑇𝑒 + 𝑢𝑇𝑅𝑢)

= 2𝛼𝑐𝛼𝑎𝑒𝑇 (𝑓(𝑒) −
1

2
𝐺�̂�𝑐

𝐷𝑧𝑐)

− 𝛼𝑐𝛼𝑎(𝜂𝑒𝑇𝑒 + 𝑢𝑇𝑅𝑢) 

 

In additional and according to Young inequality , we have: 

𝑒𝑇𝑓(𝑒) ≤ ‖𝑒𝑇𝑓(𝑒)‖ ≤ ‖𝑒𝑇‖‖𝑓(𝑒)‖ ≤
1

2
‖𝑒‖2 +

1

2
‖𝑓(𝑒)‖2 

Moreover, according to assumption 1 for 𝐺�̂�𝑐
𝐷𝑧𝑐 we have:  

 

 



�̇�𝑒(𝑡) ≤ 𝛼𝑐𝛼𝑎‖𝑒‖2 + 𝛼𝑐𝛼𝑎‖𝑓(𝑒)‖2‖𝑒‖ + 𝛼𝑐𝛼𝑎𝐺𝑧𝑐𝑊𝑐
𝐷 ‖𝑒‖

− 𝛼𝑐𝛼𝑎𝜂‖𝑒‖2 − 𝛼𝑐𝛼𝑎𝜆𝑚𝑖𝑛(𝑅)‖𝑢‖2

≤ −𝛼𝑐𝛼𝑎(𝜂 − 1)‖𝑒‖2

+ 𝛼𝑐𝛼𝑎 (𝐺𝑧𝑐𝑊𝑐
𝐷  + ‖𝑓(𝑒)‖2) ‖𝑒‖

− 𝛼𝑐𝛼𝑎𝜆𝑚𝑖𝑛(𝑅)‖𝑢‖2 

 

Where 𝜆𝑚𝑖𝑛(𝑅) is the minimum eigenvalue of 𝑅. Combining Eq. (42), Eq. (43) and 

Eq. (45): 

 

(46) 

�̇�(𝑡) ≤ −𝐾
�̃�𝑐

𝐷2‖�̃�𝑐
𝐷‖

2
−𝐾

�̃�𝑎
𝐷2‖�̃�𝑎

𝐷‖
2

−𝐾𝑢2‖𝑢‖2−𝐾𝑒2‖𝑒‖2 + 𝐾𝑒‖𝑒‖

+ 𝐾1

= −𝐾
�̃�𝑐

𝐷2‖�̃�𝑐
𝐷‖

2
−𝐾

�̃�𝑎
𝐷2‖�̃�𝑎

𝐷‖
2

−𝐾𝑢2‖𝑢‖2

− 𝐾𝑒2 (‖𝑒‖ −
𝐾𝑒

2𝐾𝑒2
)

2

+
𝐾𝑒

2

4𝐾𝑒2
+ 𝐾1

≤ −𝐾
�̃�𝑐

𝐷2‖�̃�𝑐
𝐷‖

2
−𝐾

�̃�𝑎
𝐷2‖�̃�𝑎

𝐷‖
2

−𝐾𝑢2‖𝑢‖2

− 𝐾𝑒2 (‖𝑒‖ −
𝐾𝑒

2𝐾𝑒2
)

2

+ 𝐾 

Where  

𝐾
�̃�𝑐

𝐷2 = 𝜎𝑐
2 −

𝛼𝑐

4𝛼𝑎

‖𝑅−1‖2𝑔
2

𝑧𝑐
2
 

𝐾
�̃�𝑎

𝐷2 = 𝛼𝑐𝑧𝑎
2 

𝐾𝑒2 = 𝛼𝑐𝛼𝑎(𝜂 − 1) 

𝐾𝑒 = 𝛼𝑐𝛼𝑎 (𝐺𝑧𝑐𝑊𝑐
𝐷  + ‖𝑓(𝑒)‖2) 

𝐾𝑢2 = 𝛼𝑐𝛼𝑎𝜆𝑚𝑖𝑛(𝑅) 

𝐾1 = 𝜀𝐻
2 +

𝜀′
𝑎

2

2
≤ 𝐾1

̅̅ ̅ 

𝐾 =
𝐾𝑒

2

4𝐾𝑒2
+ 𝐾1 ≤ 𝐾 
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Thus, �̇�(𝑡) < 0 if the proposed model hyper-parameters include 𝛼𝑐.  𝛼𝑎, 𝜂, R, ψ(𝑣) 

leaky term or 𝑊𝑓∅(𝑞 
 𝑓) fixed part of RNN’s parameters in Eq. (11)  are selected to 

satisfy three following inequalities: 

(47) 0 < 𝛼𝑐 <
4𝛼𝑎𝜎𝑐

2

‖𝑅−1‖2𝑔
2

𝑧𝑐
2  

 

And 

(48) 0 < 𝛼𝑎  

 

And 

 

(49) 𝜂 > 1  

 

Since all terms of 𝐾 are bounded consequently according to [4] the classification 

error, the critic and the actor errors are semi-globally uniformly ultimately bounded 

(SGUUB), which is absolutely enough to classification task. Nevertheless, for 

reaching more stable condition following inequalities could be hold: 

 

(50) ‖𝑒‖ >
𝐾𝑒

𝐾𝑒2
+ √

𝐾1

𝐾𝑒2
  

Or  

(51) ‖�̃�𝑐
𝐷‖ > √

𝐾

𝐾
�̃�𝑐

2
  

Or  

(52) ‖�̃�𝑎
𝐷‖ > √

𝐾

𝐾
�̃�𝑎

2
  

Or  

(53) ‖𝑢‖ > √
𝐾

𝐾𝑢

  

 



Thus, according to the Lyapunov theory the classification error 𝑒, the RNN critic 

and actor decoder weight estimation errors �̃�𝑐
𝐷, �̃�𝑎

𝐷 and RNN parameters 𝑢 are UUB.  

Our aforementioned analysis based on Lyapunov theory implies that 𝐿𝑒(𝑡) is 

bounded and decreasing. Therefore, we have: 

(54) 
𝐿𝑒(𝑡 + 𝑇) = 𝐿𝑒(𝑡) + ∫ �̇�𝑒(𝜏)𝑑𝜏

𝑡+𝑇

𝑡

≤  𝐿𝑒(𝑡) − 𝛾𝑇  

⟹  𝐿𝑒(𝑡) ≤ 𝐿𝑒(𝑡 + 𝑇) 

 

 

Where 𝛾 > 0. By substituting 𝑇 = 𝑛𝑙𝑛𝑠 which is training dataset length and 

according to the Lyapunov function properties [5] and summing both sides of Eq. (54) 

we have:  

 

(55) ∑ 𝐿𝑒(𝑡)

𝑛𝑙𝑛𝑠

𝑡=0

≤ ∑ 𝐿𝑒(𝑡 + 𝑇)

𝑛𝑙𝑛𝑠

𝑡=0

  

 

Consequently, Eq. (55) guarantee that the classification error in each epoch’s is not 

more than the previous epochs. Thus, as the number of epochs increases, the 

classification training error tends to zero (i.e. lim
𝑡→∞

𝑒(𝑡) → 0). 

In the same way, we can prove that for 𝐿�̃�𝑐
𝐷(𝑡) and 𝐿�̃�𝑎

𝐷(𝑡). This completes the 

stability and convergence proof.  
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