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For thermodynamics of trajectories, an ensemble containing dynamical activity and first-passage 

time (FPT) random variables is considered. The dependence of the average FPT on the total non-

negative change in entropy is obtained. The same dependencies obtained for dynamic activity, 

dispersion of dynamic activity and FPT, as well as for the correlation of dynamic activity and FPT. 

Application of the obtained results to model systems makes it possible to obtain dependences of 

entropy changes containing a stationary nonequilibrium state and equilibrium states. To relate 

changes in entropy to the conjugate parameter of the FPT, three models of distribution functions 

are used, which are applied to classical two-level and three-level systems, as well as to a quantum 

two-level system. 
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1. Introduction 
 

In the description of nonequilibrium phenomena, the so-called approach of 

"thermodynamics of trajectories" is used [1-28]. In this approach, the behavior of time-ordered 

dynamic events is characterized similarly to the thermodynamic description of configurations in 

space. In a non-equilibrium situation, an analog of equilibrium thermodynamic quantities and 

relations is used, but for the dynamic case, trajectories, rather than states or configurations, become 

the object of consideration. The role of volume in this case is played by time. 

Using the methods of large deviations (LD) [28], ensembles of trajectories can be classified 

according to dynamic order parameters and their conjugate fields. This is Ruelle's thermodynamic 

formalism [27], applied to the space of trajectories, not configurations. Quantities similar to the 

free energy density and entropy density have been identified and used to understand the rare 

dynamical behavior of systems, both classical [7–21] and quantum [22–26]. This approach has 

been effectively used in describing the dynamics of glassy systems [14, 29–31]. Statistical 

ensembles with fluctuating times of the deployment of trajectories were considered in [32]. FPT 

for dynamic ensembles of trajectories is considered in [33]. 

The paper [2] single out two types of variables - A and B, trajectory observables. 

Observables of types A and B can be negative or positive in general. An observable of type A jumps 

by discrete amounts at every configuration change; an example is the total current (which increases 

or decreases by 1 at every configuration change) in lattice gas models. Similarly, an observable of 

type B can be the time integral of a positive or negative function or a function that changes time. 

In [33], focus on trajectory observables defined in terms of the jumps in a trajectory, this is called 

counting observables. A more general definition of fluctuations of observables of the trajectory X 

is given in [34]. An example is the total number of changes in the trajectory configuration or 

dynamic activity [8, 2, 12], sometimes also called “traffic” or “frenesy” [42-44]. Dissipation 

bounds and current fluctuations are considered in [35-41]. The behavior of the dynamic activity K 

is investigated in the article. For variables of this kind and for FPT, ensembles of trajectories are 

obtained. 
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The problem of the first passage occupies a prominent place in natural science since FPT 

is a key characteristic of the kinetics of any process [45–84]. FPT plays an important role in many 

areas of physics and applied mathematics, chemistry, protein folding, and even credit risk 

modeling.  

In the thermodynamics of trajectories, an s-ensemble is singled out, in which the random 

variable is a time-additive value A, for example, dynamic activity K, and the time τ of the 

deployment of trajectories is fixed, and an x-ensemble, in which the values A or K are fixed, and 

the random variable is time τ. In [33], the time τ is considered as FPT. In this article, this approach 

is used. In x-ensemble the random time τ is FPT when a fixed value of K is reached. In [32] a 

generalization of the x-ensemble was obtained for multiple observables. In the present article, one 

more generalization of such an ensemble is carried out. 

In articles [83-84, 52-53], FPT is considered as a thermodynamic variable and included in 

the generalized Gibbs distribution. This approach is also applicable to ensembles of trajectories 

and variables of type A and B. Similar results were obtained in [33, 9] for the joint distribution of 

activity parameters and process time. The behavior of FPT has its characteristics associated with 

many factors. One of the main factors is the change in entropy, which consists of intrasystem 

changes in entropy syss and the exchange of entropy with the environment ms . The effect of 

entropy change on the behavior of a non-equilibrium system is studied. The change in entropy 

during the FPT time is included in the consideration. Three models of the partition function are 

considered. Dependences on the total entropy change in the system of such quantities as mean 

FPT, FPT variance, correlation of FPT and dynamic activity are calculated. These dependencies 

essentially depend on the interaction with the environment and change when the sign of the entropy 

flows describing the exchange of the system with the environment changes. 

Typically, average FPT values are calculated from the Laplace transform of the FPT 

probability density by differentiating the Laplace transform and then setting the Laplace transform 

parameter to zero. In [83-84], the Laplace transform of the probability density FPT acts as the 

nonequilibrium part of the partition function, and the Laplace transform parameter is not equal to 

zero. The main idea of this article is that the parameter x (in notation [2, 32]) or γ=х (in notation 

[83-84]) which conjugate to the random variable time τ or FPT associated with changes in entropy 

and is equal to zero only in equilibrium, as is shown in [83-84]. The presence of a non-zero value 

of γ corresponds to taking into account the change in entropy during the FPT. The impact of this 

accounting can be significant [85-86]. Any nonequilibrium process, including the FPT process, 

occurs with a change in entropy, which is taken into account in this article. Just as the inverse 

temperature parameter β=1/kBT conjugate to the random energy is not equal to zero in the general 

case, so the parameter γ (or x) is equal to zero only in the equilibrium case. Therefore, in the 

dependences of the moments of random variables FPT (or τ), of the dynamic activity K, as well as 

the parameters M from (22)-(28) in the general case, non-zero values of γ=x be taken into account. 

The article introduces a statistical ensemble with fluctuating values of FPT and dynamic 

activity K in the form (29) (or (39), (80)). With the help of this ensemble, for the first time, explicit 

dependences of the average values, variances, and correlations of random variables FPT and K on 

the total change in entropy tot sys ms s s =  +   (38) during the FPT time (or τ) are determined. The 

total change in entropy is associated with the parameter γ, and the dependences of the value γ on 

tots . The dependences of the moments of random variables FPT and K on the parameter γ (or x) 

conjugate to FPT are expressed through the dependences of these moments on the total change in 

entropy during the time FPT (or τ). Expressions for the correlation between dynamic activity and 



3 
 

FPT are obtained. It is physically obvious that such a correlation is not zero. In [32], a similar 

dependence of the quantity 1/ K  on the parameter x was obtained in Fig. 3a) in a more 

complex way using Monte Carlo simulation. Such dependences of system parameters on the total 

change in entropy during FPT were previously unknown. The results obtained can be considered 

as an application of distributions from [83, 84] to the thermodynamics of trajectories. The 

application of this approach to specific physical problems was carried out, for example, in [85-86]. 

The article is organized as follows. Section 2 provides information on the thermodynamics 

of trajectories: s-ensembles and x-ensembles. In Section 3, a joint distribution of K and FPT 

activities was obtained, from which the average values of FPT and K, their second moments, 

variances, and correlations between them were recorded. In the fourth section, dependencies of the 

first and second moments of distributions on the change in entropy are obtained, and curves are 

calculated for given numerical values of parameters. The fifth section contains brief conclusions.  
 

2. Thermodynamics of trajectories, s-ensembles and x-ensembles 
 

The formalism of nonequilibrium thermodynamics along trajectories is similar to the 

equilibrium thermodynamic formalism [27]. This article considers fluctuations of such dynamic 

variables as dynamic activity in a glassy system, integrated over a long-time t and a large (but 

finite) system. In [2], the statistical properties of evolution and the dynamic history of the system 

are studied. Equilibrium thermodynamics considers the probability distribution over the 

configurations of a large system. In trajectory thermodynamics, the thermodynamic formalism is 

applied to probability distributions over trajectory motion histories. 

In [2, 9, 32, 49, 50] the classical stochastic system is described by the Master Equation 

( ) ( )t P t W P t = .                                                          (1) 

The vector ( )P t  represents the probability distribution at time t, ( ) ( , )
C

P t P C t C= , where 

P(C,t) describes the probability that the system is in configuration C at time t, and { }C  is the 

orthonormal basis of the configuration, 
'' CCC C = . For concreteness, we will focus on 

continuous-time Markov chains, but generalizations of what we describe below are simple. The 

master operator W is the matrix  

'

( ') ' ( )
C C C

W w C C C C R C C C


= → −  .                                    (2) 

Here ( ')w C C→  is the rate of transition from C to C', and R(C)=
'

( ')
C

w C C→  is the rate of exit 

from C. In this description, the expectation of the operator T is defined as ( ) ( )T t T P t= − , where 

C
C−   (such that ( ) 1P t− =  due to conservation of probability). 

In the Boltzmann-Gibbs theory, the macroscopic features of large systems are 

characterized by defining the statistical properties (mean and fluctuations) of extensive 

observables, such as the energy or number of particles. The microcanonical approach considers 

the properties of a system with a fixed total energy E. Such properties are determined from the 

counting factor of the number of configurations with energy E and the number of particles N, 

representing the size (volume) of the system. In the limit of large sizes (N→∞), the entropy density 

s(e)=limN→∞(1/N)lnΩ(eN,N) is determined, which is the relative weight of configurations with 

energy density e; Ω(E,N) is a number of configurations with energy E, where N represents the size 

(the volume) of the system. In a dynamic context, the history of the system is considered between 
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the initial time τ=0 and the end time τ. Instead of considering the statistics of the energy E, we 

study the observed A, which is extensive over the observation time τ. The dynamic analog of the 

quantity Ω(E,N) is the probability distribution of this observable; the value Ωdyn(A, τ) is equal to 

the fraction of histories with a given value of the time-extensive observable A.  

At the mathematical level, the choice of the observable A is somewhat arbitrary, although 

the application of the thermodynamic formalism requires that the quantity log ( , ) /dyn A a   =  

have a finite limit for large times τ. Given this limitation, the choice of the order parameter A is 

determined by physical representations: we must use an observable that reveals the main physical 

processes occurring in the system. For example, in non-equilibrium systems in contact with two 

reservoirs of particles, we can define A as the total particle flux: the number of particles transferred 

from one reservoir to the other between times 0 and τ. In the context of glassy phenomena, we 

consider observables that measure the "activity" or "complexity" of history [7, 8, 12].  

In the Boltzmann-Gibbs approach, the canonical ensemble is defined in terms of the 

partition function 

( , ) ( , ) E

E

Z N E N e  −=  ,                                                       (3) 

which characterizes the system at a given temperature β-1. Phase transitions depend on intensive 

free energy ( ) lim ln ( , ) /Nf Z N N  →= −  singularities. The dynamical analog of this 

thermodynamic partition function (3) is  

( , ) ( , ) sА

A dyn

A

Z s A e  −=  ,                                                      (4) 

where we have introduced an intensive field s conjugate to A. This field will play a role analogous 

to the inverse temperature β. The dynamic partition function ZA(s, τ) is the central object of Ruelle's 

thermodynamic formalism [27]. A correspondence is established between the thermodynamic 

limit of a large system size (N→∞) and the limit of a long time (τ→∞) in Ruelle's formalism. In 

[2], systems are considered for which a large time limit must be taken at a fixed system size: in 

some cases, a second limit of the large system size N is taken. If we consider systems without 

thermodynamic phase transitions, then no singular behavior arises when passing to the limit of 

large N at a fixed τ. In this case, we expect the limits of large N and large τ to commute, but in the 

general case, this is not the case. In this article, the limit of large τ is taken after finding the average 

values. 

The duration of the history of the system is characterized by its length τ. The probability of 

measuring the value A for an observable A in a history of length τ is  

( , ) ( , , )dyn C
A P C A  = .                                                    (5) 

The value ( , , )P C A   (generalize the probability ( , )P C  ) is defined as the probability of being in 

configuration C at time τ, having measured a value A of the time-extensive variable between 0 and 

τ.  

The sequence of configurations C0→…→CK and the sequence of jump times t1,…,tK 

determine the history of the system with duration τ. Time record of configurations and waiting 

times of jumps between them, observed up to the moment of time τ, describe the trajectory of total 

time τ. If such a trajectory is denoted by Xτ, then Xτ=(
10 ...

nt tC C C→ → ), where C0 is the initial 

configuration, and ti is the time when the transition from 
1it

C
−

 to 
it

C  occurs (so that the waiting 

time of the i-th jump is ti–ti-1). The trajectory Xτ changes configurations only n times (and tn  , 

i.e., there was no jump between tn and τ). Between the moments tk and tk+1 the system remains in 

configuration Ck.  
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If we consider the statistics of time-extensive observables [7, 8], then we can study the 

properties of dynamics. "Dynamic activity" K, defined as the total number of configuration 

changes per trajectory [8, 2, 12], is one such observed trajectory. In [34] the fluctuations of 

observables of the trajectory X written in the form  

,                                                             (6) 

where axy are arbitrary real numbers with , and Nxy(t) are the elementary fluxes, that is, 

the number of jumps from x to y up to time t in Xτ. For a time-integrated current the coefficients 

are antisymmetric, while for counting observables (such as the activity), they are symmetric. The 

value of K is (6) by axy=1. Below we will consider a special case of arbitrary values A, dynamic 

activity K. We can return to the general case. Its distribution over all trajectories Xτ of total time τ 

is 
ˆ( ) ( [ ]) ( )P K K K P


  = −X

X X ,                                              (7) 

where the probability P(Xτ) is the probability to observe this trajectory out of all the possible ones 

of total time τ.  

