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Abstract 

As spin caloritronic measurements become increasingly common techniques for characterizing 

material properties, it is important to quantify potentially confounding effects.  We report 

measurements of the Nernst-Ettingshausen response from room temperature to 5 K in thin film 

wires of Pt and W, metals commonly used as inverse spin Hall detectors in spin Seebeck 

characterization.  Johnson-Nyquist noise thermometry is used to assess the temperature change 

of the metals with heater power at low temperatures, and the thermal path is analyzed via finite-

element modeling.  The Nernst-Ettingshausen response of W is found to be approximately 

temperature-independent, while the response of Pt increases at low temperatures.  These results 

are discussed in the context of theoretical expectations and the possible role of magnetic 

impurities in Pt. 



 

While spin caloritronic measurements1,2 are increasingly common, distinguishing between 

different physical mechanisms of generating voltages in structures containing magnetic materials 

and strong spin-orbit coupling metals can be challenging.  For example, in the experimental 

geometry commonly used for local measurements of the spin Seebeck effect (SSE)3, care must 

be exercised to distinguish between the SSE and the ordinary Nernst-Ettingshausen response4,5 of 

the strong spin-orbit metal used as an inverse spin Hall detector in the SSE measurement. The 

Nernst-Ettingshausen effect is the generation of a transverse electric field by a longitudinal 

thermal gradient in the presence of a mutually perpendicular magnetic field, and it has the same 

dependence on in-plane magnetic field orientation as the SSE in the local geometry. Particularly 

as spin caloritronic measurements are extended to lower temperatures and more exotic magnetic 

systems such as candidate spin liquids6, it is important to have a quantitative sense of the relative 

magnitude of the Nernst-Ettingshausen response and its temperature dependence. 

 

Here we report measurements of the Nernst-Ettingshausen response in the commonly employed 

strong spin-orbit metal W and Pt, using a device geometry typically used in local SSE 

measurements, but in this case fabricated on an inert SiO2/Si substrate, to eliminate any SSE 

contribution to the measured voltage.  We find that the Nernst-Ettingshausen response, linear in 

magnetic field and heater power, is approximately temperature independent from room 

temperature to 5 K at fixed heater power for W.  In contrast, the response for Pt shows a strong 

temperature dependence at low temperatures.  We discuss a possible explanation for this in the 

context of prior measurements performed on coinage metals with dilute magnetic impurities.  

Johnson-Nyquist noise thermometry is used to assess the temperature rise of the metal layers 



with the application of heater power at low temperatures, and finite element modeling is used to 

assess the heat flow in the experimental geometry.  These results show the need for care when 

considering local SSE measurements at low temperatures. 

 

Our devices consist of the multilayer structure as shown in Fig. 1a. Photolithography, magnetron 

sputtering, and liftoff were used to prepare the Pt (W) wire (800 μm long, 10 μm wide, 10 nm 

thick) on a silicon wafer capped with 300 nm oxide. A lithographically defined SiOx layer with a 

thickness of 100 nm was fabricated on the top of the Pt (W) wire by e-beam deposition and 

liftoff. Finally, a Au wire (1300 μm long, 10 μm wide, 50 nm thick) was deposited on the SiO2 

layer, just above the Pt (W) wire, to serve as a heater. The SiOx layer electrically isolates the Au 

heater and the Pt (W) wire.  

 

For the Nernst-Ettingshausen response measurements, an AC current at angular frequency ω = 

2π × (7.7 Hz) is driven through the Au wire and generates a vertical temperature gradient across 

the whole device that oscillates at angular frequency 2ω.  The voltage across the Pt (W) wire is 

measured at 2ω using a lock-in amplifier, to detect the voltage response due to the temperature 

gradient. The measurements are performed as a function of temperature and field in a Quantum 

