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THE HOMOLOGY OF THE PARTITION ALGEBRAS

RACHAEL BOYD, RICHARD HEPWORTH, AND PETER PATZT

Abstract. We show that the homology of the partition algebras, interpreted as
appropriate Tor-groups, is isomorphic to that of the symmetric groups in a range
of degrees that increases with the number of nodes. Furthermore, we show that
when the defining parameter δ of the partition algebra is invertible, the homology
of the partition algebra is in fact isomorphic to the homology of the symmetric
group in all degrees. These results parallel those obtained for the Brauer algebras
in the authors’ earlier work, but with significant differences and difficulties in the
inductive resolution and high acyclicity arguments required to prove them. Our
results join the growing literature on homological stability for algebras, which
now encompasses the Temperley-Lieb, Brauer and partition algebras, as well as
the Iwahori-Hecke algebras of types A and B.

1. Introduction

In the last few years it has become increasingly apparent that the techniques of
homological stability, which are most commonly applied to families of groups, can
be successfully applied to families of algebras, where homology is interpreted as
an appropriate Tor group. Indeed, the papers of Boyd–Hepworth [BH20], Boyd–
Hepworth–Patzt [BHP21], Hepworth [Hep22] and Moselle [Mos22] proved homo-
logical stability for Temperley-Lieb algebras, Brauer algebras, and Iwahori-Hecke
algebras of types A and B respectively, and identified the stable homology in the
first two cases. The Temperley-Lieb and Brauer algebras failed to satisfy a cer-
tain flatness condition that holds automatically for families of groups, necessitating
the introduction of the new technique of inductive resolutions. Using related tech-
niques, Sroka [Sro22] showed that the homology of the Temperley-Lieb algebra on
an odd number of strands vanishes in positive degrees, in contrast to the known
non-vanishing for an even number of strands. More recently, Boyde [Boy22] used a
careful study of idempotents to unify and generalise the ‘invertible parameter’ re-
sults from [BH20, BHP21], together with Sroka’s vanishing result. In this paper, we
prove homological stability for the partition algebras, and we identify their stable
homology.

The partition algebras were introduced independently by Jones [Jon94] and Mar-
tin [Mar94] for their relevance in studying Potts models in statistical mechanics.
They are also important in representation theory as a Schur–Weyl dual to the sym-
metric group, as in the work of Halverson–Ram [HR05, Theorems 5.4, 3.6] and

2020 Mathematics Subject Classification. 20J06, 16E40 (primary), 20B30 (secondary) .
Key words and phrases. Homology, homological stability, partition algebras.
For the purpose of open access, the authors have applied a Creative Commons Attribution (CC

BY) licence to any Author Accepted Manuscript version arising from this submission.
1

http://arxiv.org/abs/2303.07979v2


THE HOMOLOGY OF THE PARTITION ALGEBRAS 2

Bowman–Doty–Martin [BDM22]. They contain a rich variety of subalgebras, in-
cluding the planar partition, rook Brauer, rook, planar rook, Brauer, Motzkin and
Temperley-Lieb algebras.

Given a commutative ring R, an element δ ∈ R, and a non-negative integer n, the
partition algebra Pn(R, δ) is defined to be the free module over R with basis given
by the partitions of the set {−1, . . . ,−n, 1, . . . , n}. These partitions can be drawn as
diagrams with n nodes labelled −1, . . . ,−n on the left and n nodes labelled 1, . . . , n
on the right. Nodes in the same block of a partition are then joined by edges.
For ease of drawing, we do not include all edges but instead rely on transitivity.
Disconnected nodes are allowed, corresponding to blocks of size one. For example,
the following diagram shows the basis element {{−1,−3}, {−2,−4, 4}, {2, 3}, {1}}
of P4(R, δ).

−4
−3
−2
−1

4
3
2
1

Multiplication is given by placing the diagrams side by side, identifying the middle
nodes, and replacing any blocks not connected to the right or left by a factor of δ.

Diagrams in which every node on the left is connected to a single node on the right,
and nothing else, are called permutation diagrams, and are in bijection with elements
of the symmetric group Sn. This gives rise to inclusion and projection maps

RSn
ι

−→ Pn(R, δ)
π

−−→ RSn

where ι sends permutations to permutation diagrams, and π does the reverse while
sending all remaining diagrams to 0. In particular, π ◦ ι is the identity map on RSn.

We denote the trivial module of RSn by 1. Pulling back along π, we obtain the
trivial module 1 of Pn(R, δ). This gives us the homology groups H∗(Sn,1) =

TorRSn

∗ (1,1) of Sn and TorPn(R,δ)
∗ (1,1) of Pn(R, δ). There are induced homomor-

phisms ι∗ and π∗ on homology groups for which π∗ ◦ ι∗ is again the identity, so that
the homology of Sn appears as a direct summand of the homology of Pn(R, δ).

Theorem A. Suppose that δ is invertible in R. Then the homology of the partition

algebra is isomorphic to the homology of the symmetric group:

TorPn(R,δ)
∗ (1,1) ∼= H∗(Sn;1)

Indeed, the inclusion and projection maps

RSn
ι

−→ Pn(R, δ)
π

−−→ RSn

induce inverse isomorphisms

TorRSn

∗ (1,1)
ι∗−−→
∼=

TorPn(R,δ)
∗ (1,1)

π∗−−→
∼=

TorRSn

∗ (1,1).

Our second result holds without any assumptions on the value of δ.

Theorem B. The inclusion map ι : RSn → Pn(R, δ) induces a map in homology

ι∗ : Hi(Sn;1) −→ Tor
Pn(R,δ)
i (1,1)

that is an isomorphism in the range n ≥ 2i+ 1.
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An immediate consequence of Theorem B is the following corollary.

Corollary C. The partition algebras satisfy homological stability, that is, the inclu-

sion Pn−1(R, δ) →֒ Pn(R, δ) induces a map

Tor
Pn−1(R,δ)
i (1,1) −→ Tor

Pn(R,δ)
i (1,1)

that is an isomorphism in degrees n ≥ 2i + 1, and this stable range is sharp. Fur-

thermore, Pn(R, δ) and Sn have the same stable homology:

lim
n→∞

H∗(Sn;1) ∼= lim
n→∞

TorPn(R,δ)
∗ (1,1).

The first part of this corollary follows by combining Theorem B with Nakaoka’s
homological stability result for the symmetric groups, for which the stable range is
sharp ([Nak60]). For the stable homology, the left hand side of this isomorphism
is well known by the Barratt–Priddy–Quillen theorem [BP72, FM94]. The above
results exactly parallel the situation for the Brauer algebras, and as discussed in
[BHP21] are reminiscent of the relationship between Sn and the automorphism
groups of free groups Aut(Fn) (see Galatius [Gal11]).

1.1. Outline, and comparison to previous work. In Section 2 we introduce
partition algebras and provide the necessary background needed for the rest of the
paper. In Section 3 we restate an abstract form of the principle that lies behind
the technique of inductive resolutions that was introduced in [BH20], and was a
crucial ingredient in [BH20] and [BHP21]. In Section 4 we establish the existence
of inductive resolutions for the partition algebras. These are significantly more
complicated than the Temperley-Lieb [BH20] and Brauer [BHP21] cases, and we
find that we must consider several families of distinct modules in order to carry
out our induction argument. In Section 5 we follow the argument of [BHP21] to
replace Shapiro’s lemma in the setting of partition algebras. The high connectivity
result required for any new proof of homological stability is found in Section 6.
Like our inductive resolutions argument, this is again more complicated than the
analogous result in [BHP21], and heavily utilises the high connectivity of the complex
of injective words with separators, introduced in that paper. We finish in Section 7
by giving an account of the proof of the main theorem, which follows the same
general argument as in [BHP21].

