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Phonon anharmonicity plays a crucial role in determining the stability and vibrational proper-
ties of high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle
picture obsolete questioning standard approaches for modeling superconductivity in these material
systems. In this work, we show the effects of non-Lorentzian phonon lineshapes on the supercon-
ductivity of high-pressure solid hydrogen. We calculate the superconducting critical temperature
TC ab initio considering the full phonon spectral function and show that it overall enhances the TC

estimate. The anharmonicity-induced phonon softening exhibited in spectral functions increases the
estimate of the critical temperature, while the broadening of phonon lines due to phonon-phonon
interaction decreases it. Our calculations also reveal that superconductivity emerges in hydrogen
in the Cmca − 12 molecular phase VI at pressures between 450 and 500 GPa and explain the
disagreement between the previous theoretical results and experiments.

Introduction.
Solid atomic hydrogen was postulated to be a high-
temperature superconductor at high pressures by
Ashcroft in 1968 [1]. Later this idea has been revised and
hydrogen-rich compounds have been hypothesized to be
high-temperature superconductors at pressures that are
only a fraction of the one needed to get atomic hydro-
gen [2, 3]. The first experimental verification of that idea
came in 2015 when H3S was shown to have a transition
temperature of 203 K at 155 GPa [4]. This has been fol-
lowed up by numerous experiments on different hydrogen
compounds, many of them exhibiting high-temperature
superconductivity [5–11], verifying without a reasonable
doubt the existence of superconductivity in hydrides at
high pressures [12].

The discovery of high-temperature superconductivity
renewed the interest in synthesizing atomic metallic hy-
drogen, which is expected to superconduct above room
temperature [13–16]. Recently, a work reported atomic
metallic hydrogen at 495 GPa on the basis of enhanced
optical reflectivity [17]. While this finding was ques-
tioned [18] due to a probable overestimation of the mea-
sured pressure, there is an abundant amount of proof
of finite electrical conductivity of solid hydrogen in the
molecular phase [19, 20]. None of these works, however,
observed the transition to the superconducting phase up
to 440 GPa [21]. Many first-principles calculations pre-
dict the onset of superconductivity in solid hydrogen at
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significantly lower pressures [22–24]. The disagreement
with experiments in this case is surprising in light of the
success of the first-principles approach to superconduc-
tivity in other high-pressure hydrides [3, 25, 26].

A better understanding of the high-pressure solid hy-
drogen phase diagram was provided by recent first-
principles calculations considering both electronic corre-
lations beyond density functional theory (DFT) and nu-
clear quantum effects [27–29]. Monacelli et al. show that
at pressures lower than 422 GPa hydrogen crystallizes in
the C2/c− 24 phase, with 24 atoms in the primitive unit
cell (phase III of solid hydrogen). In a pressure range
between 422 and 577 GPa hydrogen transforms to the
Cmca − 12 phase, with 12 atoms per unit cell (phase
VI). The value of 422 GPa agrees very well with the ex-
perimental transition pressures detected by infrared at
420 GPa [20] and by Raman at 440 GPa [19]. Finally, at
pressures higher than 577 GPa, hydrogen transforms into
atomic hydrogen with a tetragonal I41/amd−2 structure,
containing two atoms per primitive unit cell.

One of the key reasons why studies in Refs. [27, 28]
were able to successfully model the phase diagram of
solid hydrogen was the inclusion of quantum anharmonic
effects. The phonon renormalization due to anharmonic-
ity can significantly alter superconductivity, as shown
in Refs. [22, 23, 26, 30, 31]. However, these studies
have not explored the anharmonicity-induced dynami-
cal renormalization of phonons and its impact on su-
perconductivity. Some studies have highlighted the im-
portance of these effects on superconductivity utilizing
simple single phonon mode toy models [32, 33]. On the
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other hand, dynamical renormalization of phonons due to
electron-phonon coupling has been shown to have little
impact on the critical temperature [34] of conventional
superconductors. However, the dynamical effects due
to phonon-phonon interaction should be much stronger
in high-pressure hydrides, and thus a full first principle
study of these effects is necessary.

Here we present a first-principles study of the su-
perconducting properties of solid hydrogen in its high-
pressure phases from 300 to 600 GPa by accounting for
quantum anharmonic effects both on the phonons and
the structure with the stochastic self-consistent harmonic
approximation (SSCHA) at zero Kelvin including the dy-
namical renormalization of phonon quasiparticles [35].
We find that the SSCHA appreciably changes the struc-
ture of solid hydrogen in all phases, which leads to an
increased density of states (DOS) at the Fermi level and
an overall phonon softening. These two effects combine
to increase the electron-phonon coupling constants and
superconducting transition temperatures in the SSCHA
structures, at odds with previous calculations that ne-
glect the impact of ionic quantum effects on the struc-
ture [22, 23]. We also show that the phonon spectral
functions of all these phases have a complex and broad
shape, clearly deviating from a simple Lorentzian, ques-
tioning the standard approximation made in the electron-
phonon calculations in which the spectral function is
represented with a Dirac delta function. By consider-
ing the full phonon spectral function, we show that the
critical temperature (TC) of both molecular and atomic
phases is considerably enhanced. Our calculations pre-
dict the onset of superconductivity in solid hydrogen in
the semimetallic molecular phase VI at pressures between
450 and 500 GPa, which is consistent with recent exper-
iments [19].
Results and discussion.
Quantum anharmonic effects have a large impact on the
structures in the phase diagram as shown in Fig. 1 (solid
lines), compared to the structures that are minima of
the Born-Oppenheimer energy surface (BOES) (dashed
lines). There is a discontinuity in volume at the phase
transition between molecular and atomic phases, not ev-
ident for the transition between molecular phases III and
VI. This discontinuity is partly suppressed in the quan-
tum anharmonic SSCHA structures. The SSCHA ex-
pands the structure slightly for all phases, most promi-
nently for the atomic phase, increasing bond lengths and
the c/a ratio at all pressures, as it has been already cal-
culated in other high-pressure hydrides [24, 36]. Impor-
tantly, SSCHA changes the qualitative behavior of bond
lengths in molecular phases: while in SSCHA the bond
length increases with pressure, in the classical harmonic
approximation, in which it is determined by the mini-
mum of the BOES, it stays relatively constant [27].