Design Physical Property Measurement System (PPMS) equipped with a rotation stage. Example 

results are shown in Fig. 1. When the device stays at 5 K and the heater power of 1 mW is 

applied, the second harmonic signal across the W wire has a dominant linear-in-field component 

that is antisymmetric with the field (Fig. 1b), and this response has the angle dependence 

expected for the electric field generated by Nernst-Ettingshausen effect, 𝐸𝑥 =



𝜈𝐵𝑦∇𝑧𝑇 ∝ 𝐵 cos 𝛼, where 𝜈 is Nernst-Ettingshausen coefficient, 𝐵𝑦 is y-component of the field, 

and ∇𝑧𝑇 is temperature gradient along z-axis The second harmonic voltage is linear in the heater 

power up to 2 mW (in Fig. 1d), consistent with a thermal origin.  Given the lack of any magnetic 

response of the SiO2 substrate layer, we identify the observed voltage as originating from the 

Nernst-Ettingshausen effect in the thin W wire. The similar results can be found in Pt wire, as 

shown in SM. 

 

The detailed temperature dependence of the magnitude of the Nernst-Ettingshausen response is 

shown in Fig. 1c.  For a temperature sweep at constant heater power, we find that the response of 

the W wire is almost temperature independent.  In contrast, in the Pt wire the response magnitude 

at constant heater power decreases as temperature is lowered, falling below detectability at 

temperatures below 150 K, and becoming considerably larger as temperature is further decreased 

below 20 K.  

 

In this experimental geometry, the Nernst-Ettingshausen signal has previously been considered 

as approximately temperature independent7.  The Nernst-Ettingshausen coefficient is 𝜈 =
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temperatures in thin metal films4.  At low temperatures, the magnitude of the temperature 

gradient across the metal layer at a given heater power is inversely proportional to the electronic 

thermal conductivity 𝜅𝑒𝑙 ∼ 𝑇.  Thus, at a fixed heater power, the expected temperature 

dependence of 𝑉𝑁 ∝
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∝ 1, consistent with the data in the W wire.  



 

The observed nontrivial temperature dependence of the Nernst-Ettingshausen response in the Pt 

wire at fixed heater power is therefore surprising.  We consider two candidate mechanisms. One 

possibility is that the Kapitza thermal resistance8 at the various metal/dielectric interfaces in the 

stack, such as between the Pt wire and oxidized silicon substrate, may behave differently with 

temperature than in the W case, such that the temperature profile at fixed heater power is 

somehow significantly different between the Pt and W devices.  We perform Johnson-Nyquist 

noise thermometry measurements to test this concern, as described below.  Another possibility is 

that the enhanced Nernst-Ettingshausen response at low temperatures may be due to Kondo 

scattering by dilute ferromagnetic impurities in the Pt.  Prior studies in copper and gold wires 

containing magnetic impurities have shown a qualitatively similar upturn in Nernst-

Ettingshausen response at low temperatures9.  No obvious Kondo-like response in 𝑅(𝑇) of the Pt 

wire is observed, however (Fig. S2), implying that any magnetic impurity scattering is not 

contributing noticeably to the longitudinal resistive response.   

 



 

FIG. 1. (a) The device geometry in our measurements, showing the definition of field orientation 

angle 𝛼 in the x-y plane. The heating current runs through the Au wire and generates a 

temperature gradient perpendicular to the silicon wafer. (b) Field dependence of the second 

harmonic signal at 5 K in W wire for different field orientation angles. The 2ω signal at 0°/180° 

gives the largest responses, and the 2ω signal at 90° gives approximately no response, as 

expected for the Nernst-Ettingshausen effect. (c) Temperature dependence of the Nernst-

Ettingshausen voltage in W and Pt at fixed heater power. The Nernst-Ettingshausen voltage is 

quantified at 𝛼 = 0° through the difference of the second harmonic signal between 7 T and -7 T, 

divided by two. The heater power in (b) and (c) is 1 mW. (d) The Nernst-Ettingshausen voltage 

(quantified as the difference of the second harmonic signal between 3 T and 0 T at 𝛼 = 0°) is 

linear in heater power, as expected.  