The operator K̂ counts the number of jumps in a trajectory. The distribution 

( ) ( , )dynP K K =   (4)-(5). For large τ this probability acquires a large deviations form [8, 21, 28], 

( / )( ) ~ KP K e  



− .                                                            (8) 

Equivalent information is contained in the generating function (4), 
ˆ [ ]

( ) ( ) ( )
sKsK

K

Z s e P K e P



  

−− = 
X

X

X ,                                        (9) 

whose derivatives give the moments of the activity, 
0

( 1) ( )n n n

s t s
K Z s

=
= −  . For large τ the 

generating function also acquires a LD form [28, 8], 
( )( ) ~ sZ s e

.                                                         (10) 

The following behavior ˆ ( , , ) ( , , )sA

A

A

P C s t e P C A t−=  is assumed in the large time limit as 

( )

0
ˆ ( , , ) ~ ( , ) A s

AP C s R C s e
  where θA(s) is the largest eigenvalue of WA [2] and R0(C, s) is the 

associated right eigenvector. Thus, for large times, 
( )ˆ( , ) ( , , ) ~ A s

A C
Z s P C A e

 = ,                                           (11) 

the function θA(s) is considered as a (negative) dynamic free energy per unit time. Probability 

conservation implies ZA(0,τ)=1, so θ(0)=0 for all stochastic systems. 

From (10), the scaled cumulant generation function for the activity is determined, i.e., the 

n-th activity cumulant (per unit time) 

0
( 1) ( )

n
n

n

sn

K
s

s



=


= −


,                                              (12) 

where .  indicates cumulant (mean, variance, etc.). It thus contains the full statistical 

information about K. 

Entropy and free energy in the Boltzmann-Gibbs theory are connected through the 

Legendre transformation (as can be seen from (3)). The function θ(s) from (10) is a dynamical 

analog of the free energy density f(β). Just like thermodynamic potentials, the LD functions φ(k) 

and θ(s) are related by a Legendre-Fenchel transformation [8, 27] 

( ) min ( ( ) )sk s sk = − +                                                  (13) 

( ) ( )xy xy

x y

A t a N t


=

0xya 
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together with the inversion formula 

( ) min ( ( ) )ks k sk = − + .                                               (14) 

The above applies to the so-called s-ensembles, in which the time τ of history of the system 

with duration τ is fixed [2, 32]. In [32], x-ensembles are introduced in which K is fixed and the 

time fluctuates. If we denote by YK a trajectory 
10( ... )K t KC C C= → → →Y , where the number of 

configuration changes is fixed to be K, but the time τ of the final K-th jump fluctuates from 

trajectory to trajectory. From (1)-(2) the probability of YK is  

1 1

1

( ) ( )

0 0

1

( ) ( ) ( )i i ti

i i

K
t t R C

K t t

i

P p C e W C C− −

−

− −

=

= →Y ,                                 (15) 

where t0=0 and tK=τ. The distribution PK(τ) of total trajectory length τ for fixed activity K is 
1

1 1

1

0

1
( ) ( )

0 0

... 1 0

ˆ( ) ( [ ]) ( ) ( ) ( )
i

i i ti

i i

K

tK
t t R C

K K K t t

C C i

P P p C e W C C   
+

− −

−

−
− −

−

= − = →   
τY

Y Y .        (16) 

For large K this probability has a LD form, 
( / )( ) ~ K K

KP e  −  .                                                       (17) 

The corresponding moment generating function for τ is 

ˆ[ ]

0

( ) ( ) ( )K

K

xx

K K KZ x d e P e P
 



−− =
Y

Y

Y ,                                    (18) 

0
( 1) ( )n n n

x K x
Z x

=
= −  . For large K the generating function also has a LD form, 

( )( ) ~ Kg x

KZ x e .                                                       (19) 

Equation (18) is the partition sum for the ensemble of trajectories with probabilities 
ˆ[ ]1( ) ( ) ( )Kx

x K K KP Z x e P
−−

Y
Y Y .                                           (20) 

The function g is the functional inverse of θ and vice versa [32] 
1 1( ) ( ), ( ) ( )s g s g   − −= = ,        ( ), ( )s g s  = = .                       (21) 

We replace g(x) with g(γ) (to use the notation γ from [83-84] for the parameter conjugate to FPT). 
 

3. Joint distribution for activity and FPT 
 

Above we considered s-ensembles and x-ensembles. This section, following [32], 

examines the generalization of the x-ensemble to multiple observables. Next, a joint distribution 

was obtained for random variables of dynamic activity K and of fluctuating total time. This 

distribution is obtained using the conditional probability formula and the effective parameter sef.  

Consider now the statistics of first-passage times (FPT) (also called stopping times) [45-

84]. This is the time when a certain observed trajectory first reaches the threshold value. In the 

thermodynamics of trajectories, in this situation, ensembles of trajectories with total fixed time are 

replaced by ensembles of trajectories of fluctuating total time.  

In [32], the case is considered of the statistics of several different time-extensive quantities 

[2, 12]. For example, one could think of counting, instead of the total activity, the total number of 

certain kind of transitions, or the time integral of a certain quantity such as the energy. Let’s say 

that there are N different dynamical observables, which we denote collectively by the vector 

1( ,..., )NM M M . Under the dynamics Eqs. (1)-(2) there will be a joint probability for observing 

a combination of these 
1( ,..., )NM M M  quantities, ( )P M

. For large τ this joint probability will 

have a LD form, generalized (8), 
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( / )( / ) ~ MP M e  

  −  ,                                                          (22) 

where the LD function now depends on the whole vector of intensive observables (M1/τ;…;MN/τ). 

The corresponding moment generating function for M  also has a LD form at large τ [28], 
( )( ) ( ) ~s M s

M

Z s e P M e 

−  ,                                                (23) 

where for each observable Mn there is a counting field sn, collected in the vector 
1( ,..., )Ns s s , 

and where the LD function ( )s  is a now function of this whole vector. The LD function ( )s  is 

the largest eigenvalue of the deformed master operator (2) [32]. Eq. (23) and the equation for the 

deformed master operator define an (τ; s )-ensemble for a general set of dynamical order 

parameters M  [32]. There is an equivalent construct for studying the statistics of M  in trajectories 

where the total activity K is fixed. The probability of observing M , together with a total time τ, 

for a fixed and large K has the form, generalized (17), 
( / , / )( / , / ) ~ K K M K

KP K M K e  −  .                                            (24) 

The corresponding moment generating function is 

( , )

0

( , ) ( , ) ~x sM KG x s

K K

M

Z x s d e P M e 


− − .                                    (25) 

Average values are determined in the same way as was done in expressions (12), (18), 

, 0 , 0
( , ) , ( , )

i

s x x s

i

M
G x s G x s

K x K s


= =

 
= − = −

 
. Equations (24) and (25) define a generalized x-

ensemble [32]. In the case where M  corresponds only to the activity K the function G(x, s)=g(x)-

s, and Eqs. ( ) ( ), ( ( ), ) 0s x s G x s s  = =  reduce to (21).  

As in [9], suppose that the system starts in an initial state ψ. For a random waiting time tw 

the system evolves continuously, so that its unnormalised state at time t<tw is exp(−iHeff t)ψ, where 

Heff is a non-selfadjoint effective Hamiltonian. At the time of detection, a click with label i=1,...,NL 

is recorded, and the system’s conditional state is updated by applying a jump operator Li. A full 

detection process is given by a finite measurement trajectory X=((t1, i1),...,(tn, in)), where 0≤t1≤·  

≤tn. Each such trajectory has the final time T[X]=tn, and a total number of jumps K[X]=n. There 

are some natural ways of obtaining finite trajectories. The first one repeats the single detection 

process K times. This corresponds to the x-ensemble. This scheme has an associated state 

transformation given by, J[X]=J(tw,n,in) · J(tw,2,i2)J(tw,1,i1), where tw,n=tn−tn−1, tw,1=t1 are the 

waiting times between the detection events, or quantum jumps. In words, given a trajectory X 

resulting from this process, the system is at the end in state J[X]ψ; [ , ] w efft H

w iJ t i L e
−

=  is the jump 

operator effecting the total change ψ→J[tw,i]ψ. 

We are interested in quantities obtained by incrementing with some amount at the addition 

of each particle. Such a quantity is of the form F[X]=
[ ]

,1
( , )

K

w n nn
F t i

=
X

, where F(tw, i) is a (possibly 

vector-valued) quantity depending only on a single waiting time tw, and some property of the 

system we are monitoring, say “spin” i. The most important ways of truncating an infinite 

trajectory, leading to statistical ensembles of field particles are with either fixed dynamic activity 

K and fluctuating τ, or fixed the time τ and fluctuating K, obtained by taking F(tw,i)=tw and 

F(tw,i)=1, respectively. We can also measure a “spin” operator M̂  corresponding to F(tw,i)=M(i), 

where M is some (in general vector-valued) quantity depending on i. The associated probability 

distributions are given by PK(T, M):= ˆ ˆ[ (( , ) ( , ))]FC

Ktr T M T M  − , where ρFC
K is reduced density 
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matrix on the output alone of the output space Fout [9]. The associated generating functions are 

given by ZK(x, c):=
ˆ ˆ

,[ ] [ ( )]FC xT cM K

K x ctr e tr I − − =  , written in terms of the deformed generators Tx,c 

and Ws,c [9] obtained from T and W (2) by replacing J[X] and Vτ[X] with Jx,c[X] and Vτs,c[X] [9], 

where [32] 
`

( `)
`

( )
x

C C

w C C
T C C

x R C

→
=

+
 , 

1 ( )

, 1
( ) ( ( ) )

LN cM i

x c i ii
T xId R e L L− −

=
= + 

†

,                                     (26) 

the inverse 
1 ( /2) ( /2)

0
( ) ( )( )eff effit H ix it H ix
xId R dt e e

−  − − − −
+ = 

†

 exists whenever 
( /2)

1effit H ix
e
− −

 , which holds 

for all x>xmin, where xmin=2Imλ0≤0 and λ0 is the eigenvalue of Heff with maximum imaginary part. 

The elements of Tx represent the Laplace transforms of the factors in the integrand of (16), since 

in (18) and (25) ZK(x) is the Laplace transform of PK(τ). Then the LD function g(x) corresponds to 

the logarithm of the largest eigenvalue Tx. We restrict to x>xmin subsequently; Heff is a non-

selfadjoint effective Hamiltonian (for open quantum systems), ( / 2)eff i ii
H H i L L= −  , where H is 

a selfadjoint operator interpreted as the system’s Hamiltonian when isolated from the environment. 

At the time of detection, a click with label i=1,…,NL is recorded, and the system’s conditional state 

is updated by applying a jump operator Li.  

Similar expressions are written in [9] for Ws,c, Pτ(K, M), Zτ(s, c) for fixed volume T and 

fluctuating K. We now suppose that Tx,c has a unique eigenvalue eg(x,c) equal to its spectral radius.  

 We assume, that 
1,M K M= , where М1 is some quantity depending on “spin” operator i 

[9]. We write the distribution of the values τ, К, М1 in the form  
1

, , 1 1( , , ) ( , , ) / ( , , )
x cMsK

s x cP K M e e P K M Z s x c
 − −−= ,                          (27) 

where 

1

1
1

0
( , , ) ( , , )

x cMsK

M K
Z s x c d e e P K M

 


− −−=   .                            (28) 

Distributions of the form (27)-(28) were obtained, for example, in [87]. In [52, 53, 83-84] the joint 

distribution of FPT and system energy was obtained. Similar operations were carried out in [88], 

where distributions were obtained whose form is closer to the results of [52, 83-84] than to (29). 

The value of М1 depends on the “spin” operator [9] in in (tw,n, in). Let us assume that the 

value of М1 is fixed at the value in. In this case, the value of K is also fixed. We assume that the 

values of in, М1, and K are sufficiently large for the relation ZK(x,c)~eg(x,c) to hold. At fixed values 

of М1, the factor 1cM
e
−  in the denominator and numerator (27) is reduced, the relation is fulfilled 

1
1( , , ) ( , ) ( ) ( ) ( ) ( )KM

P M K P K P K P K P P K   = = = , 

where the conditional probability formula equal ( , ) ( ) ( )P K P K P K = , ( ) ( )KP K P =  to is 

used. We equate the conditional probability ( )P K  and the probability ( )KP   from (16)-(18). 