These changes have a significant effect on the electronic
and vibrational properties of solid hydrogen (see Figs. 1
and 2). The most prominent impact is the increase
of the DOS at the Fermi level in the quantum anhar-
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FIG. 1. a Volume of the primitive unit cell per hydrogen
atom, b length of the hydrogen-hydrogen bond, c the elec-
tronic DOS at the Fermi level per hydrogen atom, and d
the average phonon frequency in high-pressure solid hydro-
gen. Solid lines represent data obtained for structures re-
laxed within SSCHA considering quantum anharmonic effects
and dashed lines are for the structures that are minima of
the Born-Oppenheimer energy surface. The color background
shows a phase diagram of the solid hydrogen from Ref. [28]
and the color of the lines indicates for which phase calcula-
tions were performed.

monic SSCHA structures. In the molecular phase VI,
decreasing volume leads to an increase in the DOS, but
with a considerably higher slope for the SSCHA struc-
tures than for the harmonic ones. This behavior shows
that quantum anharmonic effects tend to increase the
DOS at the Fermi level, as already described in several
hydrides [24, 25]. Molecular phase III is only weakly
semimetallic up to 450 GPa and will not be discussed
further on, as, thus, it cannot superconduct as suggested
by the latest transport experimental results [19]. Closing
of the fundamental band gap in our DFT calculations
occurs above 400 GPa, which is slightly overestimated
compared to calculations that include both better ap-
proximation for the exchange-correlation functional and
the effect of the electron-phonon coupling [27, 29, 37].
The effects of the electron-phonon coupling (which is the
main driver of the band gap closure) will be somewhat
included in our superconductivity calculations through
the self-consistent solution of Eliashberg equations.

In addition to the structure modified by quantum nu-
clear effects, the SSCHA method allows us to obtain
auxiliary second-order force constants renormalized by
anharmonicity. Quantum anharmonicity softens phonon
frequencies as a consequence of the stretching of the H
bonds (see Fig. 1). This is at odds with recent calcu-
lations [22, 23], in which the frequencies of the phonon



3

0 1000 2000 3000 4000 5000
0.0

5.0

10.0

15.0

20.0 b Phonon
Vibron

0 1000 2000 3000 4000 5000
Frequency (cm 1)

0.0

10.0

20.0

30.0 a Eg ×  1/10

B1g

Ph
o
n
o
n
 s

p
ec

tr
al

 f
u
n
ct

io
n
 (

m
)

FIG. 2. Phonon spectral functions in the no mode mixing
approximation in mode basis, σµ(q, ω), of two representative
optical phonon modes at Γ of solid hydrogen in a molecular
Cmca − 12 phase VI at 500 GPa, and b atomic tetragonal
I41/amd−2 phase at 500 GPa. In figure b we scaled the val-
ues of the Eg mode in order to make the figures clearer. Thick
dashed vertical lines represent the corresponding frequencies
obtained from the auxiliary SSCHA force constants, while
dotted lines represent the corresponding free energy Hessian
frequency.

modes excluding the vibrons increase due to anharmonic-
ity. The difference is that, in the latter case, the effect of
the quantum zero-point fluctuations on the structure was
neglected, which our calculations show to be important.
Additionally, in the self-consistent harmonic approxima-
tion of Ref. [23] a truncated potential is used (to the
fourth order), which gives slightly different results com-
pared to the SSCHA method where all anharmonic orders
are included in the calculation of the auxiliary force con-
stants. Both the increase of the DOS at the Fermi level
and the phonon softening are beneficial for superconduc-
tivity since the electron-phonon coupling constant scales
inversely with phonon frequencies and linearly with the
DOS at the Fermi level.

Beyond the renormalization of structural parameters
and phonon frequencies, anharmonicity has a huge im-
pact on the phonon spectral function (see Supplemen-
tary Material for more details [35]). The spectral func-
tion of all phases shows further softening with respect to
the auxiliary SSCHA phonon frequencies, especially for
high-frequency optical modes. This softening can be also
captured with the calculation of the free energy Hessian.
Specifically, in the static limit, the peaks of the phonon
spectral function coincide with the frequencies obtained
diagonalizing the free energy Hessian. However, Fig. 2
clearly demonstrates the range of applicability of the free
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FIG. 3. Eliashberg spectral function α2F (ω) and integrated
electron-phonon coupling constant λ(ω) of solid hydrogen in
a molecular Cmca − 12 phase VI at 500 GPa, and b atomic
tetragonal I41/amd − 2 phase at 500 GPa. The "Gaussian-
Harmonic" label refers to results calculated with harmonic
phonons of the DFT structures in the Gaussian approximation
for the phonon spectral function. "Gaussian-Hessian" refers
to results calculated with phonons from free energy Hessian
calculated for SSCHA structures in the Gaussian approxima-
tion for phonon spectral function. Finally, "Full" results were
obtained for SSCHA structures with the α2F calculated with
the full phonon spectral function matrix.

energy Hessian for describing vibrational properties. It
is a good approximation in the vicinity of the vanishing
imaginary self-energy, that is when auxiliary SSCHA fre-
quency is close to 0, or when there is no large broadening
of the phonon spectral line.

In addition to the aforementioned softening, we pre-
dict a huge broadening of the phonon spectral functions
of the order of thousands of cm−1 even at vanishing tem-
peratures. In this case, phonon spectral functions clearly
deviate from the standard Lorentzian line shape. We il-
lustrate this in Fig. 2, where phonon spectral functions
for selected modes at Γ point are presented for structures
at 500 GPa in molecular phase VI and atomic phase. We
report two representative modes for molecular phase VI:
a global lattice vibration (phonon mode) and a stretching
of H2 molecule (vibron mode). In the atomic phase, we
only have two optical modes that are non-degenerate and
we show both of them. The shift of the phonon frequency
is very large in all cases. Additionally, all modes, except
the Eg one in the atomic phase, have a huge broadening of
the phonon spectral function of thousands of cm−1 and a
clear non-Lorentzian line shape. Such anomalous behav-
ior questions the standard practice of approximating the
spectral function with slightly smeared Delta functions in
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first-principles calculations of the superconducting crit-
ical temperatures. In fact, it has already been shown
that non-Lorentzian lineshapes can have a non-negligible
effect on other properties of materials, i.e. the lattice
thermal conductivity in highly anharmonic semiconduct-
ing chalcogenides [38].

The isotropic Eliashberg function of the electron-
phonon interaction can be calculated keeping the full an-
harmonic spectral function as [39]

α2F (ω) =
1

Nq

∑
abq

∆ab(q)σab(q, ω)

ω
√
mamb

, (1)

where σab(q, ω) is the phonon spectral function in the
Cartesian basis with wave number q (see Supplementary
Material for more details [35]). In Eq. (1) a and b la-
bel both atoms and a Cartesian direction, ∆ab(q) repre-
sents the average of the deformation potential over the
Fermi surface, ma is the mass of atom a, and Nq is the
number of q points in the sum. In the harmonic case,
α2F (ω) is calculated for the structure that minimizes the
BOES, while in the SSCHA it is calculated for the struc-
ture that minimizes the free energy. Eq. (1) offers a
straightforward approach to study the impact of anoma-
lous phonon lineshapes into superconducting properties.
However, ∆ab(q) includes only the linear term in the
electron-phonon interaction without considering higher-
order terms that may become important due to quantum
nature of hydrogen ions and which are included in other
approaches [40, 41].