 

To better understand the temperature profile of the device when applying a steady state 

temperature gradient with the heater, we measure the thermal noise in the Pt (W) wire to obtain 

the actual temperature change of the detector wire under different heater powers. Johnson-

Nyquist thermal noise10,11, originates from the random motion of charge carriers due to thermal 

excitation. As a consequence of the fluctuation-dissipation relation, the equilibrium thermal 

motion of carriers creates a fluctuating voltage on the terminals of an open-circuit resistive 

element, with a power spectrum density (PSD) given by 𝑆𝑉 = 4𝑘𝐵𝑇𝑅, where 𝑇 and 𝑅 is the 

temperature and resistance of the resistive element. As a result, measuring the noise power 𝑆𝑉 

and the resistance 𝑅, we can immediately obtain the temperature 𝑇 = 𝑆𝑉 4𝑘𝐵𝑅⁄ . When applying 

heater power, the temperature of the detector wire will unsurprisingly rise, leading to an increase 

in 𝑆𝑉. Considering that the resistance of the detector wire is approximately temperature-

independent below ~ 20 K (Fig. S2), the average temperature increase is 𝛥𝑇 = 𝛥𝑆𝑉 4𝑘𝐵𝑅⁄ .  

Fig. 2a shows histogram of inferred 𝛥𝑇 of the Pt wire when the cryostat temperature is fixed at 5 

K and a heating power 1 mW is repeatedly applied.  Fig. 2b shows that the temperature change 

𝛥𝑇 is slightly sublinear in the heater power, suggesting that at large heater powers some part of 

the thermal path is driven out of the linear regime of heat transport across the various interfaces.  

The linearity of the Nernst-Ettingshausen response with heater power (Fig. 1d) implies that the 

thermal conduction across the metal layer itself remains in the linear regime.  Fig. 2c shows a 

comparison of 𝛥𝑇 at different cryostat temperatures between the Pt and W wires when applying 

1 mW power.  The magnitude of 𝛥𝑇 decreases with the increasing temperature, indicating that 

thermal conduction of the whole device structure is temperature dependent, as expected when 

Kapitza-like thermal boundary resistances contribute to the thermal path. The key take-away is 



that the values of 𝛥𝑇 in Pt and W under the same heater conditions are quite similar, implying 

that the difference in temperature dependence of Nernst-Ettingshausen response (Fig. 1c) is not 

due to drastically different thermal transport profiles.  

 

 

FIG. 2. (a) Histogram of the average temperature increase 𝛥𝑇 for a Pt wire at cryostat 

temperature 5 K when a heater power of 1 mW is applied. (b) 𝛥𝑇 versus heater power for the Pt 

device.  The black dashed line is a guide to the eye assuming linear response at low heater 

power.  The measured trend is sublinear, suggesting that some component of the complete device 

thermal path is pushed out of the linear regime of heat transport at high heater powers. (c) 𝛥𝑇 at 

1 mW heater power versus cryostat temperature, showing that thermal conduction of the whole 

device changes with temperature, as expected in the presence of Kapitza-like thermal boundary 

resistance. The error bar in (b) and (c) are smaller than the data point markers. 

 

Nernst-Ettingshausen coefficients in such thin films have not been reported explicitly;  however, 

some control experiments in LSSE measurements17 allow an estimate of the value in Pt to be 

 1.5 ×  10−11 V/(TK) at 10 K (see SM for details).  It is worthwhile to do an order-of-magnitude 



comparison of the measured response with theoretical expectations for the magnitude of the 

Nernst-Ettingshausen coefficient.  Roughly evaluating the simple Fermi liquid expectation4,5 𝜈 =
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which may be estimated from the Drude conductivity 𝜎 and a free electron density 𝑛 by 𝜇 =

 𝜎/(𝑛𝑒).  In Pt, from the measured resistance and dimensions we find an electrical conductivity 

at 5 K of 𝜎 = 2.31 × 106 S/m.  A reasonable single-band free-electron model estimate for 

carrier density for Pt12 is 𝑛 ≈ 1.6 × 1028 m-3.  This leads to a mobility estimate of 9.02 × 10−4 

m2/(Vs).  From relativistic band structure calculations13, 𝐸𝐹 ≈ 10 eV.  The Nernst-Ettingshausen 

coefficient for Pt at 5 K should then be 𝜈 ≈ 1.1 ×  10−11 V/(TK). Similarly, for W, a free 

electron model estimate for carrier density14,15 is 𝑛 ≈ 2.1 × 1028 m-3, and the Fermi energy16 is 

𝐸𝐹 ≈ 9.75 eV.  The measured electrical conductivity of the W film at 5 K is 𝜎 =

1.15 × 107 S/m, giving a mobility estimate of 3.42 × 10−3 m2/(Vs).  The Nernst-Ettingshausen 

coefficient for W at 5 K is then estimated to be 𝜈 ≈ 4.3 ×  10−11 V/(TK). 