It is common, in homological stability for families of groups, to find that proofs of
different results have a very similar overall structure, yet the proofs that the relevant
complexes are highly acyclic can differ radically. What we can now see in homo-
logical stability for algebras, comparing the work of this paper to that of [BH20]
and [BHP21], is an analogous situation where the overall technique is used in multi-
ple situations, but the details of the acyclicity proofs — and now also of the inductive
resolutions proofs — are where the important differences and difficulties lie.

1.2. Acknowledgements. The first author was supported by EPSRC Postdoctoral
Fellowship EP/V043323/1 and EP/V043323/2. The third author was supported by
a Simons Collaboration Grant. Our thanks to the anonymous referee for their
detailed reading and helpful comments.
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2. Partition algebras

In this section we introduce the partition algebra, together with some specific ele-
ments and modules that will be important later in the paper.

Definition 2.1 (The partition algebra [Jon94, Mar94]). As explained in the in-
troduction, if R is a commutative ring, δ is a chosen element in R, and n is a
non-negative integer, then the partition algebra Pn(R, δ) is defined to be the free
module over R with basis given by the partitions of the set {−n, . . . ,−1, 1, . . . , n}.
These are drawn as diagrams with nodes −1, . . . ,−n on the left and nodes 1, . . . , n
on the right, with arcs indicating which nodes lie in the same block of the partition.
(We allow ourselves to omit some arcs and instead use transitivity to determine the
blocks.) An example is shown in Figure 1. Multiplication is given by placing the
diagrams side by side, identifying the middle nodes, and replacing any blocks not
connected to the right or left by a factor of δ, as in Figure 2.

We will use the terms ‘partition’ and ‘diagram’ interchangeably to mean a basis
element of Pn(R, δ), and we will frequently abbreviate Pn(R, δ) as Pn .

−5
−4
−3
−2
−1

5
4
3
2
1

Figure 1. Visualization of the partition {{−5,−3}, {−4,−2,−1, 3, 4}, {1, 5}, {2}}

· = = δ ·

Figure 2. Multiplication in the partition algebra

The partition algebra is generated by three types of diagrams [Mar96], corresponding
to the following partitions:

• For 1 ≤ i ≤ n−1, Si is the diagram corresponding to the partition with blocks
of pairs {−j, j} for j 6= i, i+ 1, together with {−(i+ 1), i} and {−i, (i+ 1)}.
These generate the group ring of the symmetric group, Sn, as a subalgebra
of Pn.

• For 1 ≤ i 6= j ≤ n−1, Vij is the diagram corresponding to the partition with
blocks of pairs {−k, k} for k 6= i, j and one block of size four {−j,−i, i, j}.

• For 1 ≤ i ≤ n, Ti is the diagram corresponding to the partition with blocks
of pairs {−j, j} for j 6= i and two singleton blocks {−i} and {i}.

See Figure 3 for depictions of some of these.

We now introduce the modules we will be working with.
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S2 V13 T3

Figure 3. The elements S2, V13, T3 ∈ P4

Recall that by a permutation diagram we mean a diagram in which each node on
the left is joined to a single node on the right, and nothing else. Equivalently,
permutation diagrams are ones that do not contain any singletons on the right or

any blocks that contain ≥ 2 elements on the right.

Definition 2.2 (The trivial module 1). For any n, we define the trivial RSn-
bimodule 1 to be the module given by the ring R, upon which the permutations act
as the identity.

For any n, we define the trivial Pn-bimodule 1 to be the module given by the ring R,
upon which the permutation diagrams act as the identity, and all other diagrams
act as 0. This is the same as acting with Pn on R via the projection π : Pn → Sn.

Definition 2.3. For m ≤ n, we can view Pm as a subalgebra of Pn. Given a
partition of {−m, . . . ,−1, 1, . . . , m}, the map which sends (±1, . . . ,±m) to (±(n−
m+ 1), . . . ,±n) induces a partition on {−n . . . ,−(n−m+ 1), (n−m+ 1), . . . , n}.
We add the blocks {−i, i} for all i ∈ {1, . . . , (n − m)}, resulting in a partition in
Pn. Pictorially, we are taking diagrams in Pm and extending them to ones in Pn by
adding new nodes below the existing ones, with horizontal connections between the
new nodes. Then, under the action of this subalgebra, Pn can be viewed as a left Pn-
module and a right Pm-module, and we obtain the induced left Pn-module Pn⊗Pm

1.

The following proposition is taken from [Pat20].

Proposition 2.4 ([Pat20, Proposition 2.5]). The induced module Pn ⊗Pm
1 is a free

R-module and a quotient of Pn.

In terms of diagrams, a basis for this module is the set of diagrams in which the top

m nodes on the right are placed under a box, satisfying the following condition:

• The box is connected to exactly m distinct blocks.

Under this description, the action of Pn on Pn ⊗Pm
1 is given by pasting and simpli-

fying the diagrams just as in the multiplication of Pn, and then identifying a diagram

with 0 if it violates the condition above.

Thus there are two ways that a diagram could be identified with 0 after left mul-
tiplication by a diagram in Pn: One of the blocks attached to the box could, after
pasting, consist only of nodes in the centre (visually, that block is free to be retracted
into the box, and then disappears). Alternatively, two or more distinct blocks that
were attached to the box can become fused into a single block (visually, there is
now a path of arcs with both ends attached to the box). These two possibilities
correspond to the two ways in which a diagram in Pm can fail to be a permutation
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diagram, and therefore act as 0 on 1: It can have a singleton on the right, or it can
have two nodes on the right belonging to the same block.

Example 2.5. Figure 4 depicts the module structure of P5⊗P31. In the first ex-
ample one of the blocks connected to the box consists entirely of nodes in the centre
and therefore ‘vanishes’ or ‘retracts into the box’. In the second example the factor
of δ arises due to a block that consists entirely of nodes in the centre and is not
attached to the box.

·
3

=
3

=
3

= 0

·
3

=
3

= δ ·
3

Figure 4. The module structure of P5⊗P31

3. The principle of inductive resolutions

In this brief section we state an abstract form of the principle that underlies the
technique of inductive resolutions that appeared in [BH20] and [BHP21]. It allows
us to identify modules that vanish under a fixed functor of the form TorAi (M,−) by
resolving them using modules that already have this property, hence the name ‘in-
ductive resolutions’. The theorem below is an abstraction of Section 3.3 of [BH20].
It can be regarded as an application of the general principle that a derived func-
tor can be computed using resolutions by objects that are acyclic for that derived
functor.

Theorem 3.1. Let A be an algebra over a ring R, and let M be a right A-module.

Suppose that N is a left A-module equipped with a resolution Q∗ → N with the

following two properties:

• TorA∗ (M,Qj) vanishes in positive degrees for all j > 0.
• M ⊗A Q∗ → M ⊗A N is a resolution.

Then TorA∗ (M,N) vanishes in positive degrees.