All calculations thus far that have accounted for an-
harmonicity in the calculation of α2F (ω) have been per-
formed assuming that σab(q, ω) can be expressed as
[15, 24–26, 30, 31] σab(q, ω) =

∑
µ e

a
µ(q)e

b∗
µ (q)σh

µ(q, ω),
where the harmonic spectral function σh

µ(q, ω) of mode
µ and wave number q is a Delta function centered at
the harmonic or SSCHA auxiliary phonon frequency, and
eµ(q) are either harmonic or SSCHA phonon eigenvec-
tors. As in practical implementations, the Delta func-
tions are numerically approximated with a Gaussian
function of fixed spread, we label this approach as Gaus-
sian. However, as we have shown in Fig. 2, anharmonicity
can drastically affect the phonon lineshapes. In order to
obtain σab(q, ω), here we utilize the full phonon spectral
function. In this case, we do not assume that the phonon
self-energy is diagonal in the phonon branch index, as it is
done usually, and instead calculate the spectral function
as σab(q, ω) =

∑
µν e

a
µ(q)e

b∗
ν (q)σµν(q, ω) fully account-

ing for off-diagonal terms in phonon self-energy (see Sup-
plementary Material [35]). Here the polarization vectors
are obtained from the SSCHA auxiliary dynamical matri-
ces. Including full phonon spectral functions drastically
changes the calculated α2F (ω), as shown in Fig. 3. The
previously mentioned softening of the phonon modes is
also evident in the Eliashberg spectral functions. Addi-
tionally, the broadening of the phonon lineshapes leads to
the complete closing of the gap between hydrogen vibron
and phonon branches in the molecular phase VI. The soft-

ening of the phonon modes in the SSCHA coupled with
a higher DOS at the Fermi level in the SSCHA struc-
tures leads to higher values of the electron-phonon cou-
pling constant λ in most cases compared to the harmonic
result, more remarkably in the molecular phase VI (see
Supp. Material). A notable exception is atomic hydrogen
at 500 GPa (depicted in Fig. 3 b), where the proximity to
a phonon instability, which is suppressed by anharmonic-
ity, drastically increases λ in the harmonic approxima-
tion. Finally, it is worth noting that the no-mode-mixing
approximation (treating phonon self-energy as diagonal
in phonon branches), which is more commonly used for
the calculation of phonon spectral functions, yields sim-
ilar results to those obtained with the full off-diagonal
spectral function (see Supplementary Material [35]).

Solving isotropic Migdal-Eliashberg equations with
the α2F (ω) obtained considering the full spectral func-
tion [39, 42], we can estimate the impact of anharmonic-
ity on the superconducting transition temperature (see
Fig. 4). As mentioned above, the C2/c−24 phase of solid
hydrogen does not exhibit superconducting behavior in
the pressure range of interest. In the molecular phase
VI the transition temperature is mostly linear with pres-
sure and correlates well with the value of the DOS at the
Fermi level. Because of this, the SSCHA structures con-
sistently show higher transition temperatures than the
classical harmonic ones. The difference in TC between
these two methods increases with pressure, again due to
the stronger dependence of the electronic DOS on the
pressure in the SSCHA structures (see Fig. 1), as well as
due to the increased electron-phonon coupling due to the
anharmonic softening of the phonon modes.

The estimate of the superconducting transition tem-
perature obtained utilizing full phonon spectral function
in all cases is larger than the one obtained using auxiliary
SSCHA force constants and Gaussian approximation by
about 30 K. On the other hand, Gaussian approxima-
tion coupled with the phonons from the Hessian of the
total free energy gives a larger critical temperature than
the full phonon spectral function calculation (at most 15
K). Since Hessian calculations only incorporate the soft-
ening of the phonon modes, the conclusion is that the
softening of phonon modes increases the critical temper-
ature while the broadening of the phonon spectral lines
reduces it. Considering that α2F (ω) is intimately related
to the electron self-energy [39] we can assume that the
phonon spectral functions will have an influence on other
material properties that strongly depend on the electron
self-energy such as electrical conductivity, Seebeck coef-
ficient, band gap renormalization, etc. We would like to
highlight that at this moment, the effects of the finitely
lived phonon quasiparticles are not accounted for in any
first-principles calculations, while our results show they
might have a large effect.

Considering the critical dependence of TC on the DOS
at the Fermi level and that local exchange-correlation
functionals tend to overestimate it [13, 15, 22, 23, 43, 44],
we perform DFT calculations for the quantum SSCHA
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FIG. 4. Calculated superconducting transition temperature
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regions represent the phase diagram of solid hydrogen from
Ref. [28]. Line colors denote for which phase calculations were
performed (red for molecular phase VI and purple for atomic
phase).

structures of phase VI using the B3LYP hybrid func-
tional [45] (see Supplementary Material [35]). Since
the critical temperature correlates linearly with the elec-
tronic density of states in the Cmca−12 phase, we can es-
timate the superconducting transition temperature using
the DOS from the better B3LYP calculation. With this
procedure, we predict that superconductivity will emerge
in solid hydrogen in the Cmca − 12 phase between 450
and 500 GPa. This result is consistent with a recent ex-
periment [19] which failed to observe superconductivity
at 440 GPa in what was identified as a molecular phase
VI [27].

In the atomic tetragonal phase, the critical tempera-
ture is mostly constant with pressure. In this phase, TC is
mostly decorrelated with the value of the electronic DOS
at the Fermi level because the structures are far away
from the metal-insulator phase transition [28] and, de-
spite quantum and anharmonic effects enhance the DOS
as well, its relative increase is small compared to the
molecular case. Accounting for the full phonon spectral
function in the calculation of α2F (ω) increases the esti-
mate of the critical temperature by 20 K compared to
the case using the Gaussian approximation and SSCHA
auxiliary force constants (see Supp. Material [35]). This
increase is much larger than the one induced by the SS-
CHA structure renormalization (less than 5 K away from
the structural instabilities, see Supp. Material). This
highlights the important role that anharmonicity plays
in the superconductivity of high-pressure hydrogen also
in the atomic phase, contrary to the previous calcula-

tions that only estimated its effect within the Gaussian
approximation of the spectral function [15].