 

Extracting the Nernst-Ettingshausen coefficient from the experimental data requires knowledge 

of the temperature gradient across the metal layer, which we cannot measure directly. A thermal 

model with reasonable values for material parameters can act as an order-of-magnitude point of 

comparison with the theory estimates of the Nernst-Ettingshausen coefficient above.  Accurate 

thermal models require the temperature-dependent thermal conductivity of all the involved 

materials as well as an understanding of interfacial thermal effects.  We can estimate the 

electronic thermal conductivity from the measured electrical conductivity of the metal films 

using the Wiedemann-Franz law. We take the phonon contribution to be negligible at low 



temperatures. We neglect the Ti adhesion layer between the Au and the SiOx isolation layer. We 

discuss these thermodynamic parameters in detail in the SM. 

 

Much of the total thermal resistance at low temperatures is expected to come from material 

boundaries8. Of particular interest are the metal/dielectric interfaces in the device stack: the 

boundary between the SiO2 of the substrate and the evaporated Pt (W), the boundary between the 

Pt (W) and SiOx isolation layer, and the boundary between the SiOx and the Au heater.  We 

include these thermal boundary resistances in the model. Unfortunately, even a crude estimate of 

such interface effects is difficult: phonon boundary resistances depend strongly on the fabrication 

method, and good comparisons in the literature are sparse8. In the model we treat all 

metal/dielectric interfaces to have the same boundary resistance (valid to within an order of 

magnitude), which we vary to duplicate the experimentally measured Pt (W) temperature 

increases at given total heater powers in Fig. 2c.   The thermal boundary resistances found at 

each substrate temperature (see Table S1) are the same order of magnitude as those previously 

reported8 and grow with decreasing temperature as expected.  From the models we calculate the 

amount of heat that passes through the Pt (W), and, using the Pt (W) thermal conductivity and 

thickness, we find the temperature gradient across the metal layer.  The model geometry and a 

representative temperature profile are shown in Fig. 3. 

 

The finite-element model also confirms that a uniform gradient approximation perpendicular to 

the plane of the device is valid, as the total heat current through the sides of the Pt (W) is roughly 

1 μW or less in all cases. Note the Pt (W) wire is only 800 μm long while the Au heater wire is 



1300 μm in length, so at a total heater power of 1 mW, only about 0.615 mW of the heater power 

is directed toward the metal film. 

 

The data in Table S1 and the device geometry are then used to estimate the Nernst coefficient 

using Eq. (1) 

𝜈 ~ 
𝐸𝑥
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                                                    (1) 

where 𝑞𝑏 is the heat current through the bottom of the metal, 𝜅𝑃𝑡(𝑊) is the Pt (W) thermal 

conductivity calculated from the measured electrical conductivity, and 𝑙 and 𝑤 are the length and 

width of the Pt (W) wire. For example, the order of magnitude of the Nernst coefficient at 

substrate temperature 5 K (Pt temperature 6.8K) is 6.9 × 10−11 V/(TK).  Table S1, S2 show the 

results for the Pt and W devices in this context. 

 

 

FIG. 3. (a) Map of temperature over the cross section of the Pt device at substrate temperature 

10 K. (b) example temperature profile vs z within the device at substrate temperature 10 K; the 



steep interfacial temperature changes result from thermal boundary resistances.  (c) Estimated 

Nernst coefficients for Pt and W at select temperatures. 

 

In summary, we measure the Nernst-Ettingshausen voltage in thin film devices based on Pt and 

W in the geometry commonly used for local spin Seebeck measurements on magnetic insulators.  