Proof. Let P∗ → M be a projective resolution, so that for any left A-module B, the
groups TorA∗ (M,B) are computed by the complex P∗ ⊗A B. Consider the double
complex P∗ ⊗A Q∗. There are two natural spectral sequences converging to the
homology of the totalisation Tot(P∗ ⊗A Q∗). For more on these spectral sequences,
see Section 5.6 of [Wei94] and the summary in Section 3.2 of [BH20].
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The first spectral sequence has E1-term given by
IE1

i,j = Hj(Pi ⊗A Q∗) ∼= Pi ⊗A Hj(Q∗)

with d1 induced by the differential of P . The isomorphism holds because each Pi is
projective and therefore flat. It follows that the E2-term is

IE2
i,j = TorAi (M,Hj(Q∗)).

Since Q∗ is a resolution of N , it follows that IE2
∗,∗ is simply TorA∗ (M,N) concentrated

on the x-axis, so that the same is true of IE∞
∗,∗, and therefore we conclude that

H∗(Tot(P∗ ⊗A Q∗)) ∼= TorA∗ (M,N).

The second spectral sequence has E1-term given by IIE1
i,j = Hj(P∗ ⊗A Qi), i.e.

IIE1
i,j = TorAj (M,Qi)

with d1 induced by the boundary maps of Q∗. Our first assumption now shows that
IIE1

∗,∗ is concentrated on the x-axis, where it is given by TorA0 (M,Q∗) = M ⊗A Q∗.

Consequently IIE2
∗,∗ is given by the homology of M ⊗A Q∗, which by our second

assumption is simply a copy of M⊗AN at the origin. This shows that the homology
of Tot(P∗ ⊗A Q∗) is simply a copy of M ⊗A N in degree 0.

Comparing the outcomes of the two spectral sequences, we see that TorA∗ (M,N)
vanishes in positive degrees, as required. �

4. Inductive resolutions

In this section, we will use the technique of inductive resolutions, which originated
in [BH20] and was further used in [BHP21].

Definition 4.1. Suppose that X is a subset of the set {1, . . . , n}. Define JX to be
the left-ideal in Pn that is the R-span of all diagrams in which, among the nodes
on the right labelled by elements of X , there is at least one singleton or one pair of
nodes that are in the same block. For m ≤ n, let J{n−m+1,...,n} be denoted by Jm.

Observe that Jn = J{1,...,n} is the span of precisely the diagrams that are not per-
mutation diagrams. It is therefore the kernel of the projection map π : Pn → RSn.

Our aim in this section is to prove the following theorem, which will be used in the
final section to understand the Tor groups TorPn

∗ (1,Pn⊗Pm
1).

Theorem 4.2. Let X ⊆ {1, . . . , n} and suppose that one of the following conditions

holds:

• |X| ≤ n and δ is invertible in R.

• |X| < n.

Then the groups TorPn

∗ (1,Pn /JX) vanish in positive degrees.

The proof of Theorem 4.2 will occupy the rest of the section. Aspects of the material
are close to [BH20, Section 3] and [BHP21, Section 3], but overall the material here
is significantly more complex.

Before we continue, we record the following lemma, which extends Theorem 4.2 to
degree 0. We will need this lemma to prove the theorem.
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Lemma 4.3. Let J be a left ideal of Pn that is included in Jn. Then

1⊗Pn
Pn /J ∼= 1.

In particular,

TorPn

0 (1,Pn /JX) ∼= 1

for all X ⊂ {1, . . . , n}.

Proof. Due to the inclusions 0 ⊂ J ⊂ Jn, we have the surjections

1⊗Pn
Pn −։ 1⊗Pn

Pn /J −։ 1⊗Pn
Pn /Jn.

Because

1⊗Pn
Pn

∼= 1

and

1⊗Pn
Pn /Jn

∼= 1⊗Pn
RSn

∼= 1⊗RSn
RSn

∼= 1,

the above composition is an isomorphism and the first map must be also injective.
�

4.1. Reducing to AX,x and BX,x. Our proof of Theorem 4.2 will be by induction
on the cardinality of X . Ideally we would prove the inductive step by resolving
Pn /JX in terms of modules Pn /JX′ with |X ′| < |X|. However, we were not able
to find a straightforward argument along these lines. To organise the argument, in
this subsection we introduce some intermediate modules, and later on we will build
our resolutions with these.

Definition 4.4. Let Y ⊆ X ⊆ {1, . . . , n}, and let x ∈ X and y ∈ Y . We define
three left Pn-submodules of Pn as follows:

• Ax is the span of all diagrams in which x is a singleton.
• BX,x is the span of all diagrams in which x lies in the same block as some
other element of X .

• MY is the span of all diagrams in which the elements of Y lie in the same
block.

We define quotients of these as follows:

AX,x =
Ax

Ax ∩ JX−{x}
, BX,x =

BX,x

BX,x ∩ JX−{x}
, MX,Y =

MY

MY ∩ JX−Y

The following result will be useful when we come to verify the second condition of
Theorem 3.1.

Lemma 4.5. The modules AX,x, BX,x, and MX,Y behave as follows under tensor

product with 1.

• Let x ∈ X ⊆ {1, . . . , n}, and suppose that n ≥ 2. Then 1⊗Pn
AX,x = 0.

• Let x ∈ X ⊆ {1, . . . , n}. Then 1⊗Pn
BX,x = 0.

• Let Y ⊆ X ⊆ {1, . . . , n} with |Y | ≥ 2. Then 1⊗Pn
MX,Y = 0 and MX,Y is

a direct summand of Pn /JX−Y .
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Proof. We will show that, under the relevant conditions, each of Ax, BX,x and MY

vanishes under 1⊗Pn
−, and the same will then follow for AX,x, BX,x and MX,Y .

To show that 1 ⊗Pn
Ax = 0, we take a diagram α in Ax, so that x is a singleton

in α. Let β denote a diagram obtained from α by placing x into the same block as
some other element on the right. (This is possible by the assumption that n ≥ 2.)
Then α = β · Tx, and β acts as 0 on 1, so that

1⊗ α = 1⊗ β · Tx = 1 · β ⊗ Tx = 0⊗ Tx = 0,

noting that Tx ∈ Ax. Since Ax is the span of such diagrams α, this completes the
proof.

The argument for the other two modules is similar. For 1 ⊗Pn
BX,x, we take a

diagram α ∈ BX,x, so that x is in the same block as some other element w ∈ X , and
we use the factorisation α = α · Vwx, noting that Vwx ∈ BX,x.

For MY we take a diagram α ∈ MY , so that all elements of Y lie in the same block,
and factorise it as α = α · VY where VY ∈ MY is the diagram with blocks −Y ∪ Y
and {−p, p} for p 6∈ Y ; the assumption |Y | ≥ 2 ensures that α acts as 0 on 1.

For the final claim about MX,Y , we use the fact that the element VY above is
idempotent and sends JX−Y into itself. �

The following proposition breaks down the problem of resolving Pn /JX into the
analogous problem for AX,x and BX,x.

Proposition 4.6. Let X ⊆ {1, . . . , n}, let x ∈ X, and assume n ≥ 2. The following
sequence, in which all maps are induced by either an inclusion or an identity map,

is a resolution of Pn /JX .

. . . // 0 // AX,x ⊕ BX,x
// Pn /JX−{x}

// Pn /JX

2 1 0 −1

Moreover, applying 1⊗Pn
− to the sequence gives a resolution of 1⊗Pn

Pn /JX .