In conclusion, our first-principles calculations consid-
ering ionic quantum effects and anharmonicity show that
superconductivity will emerge in solid hydrogen in molec-
ular phase VI, between 450 and 500 GPa, and TC will
rapidly soar with pressure. We expect a jump of TC
to approximately 350 K at the transition to the atomic
phase. Quantum anharmonic effects have a huge impact
on the structural, vibrational, and superconducting prop-
erties of both molecular and atomic phases by, for in-
stance, increasing the H-H bonds and making the phonon
spectral functions extremely broad and anomalous. We
show that considering the full phonon spectral function
in the calculation of α2F (ω) enhances the predicted crit-
ical temperature by 25 K in the atomic phase and 30 K
in the molecular phase VI.
Methods.
Density functional theory (DFT) and density functional
perturbation theory (DFPT) [46] calculations were per-
formed using Quantum Espresso software [47, 48], imple-
menting the generalized gradient approximation (GGA)
with the BLYP parameterization [49] for the exchange-
correlation functional. In the case of the primitive unit
cell calculations, we used a Monkhorst-Pack grid for sam-
pling electronic states with densities of 48×48×48 for
the atomic phase, 12×12×12 for the molecular phase
VI, and 12×6×12 for molecular phase III. The elec-
tronic wave functions were represented in a plane wave
expansion using an 80 Ry energy cutoff (320 Ry cut-
off for the electronic density). To describe hydrogen
ions we used a norm-conserving pseudo-potential with
no pseudized electrons generated by the Pseudo Dojo li-
brary [50] and the ONCVPSP software [51]. Considering
that we are investigating metallic/semimetallic phases we
used a Marzari–Vanderbilt smearing of 0.03 Ry [52] for
Brillouin zone integrations.

To get the structural and vibrational properties of solid
hydrogen we used the stochastic self-consistent harmonic
approximation (SSCHA). The SSCHA method [53–56]
allows us to minimize the total free energy of the system,
which includes the quantum zero-point motion and an-
harmonicity, with respect to two variational parameters
that define the ionic wave function: the centroid posi-
tions and the auxiliary force constants. The centroids
are the average positions of the atoms (the means of the
Gaussians that approximate the ionic wave functions).
The auxiliary force constants are related to the standard
deviation of the Gaussians. Eigenvalues of the dynami-
cal matrices constructed from these auxiliary force con-
stants can be regarded as better estimates of the true
phonon frequencies than the simple harmonic force con-
stants since they have been renormalized by anharmonic-
ity. More precisely, in perturbation theory language these
force constants include contributions to the first order in
perturbative expansion from all of the anharmonic terms
in the expansion of the BOES. These corrections are
purely real and only shift the phonon frequency. The
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centroids and SSCHA auxiliary second-order force con-
stants are obtained at the end of the minimization of the
total free energy. Additionally, on top of renormalizing
the second-order force constants, SSCHA renormalizes
the anharmonic force constants as well in a similar man-
ner.

From here, we can go a step further and include some
terms of the higher orders in the perturbation theory
that stem from third and fourth-order anharmonic force
constants (renormalized by anharmonicity as explained
above) which are consistent with SSCHA [56–59]. The
phonon Green’s function (Gµµ′(q, ω)) in this case can be
expressed as:

Gµµ′(q,Ω) =

[
Ω2δµµ′−

(2)

Dµµ′ (q)−Πµµ′(q,Ω)

]−1

.

Here
(2)

Dµµ′ (q) is the dynamical matrix constructed from
the SSCHA auxiliary force constants and Πµµ′(q, ω) is
phonon self-energy that depends on the SSCHA anhar-

monic force constants (
(3)

D (q),
(4)

D (q)):

Π(q,Ω) =
(3)

D (q) : Λ(q,Ω) :

[
1−

(4)

D (q) : Λ(q,Ω)

]−1

:
(3)

D (q).

The double-dot product X : Y indicates the contraction
of the last two indices of X with the first two indices of Y.
If we denote the eigenvalues of the SSCHA auxiliary dy-
namical matrices as ωµ(q) and associated Bose-Einstein
factors as nµ(q), the above Λ(q,Ω) is given as:

Λµµ′
(q,Ω) =

1

4ωµ(q)ωµ′(q)

[
(ωµ(q)− ωµ′(q)) (nµ(q)− nµ′(q))

(ωµ(q)− ωµ′(q))2 − Ω2 + iϵ
− (ωµ(q) + ωµ′(q))(1 + nµ(q) + nµ′(q))

(ωµ(q) + ωµ′(q))2 − Ω2 + iϵ

]
. (2)

Πµµ′(q, ω) is not purely real and describes the realistic
broadening of the phonon spectral functions. However,
in the static limit (Ω → 0), the contributions from these
terms are again only real and can be included to fur-
ther renormalize the SSCHA second-order auxiliary force
constants. Force constants obtained in this manner are
Hessians of the total free energy, Gµµ′(q, 0). If any of
the eigenvalues of the Hessian of the total free energy is
imaginary, the structure is unstable. These force con-
stants can alternatively be used to describe the vibra-
tional properties of the material. In the static limit, for
the calculation of the Hessian of total free energy, we in-
clude the contributions of both the third and fourth-order
SSCHA anharmonic force constants.

However, a physically more relevant representation of
the vibrational properties of materials comes from the
phonon spectral functions obtained in the dynamical
dressed-bubble approximation, using auxiliary force con-
stants and third-order force constants from SSCHA as
described in Refs. [56–59]:

σµµ′(q,Ω) = −Ω

π
Gµµ′(q,Ω).

The anharmonicity in general leads to the mixing of the
phonon modes and the matrices of phonon spectral func-
tions at different values of the frequency (energy) Ω do
not commute. Usually, this is disregarded and only the
diagonal part µ = µ′ of the phonon spectral function (in
the space of eigenvectors that diagonalize auxiliary SS-
CHA force constants) is taken into account. This ap-
proximation is referred to as a "no-mode-mixing" ap-
proximation in this work. Alternatively, one can use the
true phonon spectral function, including the off-diagonal
terms in the phonon spectral functions, and that ap-

proach is termed "full" in this work (see Supp. Material
for more information [35]).