While the W response is approximately temperature-independent, as expected, the Pt response 

shows a marked increase at low temperatures.  Johnson-Nyquist noise thermometry demonstrates 

that this difference between the responses of the metals is not a result of some difference in 

thermal path in the devices, but a property of the metals themselves.  We therefore suggest 

magnetic impurity scattering as the likely explanation for the Pt temperature dependence.  A 

finite element thermal model confirms that both metals show Nernst-Ettingshausen coefficients 

consistent to an order of magnitude with simple Fermi liquid theoretical estimates.  These 

measurements provide useful bounds for the Nernst-Ettingshausen response as a potential 

confounding effect in SSE measurements, and the Pt results demonstrate that care must be taken 

in the assumption that Nernst-Ettingshausen response for metals is constant at low temperatures.  
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S1. Noise measurements 

For the noise measurements, we used standard cross correlation methods1-3 to measure the 

voltage noise spectra and corresponding voltage noise power spectral density. The programmable 

voltage source (NI-DAQ 6521) followed by two low-pass LC filters (330 μF and 22 mH for the 

capacitance and inductance, respectively), providing a clean DC power source for the heater 

wire. The samples were mounted on a home-built low frequency measurement probe and loaded 

into the Quantum Design PPMS. Two pairs of twisted wires shielded with stainless steel braided 

sleeving were used to apply the bias to the heater, collect the noise signal from the Pt (W) wires, 

and reduce magnetic field induced noise. The sample, LC filters, transmission lines and first pair 

of pre-amplifiers were shielded by a Faraday cage to reduce environmental noise. The voltage 

noise across the Pt (W) wire is collected by two identical amplifiers chains, each consisting of 

two voltage preamplifiers (NF LI-75A, gain = 100, and Stanford Research SR-560, gain = 100). 

Two amplified voltage signals are recorded by a high-speed oscilloscope (Picoscope 4262) at a 

sampling rate of 5 MHz. Each spectrum is calculated using cross correlation of two voltage 

signals containing 400,000 data points, and the spectrum is averaged for 300 times in one 

measurement. 

 

 

 

 

 



 

S2. Noise measurement calibration 

The thermal noise of a resistor at different temperatures were used to calibrate the setup. The 

voltage noise power spectral density found from the cross-correlation can be expressed as: 

𝑆𝑉
𝑚 = 𝑆𝑉

𝑎 ×  𝐴 =  4𝑘𝐵𝑇𝑅 ×  𝐴 

where 𝑆𝑉
𝑎 = 4𝑘𝐵𝑇𝑅 is the actual Johnson-Nyquist voltage noise power at the resistor 𝑅, 𝑆𝑉

𝑚 is 

the measured voltage noise power and 𝐴 is a coefficient containing the squared amplifier gain 

and a numerical factor related to the cross-correlation parameters of data points of each time 

series, the sampling frequency and the Hanning window for the Fourier transform. 

The thermal noise spectra for a chip resistor of 33.2 Ω at 300K, 150K, and 30K are shown in Fig 

S1a. The scattered dots are the raw 5 Hz bandwidth spectrum and lines are the averaged 

spectrum over 1 kHz bandwidth. The spectrum from 100 kHz to 200 kHz is almost flat, so we 

used the mean value of this region of the spectrum as the measured voltage noise power 𝑆𝑉
𝑚. To 

find the coefficient 𝐴, we plotted the mean values of 𝑆𝑉
𝑚 versus 𝑆𝑉

𝑎 in Fig S1b. The noise power 

at different temperatures fall on the fitting straight line, showing that 𝑆𝑉
𝑚  is strictly linearly 

proportional to 𝑆𝑉
𝑎. A linear regression (shown by the red line) finds the relation is: 

𝑆𝑉
𝑚 = 7.492 ∗ 108 × 𝑆𝑉

𝑎 + 1.138 ∗ 10−11 𝑉2/𝐻𝑧 

The intercept comes from noise background of the measurement system, which brings a constant 

offset to noise spectrum. 