Thus, the value of K is fixed in the conditional probability, but then these fixed values of K are 

averaged. It is assumed that there is an ensemble of systems with fixed values of K. Integration 

over τ in (28) leads at large K to the expression (18), (19), ( )

0
( )x Kg x

Kd e P e 


− = , deformed 

generators [9] Tx,c (26) act, and partition function (27) takes the form (7)-(9) 
( ( ))( ) ( ), ( )K s g x

ef efK
Z Z s e P K s s g x

− −= = = − .                      (29) 

From equality (29) we obtain that ( )efs s g x= − =0, by (21). But for sef=0, the values of s, 

g(x), and γ are not equal to zero. We consider expression (29) as a formal relation; for small values 
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of τ (values of K are large, the LD function g(х) is already used), when the equations for the 

eigenvalues of a transfer matrix operator Ws,c [9, 32] should take into account other eigenvalues, 

except for the largest ones, and ( ) 0efs s g x= −  . From expression (29) we find the average values 

and second moments, and then, after differentiation, we set ( )efs s g x= − =0. 

This corresponds to the fact that we pass to the limit of large values of the time τ after 

taking derivatives and determining the moments, as in the nonequilibrium statistical operator 

(NSO) method [89–91]. In the NSO method, calculations are also made for large volumes, and then 

the passage to the limit 0 →  is carried out. In [92], it was shown that 1 / T = , where T  is the 

average lifetime of the system, analogue of quantity τ. Also, in expressions (30)-(34), at first large, 

but finite values of K, corresponding to a large volume, are chosen, and at the end - large values 

of τ, corresponding to large FPT T . Hence, using relation (29), we obtain expressions for the 

average values and second moments: 

0
0

ln
ef

ef

s ef

sef

Z s
K K

s s =

 
= − =

 
.                                             (30) 

From (18)-(19) we have ln ( ) ( ),KZ Kg =  

0

( )
,

g
K K K







= − =


,                                                 (31) 

0

2

2 22 2

0 02
0

ln
ef

ef

s

K K
s

Z
D K K D K K

s =


= − = = = −


,                          (32) 

2 2
22

2 2

ln ( )Z g
D K






 

 

 
= − = =

 
.                                      (33) 

The derivative of lnZ(sef) (29) with respect to γ leads to the identity 

0 0

ln ( ) ln ( ) ( )
, ,

ef ef ef ef

ef

Z s Z s s s g
K K K

s K

 


   

    
= − = − = = − =

    
.  

Mixed derivatives of lnZ(sef) (29) allows one to obtain a correlation between the parameters K and 

τ 

0

2 2

2

ln ln ln
( )

ef ef efs s s ef

K K

s

Z Z Z s
D K K D

s s Ks







 

  

   
= − = = = =

   
.           (34) 

This approach, together with relations (21), makes it possible to find the parameters   and 

K that are undefined in expressions (10) and (19): 
0 0 0 0, K K K    = == = = = . As shown in 

[93], from the theory of random processes it follows that the value K=K0 is equal to the value of 

the boundary that the FPT of a random process with a fixed value of K reaches. You can write 

expressions for higher order correlators. 

Let us check the fulfillment of the inequality / var( ) AA
K    obtained in [7] for 

expressions (30)-(34). In the notation of this article 
0 0 0, var( ) , AA

D K K    == = = . For the 

two-level models discussed below and for the three-level model, strict inequality is satisfied. 
 

4. Dependences of the first and second moments of random variables of activity 

and FTP on changes in entropy  
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All real physical processes, which are modeled by stochastic processes, occur with a change 

in entropy. The changes in entropy plays an important role in calculating the average of the first-

passage time [83-86]. The average FTP at zero value of the Laplace transforms argument of the 

density distribution of the FTP, which is usually used to determine the average value of the FTP, 

does not reflect the influence of real processes on the average FTP.  

Expressions (30)-(34) include the parameter γ, which equal x in [2, 32], of Laplace 

transform argument in (18), (25), (28), (39). In this section, the parameter γ is associated with the 

total entropy change in the system during the FPT. Then the moments of random variables FPT 

and K (mean values, variances, correlations) are expressed through the parameter γ and the total 

change in entropy in the system during the FPT time. Let us describe the algorithm for expressing 

moments (30)-(34) through the total change in entropy. The total change in entropy tots  consists 

of the change in the entropy of the system syss  and the exchange of entropy with the environment 

ms , tot sys ms s s =  +  . Expressions (30)-(34) depend on the parameter γ. The values of syss  

and ms  also depend on the parameter γ. Let us write down the relation ( ) ( )tot sys ms s s  =  +  and 

consider it as an equation for the parameter γ, depending on tots , γ( tots ). Solving this equation, 

we obtain γ( tots ) and substitute it into expressions (30)-(34).  

In this article, for the same thermodynamic quantity, which is conjugate to a random FPT, 

different notations are used, namely the notation γ in expressions (21), (31)-(34), and the notation 

x in expressions (18)-(20), (27)-(29). This is because an attempt is made to connect the results 

obtained for x-ensembles in [2, 32], where the notation x is used, with the results of articles [52-

53], [83-84], where the notation γ is used. In both cases, in the statistical system, the FPT is 

considered as a random thermodynamic parameter, and the parameter γ (or x) is conjugate to the 

random thermodynamic variable FPT, as in distributions (20), (27), (39).  

Therefore, in expression (19), where the function g(x) appears - an LD function depending 

on the argument x from [2, 32], it is possible to replace x=γ using the notation from [83-84]. By 

relation (21) the argument γ is related to the cumulant θ(s). We express this argument γ in terms of 

the change in entropy over the FPT time. The value of K from (19) is assumed to be proportional 

to the average value of K from expression (12). By setting s=0 here, we assume that the random 

process τ changes accordingly. Let us denote it by τ0 at s=0. When 0,s   the dependence of the 

parameter K on the argument γ has the form 

( )

( )
s

s g

s
K K K

s







=


= = = −


.                                         (35) 

Subsequent calculations will be carried out for a two-level model. In [32-33] classical two-

level system is described as follows. The operator Ws is 
s

s s

e
W

e

 

 

−

−

 −
=   
 

, where 

'

( ') ' ( )s

s

C C C

W e w C C C C R C C C−



= → −  , Ws [2, 8] is deformed operator W (2) and θ(s) (36) is its 

largest eigenvalue; η и   are transition rates. In two-level system where there are only two 

configurations, {0,1}C  , and the transition rates are, (0 1)W → =  and (1 0)W → = . From θ(s) 

we can obtain the activity value. For the average activity per unit time, we obtain expressions (35)-

(37) as expected. For the case  =η the LD function reduces to θ(s)=η(e−s/2−1), which is the 

cumulant generating function for a Poisson process with rate η. Similarly, the operator Tx (26) for 
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this problem reads, 
0 / ( )

/ ( ) 0
x

x
T

x

 

 

+ 
=  

+ 
, and from its largest eigenvalue, we obtain the LD 

function g(γ) (36). This function g is indeed the inverse of the function θ(s) (36). The moments of 

the total time <> are obtained from g(γ). In particular, the average total time, scaled by the number 

of jumps, is / `(0) ( ) /
K

K g   = − = + , which is the inverse of (37). Analogous relations 

between the moments of K in the fixed τ ensemble and those of τ in the fixed K ensemble can be 

obtained by Eq. (21). 

For a two-level classical system [32, 33] in [33] expressions obtained 

2

1 2 1 2

2

1
( ) ln(1 ), , ;

1
( ) [ ( ) 4 ( )].

2

s

g a a a a

s e

 
  

 

     −

+
= − + + = =

= − + − +

                        (36) 

From (10), (12) we obtain 

0

0, 01

1 ( )

s

K s

a s 

 

   = =


= = = −

+ 
.                                         (37) 

Below we will in the calculations limit ourselves to the value 0 0K K K == = , although there are 

also possibilities for the value of K to depend on  (Appendix A). 

 

4A. Example: classical two-level system, partition function (39) 

 

Let's consider changes in entropy. The total change in entropy tots  consists of the change 

in the entropy of the system syss  and the exchange of entropy with the environment ms , 

tot sys ms s s =  +  .                                                        (38) 

The Gibbs/Shannon entropy of distribution of the form (27)-(28) [52-53], [83-84], [94], [88] 

/
sK

s sp e Z

 

− −
= ,    ( , )s sZ Z s Z Z = = ,                                     (39) 

( )( ) ( ) ~sK s

s K
Z Z s e P K e 

−= = ,    
0

( ) ( )K KZ Z d e P

   


−= = 
( )~ Kg xe   

is equal to 

ln lnsys s ss s p s K Z     = = − = + + ,                                    (40) 

where the average values are  

( )ln /s s gK Z s K == −  = .                                                (41) 

Entropy (40) includes the total average values <К> and <τ>, and not the ratios <К>/τ and 

<τ>/К. The quantities lnZs and lnZ also contain the parameters τ and K. This complicates the 

problem due to the uncertainty of the expressions for K and τ (paragraph after (34)). 

The Gibbs/Shannon entropy (40) is naturally generalizable to nonequilibrium states, since 

it remains well-defined even when p(x) is not the Boltzmann distribution [94], [95]. The Clausius 

relation ∆S≥−Q/T (where Q is heat) which relates the change ∆S in the entropy of a system to the 

heat Q exhausted into an ideal thermal reservoir at temperature T should hold for this choice of the 

entropy in a broad class of Markovian stochastic processes on a finite set of states [96]. 
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Expressions (42)-(45) were obtained in [10] from Gibbs entropy (Shannon entropy). There 

are different types of entropy. For example, thermodynamic entropy and information entropy. 

They are not identical to each other. However, many works, for example, [89-91], [94-96], [101-

103], show analogies between these quantities and effectively use their proximity. In general, the 

formulation of the entropy production problem is not universal. This depends on the dynamic laws 

governing the system, as well as on the underlying physical system itself. We will assume that for 

the entropy inside the system expression (40), (A3) is valid, and for the exchange of entropy with 

the environment expressions (42)-(45) are satisfied. 

The partition function (39) differs from expression (29) and is written from expression (28) 

if the value of K is from the conditional probability ( )P K  and ( )Kg xe  is not averaged over K 

(assuming, for example, this value K is equal to the mean value), as was done in [32], although the 

approach leading to the expression (29) is more consistent. Quantity (40) is equal to the entropy 

of the system 
syss , the value 

  from (31), (A2). A distribution of the form (39) was obtained in 

[88], as sx-ensemble. This distribution differs from the distribution obtained in [52, 83-84] by 

replacing the pair of conjugate quantities βu (the product of the inverse temperature β and energy 

u) by sK (activity K and the conjugate field s).  

In [97], the change in К activity is associated with the production of entropy in the system 

and with the exchange of entropy between the system and the environment. With a single transition 

'С С→ , the change in entropy is 

1( , ') ln[ ( ') / ( ' )]s C C w C C w C C = → → .                                        (42) 

where w(C→C`) is the rate of the jump process. The change in entropy during the exchange with 

the medium while moving along the trajectory 
0 1( ... )K KC C C→ → →Y  is 

1 11
[ ( )] ( , )

K

ms C t s C C  −=
 =  ,                                             (43) 

as K changes from K0 to Kγ,  

0 0
( ) 1 1[ ( )] ( , )

K

m K K K
s C t s C C



   −=
 =  ,                                        (44) 

where we sum over all configuration changes. The corresponding dynamical partition function is 

[10, 97] 
( )( , ) ~msZ e e

    −
= ,                                                   (45) 

where λ is the parameter conjugate to sm. In analogy with the activity, the mean entropy production 

rate in the λ-ensemble is given / ( ) /ms    = −  . Assuming that the quantity 

1 1 1( , )s s C C − =   is constant, expression (45) takes the form 

0( ) 1 0[ ( )] ( )m K Ks C t s K K
   = =  − .                                       (46) 

Using expression (39) and the results of [98] (43), we obtain for the term from (38), when 

0
0 0( ) / , , [ ( ) / ( ) / ]m m m Km K

s s s s


              = == −   =  = − = −   −   ,   (47) 

Expression (47) coincides with (46) at Δs1=(+/-)1 [60]. 

Expressions (42)-(45) were obtained in [97] for the thermodynamics of trajectories, 

expanding the s-ensemble approach to driven systems based on the results obtained in [10]. In [98] 

noted the difficulties of physical interpretation of general definitions entropy production for 

specific physical systems. In [98] as well as in [99] entropy production obtained for the Markov 

jump process. Expressions (42)-(45) for Egs. dynamics (1)-(2) were used in [100] for the 

connection between gauge invariance in stochastic dynamics and fluctuation theorems. These 
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issues are also discussed in [101-103], and in other works. In [94], notes the important role of the 

“microscopic reversibility relation” in terms of the thermodynamic entropy of the environment 

since it encodes the time-reversibility of the full microscopic dynamics in a coarse-grained 

stochastic dynamic. In general, the formulation of the entropy production problem is not universal. 