The sampling of atomic positions and forces was done
on a 5×5×5 primitive cell repetition for the atomic phase,
2×2×2 for the molecular phase VI, and 2×1×2 for the
molecular phase III. The number of configurations used
for the stochastic sampling was 500 for the atomic phase,
600 for molecular phase VI, and 6000 for molecular phase
III. To calculate third-order force constants needed to
calculate the spectral functions we used a finer stochas-
tic sampling of 3000 structures for the atomic phase and
20000 structures for phase VI. SSCHA calculations were
performed at 0 K. For the calculation of the phonon spec-
tral functions we used the dynamical bubble term in the
phonon self-energy expansion. In the static limit, the
peaks of the phonon spectral function coincide with the
frequencies obtained from the free energy Hessian. For
the Hessian calculations, in the molecular phase, we used
the static bubble term from the third-order anharmonic-
ity and fourth-order anharmonicity double bubble term,
and for the atomic phase, we used only the third-order
static bubble term. The SSCHA auxiliary force constants
already include the effects of so-called tadpole and loop
terms, as well as higher orders of anharmonicity.

Finally, we performed a convergence study of the
electron-phonon coupling constant and the critical tem-
perature with respect to the q point grid in DFPT cal-
culations. We have found that reasonably converged re-
sults were obtained with a 12×12×12 q point grid for
the atomic phase, 8×8×8 for phase VI, and 8×4×8 for
phase III. The calculated electron-phonon coupling con-
stants from DFPT were projected onto SSCHA phonon
modes [26]. k-point grids for the non-self-consistent cal-
culations for the electron-phonon coupling were done on
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100×100×100 grids for the atomic phase, 44×44×44 for
phase VI, and 44×22×44 for phase III with Gaussian
smearing of 0.012 Ry for the energy conservation Dirac
deltas. Finally, to calculate superconducting transition
temperatures we used the isotropic approximation of the
Migdal-Eliashberg equations in the constant density of
states approximation [39]. We use µ∗ = 0.16 for the
Coulomb pseudopotential and a cutoff for the Matsubara
frequencies of 10 times the highest phonon frequency [39].
We have checked that this approximated approach to
solve Migdal-Eliashberg (ME) equations yields accurate
results despite the use of the µ∗ parameter. For example,

in LaH10, where superconductivity is dominated by the
hydrogen sublattice, this approach only yields an overes-
timation of TC of a 7% with respect to anisotropic ME
equations and the use of the random phase approxima-
tion to calculate the Coulomb repulsion (to avoid the use
of the simple µ∗ parameter) [25, 60].
Data and code availability.
Both Quantum Espresso and SSCHA are free soft-
ware codes freely available from the following websites:
www.quantum-espresso.org and sscha.eu. All the data
supporting the presented results are available from the
corresponding author upon request.
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Supplementary Figure 1. Phonon band structures for harmonic and SSCHA structures of solid hydrogen in molecular Cmca-12
phase VI at (a) 450 GPa, (b) 500 GPa, (c) 600 GPa, and atomic I41/amd-2 tetragonal phase at (d) 500 GPa, (e) 581 GPa, and
(f) 642 GPa. SSCHA phonon spectra are calculated from the auxiliary force constants.

I. SUPPLEMENTARY INFORMATION FOR
“LARGE IMPACT OF PHONON LINESHAPES ON THE SUPERCONDUCTIVITY OF SOLID

HYDROGEN”

A. Comparison of harmonic and SSCHA phonon band structures

In Supp. Fig. 1 we show the comparison between harmonic and SSCHA phonon band structures for relevant systems
(systems that have non-zero superconducting critical temperatures). In the harmonic case, we calculated the phonons
using DFPT for the structures that minimize the Born-Oppenheimer energy. In the SSCHA case, we are showing the
eigenvalues of the SSCHA auxiliary dynamical matrices for the structures that minimize the total free energy in the
self-consistent harmonic approximation.

As we note in the main text, we can see a large softening of the phonon frequencies in the case of the SSCHA
structures. This is particularly prominent for optical modes in molecular Cmca-12 phase VI. Another prominent
difference is that SSCHA cures the incipient instability in atomic hydrogen at 500 GPa on the S0 → Γ line, which
leads to the increase of the electron-phonon coupling strength in the harmonic case at this pressure.
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B. Dependence of the critical temperature on ground state properties

In Supp. Fig. 2 (a) we show the correlation between the superconducting critical temperature TC and the electronic
density of states at the Fermi level in these compounds. As we can see, in molecular phase VI there is a linear
correlation between TC and the electronic density of states. The critical temperature in the figure was calculated
using isotropic Migdal-Eliashberg equations with α2F calculated with full phonon spectral functions in the SSCHA
case and Gaussian approximation in the harmonic case.

In the atomic phase, it looks like there is a negative correlation between the critical temperature and the electronic
density of states. The decrease of the critical temperature in these cases is probably due to the stiffening of the phonon
modes with the increased pressure and probably is not connected to the changes in the density of states. This increase
in phonon frequencies decreases the electron-phonon coupling strength, which, in turn, reduces TC. The increase of
the electronic density of states does not influence the critical temperature as strongly in this phase since it is far away
from the metal-insulator phase transition.

To estimate the error of the calculated density of states using BLYP, we performed B3LYP calculations of the
electronic structure on the SSCHA structures that have non-zero critical temperatures. The results are shown and
compared to DFT in Supp. Fig. 2 (b). As we can see the results with B3LYP drastically reduce the calculated
density of states at the Fermi level. Accidentally, B3LYP values agree quite well with BLYP values calculated for
harmonic structures. We have also calculated the electronic density of states with B3LYP hybrid functional for 600
GPa harmonic structure (the only one that shows superconductivity in Cmca-12 phase for harmonic structure and
Gaussian approximation) and found that it decreases the DOS at the Fermi level significantly.

If we assume that the critical temperature is directly proportional to the density of states at the Fermi level we can
estimate that the onset of the superconductivity in this phase happens between 450 and 500 GPa. This is the result
reported in the main text.
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Supplementary Figure 2. a) Critical temperature as a function of the value of the electronic density of states at the Fermi
level in molecular phase VI and atomic phase of solid hydrogen. α2F needed for the estimation of TC was obtained in the
Gaussian approximation for the harmonic case and using full phonon spectral function in the SSCHA case. (b) Density
of states at the Fermi level of solid hydrogen in Cmca-12 phase (molecular phase VI) calculated with BLYP and B3LYP
approximations for the exchange-correlation functional. (c) The changes in the critical temperature in the molecular phase
VI (Cmca-12) due to different exchange-correlation functionals. Circles represent results obtained for SSCHA structures with
fully anharmonic Eliashberg spectral functions, while squares are for harmonic structures and Eliashberg spectral functions in
Gaussian approximation.