 

Figure S1. Noise measurement setup calibration using the resistor’s thermal noise. (a) Thermal 

noise spectra for the resistor of 33.2 Ω from 100 kHz to 200 kHz, at 3 selected temperatures: 300 

K (red), 150 K (green), and 30 K (blue). The scattered dots represent the raw spectra with 5 Hz 

resolution bandwidth, and solid lines are for the spectra averaged over 1 kHz bandwidth. (b) The 

measured voltage noise power dependence on the actual voltage noise power given by 4𝑘𝐵𝑇𝑅. 

Linear fitting is used to obtain the effective gain of whole system, and we obtained 7.492 × 108 

for our setup. 

 

 

 

 

 

 

 



S3. Noise spectrum analysis 

The raw noise spectrum rolls off at high frequencies due to capacitance in the wiring and the 

resistance of the sample. Using standard treatment of capacitive attenuation, the noise at the 

input end of the first two preamplifiers is: 

𝑣2 = 𝑣𝑛𝑎
2 +

 𝑣𝑠
2

1 + (𝑅𝑠𝐶𝑝𝜔)
2 

where 𝑣𝑠 is the actual voltage noise across the sample, 𝑅𝑠 is the sample resistance, 𝐶𝑝 is the 

capacitance, 𝜔 is the frequency, and 𝑣𝑛𝑎 is the input noise from the preamplifiers, which would 

be eliminated after cross-correlation. This RC model is used to fit the spectrum.  

 

 

 

 

 

 

 

 

 

 

 



S4. The resistance of the detector wires at low temperatures. 

Fig. S2 shows the temperature dependence of the resistance of the W wire and Pt wire, 

respectively. Within the range of 5 K to 15 K, the resistance can be considered as approximately 

independent with the temperature. 

 

Figure S2. Temperature dependence of the resistance of tungsten wire (a) and platinum wire (b), 

respectively. 

 

 

 

 

 

 

 

 



S5. Thermal model parameters and results 

The thermal transport model was constructed in COMSOL Multiphysics 6.1 Build 252 with the 

Heat Transfer Module. The purpose of this model is not to infer rigorous values for the Nernst-

Ettingshausen coefficients, as systematic uncertainties in the thermal path are large.  The model 

does provide a consistency check on the magnitude of the measured voltages. 

We assume device dimensions are unchanged from those fabricated and measured at room 

temperature, since thermal contraction effects are all much smaller than other systematic 

uncertainties in the model. 

The thermal conductivity of metals can vary with wire thickness and fabrication techniques, so 

literatures values are not necessarily comparable. Instead, we used the Wiedemann-Franz law to 

calculate the electronic contribution from the measured resistivity of the devices. 

The thermal conductivity of SiO2 and Si are very different and can depend on thickness, though 

Ref [4] suggests evaporated SiO2 thickness is beyond size effects. Our Si value comes from Ref 

[5] while our SiO2 (used for both the evaporated SiOx layer and the thermal oxide on the Si 

substrate) value comes from Ref [6]. 

We insert thermal boundary resistances at all metal/dielectric interfaces and take them to have 

the same resistance, this should be accurate to within an order of magnitude. In COMSOL this is 

modeled using a Thermal Contact node with the Equivalent thin resistive layer setting. The 

nodes resistance is then varied so that the model predicts the same temperature for the Pt (W) as 

is measured, so the model and real device have the same total thermal resistance to within an 

order of magnitude.  These boundary resistances limit the thermal path, so that the temperature 

dependence of the bulk SiO2 and Si are comparatively minor influences. 



substrate 

T (K) 

average 

TPt (K) 

Pt thermal 

conductivity 

(W/(mK)) 

Rmetal/dielectric 

(Kmm2/W) 

Heat 

through 

top of Pt 

(mW) 

Heat 

through 

bottom of 

Pt (mW) 

Estimated 

temperature 

gradient 

(K/m) 

Nernst 

voltage 

(nV) 

Estimated Pt 

Nernst 

coefficient, v 

(V/(TK)) 

5 6.74 0.476 24 0.514 0.513 135 × 103 22.46 2.38 × 10-11 

8 8.90 0.628 9.9 0.550 0.550 109 × 103 17.24 2.26 × 10-11 

10 10.6 0.751 6.1 0.578 0.578 96.2 × 103 12.95 1.92 × 10-11 

Table S1. Substrate T is set in the experiment, average TPt is measured, thermal conductivity is 

calculated, Rmetal/dielectric tunes the model to give the measured average TPt, heat through 

top/bottom of Pt is calculated from the model, temperature gradient and Nernst coefficient are 

then calculated using Eq. 1. The Nernst voltage at 8 K was estimated as a linear interpolation of 

the 7 K and 10 K Nernst voltages. 