This depends on the dynamic laws governing the system, as well as on the underlying physical 

system itself. 

Let us express the parameter γ in terms of the change in entropy. Let us expand the 

expressions from relation (36) into a series in γ up to the power γ2:  
2 2 2

1 2 1 3 3 1 2

21 2

1 3 1 3 22

1 2

ln(1 ) ..., / 2 ,

2
2 (2 ) ... .

1

a a a c c a a

a a
a c a c a

a a

   


 

 

+ + = − + = −

+
= − + − +

+ +

                            (48) 

If in (40) we used expansions (48), then 
2 2 2

0 0 0 2 1/ ( ) / [2 ] ,sys ss K s s K a a a   = − = − =                                     (49) 

where 2

2 1[2 ]sa a a= −   

For further estimates, we need to know the explicit form of the function g(γ). Let us 

consider an example of a classical two-level system [32, 33] (a quantum system can also be 

considered) with a function g(γ) of the form (36). Up to γ2, from (47), (48), we obtain 
2 ( ) ( ),m m ms a b  =  +                                                  (50) 

where 2 2

2 1 2 1 2 14 / , 2 /m ma a a a b a a a= − = − . The sign in (50) depends on whether flows enter 

the environment (+ sign) or exit the system into the environment (- sign). The plus or minus sign 

is determined by the flow sign: into the system from the environment or vice versa - from the 

system to the environment. 

Using expression (36) leads to a transcendental equation for the parameter γ. If we expand 

into a series and restrict ourselves to quadratic terms in γ, then from (38), (49), (50) we obtain an 

equation for γ of the form  
2

00, ( , ) ( ) , /s m m tota b d a a a b b d s K + + = = −  = −  =  .           (51) 

The coefficients of this equation depend on the sign of expressions (50), (51). 

 The solution of equation (51) has the form 
2[ 4 ] / 2b da b a =  − − ,                                              (52) 

where the parameters a and b from expressions (50), (51), depending on the sign, take the values

, ,s m s ma a a a a a+ −= − − = − +                                           (53) 

where 2 2 2 2 2 2

1 2 2 1 1 2 2 1( ) 4 / , ( ) 3 4 /s m s ma a a a a a a a a a a a a a+ −= − + = − − = − − = − + , 

, ,m mb b b b+ −= − =  0, 0b b+ −  , as for model (36) 2

1 2 1 2 12 5 0, 7 / 2 3 / 0a a a a a−  +  .  

 If in (52) we choose the + sign in front of the square root, then we get two solutions 

depending on the signs in (51). Let's denote them 
2 2

1( )( ) [ 4 ] / 2 [ 1 4 / 1] / 2 0m mb da b a da b b a + + + + + + + += − − = − +  .           (54) 

The first subscript (+) in (54) denotes the sign before the square root in (52), and the second plus 

sign corresponds to the sign choice in (50)-(51). At 0tots = , expression (54) is equal to / 0mb a+  . 

Then expressions (49), (50) are not equal to zero, but 
m syss s = − . This is a stationary 

nonequilibrium state (at 0tots = ) as defined in [104]. In [105] it is shown that ~ s  , the 
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production of entropy in the system; ~ /s syss   , and ~ q , flows in the system. This case 

describes nonequilibrium stationary states when 0tots = , but 0syss  , 0ms  , 

sys ms s = − , [93]. For the “–“ sign in (51), we obtain the solution 

2

1( )( ) [ 1 4 / 1] / 2m mda b b a + − − −= − − ,           0tots  .                      (55) 

At 0tots = , expression (55) vanishes. Then expressions (49), (50) also vanish. This is the 

equilibrium state (at 0tots = ).  

 If in (52) we choose the sign “–“ in front of the square root, then we also obtain two 

solutions depending on the signs in (51)-(52): 
2

2( )( ) [ 1 4 / 1] / 2m mda b b a − + + += − − + ,                                   (56) 

2

2( )( ) [ 1 4 / 1] / 2m mda b b a − − − −= − − + ,           0tots  .                 (57) 

For negative values of γ, the convergence condition of the Laplace transforms of the FPT 

distribution, partition function Zγ from (39), must be satisfied. At large times, the time distributions 

tend to an exponential distribution of the form 1

0 0exp( / )  − − , 
0 0  == . For the Laplace transform 

by  of an exponential distribution of the FPT with mean value τ0, at 0   the condition 

01/ 0 +                                                         (58) 

must be satisfied. In case (57), for the convergence of Zγ, the condition 0tots   must be 

satisfied. For the parameter values chosen below the values (-)(-) (57) are not realized. For case 

(+)(+) (56), condition (58) leads to a constraint of the form d<0.00676 for values of the parameters 

η=5,  =1.25 as in [33]. 

 The condition of positivity of the radical expression must also be satisfied, which also 

imposes a boundedness condition on d of the form 
2 / 4d b a . For the case of a positive sign in 

(50) and for values of the parameters η=5,  =1.25, this condition gives the limitation d<0.1567. 

For the case of a negative sign in (50) d<0.1863.  

If we substitute 0tots =  into equation (51), then we obtain the equation for γ,  

[ ( ) ] 0s m ma a b    = .                                             (59) 

The first root of this equation is γ=0. Substituting this root into expressions (50), (49) gives that 

0sys ms s =  = . This situation describes an equilibrium state (55), (56). The second root of 

equation (59) is / ( )m m sb a a =  + . In this case 0, 0sys ms s    , but 0tots = . This is 

a stationary non-equilibrium state (+)(+). State (57) not realized. It can be seen from (36) that at 

0, 0.s = =  This case corresponds to a phase transition [2, 12]. When the dynamics have two 

phases, an active one for s<0 and an inactive one for s>0 [2, 12]. The used model (36) leads to the 

existence of two equilibrium states, one of which (55) is possible in range of entropy changes 

d<0.1567, and the second is possible only in a narrow range of entropy changes defined by 

expression (58). A stationary nonequilibrium state was also obtained, in which the values 

0, 0.s = =  are not reached, and no phase transition occurs. Thus, the system has an active phase 

(55) with 0, 0s    and an inactive phase (56) with 0, 0s    which is limited. The 

transition between them occurs with a change in the branch γ from (55) to (56) and back through 



15 
 

the equilibrium state, in which 0, 0tot sys ms s s s=  =  =  = . In addition, there is an active 

phase (54) 0, 0s   , a stationary nonequilibrium state without a phase transition.  

If we consider not the average, but the random total change in entropy, then this value can 

be negative, not exceeding the Boltzmann constant. Then the exchange of entropy with the medium 

should be considered as a random variable.  

Below, as in expressions (30)-(34), we consider the observables dynamic activity K and 

FPT, the first and second moments of these observables, and the correlation between them. The s-

tilted probability density of x satisfies of relation ( ) ( )sx

sf x e f x . The expressions obtained below 

for the moments depend on the parameter γ associated with the change in entropy. The equations 

of motion also are modified to create a tilted or twisted equation of motion. The function θ(s) can 

be obtained by deforming the master operator W (2) and replacing it with Ws [10, 28]. In particular, 

for the case of activity, this deformed operator is considered in [2, 8, 12], for FPT the deformed 

generators are Tx,c (26) (by x=γ). The scaled cumulant generating function θ(s) and the rate function 

φ(a) (8) are related by a Legendre transform, φ(a)=−mins[θ(s)+sa] (13), that is, 

φ(a)=−θ[s(a)]−s(a)a, with s and a related through a(s)=−θ’(s). 

 Let us illustrate the obtained results of dependences on entropy change. Let us write out 

the ratios according to which Figures 1-3 were built. A two-level model (36) is used with the values 

of the parameters η=5,  =1.25, as in [33]. To avoid ambiguity in determining the values of K and 

τ in (39)-(41), we take the values of K equal to K0. Let value K0=100. From (30)-(34) we have (at 

K=
0K K  )  

21 2

0 0 02 2

1 2

2( ) 1 0.32
10 , 100

1 1 0.16

a ag
T K K K

a a


 


    

+ +
= = = =

 + + + +
,            (60) 

0

2 2

0 0 0 0 0 13

( )
0.68 0.68 , ,

( )
KD T T K T K a

  

 

+
= = = =

+
 

2 2

2 1 1 2 1 2

0 12 2

1 2

2( / 2 )
, 1

(1 )
T

a a a a a a
D K a

a a

 

 

− + + +
= =

+ +
,                             (61) 

1 2

0 2

1 2

2
0.68

1

a a
CorrTK TK T K K

a a



 

+
= − =

+ +
,                              (62) 

where T =  is the average FPT, 
0

22

0 0KD K K= −  is the variance of K0, 
22

TD T T= −  is 

the variance of FPT, and CorrTK is the correlation (34) between T and K. The value of γ in (60)-

(62) can be of the form (54)-(56). For model (36) with parameter values η=5,  =1.25, the values 

(54)-(56) are:  

1( )( ) 2( )( ) 1( )( ) 00.461[ 1 6.381 1], 0.546[ 1 5.384 1], 0.461[1 1 6.381 ], /totd d d d s K  + + − + + −= − + = − − = − − =  . (63) 

The condition for the radical expression to be positive limits the quantity d. So, d<1/6.381=0.1567. 

Figures 1-3 show the behavior of the average FPT T  (60), dispersions of FPT (61), and 

correlator (69) depending on γ1(+)(+), γ1(+)(-), γ2(-)(+) (63) and parameter 
0/totd s K=  . 
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 Fig. 1. The behavior of <T(d)> (60) [full (blue)], DT(d)=DT(d) (61) [dashed (green)], CorrTK(d)=Co(d) (62) [dot-

dash (red)] at γ=γ1(+)(+) (54), (63) from 
0/totd s K=   in the range 0<d<0.156. 

 
Fig. 2. The behavior of <Тm(d)>=<T(d)> (60) [full (blue)], DTm(d)=DT(d) (61) [dashed (green)], 

CorrTK(d)=Co/m(d) (62) [dot-dash (red)] at γ=γ1(+)(-) (55), (63) from 
0/totd s K=   in the range 0<d<0.156. 

 
Fig. 3. The behavior of <Т(d)>=T2 (60) [full (blue)], DT2(d)=DT(d) (61) [dashed (green)], CorrTK(d)=Corr2(d) (62) 

[dot-dash (red)] at γ=γ2(-)(+) (56), (63) from 
0/totd s K=   in the range 0<d<0.00676 corresponding to the 

convergence of the Laplace transform of the FPT distribution Zγ, obtained from (58). 

 We write the dependence of the average activity K
 on the parameter γ in the form 

0
( )

( )

s g

s
K

s







=


 −


. Then 

2 2

1 2 1 2

0 0
2 2 2

1 2 1 2 1

(1 ) 1

( ) 1 4 ( ) / ( ) 1 4( ) / ( )

a a a a
K K

a a a a a


    


          

+ + + +
= =

+ + + + + + +
.                     (64) 

Figure 4 shows the behavior of K
 (64) depending on γ1(+)(+), (63) 

1K +
, 0, 0s    

(active phase), γ1(+)(-), (63), 
1K −

, at 0, 0s    (inactive phase), and on γ2(-)(+), (63) 
2K +

, 
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at 0, 0s    (active phase) in scale 0<d<0.156. Similar dependencies (but from s, not from γ) 

were obtained in [2, 12].  

 
Fig. 4. The behavior of K

 (64) from 
0/totd s K=   depending on γ1(+)(+) (63), 

1K +
=K1+ [full (blue)], 

depending on γ1(+)(-) (63), 0, 0s    (active phase), 
1K −

=K1- [dashed (green)], and on γ2(-)(+) (63), 
2K +

=K2+ [dot-dash (red)], 0, 0s    (inactive phase). Panel shows 
1K −

, 
2K +

, 
1K +

 from 

0/totd s K=   in the range 0<d<0.156.  