Proof. The map Pn /JX−{x} → Pn /JX is induced by the identity map on Pn and
is well defined since JX−{x} ⊂ JX . The map AX,x → Pn /JX−{x} is induced by the
inclusion Ax ⊂ Pn and is well defined since (Ax ∩ JX−{x}) ⊂ JX−{x}, and a similar
argument holds for the map BX,x → Pn /JX−{x}.

Surjectivity of the right hand map is immediate, giving exactness in degree −1.

To show exactness in degree 0, observe that the ideals JX−{x} ⊆ JX are both spanned
by certain diagrams, so that the kernel of Pn /JX−{x} → Pn /JX is spanned by those
diagrams that lie in JX but not JX−{x}. For a diagram to lie in JX , some element
of X must be a singleton, or two elements of X must lie in the same block. For it
to not also be an element of JX−{x}, there must only be one singleton, namely x,
or only one pair of elements lying in the same block, of which one must be x. The
diagrams with x a singleton are precisely the diagrams that span Ax, the diagrams
in which x lies in the same block as some other element of X are precisely those
that span BX,x, and the proof follows.

To show exactness in degree 1, after unravelling the definitions of AX,x and BX,x,
it is sufficient to show that if we have a ∈ Ax and b ∈ BX,x with a + b ∈ JX−{x},
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then a, b ∈ JX−{x}. This follows quickly from fact that Ax and BX,x have no basis
elements in common.

To prove the second claim, we will show that after applying 1⊗Pn
−, the resolution

becomes

. . . // 0 // 0 //
1

Id
//
1

2 1 0 −1

so that the claim follows directly. The identification of the final two terms and
the map between them follows from Lemma 4.3. The terms in degree 1 vanish by
Lemma 4.5. (This is where we use the assumption n ≥ 2.) �

The last result, together with Theorem 3.1, shows that, in order to prove vanishing
of higher Tor’s for Pn /JX by induction, we must first do the same for AX,x and
BX,x. In the following two subsections we will construct resolutions of these.

4.2. Resolving AX,x. We now attempt to resolve AX,x. It will turn out that this
requires different methods depending on which assumption from Theorem 4.2 we
use: that δ is invertible, or that |X| < n. Under the first assumption we have the
following.

Proposition 4.7. Suppose that X ⊆ {1, . . . , n} and that δ is invertible in R. Then

the module AX,x is a direct summand of Pn /JX−{x}.

Proof. The element δ−1Tx is an idempotent, thanks to the computation T 2
x = δTx.

Right multiplication by δ−1Tx sends JX−{x} into itself, and therefore induces an
idempotent endomorphism of Pn /JX−{x}. The image of this endomorphism consists

of all left multiples of Tx, and this is precisely AX,x = Ax

Ax∩JX−{x}
as in the second

paragraph of the proof of Lemma 4.5. �

The above result shows that, if Pn /JX−{x} has vanishing higher Tor’s, then so does
AX,x. When δ is not invertible, we need a more elaborate method using the following
resolution.

Definition 4.8 (The resolution C(X, x, y)). Suppose that X ⊂ {1, . . . , n} with
|X| < n, let x ∈ X , and let y ∈ {1, . . . , n}−X . We define a resolution C(X, x, y) →
AX,x as in Figure 5. Thus C(X, x, y) is given by Pn /JX−{x} in each degree. The
maps are all given by right-multiplication by the indicated elements, so that the
boundary maps alternate between (1 − TxVxy) and TxVxy, and the augmentation
Pn /JX−{x} → AX,x is given by Tx. The maps are well defined thanks to the fact
that TxVxy and Tx send JX−{x} into itself; in the former case this follows from the
fact that y 6∈ X .

To check that consecutive maps compose to 0, one uses the computation TxVxyTx =
Tx together with the resulting fact that TxVxy is an idempotent. The fact that this
really does define a resolution is given next.

Proposition 4.9. Suppose that X ⊂ {1, . . . , n} with |X| < n, let x ∈ X, and let

y ∈ {1, . . . , n} −X. Assume that n ≥ 2. Then

C(X, x, y) → AX,x and 1⊗Pn
C(X, x, y) → 1⊗Pn

AX,x

are both resolutions.
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...

(1−TxVxy)

��

Pn /JX−{x}

TxVxy

��

2

Pn /JX−{x}

(1−TxVxy)

��

1

Pn /JX−{x}

Tx

��

0

AX,x −1

Figure 5. The resolution C(X, x, y) → AX,x

Proof. First, we must show that C(X, x, y) → AX,x is acyclic. In degree −1 this
is clear since Ax consists of all left multiples of Tx. In degrees 1 and above, this is
an immediate consequence of the fact that TxVxy is an idempotent. In degree 0 we
require a more complex argument, as follows.

Suppose α is a diagram in which x is a singleton. If B is a block of α other than {x},
then we write αB for the diagram obtained from α by incorporating x into B. And
we write αy for the diagram αBy

, where By is the block containing y. For example,
the following diagrams show α with By drawn in red and another block B drawn in
blue, together with αB and αy.

x

y

α αB αy

Now observe that we have the relations

(4.1) α− δαy = α(1− TxVxy)

and, for each block B in α,

(4.2) αB − αy = αB(1− TxVxy).

Now consider an element a ∈ Pn /JX−{x} in degree 0 that lies in the kernel of the
augmentation Tx : Pn /JX−{x} → AX,x. We wish to show that a is in the image of
the differential, and we will do this by explaining how to adjust a by elements in the
image of the differential (which does not change the fact that it lies in the kernel)
in order to reduce it to 0. We can write a as a linear combination of diagrams in Pn

that do not lie in JX−{x}, and these can be divided into the following cases:
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(a) Diagrams α in which x is a singleton. Using elements of the form (4.1), we
may adjust a by elements in the image of the differential in order to replace
all such diagrams α with ones of the form αy.

(b) Diagrams in which x is connected to some element outwith X − {x}. These
diagrams all have the form αB, where α is the diagram obtained from the
original by making x a singleton, and B is the block of α that originally
contained x. Note that the assumption that the original diagram did not lie
in JX−{x} means that α also does not lie in JX−{x}. Using elements of the
form (4.2), we may adjust a by elements in the image of the differential in
order to replace all such diagrams αB with ones of the form αy.

(c) Diagrams β in which x is connected to exactly one element, say w, in X−{x}.
Then in βTxVxy the element w ∈ X − {x} is a singleton, so that βTxVxy ∈
JX−{x}. Consequently β = β(1 − TxVxy) in Pn /JX−{x}, and in particular β
lies in the image of the differential. We may therefore adjust a by elements
in the image of the differential to remove all diagrams of this form.

After modifying a as explained in each item above, we may now write it as a linear
combination a =

∑
α λααy where α ranges over all diagrams that are not in JX−{x}

and in which x is a singleton. We know that a lies in the kernel of the differential,
so that a ·Tx = 0. However, we have a ·Tx =

∑
α λααy ·Tx =

∑
α λαα, and since the

α are distinct diagrams not in JX−{x}, we can conclude that λα = 0 for all α, or in
other words that a = 0. This completes the argument in degree 0, and so completes
the proof that C(X, x, y) → AX,x is a resolution.

