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Abstract

The application of machine learning and deep learning techniques, including the wide use of non-ensemble, conven-
tional neural networks (CoNN), for predicting various phenomena has become very popular in recent years thanks to
the efficiencies and the abilities of these techniques to find relationships in data without human intervention. How-
ever, certain CoNN setups may not work on some datasets, especially if the parameters passed to it, including model
parameters and hyperparameters, are arguably arbitrary in nature and need to continuously be updated with the need
to retrain the model, especially if the additions of new features render old models obsolete. This concern can be
partially alleviated by employing committees of neural networks that are identical in terms of input features and ini-
tialized randomly and “vote” on the decisions made by the committees as a whole. Yet, members of the committee
have similar architectures and features passed to them, making it possible for the committee members to “agree” on
identical sets of weights and biases for all nodes and edges. Members of these committees also cannot be expanded
to accommodate new features and entire committees must therefore be retrained in order to do so. We propose the
Random Hivemind (RH) approach, which helps to alleviate this concern by having multiple neural network estima-
tors make decisions based on random permutations of features and prescribing a method to determine the weight of
the decision of each individual estimator. The effectiveness of RH is demonstrated through experimentation in the
predictions of hazardous Solar Energetic Particle (SEP) events by comparing it to that of using both CoNNs and the
aforementioned setup of committees identical in input features in this application. Our results demonstrate that RH,
while having a comparable or better performance than the CoNN and a Committee-based approach, demonstrates a
lesser score spread for the individual experiments, and shows promising results with respect to capturing almost every
single flare instance leading to SEPs.

Keywords: Sun: activity, Sun: particle emission, solar-terrestrial relations, Computing methodologies: boosting,
machine learning, neural networks
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1. Introduction

The prediction of Solar Energetic Particle (SEP) events and the understanding of their precursors represent major
challenges in heliophysics and space weather from both the operational and the research perspectives. Increased
fluxes of SEPs are of interest to various users, from governmental and private space weather agencies to airlines and
power grid operators. Routine daily forecasting and short-term warning and alert systems for Solar Proton Events
(SPEs) were implemented by the Space Weather Prediction Center (SWPC) at the National Oceanic and Atmospheric
Administration (NOAA, Balch, 1999, 2008). The performance of the operational forecasting systems is still far from
predicting every single SEP event (Bain et al., 2021).

SEP events are initiated by solar flares and coronal mass ejections (CMEs, Reames, 2021). Statistical relations
between the flare soft X-ray properties (such as the peak ratios of the 1-8Å and 0.5-4Å fluxes, which is proportional
to the flare temperature computed in a single-temperature approximation, Ryan et al., 2012; Sadykov et al., 2019)
and the consequent CMEs and SEPs have been known for a long time. Solar flares are classified in terms of the
maximum soft X-ray (SXR) flux observed by the NOAA Geostationary Operational Environmental Satellite (GOES)
Network in the 1-8Å wavelength range. In this classification, the A-class flares have the maximum soft X-ray flux
greater than 10−8 W/m2; for the B, C, M, and X-class flares, the SXR is greater than 10−7, 10−6, 10−5, and 10−4

W/m2 correspondingly. In particular, it was found that the lower the soft X-ray class, the greater the difference in
the peak temperatures between the SEP-associated and non-SEP flares, with lower temperatures corresponding to the
SEP-associated flares (Garcia, 1994). These relations were quantified and utilized for forecasting SEPs using a larger
number of flare events (Garcia, 2004). The results were also reproduced later (Kahler and Ling, 2018), where the
authors attempted to predict the SEP-associated flares using the k-nearest neighbors machine learning algorithm and
neural networks separately for the Western and Eastern hemispheres of the Sun. Although the observed relationships
are clear, the exact reason why the lower-temperature flares are more associated with SEPs remains largely unknown
(Kahler and Ling, 2018). In addition, the durations and temperatures of the flares were found to be related statistically
to the properties of CMEs (Ling and Kahler, 2020; Kahler and Ling, 2022). Thus, the flare duration and temperature
can be used to constrain SEP parameters (Kahler and Vourlidas, 2013) or serve as a basis for establishing empirical
models for SEP forecasting (Richardson et al., 2018). The Empirical model for Solar Proton Event Real-Time Alert
(ESPERTA) forecasting tool (Laurenza et al., 2009, 2018) also utilizes the integrated SXR intensities and integrated
radio intensities at 1 MHz to provide short-term predictions of SPEs with proton energy higher than 10 MeV and
100 MeV.