 

4B. Example: classical two-level system, partition function (29) 

 

Calculations Figs. 1-4 was carried out using expression (39), with a statistical sum of the 

form ( , )s sZ Z s Z Z = = , ( )( ) ( ) ~sK s

s K
Z Z s e P K e 

−= = , (9), (10), 
0

( ) ( )
x

K KZ Z d e P




   
=


−=  =

( )Kge = , (18), (19). If we calculate using expression (29), in which the partition function is equal 

to ( ( ))( ) ( ), ( )K s g

ef efK
Z Z s e P K s s g

 − −= = = − , and at large times ( ) 1efZ s → → , 
0 ( ) /K g


  = −   , 

0
,K K


=  (30), (31) then 0ln ( ) 0

esef sZ s = = . Using expression (47) to determine 
ms , (38), we 

obtain, using expressions (21), (36), an equation for determining the parameter  through 
tots  the 

signs “+” and “-“ in 
ms . This equation also has four solutions. These are functions 

0/totd s K=   

of the form 

01( )( ) 01( )( )

02( )( ) 02( )( ) 0

4.38[ 1 0.67 1], 4.38[ 1 0.67 1],

9.05[1 1 0.325 ], 9.05[1 1 0.325 ], / .tot

d d

d d d s K

 

 

+ + + −

− + − −

= − + = − − +

= + + = − + = 
                (65) 

The designation 0 indicates that ln ( ) 0efZ s → → . On Figs. 5-8 show the results of calculations 

with expressions (29), (65) corresponding to Figs. 1-4 obtained using expressions (39), (63). The 

behavior of the parameters γ does not change qualitatively. As in case (63), for case 1a) the 

quantities γ01(+)(+) and γ02(-)(+) describe the system in a stationary nonequilibrium state, for 

quantities 1b), 2a) equilibrium states γ01(+)(-) and γ02(-)(-) are possible, and the value γ02(-)(-) (63) is 

realized only at small values of d<0.0067. But for the partition function (29), the convergence 

condition differs from (58). Therefore, the question of the existence of the values γ02(-)(-) and the 

boundaries of the value γ02(-)(+) requires a separate study. Considering the closeness of the results 

obtained when using partition functions (39) and (29), we can assume that expression (65) can also 

be used to estimate the convergence of relation (29). The requirement that the radical expression 

in γ01(+)(+) and γ02(+)(-) be positive gives the condition d<1.49. 
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Fig.5. The behavior of <T(d)> (60) [full (blue)], DT(d)=DT(d) (71) [dashed (green)], CorrTK(d)=Co0(d) (62) [dot-

dash (red)] at γ=γ01(+)(+) (65) from 
0/totd s K=   in the range 0<d<1.4. 

It can be seen that the first and second moments of FPT, the correlation of FPT and activity 

K behave in the same way as in Fig. 1, shifting in height. 

 
  

  

Fig.6. The behavior of <Т0m(d)>=<T(d)> (60) [full (blue)], D0Tm(d)=DT(d) (61) [dashed (green)], 

CorrTK(d)=Co/0m(d) (62) [dot-dash (red)] at γ=γ01(+)(-) (65) from 
0/totd s K=   in the range 0<d<1.4. 

Fig. 6 for partition function (28)-(29) repeats the behavior of Fig. 2 for partition function 

(39). The general nature of the dependence remains. 

 
 

 

 

 

 Fig.7. The behavior of <Т(d)>=T02 (60) [full (blue)], DT02(d)=DT(d) (61) [dashed (green)], CorrTK(d)=Corr02(d) 

(62) [dot-dash (red)] at γ=γ02(-)(+) (65) from 
0/totd s K=   in the range 0<d<15 (Fig 7a)) and at γ=γ02(-)(-) (65) in 

the range 0<d<0.007 (Fig. 7b)). Fig. 7b) corresponded to the convergence of the Laplace transform of the FPT 

distribution Zγ, obtained from (58). 

In this case, there is agreement with Fig. 3. Curves in Fig. 7b) grow faster than in Fig. 3b).  
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Fig. 8. The behavior of K

 (64) from 
0/totd s K=   depending on γ1(+)(+) (65), 

1K +
=K1+ [full (blue)], 

depending on γ1(-)(+) (65), 0, 0s    (active phase), 
1K −

=K2+ [dot-dash (red)], and on γ2(+)(-) (65), 
2K −

=K1- [dashed (green)], 0, 0s    (inactive phase). Panel (a) shows 
1K +

, 
1K −

, 
2K −

 in the range 

0<d<1.4. Panel (b) shows 
2K −−

=K2-- on from γ2(-)(-) (65) in the range 0<d<0.007 (Fig. 8b) corresponding to the 

convergence of the Laplace transform of the FPT distribution Zγ, obtained from (58).  

Thus, the results obtained using the calculations using expressions (29) and (39) are close, 

although the partition functions differ from each other. When deriving expression (29), fewer 

assumptions were made. Therefore, this expression may be preferable. 

 

4C. Example: classical three-level system 

 

Three-level systems are present in many physical contexts. A spin-1 particle in an external 

magnetic field, three states of atoms or molecules bound by lasers or other interactions, three-level 

atom interacting with two classical monochromatic fields and oscillations between three neutrino 

flavors these are just a few different examples. We focused for simplicity on stochastic Markovian 

classical systems. Classical systems are only an approximation of the behavior of quantum systems 

in certain limits (e.g. large mass/energy, high temperature, long timescales). In [23] in three-level 

system the statistics of the number K of photons emitted from Level 1  decays to 0  with rate 1 

is obtained. Let us limit ourselves to a simple model, a special case of a three-level system, 

considered in [32]. As a simple example consider the classical three-level system with 

configurations 0 , 1 , 2 . Suppose we only observe the jumps between configurations 2  and 

0 . In the notation above (from (22)-(25)) we have N = 1, and M  is just K20, the total number of 

transitions between top and bottom levels. In the s-ensemble, the largest eigenvalue of the operator 

20

20

1 1 0

0 1 1

0 1

s

s

W

e


−

 −
 

= − 
 − 

                                                                (66) 

(where s20 is the field conjugate to K20,   is the rate of jumps between configurations 2 and 0 

associated to emission into the bath) gives the LD function,  
20

20

/3
( ) ( 1)

s

ss e −
 = − ,                                                            (67) 

which is the cumulant generating function for the number of jumps K20 per unit time. In the x-

ensemble context, the relevant operator is 



20 
 

20

20

,

0 1 0

0 0 1

0 0

x s

s

T
x

e




−

 
 

=  +
 
 

.                                                        (68) 

From its largest eigenvalue we obtain the LD function from (25) 

20 20( , ) 3[log log( )]G s s   = − + − + .                                        (69) 

This is the generating function for cumulants of both τ/K and K20/K;  

20( ) ( , 0) 3[log log( )]g G s    = = = − + .                                    (70) 

If we solve G(x∗, s20)=0 for x∗ we get, x∗(s20)=∗(s20)=Θ(s20) above, in accordance with (21). 

Let us consider the case corresponding to expression (29), when at large times the partition 

function is equal to unity. For the average value of K from (10), (12), (41), (67), (21) we obtain  

20

20

( )

/3

( )

( )
(1 )

3 3
s g

s

s g

s
K e

s


 

  
  


=

−

=


= − = = +


.                           (71) 

This expression depends on the value of τ, which is not specified in relation (10); it is only required 

to be large enough to satisfy the LD relations. Therefore, there is a certain arbitrariness in the 

choice of parameter τ, the average value of which from (70) is equal to 

0

( ) 3 1 1

1 / 1 /

g K
K


 

     


= − = =

 + +
.                                   (72) 

If in expression (72) we choose 
0 0K K K == = , then substituting this value of K into (72), 

followed by substituting (72) into (71), taking into account the relation x x = = , 

20 /3
1 /

s
e  −

= +  leads to the expression 
0 03 /K = = . If we substitute expression (72) into 

expression (71) with τ=
0 03 /K = = , we obtain  

0 (1 / )K K  = + .                                                  (73) 

Differentiating expressions (72) by  and (71) by s, we obtain relations for the dispersion 

Dτ of the time τ and for the dispersion DK of dynamic activity K:  

0

2 2

3 1

(1 / )

K
D

  
=

+
,                                                 (74) 

0 (1 / )
3 3

K

KK
D  = + = .                                             (75) 

Using expressions (34), (72), (75) we obtain 

0 1

(1 / )
K

K
D

  
=

+
.                                                 (76) 

As above, in sections 4A), 4B), it is possible to find changes in entropy in the system ssys 

using expressions (39) or (29). We use expression (29) as in Section 4B). We consider a simplified 

model at  =0.5, K0=100. For 
syss , taking into account that at large times ( ) 0efZ s = , we 

obtain after expansion in a series in  and restriction to quadratic terms: 2

09 ( / ) / 2syss K   = . 

Using expression (47), after expansion into a series we find: 0 /ms K   =  . Depending on the 

sign in front ms , we obtain two quadratic equations with solutions: with the “+” sign in 
ms :  

0/ [ 1 18 1] / 9, /totd d s K  =  + − =  ,                                     (77) 
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аnd with the sign “-“ in 
ms : 

/ [ 1 18 1] / 9d  =  + + .                                         (78) 

Condition (58) is not satisfied for solution (77) ( )( / )( )d +−  with a minus sign. For 

solutions ( ) ( )( / )( ) [ 1 18 1], ( / )( ) [ 1 18 1]d d d d   ++ −+= + − = + + , condition (58) is satisfied 

for all d. For ( )( / )( ) [ 1 18 1]d d −− = − + +  condition (58) is satisfied for 2

0 01/ 9 / 2d   + . In 

[23] it is shown that for s>0 (which corresponds to values of <0) the cumulant (s) takes constant 

value. But we are considering a very small segment for <0, when this circumstance can be 

ignored. We rewrite the realized parameters in (77)-(78) in the form  

( ) ( ) ( )( / )( ) [ 1 18 1] / 9, ( / )( ) [ 1 18 1] / 9, ( / )( ) [ 1 18 1] / 9d d d d d d     ++ −+ −−= + − = + + = − + + . (79) 

The solution ( )( / )( )d −+  describes stationary nonequilibrium states in which there is no 

equilibrium. For solutions ( )( / )( )d ++  and ( )( / )( )d −− , equilibrium and phase transitions are 

possible.  

Substituting expressions (79) into relations (72)-(76), we obtain Fig. 9, 10  

 
Fig. 9. Behavior of functions (72)-(76) <τ(d)> (full, red), <K(d)> (dashed, green), D(d) (dash-dotted, blue), DK(d) 

(short dash, pink), DτK(d) (dot, purple) depending on 
0/totd s K=   when substituting parameter (d)/ (79) into 

expressions (72)-(76). Range d=(0,…,10), ((++)(d)/) on Fig. 9a), ((-+)(d)/) on Fig. 9b). 

Figure 10 shows the dependence of average values and variances on ((-+)(d)/) (79) in the 

interval d values (0,…,0.0016). It can be seen that these values are constant over this interval. The 

calculation confirms the conclusions [23]. The same situation with Fig. 7b). 

 
Fig. 10. Behavior of functions (72)-(76) <τ(d)> (full, red), <K(d)> (dashed, green), D(d) (dash-dotted, blue), DK(d) 

(short dash, pink), DτK(d) (dot, purple) depending on 
0/totd s K=   when substituting parameter ((--)(d)/) (79) 

into expressions (72)-(76). Range d=(0,…,0.0016). 
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4D). Example: the quantum two-level system, partition function (80) 

 

In subsections 4A)-4C) distributions (29) and (39) were used. In this subsection we will 

use a distribution of the form 
1( , ) ( , ) ( , )sx sK x

M M MP K Z K e P K  − − −= ,                                             (80) 

where M is some fixed value, as in (27), the parameters K and  fluctuate; PM(K, τ) is the probability 

that an unbiased trajectory has a given duration τ and the fluctuating observable reaches a certain 

value K by the time the other observable reaches its fixed value M. This distribution was obtained 

in [88], [52-53], [83-84], [32]. It is written from (27) after summation over M1. The corresponding 

grand-partition function is (81) where the right-hand side takes the expected large deviation form 

with scaled-cumulant generating function (SCGF) G(s, x) 
( , )( , ) ( , ) ~sK x MG s x

M MK
Z K e P K e


 − −=  ,                                       (81) 

we use the notation G, as in (25) [32}, in [88] the notation  is used. SCGF from (19) is 

g(x)=G(s,x)x=0. The average values are  

0 0( ) / , ( ) /K g K s s    = −   = −   .                                       (82) 

Let's apply these expressions to the quantum two-level system. The quantum two-level 

system corresponds to a system of two quantum levels 0 , 1 , coherently driven on resonance at 

Rabi frequency Ω and coupled to a zero-temperature bath [49]. The Hamiltonian, the single-jump 

operator, the super-operator Ws, the operator Tx,s (26), its largest eigenvalues are given, for 

example, in [32]. The largest eigenvalues G(s,), g() coincide with expressions (67), (69), (70) of 

Section 4C), differing only in the parameter value. Accordingly, expressions (72)-(76), (77)-(79) 

also coincide. The parameter  in 4C) is replaced by 2Ω. Let's put Ω=1 MHz. Then  

1 1

1 1

2

1 1 1

1

150 / (1 ), 100(1 ), 75 / (1 ) ,

/ 3, / 3, / 2 / 2.K K

K D

D K D

  

  

   

   

= + = + = +

= = =  =
                              (83) 

For the largest eigenvalues we obtain the LD function from (10), (19), (25) 
/3( , ) 3ln(1 / 2 ), ( ) 2 ( 1), ( ) 3ln(1 / 2 )sG s x s s e g   −= − − +  =  − = − +  . 