We now prove that 1 ⊗Pn
C(X, x, y) → 1 ⊗Pn

AX,x is a resolution. The target
vanishes by Lemma 4.5, and 1 ⊗Pn

Pn /JX−{x} = 1 since JX−{x} acts as 0 on 1.
Under the latter identification, the boundary maps, which used to be given by
right-multiplication by the indicated elements, are now given by the action of those
elements on 1, and therefore alternate between 0 and 1. The result follows. �

4.3. Resolving BX,x. We now turn to the module BX,x, for which we build the
following resolution.

Definition 4.10 (The resolution D(X, x) → BX,x). Let X ⊆ {1, . . . , n} and let
x ∈ X . Define an augmented complex D(X, x) → BX,x as follows. In degree i ≥ 0,
D(X, x) is given by ⊕

(x0,...,xi)

MX,{x,x0,...,xi}

where the sum is over all tuples (x0, . . . , xi) of distinct elements of X−{x}. And on
the summand corresponding to a tuple (x0, . . . , xi), the map δi is given by the map

MX,{x,x0,...,xi} −→ MX,{x,x0,...,xi−1}

obtained from the inclusions

M{x,x0,...,xi} →֒ M{x,x0,...,xi−1}

JX−{x,x0,...,xi} →֒ JX−{x,x0,...,xi−1}.

The map δi is simply the sum of these individual maps. To it put briefly, δi is
the map that forgets that xi had to be in the same block as x, x0, . . . , xi−1. The
complex is illustrated in Figure 6. Each composite δi−1 ◦ δi vanishes, because any
element in its image is a sum of diagrams that each contain two elements xi−1, xi ∈
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...

δ3

��⊕

(x0,x1,x2)

MX,{x,x0,x1,x2}

δ2
��

2

⊕

(x0,x1)

MX,{x,x0,x1}

δ1
��

1

⊕

(x0)

MX,{x,x0}

δ0
��

0

BX,x −1

Figure 6. The resolution D(X, x) → BX,x. Summations are over
tuples of distinct elements of X − {x}.

X − {x, x1, . . . , xi−2} in the same block, and which therefore lie in JX−{x,x1,...,xi−2}.
We prove that this is indeed a resolution in Proposition 4.11.

Proposition 4.11. D(X, x) → BX,x is indeed a resolution, and the same is true for

1⊗Pn
D(X, x) → 1⊗Pn

BX,x.

Proof. We first prove that D(X, x) → BX,x is acyclic.

In degree −1 we must show that δ0 is surjective. A diagram in BX,x has x in the
same block as some other element x0 of X − {x}, and therefore lies in the image of
the inclusion M{x,x0} →֒ BX,x, and surjectivity follows.

In degree 0, we first observe that if we consider any two summands in degree 0, then
their images under δ0 have trivial intersection. Indeed, this follows quickly from the
fact that if x0 and x′

0 are distinct elements of X − {x}, then M{x,x0} ∩ M{x,x′
0}

⊆
JX−{x}, which itself holds because a diagram in M{x,x0} ∩M{x,x′

0}
has x0 and x′

0 in
the same block as x, and therefore in the same block as one another. So to prove
exactness in degree 0 we can look at just one x0-summand at a time:

⊕

x1∈X−{x,x0}

MX,{x,x0,x1}

δ1
��

1

MX,{x,x0}

δ0
��

0

BX,x −1
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To prove that this sequence is exact at its middle term, observe that the kernel of
δ0 is spanned by diagrams in M{x,x0} that lie in JX−{x} − JX−{x,x0}. Pick such a
diagram. For the diagram to lie in JX−{x}, two elements of X − {x} must be in the
same block, or an element of X − {x} must be a singleton. For the diagram to lie
outwith JX−{x,x0}, since x0 cannot be a singleton in M{x,x0}, we conclude that x0

must be in the same block as some other element of X−{x}. So, x0 lies in the same
block as some element x1 ∈ X−{x, x0}, and since the diagram is in M{x,x0} it follows
that x, x0, x1 must all be in the same block. Thus the diagram is in M{x,x0,x1}, and
so lies in the image of δ1.

To prove exactness in degree i > 1 and above, one first observes that in degrees i−
1, i, i+1 the complex splits as a direct sum over (x0, . . . , xi−1). It is therefore enough
to concentrate on a single (x0, . . . , xi−1)-summand at a time. Having restricted to
such a summand, one now proves exactness similarly to the degree 0 case, and we
leave the details of this to the reader.

The fact that the resolution remains acyclic after applying 1⊗Pn
− follows immedi-

ately from Lemma 4.5, which shows that in fact the resolution vanishes under this
operation. �

4.4. Proof of Theorem 4.2. We first tackle the cases n = 0, 1. When n = 0
we have Pn = R and the claim follows immediately. When n = 1, we either have
X = ∅, or we have X = {1} and δ invertible. When X = ∅ we have JX = 0, so that
Pn /JX = Pn and the claim follows. Finally, when X = {1} and δ is invertible, then
JX is the R-span, and indeed the Pn-span, of the idempotent δ−1T1. Thus JX and
Pn /JX are both direct summands of Pn, and in particular the latter is projective,
so that the claim follows.

We now assume that n ≥ 2, and prove the claim by strong induction on the cardi-
nality of X . When X = ∅ we have JX = 0, so that Pn /JX = Pn and the claim is
immediate.

Suppose now that |X| > 0 and that the claim holds for allX ′ of a smaller cardinality.
According to Proposition 4.6 and Theorem 3.1, it will be sufficient to show that the
modules

Pn /JX−{x} AX,x BX,x

all vanish under TorPn

i (1,−) for i > 0.

In the case of Pn /JX−{x} we have TorPn

i (1,Pn /JX−{x}) = 0 by the inductive hy-
pothesis.

For AX,x, we divide into the case where δ is invertible, and the case where |X| <
n. When δ is invertible, Proposition 4.7 shows that AX,x is a direct summand of
Pn /JX−{x}, which vanishes under TorPn

i (1,−) by the inductive hypothesis, so that
AX,x does as well. When |X| < n, Proposition 4.9 gives us resolutions C(X, x, y) →
AX,x and 1⊗Pn

C(X, x, y) → 1⊗Pn
AX,x. The terms of C(X, x, y) are all Pn /JX−{x},

which vanish under TorPn

i (1,−) by the inductive hypothesis, so that Theorem 3.1
applies to tell us that the same is true for AX,x itself.

For BX,x, Proposition 4.11 gives us the resolutions D(X, x) → BX,x and 1 ⊗Pn

D(X, x) → 1 ⊗Pn
BX,x. The terms of D(X, x) are direct sums of modules of the

form MX,{x,x0,...,xi}. Each MX,{x,x0,...,xi} is a direct summand of Pn /JX−{x,x0,...,xi}
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by Lemma 4.5, and since TorPn

i (1,−) vanishes on the latter, it also vanishes on the
former. (Note that this is the only place in our argument where we have used strong

induction.) We can now apply Theorem 3.1 to D(X, x) to find that BX,x vanishes
under TorPn

i (1,−) as required. �

5. Replacing Shapiro’s Lemma

This section closely follows Section 4 of [BHP21]. We include all statements, and
proofs of the lemmas which slightly differ in the case of partition algebras. The
proof of Theorem 5.1 is identical to that in [BHP21], with adapted inputs.

As in the case for the Brauer algebras, we have inclusion and projection maps

RSm
ι
−→ Pm

π
−→ RSm.

These are compatible with the inclusions Pm → Pn and RSm → RSn, and also
respect the actions on the trivial module. They therefore induce the following maps
of Tor-groups.