The comparison between BLYP and B3LYP electronic density of states is given in Supp. Fig. 3. As we have already
mentioned, B3LYP in all cases gives a significantly lower density of states at the Fermi level. The density of states in
the atomic phase and highest pressure in the molecular phase has a pretty constant profile in the energy window of
interest (±2ωmax), justifying the use of frozen Fermi level approximation for the calculation of critical temperatures.
At lower pressures in molecular phase VI there is some change in the electronic density of states in this energy window,
but it is not expected to have a drastic effect on the estimated critical temperature.
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Supplementary Figure 3. Electronic density of states calculated with B3LYP (dashed lines) and BLYP (full lines) exchange-
correlation functionals for SSCHA structure of solid hydrogen in a atomic and b molecular VI phase.

C. Phonon spectral functions in solid hydrogen

In Supp. Fig. 4 we are showing the phonon lineshapes of solid hydrogen at different pressures and phases along
some high symmetry lines in the reciprocal space. Anharmonicity further softens the phonon frequencies for most of
the modes, most prominently for the optical phonon modes. There is an obvious closing of the gap between optical
modes in the molecular phase of hydrogen.
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Supplementary Figure 4. Phonon spectral function σ(q, ω) =
∑

µ σµ(q, ω) calculated in the no-mode mixing approximation in
arbitrary units of solid hydrogen in molecular phase VI (Cmca-12) at (a) 450 GPa, (b) 500 GPa, (c) 600 GPa, and tetragonal
I41/amd-2 atomic phase at (d) 500 GPa, (e) 581 GPa, and (g) 642 GPa. Dashed yellow lines represent eigenvalues of the
SSCHA auxiliary dynamical matrices.

In Supp. Fig. 5 we see the phonon mode spectral functions of solid hydrogen at Γ for representative modes. All
phases at all pressures show large phonon lineshifts and linewidths.
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Supplementary Figure 5. Phonon spectral functions in the no mode mixing approximation in modes basis, σµ(q, ω), of two
representative optical phonon modes at Γ of solid hydrogen in molecular Cmca-12 phase VI at (a) 450 GPa, (b) 500 GPa, (c)
600 GPa, and atomic tetragonal I41/amd-2 phase at (d) 500 GPa, (e) 581 GPa, and (f) 642 GPa. In figures (d), (e), and (f) we
scaled the values of the Eg mode in order to make the figures clearer. Thick dashed vertical lines represent the corresponding
frequencies obtained from the auxiliary SSCHA force constants.

sub

II. COMPARISON BETWEEN ANHARMONIC AND GAUSSIAN ELIASHBERG SPECTRAL
FUNCTIONS FOR SSCHA STRUCTURES

The solution to the isotropic Migdal-Eliashberg equations gives us the value of the superconducting gap as a function
of temperature. The temperature where this value drops to zero we call the critical temperature. To solve isotropic
Migdal-Eliashberg equations one only needs the Eliashberg spectral function.

The general definition of the Eliashberg spectral function (α2F (ω)) is [39]:

α2Fnn′(k,q, ω) =
NF

NkNq

∑
a,b

dank,n′k+qd
b
n′k+q,nkBab(q, ω). (3)

Here a, b compactly label atoms in the primitive cell and Cartesian directions, dank,n′k+q is the deformation potential
dank,n′k+q = ⟨nk| δV

δua(q) |n
′k + q⟩, with |nk⟩ the Kohn-Sham state of band n and wave number k, and Bab(q, ω) is

defined as:

Bab(q, ω) = − 1

π
ImDab(q, ω),

where Dab(q, ω) is the Fourier transform of the phonon Green’s function: Dab(q, t) = −⟨Tua(q, t)u
∗
b(q, 0)⟩. In order

to get the isotropic Eliashberg spectral function from Eq. 3, we average α2Fnn′(k,q, ω) over the Fermi surface. Once
we do that, we obtain:

α2F (ω) =
1

Nq

∑
a,b,q

∆ab(q)Bab(q, ω). (4)
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Here ∆ab(q) is the shorthand notation for the deformation potential averaged over Fermi surface:

∆ab(q) =
1

NFNk

∑
n,n′,k

dank,n′k+qd
b
n′k+q,nkδ(ϵnk − ϵF)δ(ϵn′k+q − ϵF).

In the SSCHA code we use a slightly different definition of the phonon Green’s function compared to the definition
used here. We define the Green’s function with respect to the displacement of the atom scaled by the square root of
the atom mass. Additionally, we define the phonon spectral function σab(q, ω) as:

σab(q, ω) = −ω

π
ImGab(q, ω) =

ω

π
Im

√
mamb⟨Tuau

∗
b⟩(q, ω) = ω

√
mambBab(q, ω).

This result is given in the atomic Cartesian basis, but we can cast this result in the no mode mixing approximation.
In this approximation atomic displacements are projected onto phonon modes (σab(q, ω) =

∑
µ e

a
µ(q)e

b∗
µ (q)σµ(q, ω)).

This no mode mixing approximation is usually very good in describing phonon spectral functions.
Usually, the mode projected phonon spectral function σµ(q) is approximated with:

σh
µ(q, ω) =

1

2

[
δ(ω + ωh

µ(q)) + δ(ω − ωh
µ(q))

]
. (5)

Then Dirac delta δ(ω−ωh
µ(q)) is approximated with a Gaussian centered at the value of harmonic phonon frequency

ωh
µ(q) and the fixed width which is the same for each phonon mode (in our calculation we took this smearing parameter

to be 10 cm−1) .
SSCHA however, allows us to calculate the third-order interatomic force constants, in addition to the crystal

structure and second order force constants renormalized by anharmonicity. Using these third-order force constants we
can explicitly calculate the phonon mode spectral function σµ(q, ω) (in the diagonal dynamical bubble approximation).
It is defined as [53, 56]:

σµ(q, ω) =
1

2π

[
−ImZµ(q, ω)

[ω − ReZµ(q, ω)]2 + [ImZµ(q, ω)]2
+

ImZµ(q, ω)

[ω +ReZµ(q, ω)]2 + [ImZµ(q, ω)]2

]
. (6)

Here Zµ(q, ω) =
√
ω2
µ(q) + Πµ(q, ω), where Πµ(q, ω) is the phonon self-energy due to phonon-phonon interaction in

the bubble approximation:

Πµ(q, ω) =
1

Nk

∑
k1,ν

∑
k2,ρ

∑
G

δG,q+k1+k2 |D
µνρ
qk1k2

|2×

× ℏ
4ων(k1)ωρ(k2)

(
(ων(k1)− ωρ(k2))(nν(k1)− nρ(k2))

(ων(k1)− ωρ(k2))2 − ω2
− (ων(k1) + ωρ(k2))(nν(k1) + nρ(k2) + 1)

(ων(k1) + ωρ(k2))2 − ω2

)
. (7)

Here nµ(q) is the Bose-Einstein occupation factor for the phonon mode with frequency ωµ(q) and Dµνρ
qk1k2

is the
Fourier transform of the third-order force constants (including the scaling with atom masses). An important note
is that ωµ(q) are calculated from eigenvalues of the auxiliary SSCHA force constants. The same definition of the
spectral function was used in Fig. 2 of the main text. As we can see this quantity is actually temperature dependent
(through nµ(q)) and in principle should be recalculated at each temperature. Here, however, we only calculate it at
0 K (nµ(q) = 0 always), and the only processes accounted for are the annihilations of two phonons (second term in
the parenthesis). The non-zero temperature would only make changes for phonon modes with frequencies lower than
kBT . Since the relevant temperature scale for this study is up to 300 K (200 cm−1), including temperature will not
make any significant change for any of the phonons in our q point grid.