We assume К0=М=100. Entropy of the system 
syss  and ms  are equal  

0 0/ ( , ), , [ ( ) / ( ) / ]sys sys sys m ss M s K G s s s s s s s s      == + +  = −  = −   −  . 

Since when using relation ( )s g =  (21), G(s,x)=0, then and ln ( , ) 0MZ K  =  as in (29). The behavior 

of the average and second moments (83) of the random variables  and K are shown in Fig. 11.  
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Fig. 11. Behavior of functions (83) <τ(d)> (full, red), <K(d)> (dashed, green), D(d) (dash-dotted, blue), DK(d) (short 

dash, pink), DτK(d) (dot, purple) depending on 
0/totd s K=   when substituting parameter (d)/2 (79) into 

expressions (83). Range d=(0,…,10), ((++)(d)/2) on Fig. 11a), ((-+)(d)/2) on Fig. 11b). 

The solution ( )( / )( )d +−  is not implemented, as in 4C). The negative branch of the 

solution at ( )( / )( )d −−  is constant, as in Fig. 10, but in the interval d=(0,…,0.0067).  

In Appendix B, the parameter  is associated with other parameters of the system, and the 

physical meaning of the parameter s and the associated parameter  is also discussed. 

 

6. Conclusion 
 

In [83-84] FPT is considered as an independent thermodynamic variable present in the 

statistical ensemble. A similar situation arises in the thermodynamics of trajectories, when 

trajectories with random time (FPT) are studied [33], and the explicit form of the partition function 

is determined using the theory of large deviations with LD functions. The dependences of the 

average value of FPT, dispersions of FPT and dynamic activity, and correlation between FPT and 

dynamic activity on the total entropy change, consisting of intrasystem entropy production and 

entropy exchange with the environment, are found. 

In [84], the Gibbs canonical ensemble was generalized to a nonequilibrium situation by 

introducing an additional thermodynamic parameter FPT. In the thermodynamics of trajectories, 

a similar procedure is carried out for x-ensembles (see, for example, [32, 33]). In this paper, the 

approach of paper [84] for determining the dependence of the mean FPT on the change in entropy 

is applied to the formalism of thermodynamics of trajectories. The joint distribution for the 

dynamic activity K (in this case generalizations to other counting observables are also possible) 

and FPT are considered. If in [84] the random variables energy and FPT are assumed to be 

independent, the partition function is divided into two factors, and the correlation between energy 

and FPT is equal to zero, then in this article, the dependence between random distribution 

parameters is determined. When using the theory of large deviations for large values of dynamic 

activity K, when the distribution for FPT is written in the form of an LD function, the case of 

relatively small values of FPT is considered, an expression for the partition function of the form 

(29) depending on sef (29) is obtained. The first and second moments of random variables are 

determined, including the correlation between the dynamic activity of K and FPT. After that, larger 

FPT values are assumed when sef=0.  

The introduction noted the importance of FPT. In this case, it is important to know the 

patterns of FPT behavior, in particular, the dependence on entropy changes. The proposed 

approach will allow us to consider in detail various physical effects associated with changes in 

entropy in the system. Three model systems are calculated using three different distributions.  

In all the examples considered in the article, the behavior of the moments differs. But 

everywhere (except 4B)) three branches of the dependences of the moments on the change in 

entropy are realized. Two branches belong to active states in which the parameter >0 (s<0). In 

one of these branches, equilibrium states and a phase transition are possible; the second branch 

describes stationary nonequilibrium states, where there is no equilibrium and no phase transition. 

The solution with <0 is close to equilibrium and exists only for very small changes in entropy. 

The calculation results in Section 4 confirm the conclusions of the theory [23]. 

The difference between this article and article [32] is that averaging is carried out over 

fixed values of K. The existence of an ensemble of systems with fixed values of K is assumed. One 
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of the results of this approach is the emergence of the possibility to find an expression for the 

correlation between the values of K and τ. It is intuitively clear that such a correlation exists: the 

larger the FPT, the more events occur during this time.  

In this article, the dependences of such quantities as the average values of dynamic activity 

and FPT, their variances and the correlation between them on the parameter conjugate with FPT 

are obtained in analytical form for three models of the partition function. The next important step 

is now taken. The parameter conjugate with FPT is associated with the overall change in entropy 

in the system, and the average values of dynamic activity and FPT, their variances and the 

correlation between them are expressed through the overall change in entropy in the system. This 

will allow you to evaluate the possibilities of influencing the system parameters. Suppose the 

dependencies, for example, of the average value of FPT on the total change in entropy, which may 

include control actions, are known. In that case, we can consider the possibilities of optimal 

control. In this article, some general regularities of such a process are obtained. 

The dependences of the FPT moments on the change in entropy are calculated for three 

models of the partition function calculated using expressions (29), (39) and (80). A close behavior 

of the dependences of the FPT moments for partition functions is obtained. For partition function 

(29), one should use not condition (58), but the condition of convergence of expression (29). 

Condition (58) can be considered as an approximation for estimates (29), if we assume that the 

results obtained from expressions (39) and (29) are close. 

The case of solutions of equations for the dependence of the parameter γ on the change in 

entropy, which corresponds to stationary nonequilibrium states, is also considered. In this case, 

zero and negative values of γ are not realized, there are only positive values of γ and the first and 

second moments of the distributions of activity and FPT corresponding to them. There is no phase 

transition, which occurs during the transition through the equilibrium state. 

Above, we noted the analogy between the thermodynamics of trajectories and the method 

of nonequilibrium statistical operator. Both theories take into account the history of the system. At 

the same time, there are differences. Thus, time averaging is carried out in various ways. In the 

thermodynamics of trajectories, the theory of large deviations is used, and in the NSO method, 

only the principle of maximum entropy is used. 

The results obtained are valid for simple classical two-level, three-level systems and 

quantum two-level system. For other systems, with other functions g(γ), the results may differ. 

However, such general results as, for example, the limitation of the negative parameter γ by the 

convergence of the Laplace transform of the distribution FPT, remain valid. 

There are also open questions. Thus, when considering model systems, various 

approximations of the form (29), (39), (80) were used. The question remains unclear: which 

approximation best describes the physical situation? What physical results correspond to 

distribution (29), as well as distribution (39)? 

What is done in the article:  

1). Using examples of classical two-level, three-level systems and quantum two-level 

system, it is shown how the states of these systems can be obtained by considering the behavior of 

the parameter  (or x) conjugate to random time τ. In this case, stationary nonequilibrium states 

and states in which equilibrium is achieved are distinguished.  

2). The dependences of the moments (average values, variances, correlations) of the 

considered random variables (dynamic activity and observation time of the system) on the total 

change in the entropy of the system stot are obtained. Using the results obtained, one can consider 

the possibilities of increasing or decreasing moments as stot increases. The value stot includes 
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the change in entropy through exchange with the environment sm. This quantity for the 

thermodynamics of trajectories is given in the form (42)-(45).  

3). This approach allows us to more closely connect the results of thermodynamics of 

trajectories with nonequilibrium thermodynamics, in particular with stochastic thermodynamics. 

The connection between representation (42)-(45) with thermodynamic forces and flows is given, 

for example, in [101-102], [112]. Similar problems, for example, connections with heat and work, 

are considered in [111]. Knowing the influence of sm on the behavior of the system, we can 

consider the impact of thermodynamic forces and flows on this behavior.  

4). The analogy drawn in the article between distributions of thermodynamics of 

trajectories containing parameters sK+τ with distributions of the form βu+τ (where β is the 

inverse temperature, u is the internal energy density) [52, 83-84] makes it possible to transfer the 

methods used in thermodynamics of trajectories - obtaining stationary thermodynamic 

characteristics of the system from its dynamics using LD approaches, etc. - on distributions with 

βu+τ. 
 

Appendix A. Non-zero values of the parameter  for the values of K and . 

 

Let us expand the value 
( )

( )
0, s

s g

s
s K K K

s







=


 = = = −


 (35) into a series in 

γ, limiting ourselves to the linear term. Below we will see that this is enough to determine the value 

of γ from subsequent expressions in the expansion taking into account the degree of γ2. To do this, 

consider the partition function (10), which includes the probability (7)-(8), and expand this 

probability ,P



 =  into a series in γ in the neighborhood of 

00
P P


  =

= , taking into 

account the expression obtained from (9)-(10). From expression (8), we obtain, restricting 

ourselves to the first term in γ, 
( / )( ) ,KP K e  



−=  
0

0
( / )( / )P P P

  
    

   
=

=
 +     , 

/ [ ( / )P P K
 

 
    = − ( / )( ( / ) / ( / ))],K K K      +   = . We believe 0 ,     = . 

We take the explicit form of the function φ for the two-level classical system from [5]: 

( ) 3[ ln( / ) ( )], 2 / 3 /b b b K     = − − =  = . The calculation carried out gives the result 

0 kK K B = − ,                                                         (A1) 

where 
0

2 2
2

3 1 3 1 2 2
6 / , / 2

2( )
k KB c D a c a a

 



+
= = − = . Taking into account that K  depends 

on γ, from expressions (19), (A1), we obtain by K= K , ln ( ) ( ),KZ K g =  

ln ( ) ( )
( )K

KZ g
g K



 

 
 

  

 
= − = − −

  
.                              (A2) 

For Δ<sm> and <> we get 0 00 0
[ ( ) / ( ) ( ) / ( )] ( ) /m k ks K g K B g B g

 
        

= =
 =   − −   +  

, and 
1 0( ) / [ / ] ( ) /mK g s s K g     = −   = −   +   . 

We obtain from (21), (31), (39)-(41),  

lnsys ss s p = = − ,                                                    (A3) 
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where ln ( ), ln ( )sZ s Z K g    = = . We will evaluate for 
0 0, K K  → → . 

Since at 0, ( ) 0, 0, ( ) 0s s g  = = = = , then 

0 00 0
ln 0ssys

s s s K Z
 = =

= = + = ,                                         (A4) 

0 ln ln 2 ( ) 2sys ss s s s K Z Z g K          = − = − − − − = − − .         (A5) 

Using the relation obtained in [96] from the general expression (45) of the theory of large 

deviations, ( ) /ms    = −   , assuming λ=0 (although arbitrary λ and the biased ensembles of 

trajectories are possible in [96]), from (47) (A1) we obtain  

21 2

0 1 0 1 22
01 2

2 ( )
[ ( ) ln(1 )]

1
m k k

a a
s K a K B B a a

a a 

  
  

  =

+ 
 = − + − − + +

+ +
.      (A6) 

 

Appendix B. Connection of parameter  with other system parameters 
 

Above, the parameter γ was associated with a change in the entropy of the system. In the 

general case, changes in entropy caused by the exchange of entropy with the environment should 

be taken into account, as was done, for example, in Section 4. In addition to the above expression 

for the parameter γ through a change in entropy, there are other possibilities for determining the 

parameter γ.  

In [52-53, 84] a distribution with random parameters of energy u and FPT Tγ is written. This 

distribution corresponds to expression (39) after replacing , ,s K u T → → →  (where β is the 

inverse temperature, u is the internal energy density) [52, 83-84]. It is important to note that these 

are different distributions. Although the parameter γ is conjugate to the random variable Tγ in both 

distributions, the second pair of variables βu differs from the pair sK in distribution (39). Equating 

these distributions corresponds to s=β, although this is just an analogy. For the distribution with 

βu, expressions (21), which are valid for distribution (39) and connecting the parameters γ and s, 

are not satisfied (apparently, it is possible to obtain analogues of these expressions). Therefore, 

below is given the physical meaning of the parameter  for a distribution different from (39), not 

for the case of thermodynamics of trajectories, apparently, this is also only an analogy of the 

physical meaning of the parameter  from distribution (39). 

From distribution with βu, expressions for the internal entropy sγ and the differential of this 

quantity are obtained: 

),(ln,;(ln   ZTuTuzs ++=−= ; 
  Tdudds += .              (B1) 

From (B1) we obtain (T is temperature, β~1/T) 

1 1
( )

Tu s s

s u u u

s TT T T
 



  

 −
   

= = − = −
  

,     
T

s

u






=


,                    (B2) 

Since 
1,

,
0,

t T t T

t T
T t

t T 







  


 = −  = 



, then from (B2) we obtain that  

1
t T

s

u

T t 



  


=


. 

The expressions for γ and β are symmetrical. It is possible to further transform expression (B2). 

Let us carry out the same operations for a distribution of the form (39), [90] 
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( , ) / , ( , )sK sK

s s s K
p K e Z Z d e K 

     − − − −= =  ,                       (B3) 

where, as in [85-86], the probability P(K,) is denoted by (K, ). The Gibbs-Shannon entropy is 

written similarly to (B1) as 

ln ( , ) ln ,s ss p K s K Z ds sd K d       = − = + + = + .              (B4) 

From (B4) we obtain 
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.                                (B5) 

We write the quantity
s

K








 from (B5) in the form /

s K

s sK
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= −

  
.  