 

substrate 

T (K) 

average 

TW (K) 

W thermal 

conductivity 

(W/(m K)) 

Rmetal/dielectric 

(K mm2/W) 

Heat 

through top 

of W (mW) 

Heat 

through 

bottom of 

W (mW) 

Inferred 

temperature 

gradient (K/m) 

Nernst 

voltage 

(nV) 

Estimated W 

Nernst coefficient, 

v (𝑉/(𝑇 𝐾)) 

5 6.5 2.28 20 0.521 0.521 28.6 × 103 31.03  15.5 × 10-11 

10 10.7 3.75 7.0 0.559 0.558 18.6 × 103 33.36 25.6 × 10-11 

Table S2. The W equivalent of Table S1. 

 

 

 



S6. Nernst-Ettingshausen estimation from literature results 

Ref [7] measured the ordinary Nernst-Ettingshausen response in the longitudinal spin Seebeck 

effect geometry. Although no specific value of Nernst-Ettingshausen coefficient 𝜈 is reported, 

we can estimate 𝜈 from the figure. The sample consists of a single-crystalline MgO (5 mm long, 

1 mm wide and 1 mm thick) and a Pt thin film (5×1 mm2, 7 nm thick). A temperature gradient, 

∇𝑇, was generated across the whole device by applying the temperature difference ∆𝑇 between 

the top of the Pt film and the bottom of MgO. The voltage difference 𝑉 is measured between the 

ends of the Pt film while applying an in-plane field, 𝐵. In accordance with the origin of ordinary 

Nernst effect and device geometry, 𝑉 is given by 𝑉 = 𝐸𝑁𝐿𝑥 = 𝜈𝐵∇𝑇𝑃𝑡𝐿𝑥. In this configuration, 

the temperature gradient in the Pt film is different from that in the MgO due to the difference in 

the thermal conductivities.8 From the continuous condition at the interface, ∇𝑇𝑃𝑡 =

(𝜅𝑀𝑔𝑂 𝜅𝑃𝑡⁄ )∇𝑇𝑀𝑔𝑂 ≈ (𝜅𝑀𝑔𝑂 𝜅𝑃𝑡⁄ )(∆𝑇 𝐿𝑧⁄ ). 𝜅𝑃𝑡 is calculated with the Wiedemann-Franz law, 

using electric conductivity in our measurement, and is 0.75 W/(mK) at 10 K. 𝜅𝑀𝑔𝑂 is estimated 

as 100 W/(mK) in the literature9. 

At 𝑇 = 10 K, 𝑉̃/𝐵 in the Fig. 1f reads 10 nV/(TK), where 𝑉̃ is defined as 𝑉/∆𝑇. Thus, 𝜈 =

(𝜅𝑃𝑡 𝜅𝑀𝑔𝑂⁄ )(𝐿𝑧 𝐿𝑥⁄ )(𝑉̃ 𝐵⁄ ) =1.5×10-11 V/(TK). 

 

 

 

 

 



 

Figure S3. Field dependence of the second harmonic signal in W wire at different temperatures. 

Obviously, the magnitude of the Nernst-Ettingshausen voltage doesn’t change a lot. 

 

 

Figure S4. Field dependence of the second harmonic signal in Pt wire at different temperatures. 

 

 



 

Figure S5. (a) Field dependence of the second harmonic signal in Pt wire at 5K with different 

rotation angles. A much stronger field-symmetric contribution is observed due to parasitic effects 

in the measurement setup. (b) Antisymmetric component of the second harmonic signal in Pt 

wire at 5K derived from (a) shows expected angular dependence.  
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