TorRSn

∗ (1, RSn ⊗RSm
1)

ι∗−→ TorPn

∗ (1,Pn ⊗Pm
1)

π∗−→ TorRSn

∗ (1, RSn ⊗RSm
1)

Then the main result of this section is the following Theorem, which replaces
Shapiro’s Lemma in the Quillen style proof of homological stability for groups.

Theorem 5.1. Let n > m > 0. Suppose that δ is invertible in R, or that m < n.
Then the maps

ι∗ : TorRSn

∗ (1, RSn ⊗RSm
1) −→ TorPn

∗ (1,Pn ⊗Pm
1)

and

π∗ : TorPn

∗ (1,Pn⊗Pm
1) −→ TorRSn

∗ (1, RSn ⊗RSm
1)

are mutually inverse isomorphisms.

Theorem A follows immediately from Theorem 5.1 by taking δ invertible andm = n,
using the identifications RSn ⊗RSm

1

∼= 1 and Pn ⊗Pm
1

∼= 1.

The remainder of this section is devoted to proving Theorem 5.1, which follows in
exactly the same way as Theorem 4.1 of [BHP21] after some preparatory definitions
and lemmas.

Recall from Definition 4.1 that Jm ⊆ Pn denotes the ideal consisting of all diagrams
in which, among the nodes on the right labelled by {n − m + 1, . . . , n}, there is
a least one singleton or one pair of nodes in the same block. Observe that Pn is
a right RSm-module, via the inclusions RSm ⊆ Pm ⊆ Pn, and that this module
structure preserves Jm, since right multiplying by a diagram which permutes the
nodes {n −m + 1, . . . , n} does not change whether there exists a singleton or two
nodes in the same block in this set. Therefore we have that Pn /Jm is a right RSm-
module.

Lemma 5.2. For m ≤ n, Pn /Jm is free when regarded as a right RSm-module.

Proof. Pn /Jm has basis consisting of the diagrams for which the nodes in {n−m+
1, . . . , n} have no singleton, and no two nodes in the same block. This means that
each node in {n−m+1, . . . , n} is attached to a distinct block in the diagram. Now,
Sm acts freely on this basis, since multiplying such a diagram with a permutation
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in Sm results again in a diagram where the nodes in {n−m+1, . . . , n} are attached
to distinct blocks. Under this action, the stabilizer of any such diagram is trivial. �

Lemma 5.3. For m ≤ n, there is an isomorphism of left Pn-modules

Pn /Jm ⊗RSm
1

∼= Pn ⊗Pm
1

under which (b+ Jm)⊗ r ∈ Pn /Jm ⊗RSm
1 corresponds to b⊗ r ∈ Pn⊗Pm

1.

Proof. Throughout this proof we regard Jm as an ideal in Pn, and write Jm∩Pm for
the corresponding ideal in Pm.

Let us show that the maps

(b+ Jm)⊗ r 7−→ b⊗ r

and

b⊗ r 7−→ (b+ Jm)⊗ r

are well-defined. It then immediately follows that they are inverses and thus iso-
morphisms.

For the first map, we need to show that bσ ⊗ r = b ⊗ r for σ ∈ Sm and that
j ⊗ r ∈ Pn ⊗Pm

1 is zero if j ∈ Jm. The first equation follows immediately as
σ ∈ Sm ⊂ Pm acts as the identity on 1. The second condition holds because if
j ∈ Jm, then we can write j as a sum of products of the form b · j′ where b ∈ Pn and
j′ ∈ Jm ∩Pm, and for each such summand we have b · j′ ⊗ r = b⊗ j′ · b = b⊗ 0 = 0.

For the second map, we let b ∈ Pn, b
′ ∈ Pm, and r ∈ 1, and show that (bb′+Jm)⊗r =

(b + Jm) ⊗ (b′ · r). It is enough to prove this for b′ ∈ RSm and b′ ∈ Jm ∩ Pm as
Pm = RSm ⊕ (Jm ∩ Pm). For b′ ∈ RSm, we get the equation directly from the
definition of the tensor product. For b′ ∈ Jm ∩ Pm, we note that bb′ ∈ Jm = Pn · Jm

and thus (bb′ + Jm)⊗ r is zero, as is (b+ Jm)⊗ (b′ · r) since b′ · r = 0. �

Now recall from Theorem 4.2 that, under the hypotheses of Theorem 5.1,

TorPn

∗ (1,Pn /Jm) =

{
1 if ∗ = 0

0 if ∗ > 0
.

Proof of Theorem 5.1. The proof of Theorem 5.1 now follows exactly as in [BHP21,
Proof of Theorem 4.1], replacing the occurrences of Brn with Pn, and inputting
Lemma 5.3 and Theorem 4.2 as appropriate. �

6. High connectivity

We build a complex similar to the one in [Hep22] and [BHP21].

Definition 6.1. For n a non-negative integer, we define the chain complex Cn =
(Cn)∗ of Pn-modules as follows. The degree p part (Cn)p is non-zero in degrees
−1 ≤ p ≤ n− 1, where it is given by

(Cn)p = Pn ⊗Pn−(p+1)
1.
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So in degree −1 it follows that (Cn)−1 = Pn⊗Pn
1

∼= 1. For 0 ≤ p ≤ n − 1 the
degree p differential ∂p is given by the alternating sum

∂p =

p∑

i=0

(−1)idpi : (Cn)p −→ (Cn)p−1.

Where, algebraically, the map dpi for 1 ≤ i ≤ p is given by

dpi : Pn ⊗Pn−(p+1)
1 −→ Pn ⊗Pn−p

1

x⊗ r 7→ (x · Sn−p+i−1 . . . Sn−p)⊗ r

and

dp0 : Pn⊗Pn−(p+1)
1 −→ Pn⊗Pn−p

1

x⊗ r 7−→ x⊗ r.

In other words, when i = 0 the product Sn−p+i−1 . . . Sn−p is taken to be the empty
product, i.e. the identity element.

In terms of diagrams, elements in degree p can be described as diagrams with an
(n − (p + 1))-box at the top right, as in Proposition 2.4 and the paragraph which
follows it. If we label the nodes below the (n− (p+ 1))-box by 0, . . . , p from top to
bottom, then dpi lifts up node i and plugs it into the box.

We now filter Cn. Note that in [BHP21] we first decomposed Cn based on the
number of disjoint blocks on the left, and we could also do that here. However this
is not necessary for the proof.

Definition 6.2. We define a filtration

F0Cn ⊆ F1Cn ⊆ · · · ⊆ F⌊n
2
⌋Cn = Cn

of Cn as follows. The jth level FjCn is generated by diagrams with at most j blocks
that have at least 2 positive (right hand) nodes and are not connected to the box.
Note that this is indeed a filtration, since the boundary map can only decrease the
number of blocks on the right not connected to the box.

We briefly recall the definition of the complex of injective words with separators.

Definition 6.3 (Injective words with separators). Let X be a finite set and let
k > 0. An injective word on X with k separators is a word with letters taken from
the set X⊔{|} consisting of X and the separator |, where each letter from X appears
at most once, and where the separator appears exactly k times. When k = 0, then
these are simply the injective words on X .