Substituting these quantities into (B5), we obtain from (B4) 

/

/

K

Ks

K K D
s s

s K D







 −
= − =

 −
.                                            (B6) 

where DK is dispersion of K (32), DK is a correlation between the parameters K and  (34). 

Haven't used LD yet. If we use LD, then for a two-level system in (B6) it will be possible 

to substitute expressions (60)-(62) and obtain an equation for the parameter , expressed through 

the parameters η and  , through the parameter s, which is also expressed through  by expressions 

(21), and the value of K, which is assumed to be equal to the average value of K0 in accordance 

with (30). 

There are other possibilities for determining the physical meaning of the parameter . Including 

for the situation when this parameter is related to the parameter s by relations (21). Although the 

s-field is not necessarily physically tunable, the singular features of the generating functions 

influence the shape of the overall distribution. The large deviation function behaves like a free 

energy function, where s plays the role of the inverse temperature. The time-extensive order 

parameter K is in the count of transitions between (coarse-grained) configurations, and s is a 

“counting” field. Activity K and counting field s are the extensive observable and its intensive 

conjugate field. Various aspects of the physical interpretation (critical values of the counting field 

s, the motion of the zeros of the moments generation function, etc.) of the parameter s are 

considered, for example in [106-114]. 

The topic of physical interpretation of the parameter s (and parameter ) is also touched upon 

in a number of other articles. This interpretation is ambiguous, depending on the physical system, 

the situation under consideration, the model used and other circumstances. Apparently, there is no 

universal physical meaning of the parameter s that is valid for all cases. 
 

References  
 

1. R. L. Jack, J. P. Garrahan, and D. Chandler, Space-time thermodynamics and subsystem 

observables in a kinetically constrained model of glassy materials, J. Chem. Phys., 125 (18), 

184509, (2006).  

2. J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and F. van Wijland, 

First-order dynamical phase transition in models of glasses: An approach based on 



28 
 

ensembles of histories, Journal of Physics A: Mathematical and Theoretical, 42 (7), 075007, 

(2009).  

3. L. O. Hedges, R. L. Jack, J. P. Garrahan, and D. Chandler, Dynamic order-disorder in 

atomistic models of structural glass formers, Science, 323(5919):1309-13. doi: 

10.1126/science.1166665, (2009). 

4. Y. S. Elmatad, R. L. Jack, D. Chandler, and J. P. Garrahan, Finite-temperature critical point of 

a glass transition. Proc. Natl. Acad. Sci., Proceedings of the National Academy of Sciences, 

107 (29), 12793-12798, (2010). 

5. J. P. Garrahan, Aspects of non-equilibrium in classical and quantum systems: Slow relaxation 

and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum 

dynamics, Physica A, 504:130-154, (2018). 

6. R. L. Jack, Ergodicity and large deviations in physical systems with stochastic dynamics, Eur. 

Phys. J. B, 93(4):74, (2020). 

7. M. Merolle, J. P. Garrahan, and D. Chandler, Space-time thermodynamics of the glass 

transition, Proc. Natl. Acad. Sci. USA, 102(31):10837, (2005). 

8. V. Lecomte, C. Appert-Rolland, and F. van Wijland, Thermodynamic formalism for systems 

with markov dynamics, J. Stat. Phys., 127(1):51, (2007). 

9. J. Kiukas and M. Gutӑ, I. Lesanovsky and J. P. Garrahan, Equivalence of matrix product 

ensembles of trajectories in open quantum systems, Physical Review E, 92(1), 2015, 

DOI:10.1103/PhysRevE.92.012132 (2015). 

10. J. L. Lebowitz and H. Spohn, A Gallavotti–Cohen-Type Symmetry in the Large Deviation 

Functional for Stochastic Dynamics, J. Stat. Phys. 95, 333-365 (1999).  

11. V. Lecomte and J. Tailleur, A numerical approach to large deviations in continuous time, J. 

Stat. Mech, P03004 (2007).  

12. J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk and F. van Wijland, 

Dynamic first-order phase transition in kinetically constrained models of glasses, Phys. Rev. 

Lett. 98, 195702 (2007).  

13. A. Baule and R. M. L. Evans, Invariant Quantities in Shear Flow, Phys. Rev. Lett. 101, 

240601 (2008).  

14. R. L. Jack and J. P. Garrahan, Metastable states and space-time phase transitions in a spin-

glass model, Phys. Rev. E 81, 011111 (2010).  

15. C. Giardina, J. Kurchan, V. Lecomte and J. Tailleur, Simulating Rare Events in Dynamical 

Processes, J. Stat. Phys. 145, 787 (2011).  

16. E. Pitard, V. Lecomte and F. V. Wijland, Dynamic transition in an atomic glass former: a 

molecular dynamics evidence, Europhys. Lett. 96, 56002 (2011).  

17. C. Flindt and J. P. Garrahan, Trajectory Phase Transitions, Lee-Yang Zeros, and High-Order 

Cumulants in Full Counting Statistics, Phys. Rev. Lett. 110, 050601 (2013).  

18. R. Chetrite and H. Touchette, Nonequilibrium microcanonical and canonical ensembles and 

their equivalence, Phys. Rev. Lett. 111, 120601 (2013).  

19. V. Chikkadi, D. Miedema, B. Nienhuis and P. Schall, Shear banding of colloidal glasses - a 

dynamic first order transition? arXiv:1401.2100, (2014). 

20. T. Nemoto and S. Sasa, Computation of large deviation statistics via iterative measurement-

and-feedback procedure, Phys. Rev. Lett. 112, 090602 (2014).  

21. A. A. Budini, Large deviations of ergodic counting processes: A statistical mechanics 

approach, Phys. Rev. E 84, 011141 (2011).  

https://www.researchgate.net/journal/Physical-Review-E-1550-2376
http://dx.doi.org/10.1103/PhysRevE.92.012132
https://iopscience.iop.org/article/10.1088/1742-5468/2007/03/P03004
https://www.researchgate.net/publication/23710819_Invariant_Quantities_in_Shear_Flow
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.011141
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.011141


29 
 

22. M. Esposito, U. Harbola and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, 

and counting statistics in quantum systems, Rev. Mod. Phys. 81, 1665 (2009).  

23. J. P. Garrahan and I. Lesanovsky, Thermodynamics of Quantum Jump Trajectories, Phys. 

Rev. Lett. 104, 160601 (2010).  

24. J. Li, Y. Liu, J. Ping, S.-S. Li, X.-Q. Li and Y. Yan, Large-deviation analysis for counting 

statistics in mesoscopic transport, Phys. Rev. B 84, 115319 (2011).  

25. D. A. Ivanov and A. G. Abanov, Characterizing correlations with full counting statistics: 

Classical Ising and quantum XY spin chains, Phys. Rev. E 87, 022114 (2013).  

26. A. Gambassi and A. Silva, Large Deviations and Universality in Quantum Quenches, Phys. 

Rev. Lett. 109, 250602 (2012). 

27. D. Ruelle, Thermodynamic formalism (Cambridge University Press, 2004).  

28. H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478, 1 

(2009). 

29. Y. S. Elmatad and A. S. Keys, Manifestations of dynamical facilitation in glassy materials, 

Phys. Rev. E 85, 061502 (2012).  

30. T. Speck and D. Chandler, Constrained dynamics of localized excitations causes a non-

equilibrium phase transition in an atomistic model of glass formers, J. Chem. Phys. 136, 

184509 (2012).  

31. T. Speck, A. Malins and C. P. Royall, First-Order Phase Transition in a Model Glass Former: 

Coupling of Local Structure and Dynamics, Phys. Rev. Lett. 109, 195703 (2012). 

32. A. Budini, R. M. Turner, and J. P. Garrahan, Fluctuating observation time ensembles in the 

thermodynamics of trajectories, Journal of Statistical Mechanics: Theory and Experiment, 

2014 (3), P03012 (2014). 

33. J. P. Garrahan, Simple bounds on fluctuations and uncertainty relations for first-passage 

times of counting observables. Phys. Rev. E, 95, 032134 (2017).  

34. G. Bakewell-Smith, F. Girotti, M. Guţă, J. P. Garrahan, General Upper Bounds on 

Fluctuations of Trajectory Observables, Physical Review Letters, 131 (19), 197101 (2023). 

35. T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England, Dissipation Bounds All 

Steady-State Current Fluctuations, Phys. Rev. Lett. 116, 120601 (2016). 

36. P. Pietzonka, A. C. Barato, and U. Seifert, Universal bounds on current fluctuations, Phys. 

Rev. E, 93, 052145 (2016). 

37. P. Pietzonka, A. C. Barato, and U. Seifert, Affinity- and topology-dependent bound on 

current fluctuations, J. Phys. A 49, 34LT01 (2016). 

38. T. R. Gingrich, G. M. Rotskoff, and J. M. Horowitz, arXiv:1609.07131 (2016). 

39. A. C. Barato and U. Seifert, Thermodynamic Uncertainty Relation for Biomolecular 

Processes, Phys. Rev. Lett. 114, 158101 (2015). 

40. A. C. Barato and U. Seifert, Universal Bound on the Fano Factor in Enzyme Kinetics, J. 

Phys. Chem. B, 119, 6555 (2015). 

41. M. Polettini, A. Lazarescu, and M. Esposito, Tightening the uncertainty principle for 

stochastic currents, Phys. Rev. E, 94, 052104 (2016). 

42. C. Maes and K. Netocny, Canonical structure of dynamical fluctuations in mesoscopic 

nonequilibrium steady states, Europhys. Lett. 82, 30003 (2008). 

43. C. Maes, K. Netocny, and B. Wynants, Steady state statistics of driven diffusions, Physica A, 

387, 2675 (2008). 

44. U. Basu, M. Krüger, A. Lazarescu, and C. Maes, Frenetic aspects of second order response, 

Phys. Chem. Chem. Phys. 17, 6653 (2015). 

https://scholar.google.com/citations?view_op=view_citation&hl=ru&user=mnxEodcAAAAJ&cstart=200&pagesize=100&citation_for_view=mnxEodcAAAAJ:DBa1UEJaJKAC
https://scholar.google.com/citations?view_op=view_citation&hl=ru&user=mnxEodcAAAAJ&cstart=200&pagesize=100&citation_for_view=mnxEodcAAAAJ:DBa1UEJaJKAC


30 
 

45. S. Redner, A Guide to First-Passage Processes, (Cambridge University Press, Cambridge, 

UK, 2001). 

46. R. Metzler, G. Oshanin and S. Redner (ed), First-Passage Phenomena and Their 

Applications, Singapore: World Scientific, 2014, 608 p. 

47. J. Masoliver, Random Processes: First-Passage and Escape, Singapore: World Scientific, 

2018, 388 р.  

48. V. I. Tikhonov, M. A. Mironov, Markov processes, Moskow, Soviet Radio, 1977 (in 

Russian). 

49. C. W. Gardiner, Handbook of Stochastic Methods (2-nd edition), Springer, Berlin, 1990. 

50. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, 

Amsterdam, 1992. 

51. R. L. Stratonovich, The elected questions of the fluctuations theory in a radio engineering, 

Gordon and Breach, New York, 1967. 

52. V. V. Ryazanov, S. G. Shpyrko, First-passage time: a conception leading to superstatistics. 

Condensed Matter Physics, 9, 1(45), 71-80 (2006). 

53. V. V. Ryazanov, First-passage time: a conception leading to superstatistics. I. Superstatistics 

with discrete distributions. Preprint: physics/0509098, (2005).  

 V. V. Ryazanov, First-passage time: a conception leading to superstatistics. II. Continuous 

distributions and their applications. Preprint: physics/0509099, (2005). 

54. J-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: statistical 

mechanisms, models and physical applications, Phys. Rep. 195, 127–293 (1990). 

55. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional 

dynamics approach. Phys. Rep. 339, 1–77 (2000). 

56. S B. Yuste, G. Oshanin, K. Lindenberg, O. Bénichou and J. Klafter, Survival probability of a 

particle in a sea of mobile traps: a tale of tails. Phys. Rev. E 78, 021105 (2008). 

57. É. Roldán, I. Neri, M. Dörpinghaus, H. Meyer, and F. Jülicher, Decision Making in the 

Arrow of Time. Phys. Rev. Lett., 115, 250602 (2015). 

58. K. Saito and A. Dhar, Waiting for rare entropic fluctuations. Europhys. Lett. 114, 50004 

(2016).  

59. K. Ptaszynski, First-passage times in renewal and nonrenewal systems. Phys. Rev. E, 97, 

012127 (2018).  

60. I. Neri, É. Roldán, and F. Jülicher, Statistics of Infima and Stopping Times of Entropy 

Production and Applications to Active Molecular Processes. Phys. Rev. X, 7, 011019 (2017).  