We performed calculations for atomic hydrogen at 500 GPa using spectral functions calculated at 300 K and the
results for the critical temperature did not change. Another important detail that we would like to stress is that
the phonon spectral functions calculated here come purely from the phonon-phonon interaction. We justify this with
the fact that for the temperature range of interest (around 100 K), phonon linewidths due to the phonon-phonon
interaction are orders of magnitude larger than the phonon linewidths due to the electron-phonon interaction for most
of the phonon modes. Since phonon-phonon self-energy increases with temperature and electron-phonon, in general,
does not, if phonon-phonon interaction is a dominant contribution to phonon linewidths at 100 K, this conclusion will
hold at even higher temperatures.

In Supp. Figure 6 we compare results for the Eliashberg spectral function α2F (ω) calculated using Eq. 5 but with
phonon frequencies and polarization vectors coming from the SSCHA auxiliary force constants, not the harmonic
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Supplementary Figure 6. Eliashberg spectral function and electron-phonon coupling constant of solid hydrogen in molecular
Cmca-12 phase VI at (a) 450 GPa, (b) 500 GPa, (c) 600 GPa and atomic tetragonal I41/amd-2 phase at (d) 500 GPa, (e) 581
GPa and (f) 642 GPa. Gaussian represents results where we used SSCHA structures and second order force constants (auxiliary
force constants), but calculated α2F by using Eq. 5 for the definition of spectral function (smearing in Gaussian function of 10
cm−1). No mode mixing represents results where we used SSCHA structures and second-order force constants (auxiliary force
constants), but calculated α2F by using Eq. 6 for the definition of the spectral function.

phonons, (labeled Gaussian) and Eq. 6 with the phonon self-energy from Eq. 7 (labeled Anharmonic). This Gaussian
approach is the one that has been used so far in the literature to estimate the anharmonic renormalization of the
Eliashberg function. Thus, in both cases, we used properties obtained with SSCHA (structure and interatomic force
constants). Treating phonon spectral function in the dynamical bubble approximation further softens phonon modes.
In molecular phase VI, this leads to the complete closing of the vibron-phonon gap. This softening mostly increases
the final electron-phonon coupling strength. Additionally, in the “no mode mixing” calculation we can see a longer
tail at higher frequencies which is a consequence of the phonon-phonon interaction that includes the annihilation of
two phonon modes.

To gauge the influence of this change of the Eliashberg spectral function on the superconductivity we calculated
critical temperature using the isotropic Migdal-Eliashberg equation. Results for different calculations are shown in
Supp. Table I. The “Anharmonic” calculations consistently show higher critical temperatures in both phases. This is
mainly due to the softening of the phonon modes due to the anharmonicity. Additionally, we calculate the Eliashberg
spectral function in Gaussian approximation using free energy Hessian phonons, see Supp. Fig. 7. These calculations
consistently give higher critical temperature which is again a consequence of the softening of the phonon modes in
this approximation. Calculations with Hessian phonons give larger TCs compared to calculations done with realistic
broadening in no mode mixing approximation. This points to the conclusion that the softening of the phonon modes
is beneficial for the superconductivity, while the broadening of the spectral lines is disruptive.

Further, we can discuss the hierarchy of influences on the estimation of the critical temperature. In the molecular
phase, we find that the SSCHA renormalization of structure and phonons has a larger effect on the critical temperature
than the inclusion of the realistic phonon broadening. On the other hand, in the atomic phase of hydrogen, we find
the opposite effect. In the molecular phase, the enhancement of critical temperature estimate comes mainly from the
increase of the electronic density of states at the Fermi level due to SSCHA structural renormalization. In the atomic
phase, the change in the density of states does not have a large impact on critical temperature and because of this
dynamical renormalization of phonons has a larger effect.

From the mode projected spectral functions σµ(q, ω) one can get the Cartesian based spectral function with
σab(q, ω) =

∑
µ e

a
µ(q)e

b∗
µ (q)σµ(q, ω), where eµ(q) is the eigenvector of the phonon with branch µ and wave vec-

tor q. However, one can avoid making the no-mode mixing approximation, which is made in Eq. 7, by calculating the



16

0 1000 2000 3000 4000
Frequency (cm 1)

0.0

0.2

0.4

0.6

0.8

1.0

2 F

a
Cmca-12 : 450 GPa

0 1000 2000 3000 4000
Frequency (cm 1)

b
Cmca-12 : 500 GPa

Auxiliary
Hessian

0 1000 2000 3000 4000
Frequency (cm 1)

c
Cmca-12 : 600 GPa

0 1000 2000 3000 4000
Frequency (cm 1)

0.0

0.5

1.0

1.5

2.0

2.5

2 F

d
I41/amd-2 : 500 GPa

0 1000 2000 3000 4000
Frequency (cm 1)

e
I41/amd-2 : 581 GPa

Auxiliary
Hessian

0 1000 2000 3000 4000
Frequency (cm 1)

f
I41/amd-2 : 642 GPa

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Supplementary Figure 7. Eliashberg spectral function and electron-phonon coupling constant of solid hydrogen in molecular
Cmca-12 phase VI at (a) 450 GPa, (b) 500 GPa, (c) 600 GPa and atomic tetragonal I41/amd-2 phase at (d) 500 GPa, (e) 581
GPa and (f) 642 GPa. Auxiliary represents results where we used SSCHA structures and second order force constants (auxiliary
force constants) but calculated α2F by using Eq. 5 for the definition of spectral function (smearing in Gaussian function of 10
cm−1). Hessian represents results where we used SSCHA structures and eigenvalues from free energy Hessian and calculated
α2F by using Eq. 5 for the definition of the spectral function.

full matrix of the phonon self-energy:

Πµµ′(q, ω) =
1

Nk

∑
k1,ν

∑
k2,ρ

∑
G

δG,q+k1+k2D
µνρ
qk1k2

Dνρµ′

−k1−k2−q×

× ℏ
4ων(k1)ωρ(k2)

(
(ων(k1)− ωρ(k2))(nν(k1)− nρ(k2))

(ων(k1)− ωρ(k2))2 − ω2
− (ων(k1) + ωρ(k2))(nν(k1) + nρ(k2) + 1)

(ων(k1) + ωρ(k2))2 − ω2

)
.