Definition 6.4 (The complex of injective words with separators). Let X be a finite
set, let s > 0, and let R be a commutative ring. The complex of injective words with

s separators is the R-chain complex W
(s)
X concentrated in degrees −1 ≤ p ≤ |X|−1,

and defined as follows. In degree p, (W
(s)
X )p has basis given by the injective words on

X with s separators, and with (p+1) letters from X . Thus such a word a ∈ (W
(s)
X )p

has length s + p + 1. Let r = s + p and a = a0a1 . . . ar. The boundary operator

∂p : (W
(s)
X )p → (W

(s)
X )p−1 is defined by the rule

∂p(a0a1 . . . ar) =

r∑

i=0

(−1)ia0 . . . âi . . . ar
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subject to the condition that if the omitted letter is a separator, then the corre-
sponding term is omitted (or identified with 0). In other words, the boundary is the
signed sum of the words obtained by deleting the letters that come from X and not

deleting any separators, but with signs determined by the position of the deleted
letter among all letters including the separator.:

∂p(a0a1 . . . ar) =
∑

ai∈X

(−1)ia0 . . . âi . . . ar

We will aim to identify the filtration quotients FjCn/Fj−1Cn with a sum of shifted
copies of the complex of injective words with separators, as in [BHP21]. (Note that
in [BHP21] the argument for the Brauer algebras is somewhat simpler, and so the
reader may wish to look at the Brauer proof first.)

To complete this identification, we exhibit a one-to-one correspondence between
diagrams and tuples of data. This correspondence is complicated, so we start with
the simple example of the tuple corresponding to a diagram with no box, and no
restriction on the right hand side blocks. Recall that a diagram is a pictorial way of
representing a partition of the set {−n, . . . ,−1, 1, . . . , n}.

A diagram D determines, and is determined by, a tuple (L,R, φ) consisting of:

• A partition L of {−1, . . . ,−n}.
• A partition R of {1, . . . , n}.
• A labelling φ : R → {∅} ∪ L with the property that φ(r) = φ(r′) only when
r = r′ or φ(r) = φ(r′) = ∅.

The correspondence sends a diagram D to the tuple (L,R, φ) for which:

• L is the induced partition on the left-hand nodes −1, . . . ,−n.
• R is the induced partition on the right-hand nodes 1, . . . , n.
• φ labels a block on the right by the (necessarily unique) block on the left to
which it is attached, if any, and labels it by ∅ otherwise.

P1

P2

P3

P4

P5

7→ P5

7→ P2

7→ ∅

7→ P1

7→ ∅

L D R φ

Figure 7. This figure shows the process of extracting from a dia-
gram D the tuple (L,R, φ). Blocks in L, and the labelings of R are
indicated at their lowermost node.

An example is shown in Figure 7. Here, the process of restricting the partition to
the left and right sides of the diagram amounts to discarding all the left-to-right
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connections. Those left-to-right connections are instead recorded in the labelling φ.
To see that φ satisfies the third property above because, observe that if it did not,
then the diagram would have two distinct blocks r, r′ on the right attached to the
same block on the left. That would be a contradiction because then r and r′ would
in fact themselves be the same.

We now observe that the filtration quotient FjCn/Fj−1Cn has a basis in degree p
consisting of diagrams which have an (n− (p + 1))-box on the right, and exactly j
blocks with ≥ 2 nodes on the right that are not connected to the box. Here, the
size of the box is determined by the degree as in Definition 6.1, and the condition
on the j blocks follows from the definition of the filtration given in Definition 6.2.
An example is given in Figure 8. In the next definition, we explain how these basis

2

D

Figure 8. An example of a diagram D, when n = 9, j = 1 and p = 6.

diagrams determine a tuple of data, analogously to the discussion above. Once this
data has been stripped from the diagram, we are left with the desired information
of an injective word with separators. In this injective word, the letters encode left-
to-right connections for which the block on the right has a single element; and the
separators correspond to all other nodes below the box on the right. There are
at least 2j of these separators, because there are precisely j blocks on the right
that have 2 or more right-hand nodes and are not connected to the box. Later, in
Lemma 6.8 we show how to conversely start with an injective word with separators
and our tuple of data and rebuild the diagram.

Definition 6.5. A diagram in the basis of (FjCn/Fj−1Cn)p determines a tuple

(P,X, s, Y, f)

consisting of the following data:

• A partition P of {−1, . . . ,−n}.
• A subset X of the blocks of P .
• A number 2j ≤ s ≤ n− |X|.
• A partition Y of {1, . . . , s}, such that ≥ j blocks have size ≥ 2.
• A labelling f : Y → ({∅}∪P \X)×{�,¬�} (where the symbols �,¬� rep-
resent “box” and “not-box” respectively) satisfying the following properties:

– singletons have first label ∅
– no two blocks in Y can have the same first label in P \X
– exactly j blocks of size ≥ 2 have second label ¬�
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– exactly n− s− |X| blocks have second label �.

The diagram D determines the tuple as follows (an example is shown in Figure 9):

• P is the partition of {−1, . . . ,−n} given by restricting the blocks of D to the
negative elements, i.e. to the nodes on the left hand side of the diagram.

• X is the set of blocks in P which, when viewed in D, are connected to exactly
one thing on the right (this can be a connection to the box, or to a single
node).

• The number s is equal to the number of nodes on the right ofD not connected
to a block in X . These nodes are precisely those which are singletons, or are
connected to another element on the right, or to the box. Therefore, every
node in one of the j blocks of D that have at least 2 positive (right hand)
nodes and are not connected to the box (as in Definition 6.2) is included and
so s ≥ 2j. Also, none of the nodes that are connected to a block in X are
included, so s ≤ n− |X|. It follows that n− |X| − s is the number of blocks
connected to the box and to at least one node on the right.

• Y is the partition given by restricting D to the set of s nodes on the right that
are not connected to the blocks of X (we re-label these 1, . . . , s, maintaining
the order).

• The first entry of the labelling f , in ∅ ∪ P \X , indicates whether the blocks
of Y are disconnected from the rest of D (in which case the label is ∅), or
connected to the left hand side (in which case the label is the block in P \X
that they are connected to). Singletons in Y cannot be connected to the left
because otherwise they would be connected to a block in X on the left. Thus
their first label must be ∅. Two blocks in Y cannot be connected to the same
block in P \X , so two first labels can only be the same if they are both ∅.

The second entry of the labelling f is � if the block in Y is connected to
the box in D and ¬� if it is not. The condition that there are exactly j
blocks of size ≥ 2 with second label ¬� accounts for the diagram being in
the filtration quotient FjCn/Fj−1Cn. The condition that there are exactly
n − s − |X| blocks with second label � follows from the above observation
that this is the number of blocks connected to the box, containing at least
one node on the right.

The remaining data in the diagram determines an injective word with s separators
a, of length p + 1 − s, on the set X , obtained as follows: If the ith node (from
the top) on the right is connected to a block in X , then the ith letter of a is the
corresponding element of X . Otherwise the ith letter of a is a separator, and there
are exactly s of these.

Definition 6.6. By the above discussion, we can define a map

Φ∗ : FjCn/Fj−1Cn →
⊕

P,X,s,Y,f

W
(s)
X [−s].

The direct sum is over all 5-tuples (P,X, s, Y, f) satisfying the properties listed at the
start of Definition 6.5. A diagram D in (FjCn/Fj−1Cn)p is sent by Φp to the injective

word with separators a in the degree p part of the summand W
(s)
X [−s] corresponding

to (P,X, s, Y, f), where (P,X, s, Y, f) and a are obtained as in Definition 6.5.
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2

P1

P2

P3

P4

P5

P2

P5

7→ (∅,�)

7→ (P1,¬�)
7→ (∅,¬�)

P2

X P D s = 6 Y f a = ||P2||||

Figure 9. This figure shows the process of extracting from the di-
agram D in Figure 8 the tuple (P,X, s, Y, f) and injective word a

described in Definition 6.5. Blocks in P , and the labeling f of Y are
indicated at their lowermost node.