61. T. R. Gingrich and J. M. Horowitz, Fundamental Bounds on First Passage Time Fluctuations 

for Currents. Phys. Rev. Lett., 119, 170601 (2017).  

62. P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: fifty years after Kramers. Rev. 

Mod. Phys., 62, 251-341 (1990). 

63. A. Longtin, A. Bulsara, and F. Moss, Time-interval sequences in bistable systems and the 

noise-induced transmission of information by sensory neurons. Phys. Rev. Lett. 67, 656-659 

(1991).  

64. H. C. Tuckwell, Introduction to Theoretical Neurobiology, v. 2, Cambridge University Press, 

Cambridge UK, 1988.  

65. A. Molini, P. Talkner, G. G. Katul, A. Porporato, First passage time statistics of Brownian 

motion with purely time dependent drift and diffusion, Physica A, 390, 1841–1852 (2011). 

66. F. Bouchet and J. Reygner, Generalisation of the Eyring–Kramers Transition Rate Formula to 

Irreversible Diffusion Processes, Ann. Henri Poincar´e, 17, 3499–3532, (2016). 

https://www.google.com.ua/search?tbo=p&tbm=bks&q=inauthor:%22Masoliver+Jaume%22
http://www.newlibrary.ru/author/gardiner_k_v_.html
javascript:void(0)
javascript:void(0)
https://www.google.com.ua/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjQieCPjc_rAhXElosKHWqIA04QFjAAegQIAxAB&url=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.115.250602&usg=AOvVaw1wFWCzdKG6E_Plih4XjesZ
https://www.google.com.ua/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjQieCPjc_rAhXElosKHWqIA04QFjAAegQIAxAB&url=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.115.250602&usg=AOvVaw1wFWCzdKG6E_Plih4XjesZ


31 
 

67. R. S. Maier and D. L. Stein, Limiting exit location distributions in the stochastic exit problem, 

SIAM Journal on Applied Mathematics, 57, No. 3, 752-790 (1997). 

68. J. Masoliver and J. Perellȯ, First-passage and escape problems in the Feller process, Physical 

review E, 86, 041116 (2012).  

69. M. V. Day, Recent progress on the small parameter exit problem, Stochastics, 20, 121–150 

(1987). 

70. D. Hartich and A. Godec, Duality between relaxation and first passage in reversible Markov 

dynamics: rugged energy landscapes disentangled, New J. Phys, 20, 112002 (2018). 

71. D. Hartich and A. Godec, Interlacing relaxation and first-passage phenomena in reversible 

discrete and continuous space Markovian dynamics, Journal of Statistical Mechanics: Theory 

and Experiment, 2019 (2), 024002 (2019).  

72. A. Godec and R. Metzler, Universal proximity effect in target search kinetics in the few-

encounter limit, Phys. Rev. X, 6, 041037, (2016). 

73. S. D. Lawley, Universal formula for extreme first passage statistics of diffusion, Phys. Rev. E 

101, 012413, (2020). 

74. S. D. Lawley, Distribution of extreme first passage times of diffusion, J Math Biol. 80 (7): 

2301-2325 (2020). 

75. J. B. Madrid and S. D. Lawley, Competition between slow and fast regimes for extreme first 

passage times of diffusion, Journal of Physics A: Mathematical and Theoretical, 53, Number 

33, 500243 (2020). 

76. S. D. Lawley, J. B. Madrid, First passage time distribution of multiple impatient particles with 

reversible binding, The Journal of Chemical Physics, 150 (21), 214113 (2019).  

77. D. Hartich, A. Godec, Extreme value statistics of ergodic Markov processes from first passage 

times in the large deviation limit, J. Phys. A: Math. Theor. 52, 244001 (2019). 

78. D. S. Grebenkov et al, New Trends in First-Passage Methods and Applications in the Life 

Sciences and Engineering, J. Phys. A: Math. Theor. 53, 190301 (2020). 

79.  K. R. Ghusingaa, J. J. Dennehyb, and A. Singh, First-passage time approach to controlling 

noise in the timing of intracellular events, Proceedings of the National Academy of Sciences 

of the United States of America, PNAS, 114, 693-698 (2017). 

80.  B. Lindner, Moments of the First Passage Time under External Driving, Journal of 

Statistical Physics, 117, No. 3/4, (2004). 

81.  A. Godec, R. Metzler, First passage time distribution in heterogenity controlled kinetics: 

going beyond the mean first passage time, Scientific Reports, 6, 20349 (2016). 

82. D. S. Grebenkov, First exit times of harmonically trapped particles: a didactic review, Journal 

of Physics A: Mathematical and Theoretical, 48, 013001 (2014). 

83. V. V. Ryazanov, Lifetime distributions in the methods of non-equilibrium statistical operator 

and superstatistics, European Physical Journal B, 72, 629–639, (2009). 

84. V. V. Ryazanov, First passage time and change of entropy, Eur. Phys. J. B, 94, 242 (2021). 

https://doi.org/10.1140/epjb/s10051-021-00246-0. 

85. V. V. Ryazanov, Influence of entropy changes on reactor period, 

http://arxiv.org/abs/2202.13349 (2022). 

86. V. V. Ryazanov, Investigation of radiation-enhanced diffusion using first-passage time, 

Radiation Physics and Chemistry, Volume 203, Part A, February 2023, 110608, 

http://arxiv.org/abs/2203.06449 (2023). 

https://booksc.xyz/book/73593345/56f9a5
https://booksc.xyz/book/73593345/56f9a5
https://iopscience.iop.org/article/10.1088/1751-8121/ab96ed
https://iopscience.iop.org/article/10.1088/1751-8121/ab96ed
https://iopscience.iop.org/journal/1751-8121
https://iopscience.iop.org/volume/1751-8121/53
https://iopscience.iop.org/issue/1751-8121/53/33
https://iopscience.iop.org/issue/1751-8121/53/33
javascript:void(0)
javascript:void(0)
https://arxiv.org/search/cond-mat?searchtype=author&query=Hartich%2C+D
https://arxiv.org/search/cond-mat?searchtype=author&query=Godec%2C+A
https://iopscience.iop.org/journal/1751-8121/page/New-trends-in-first-passage-methods
https://iopscience.iop.org/journal/1751-8121/page/New-trends-in-first-passage-methods
http://google.com/search?btnI=I%27m+Feeling+Lucky&ie=UTF-8&oe=UTF-8&q=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20of%20the%20United%20States%20of%20America
http://google.com/search?btnI=I%27m+Feeling+Lucky&ie=UTF-8&oe=UTF-8&q=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20of%20the%20United%20States%20of%20America
javascript:;
javascript:;
https://www.nature.com/srep
https://doi.org/10.1140/epjb/s10051-021-00246-0
http://arxiv.org/abs/2202.13349
https://www.sciencedirect.com/science/article/abs/pii/S0969806X22006715?dgcid=author#!
https://www.sciencedirect.com/journal/radiation-physics-and-chemistry
https://www.sciencedirect.com/journal/radiation-physics-and-chemistry/vol/203/part/PA
http://arxiv.org/abs/2203.06449


32 
 

87. Y. Guryanova, S. Popescu, A. Short, et al. Thermodynamics of quantum systems with 

multiple conserved quantities. Nat Commun 7, 12049 (2016). 

https://doi.org/10.1038/ncomms12049. 

88. R. Gutiérrez and C. Pérez-Espigares, Generalized optimal paths and weight distributions 

revealed through the large deviations of random walks on networks, Phys. Rev. E, 103, 

022319, (2021). 

89. D. N. Zubarev, Non-equilibrium statistical thermodynamics, Plenum-Consultants Bureau, 

New York, USA, 1974. 

90. D. N. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Non-equilibrium 

Processes: Basic Concepts, Kinetic Theory, Akademie-Wiley VCH, Berlin, Germany, Vol. 1, 

1996.  

91. D. N. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Non-equilibrium 

Processes: Relaxation and Hydrodynamic Processes, Akademie-Wiley VCH, Berlin, 

Germany, Vol. 2, 1997. 

92. V. V. Ryazanov, Lifetime of system and non-equilibrium statistical operator method. 

Fortschritte der Phusik/Progress of Physics, 49, 885–893 (2001). 

93.  V. V. Ryazanov, First-passage time of a given level and value of overjump for fluctuations 

of trajectory observables, http://arxiv.org/abs/2306.14664. 

94. Shin-ichi Sasa, Possible extended forms of thermodynamic entropy, J. Stat. Mech. (2014) 

P01004. 

95.  R. Marsland and J. England, Limits of Predictions in Thermodynamic Systems: a Review, 

Reports on Progress in Physics, 81, 1 (2017): 016601.  

96. J. Schnakenberg. Network theory of microscopic and macroscopic behavior of master 

equation systems. Rev. Mod. Phys., 48:571, (1976). 

97. T Speck, J. P. Garrahan, Space-time Phase Transitions in Driven Kinetically Constrained 

Lattice Models, The European Physical Journal B, 79, 1-6, (2011). 

98. K. Yoshimura, A. Kolchinsky, A. Dechant, and S. Ito, Housekeeping and excess entropy 

production for general nonlinear dynamics, Physical Review Research, 5, 013017 (2023). 

99. T. Matsuo and A. Sonoda, Analysis of entropy production in finitely slow processes between 

nonequilibrium steady states, Phys. Rev. E, 106, 064119, (2022). 

100. J. P Garrahan, Classical stochastic dynamics and continuous matrix product states: gauge 

transformations, conditioned and driven processes, and equivalence of trajectory ensembles, 

J. Stat. Mech. (2016) 073208, DOI 10.1088/1742-5468/2016/07/073208 

101. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, 

Reports on progress in physics, 75 (12), 126001 (2012). 

102. U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation 

theorem, Physical review letters, 95 (4), 040602 (2005). 

103. C. Van den Broeck and M. Esposito, Ensemble and trajectory thermodynamics: A brief 

introduction, Physica (Amsterdam), 418A, 6 (2015). 

104. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Second ed.), New 

York: Interscience, 1961. OCLC 219682909. 

105. V. V. Ryazanov, Comparison of extended irreversible thermodynamics and 

nonequilibrium statistical operator method with thermodynamics based on a distribution 

containing the first-passage time, Arxiv:2210.07734 (2022). 

106. J. M. Hickey, C. Flindt, and J. P. Garrahan, Intermittency and dynamical Lee-Yang zeros 

of open quantum systems, Phys. Rev. E, 90, 062128, (2014). 

https://doi.org/10.1038/ncomms12049
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MT2dIvYAAAAJ&citation_for_view=MT2dIvYAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MT2dIvYAAAAJ&citation_for_view=MT2dIvYAAAAJ:d1gkVwhDpl0C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MT2dIvYAAAAJ&citation_for_view=MT2dIvYAAAAJ:d1gkVwhDpl0C
https://archive.org/details/introductiontoth0000prig
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/219682909


33 
 

107. A. Geißler and J. P. Garrahan, Slow dynamics and nonergodicity of the bosonic quantum 

East model in the semiclassical limit, Physical Review E, 108, 034207 (2023). 

108. G. Biroli and J. P. Garrahan, Perspective: The glass transition, J. of Chemical Physics, 138, 

12A301 (2013). 

109. V. Lecomte, C. Appert-Rolland, F. Van Wijland, Thermodynamic formalism and large 

deviation functions in continuous time Markov dynamics, Journal of statistical physics, 127, 

51-106, (2007). 

110. J. M. Hickey, S. Genway, I. Lesanovsky, and J. P. Garrahan. Time-integrated observables 

as order parameters for full counting statistics transitions in closed quantum systems, Physical 

Review B, 87:184303, (2013). 

111. J. M. Hickey, Thermodynamic approach to Generating functions and Nonequilibrium 

Dynamics, MSci. Thesis, University of Nottingham, 2014. 

112. K. Van Duijvendijk, R. L. Jack, F. Van Wijland, Second-order dynamic transition in a p=2 

spin-glass model, Physical Review E, (2010), 81 (1), pp.011110. 

ff10.1103/PhysRevE.81.011110ff. 

113. R. M. Turner, T. Speck, J. P. Garrahan, Meta-work and the analogous Jarzynski relation in 

ensembles of dynamical trajectories, Journal of Statistical Mechanics: Theory and Experiment, 

2014 (9), P09017, (2014). 

114. R. Bao and Z. Hou, Universal Trade-off Between Irreversibility and Relaxation Timescale, 

arXiv:2303.06428. 
 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=mnxEodcAAAAJ&cstart=200&pagesize=100&citation_for_view=mnxEodcAAAAJ:BrmTIyaxlBUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=mnxEodcAAAAJ&cstart=200&pagesize=100&citation_for_view=mnxEodcAAAAJ:BrmTIyaxlBUC