(8)

Plugging this self-energy in the Dyson equation one can get a complete phonon Green’s function:

Gµµ′(q, ω) =
[
ω2δµµ′ −Dµµ′(q)−Πµµ′(q, ω)

]−1
.

Here Dµµ′(q) is the auxiliary SSCHA dynamical matrix in the mode basis (it is diagonal in this basis). Since we are
taking the inverse in the equation above, we in essence are mixing self-energies of different phonon branches. The full
phonon spectral function is then straightforwardly calculated as σµµ′(q, ω) = −ω

π ImGµµ′(q, ω), which can later be
projected onto the Cartesian basis:

σab(q, ω) =
∑
µ,µ′

eaµ(q)e
b∗
µ′(q)σµµ′(q, ω). (9)

Finally, we calculate the critical temperature in the atomic phase using the full spectral function, see Supp. Fig. 9.
There are only small differences between these results and the ones in no mode mixing approximation. Comparing the
phonon density of states in these two approaches (see Supp. Fig. 10) we see that these are almost identical explaining
the similarity between no mode mixing and full spectral function approaches.

To check which phonon modes contribute significantly to electron-phonon coupling, we compared the Eliashberg
spectral function and phonon density of states calculated with full phonon spectral functions in Supp. Fig. 8. In the
molecular Cmca phase coupling mostly comes from low-frequency phonons, while in the atomic phase, the higher-
frequency phonon contributes more significantly. However, in both cases, there is no dominant frequency range that
contributes the most to the total electron-phonon coupling constant.
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Supplementary Figure 8. Comparison between Eliashberg spectral function α2F and phonon density of states both calculated
with the full phonon spectral functions for the molecular Cmca phase of solid hydrogen at a) 450 GPa, b) 500 GPa, c) 600
GPa, and the atomic phase of solid hydrogen at d) 500 GPa, e) 581 GPa and f) 642 GPa. Phonon densities of states were
scaled by the integral of the Eliashberg spectral function for better comparison.
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Supplementary Figure 9. Eliashberg spectral function α2F (ω) and integrated electron-phonon coupling constant λ(ω) of solid
hydrogen in molecular Cmca-12 phase VI at (a) 450 GPa, (b) 500 GPa, (c) 600 GPa, and atomic tetragonal I41/amd-2 phase
at (d) 500 GPa, (e) 581 GPa, and (f) 642 GPa calculated in the SSCHA using the spectral function calculated fully and in the
no mode mixing approximation, and in the harmonic case using Gaussian method.

To make sure that these results are reliable, we also calculated the critical temperature of H3S at 150 GPa using
this method. The simple Gaussian approximation already gives a very good estimation of the critical temperature
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Supplementary Figure 10. Phonon density of states calculated with the full phonon spectral functions and with the ones
obtained in the no mode mixing approximation for the molecular Cmca phase of solid hydrogen at a) 450 GPa, b) 500 GPa, c)
600 GPa, and the atomic phase of solid hydrogen at d) 500 GPa, e) 581 GPa and f) 642 GPa.

TC molecular Cmca-12 atomic I41/amd-2
450 GPa 500 GPa 600 GPa 500 GPa 581 GPa 642 GPa

Gaussian - Harmonic 0 K 0 K 35 K 349 K 330 K 321 K
Gaussian - Auxiliary 19 K 83 K 219 K 313 K 334 K 322 K
Gaussian - Hessian 52 K 129 K 268 K 356 K 376 K 370 K
No mode mixing 45 K 119 K 252 K 336 K 356 K 347 K

Full 50 K 123 K 254 K 337 K 356 K 347 K

Supplementary Table I. Superconducting critical temperature in solid hydrogen molecular VI Cmca-12 and atomic I41/amd-2
phases. Harmonic results are obtained using DFT structures, harmonic phonons with Eliashberg spectral function calculated
using Eq. 5. Auxiliary/Hessian results are obtained using SSCHA structures, and SSCHA auxiliary/hessian phonons with
Eliashberg spectral function calculated using Eq. 5. No mode mixing and full results are obtained using SSCHA structures,
SSCHA auxiliary phonons with Eliashberg spectral function calculated using Eq. 6 and Eq. 8. All of these results are obtained
using the same exchange-correlation functional.

in this system and the new approach including phonon spectral functions should not change it [31]. This is what we
see in our calculations, where anharmonic phonon spectral functions have a limited effect on critical temperature, see
Supp. Fig. 11.

A. Convergence studies

We have performed convergence studies of critical temperature with respect to k-point and q-point grids, as shown
in Supp. Fig. 12.

The size of the system precludes us from checking the convergence of results with the size of the SSCHA supercell.
However, in Supp. Fig. 13 we are showing the decay of the second and third-order force constants to justify the use
of the interpolation method in obtaining vibrational properties of solid hydrogen.
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Supplementary Figure 11. Eliashberg spectral function of H3S at 150 GPa calculated with three different methods. "Gauss."
stands for Gaussian approximation (Eq. 5), "Nmm" is the no mode mixing approximation (Eq. 6), and "full" is the calculation
with full phonon spectral function (Eq. 9).

0 20 40
Temperature (K)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
A
P 

(m
R
y)

Cmca-12
q = 8 × 8 × 8 450 GPa

a

k = 443 T =20.0 K
k = 383 T =19.0 K
k = 323 T =17.0 K
k = 243 T =26.0 K
k = 183 T =27.0 K
k = 123 T =21.0 K

0 20 40
Temperature (K)

0.0

0.1

0.2

0.3

0.4

G
A
P 

(m
R
y)

Cmca-12
k = 44 × 44 × 44 450 GPa

b

q = 103 T =22.0 K

q = 83 T =20.0 K

q = 63 T =35.0 K

q = 53 T =31.0 K

q = 43 T =40.0 K

Supplementary Figure 12. Convergence study of the critical temperature in molecular VI phase of hydrogen at 450 GPa with
respect to a k point grid and b q point grid. Convergence study of the critical temperature in the atomic phase of hydrogen
at 642 GPa with respect to c k point grid and d q point grid.
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Supplementary Figure 13. Decay of the second order force constant with atom-atom distance for a molecular phase and b
atomic phase of solid hydrogen at 500 GPa.
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