We now prove that Φ∗ is a chain map and isomorphism. This will allow us to leverage
the high connectivity of the complex of injective words with separators ([BHP21,
Proposition 5.14]) to a high connectivity result for Cn, via the filtration.

Lemma 6.7. Φ∗ is a chain map.

Proof. First, we claim that the 5-tuple (P,X, s, Y, f) associated, via Φ∗, to a basis
diagramD in (FjCn/Fj−1Cn)p is preserved in all diagrams appearing in the boundary
of D. Recall from Definition 6.1 that the boundary map ∂p sends a diagram to the
alternating sum of the diagrams obtained as follows: work through the nodes on
the right of the diagram, and in each case move the node into the box. This clearly
does not change the left-hand end of the diagram, and therefore all of the diagrams
in the boundary have the same X and P associated to them. If the node that is
moved into the box is a singleton, or was part of a block that was connected to the
box, then these nodes are included in the count for s, but after moving it into the
box, the resulting diagram either has a singleton in the box or has a loop at the
box, and therefore again vanishes. The other nodes counting towards s are those
that are part of a block with ≥ 2 elements from the right, and are not connected
to the box. There are exactly j such blocks, and so moving any of their nodes into
the box gives zero in the quotient (FjCn/Fj−1Cn)p. Therefore the only nodes we
can move into the box without getting zero, are those that are not counted by s,
i.e. s remains constant under the boundary map. It follows that Y and f remain
constant, since Y partitions these s nodes and f labels them.

The above paragraph demonstrates that FjCn/Fj−1Cn splits as a direct sum indexed
by the 5-tuples (P,X, s, Y, f). It now suffices to show that the assignment that
sends a diagram with fixed (P,X, s, Y, f) to the corresponding injective word with
separators a respects the boundary map. But this is clear: moving a node joined to
a block in X into the box corresponds exactly to deleting one of the non-separator
letters from a. �

Lemma 6.8. Φ∗ is an isomorphism.
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Proof. We will prove that Φ∗ is an isomorphism by showing that it is obtained from
a bijection between the basis of (FjCn/Fj−1Cn), which is given by diagrams, and

the basis of
⊕

X,P,s,Y,f W
(s)
X [−s], which is given by injective words with separators.

To do this, we will explain how to (re)build a diagram in (FjCn/Fj−1Cn) from a
tuple (P,X, s, Y, f) and an injective word with separators a.

We work in degree s + k − 1 in the summand W
(s)
X [−s] associated to a 5-tuple

(P,X, s, Y, f). We therefore take an injective word a of length k with s separators,
and we will build a diagram in (FjCn/Fj−1Cn)s+k−1. We begin with an empty
diagram with s + k nodes on the right hand side, and a box of size n − s− k; this
is possible since s + k ≤ s + |X| ≤ n, where the latter inequality is one of the
conditions imposed on the 5-tuple. Next, we build all the blocks on the left using P ,
and draw half-edges from the blocks in X to the right (don’t connect these edges
to anything yet). We place the injective word with separators vertically against
the s + k nodes on the right hand side, and the word indicates connections from k
of the nodes to half-edges from X . We connect the remaining half edges from X
to the box. The separators indicate the positioning of the s nodes {1, . . . , s} which
are then partitioned by Y , and labelled by f . The first labels of Y indicate which
blocks are connected to blocks on the left hand side in P \X . Finally, if the second
label of a block in Y is � we connect the block to the box. Note that |X|−k blocks
of X are connected to the box, and n−s−|X| blocks of Y are connected to the box,
the latter property being another of our conditions on the 5-tuple. This means that
exactly n− s− k distinct blocks are connected to the box, and since this is the size
of the box the diagram is non-zero in (Cn)s+k. The diagram lies in FjCn/Fj−1Cn

since exactly j blocks in Y of size ≥ 2 have second label ¬� and are therefore not
joined to the box, again by our conditions on the 5-tuple.

The last paragraph shows how to obtain, from a tuple (P,X, s, Y, f) and an injective

word a ∈ W
(s)
X [−s]s+k−1, a diagram in the basis of (FjCn/Fj−1Cn)s+k−1. It is now

immediate to verify that this is inverse to the effect of Φ∗ on bases, and this completes
the proof. �

Proposition 6.9. For all 0 ≤ j ≤ ⌊n
2
⌋, the filtration quotients FjCn/Fj−1Cn satisfy

Hi(FjCn/Fj−1Cn) = 0 for i ≤ n−3
2
.

Proof. We first consider the case n = 0, where the only possibility is that j = 0 so
that F0C0 = C0. The claim is then that Hi(C0) = 0 for i ≤ −3/2, but since C0

consists of a single copy of 1 in degree −1, this is immediate.

We now consider the case n > 0. Using Lemma 6.8 this is equivalent to the homology

of W
(s)
X [−s] vanishing in the desired range, for each 5-tuple (P,X, s, Y, f) satisfying

the conditions of Definition 6.5. By [BHP21, Proposition 5.14.],Hi(W
(s)
X ) = 0 for i ≤

|X| − 2, so that Hi(W
(s)
X [−s]) = 0 for i ≤ |X| + s − 2. It will therefore suffice to

show that
⌊
n−3
2

⌋
≤ |X|+ s− 2, or equivalently:

{
n ≤ 2|X|+ 2s if n even

n ≤ 2|X|+ 2s− 1 if n odd.

Let us first prove that we always have n ≤ 2|X| + 2s. Our conditions on the 5-
tuple (P,X, s, Y, f) mean that n− s− |X| is the number of blocks of Y with second
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f -label �, so that in particular n − s − |X| ≤ |Y |. And since Y is a partition of
{1, . . . , s} we have |Y | ≤ s. Combining the last two inequalities and rearranging
gives us n ≤ |X| + 2s. Because |X| ≥ 0, we therefore have n ≤ 2|X| + 2s. In
particular, this proves the proposition if n is even. If n is odd, it certainly cannot
be equal to 2|X| + 2s which is even. Therefore it can be at most one smaller:
n ≤ 2|X|+ 2s− 1. �

Theorem 6.10. Hi(Cn) = 0 for i ≤ n−3
2
.

Proof. By Proposition 6.9, the homology of the filtration quotient FjCn/Fj−1Cn

vanishes in degrees i ≤ n−3
2

for all j. The same then holds for Cn itself by considering
the long exact sequences associated to the short exact sequences 0 → Fj−1Cn →
FjCn → FjCn/Fj−1Cn → 0. �

7. Proof of Theorem B

The proof of Theorem B directly mirrors the proof of [BHP21, Theorem B], with
the following substitutions:

• All instances of the Brauer algebra should be replaced with the partition
algebra.

• The maps ι and π of [BHP21] should be replaced by the maps of the same
name in the current paper. Similarly for the complex C∗.

• Theorem 5.4 of [BHP21] should be replaced with Theorem 6.10.
• Theorem 4.1 of [BHP21] should be replaced with Theorem 5.1.

We note that in the second paragraph of the proof of [BHP21, Theorem 6.3], there
is an error, and the words ‘odd’ and ‘even’ should be transposed.
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