The extension of these works is the employment of machine learning (ML) and deep learning techniques, in partic-
ular, for forecasting SEPs based on the properties of the preceding (parental) solar flares. For example, Aminalragia-
Giamini et al. (2021) employed neural networks trained on the time series of the SXR fluxes observed during the solar
flares directly. The authors found that the model can predict a large majority of SEP-associated flares (higher than
85%) during the period of 1988-2013 while maintaining a low false-positive rate. Boubrahimi et al. (2017) analyzed
the correlations among the GOES soft X-ray and proton flux time series and employed the classification decision tree
model for predicting the 100 MeV SPEs. Lavasa et al. (2021) analyzed a variety of ML algorithms such as random
forest, neural networks, extremely randomized trees, and extreme gradient boosting. They concluded that, among the
soft X-ray parameters, fluence is the most important for predicting SEPs.

The utilization of Conventional Neural Networks (hereafter CoNNs, defined in this work as a single, i.e., non-
ensemble, neural network of any architecture) for space weather prediction purposes is very common in literature
(e.g., Torres et al., 2022; Nishizuka et al., 2020, etc.). While CoNNs are very flexible and malleable in how they train
on new data, the parameters they provide for the aspects, such as the size and shape of a given model, hyperparameters,
and model selection, may need to be adjusted to be used on other data sets. This comes with the consequence of a
requirement to continuously retrain models as data becomes increasingly outdated or if new features are to be added.
A model’s number of epochs and learning rate ideally need to be also adjusted based on the features fed into the
model. In particular, the number of epochs low enough and the learning rate high enough can help to avoid overfitting
the model to noise data (Afaq and Rao, 2020; You et al., 2019), yet one needs to make sure that the model is trained
to a sufficient extent in general to learn the patterns in the data. This conflict may lead to a particular combination of
an epoch count and learning rate for an entire model being sub-optimal, as a single combination may not work for
all features, especially if some are more deterministic of the true labels of a given data set than others. Compromises
could be made to adjust these parameters, but said compromises may, again, cause a given model to underfit based
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on some parameters and overfit based on others. One of the strategies to counter overfitting, in general, is to employ
ensemble learning (Cunningham, 2000).

Another challenge related to the SEP prediction is that these events are rare and will represent minority-class events
for the classification problem. For example, the ratio of the number of days with the enhanced proton flux with the
energy greater than 10 MeV and the particle flux greater than 10 pfu (one particle flux unit, pfu, is equal to one particle
per cm2 per second per steradian) to the number of days with no enhanced flux is ∼ 1/23 for Solar Cycles 22-24 (Ali
et al., 2023). This ratio is even smaller (∼ 1/34) for Solar Cycle 24 alone (Sadykov et al., 2021). It was concluded
for the ESPERTA model (Stumpo et al., 2021) that the performance of the algorithm (specifically, the False Alarm
Rate, FAR) depends on the class-imbalance ratio in the train data set. Various techniques can be implemented to deal
with class-imbalanced data, such as oversampling, undersampling, and misclassification weights (Ahmadzadeh et al.,
2021), and using synthetic data (Chen et al., 2021). In addition to the traditional data-centric approaches to dealing
with class imbalance, ensemble classifiers can be employed in such problems (Galar et al., 2012). With respect to
the problem of the prediction of SEPs, promising results were previously obtained employing neural network-based
Committee ensembles (Aminalragia-Giamini et al., 2021) and random forest ensemble algorithms (Lavasa et al.,
2021).

In our previous work, we presented the application of the random forest ML algorithm for predicting SEPs and
tested various class-imbalance treatment techniques (O’Keefe et al., 2022). In this work, we expand our investigation
to new types of ML algorithms, including Conventional Neural Networks (CoNN), an ensemble of CoNNs following
a voting approach (Committee, Aminalragia-Giamini et al., 2021), and introduce a weighted consensus that we call
a Random Hivemind (RH). Both considered ensemble approaches are so-called “bagging” ensemble classifiers when
individual ensemble members do not depend on each other and deterministically contribute to the classification deci-
sion. Investigation of the relative performance of the algorithms on the given data set of flares associated with SEPs is
the primary focus of this paper. The paper is structured as follows. Section 2 describes the data preparation employed
in this paper, namely the processing of the soft X-ray data, the association of flares and SEPs, and the preparation of
data sets ready for machine learning (ML) analyses. Section 3 describes the ML algorithms tested in this work. The
results and discussion are presented in Section 4 and followed by the conclusion in Section 5.

2. Data Preparation

The solar soft X-ray (SXR) emission observed by the GOES satellites in 0.5-4 Å and 1-8 Å wavelength channels
can be represented under a single-temperature plasma approximation by two parameters, namely the plasma temper-
ature (T ) and its emission measure (EM). We utilize the legacy data set of the T and EM values estimated using the
Temperature and Emission Measure Based Background Subtraction algorithm (TEBBS, Ryan et al., 2012; Sadykov
et al., 2017) and collected in the Interactive Multi-Instrument Database of Solar Flares (IMIDSF1, Sadykov et al.,
2017) for the 2002-2017 time period. In addition to peak values of the temperature and emission measure, Tmax and
EMmax, we utilize the background-subtracted flare classes (S XRmax), flare durations, the times of the peaks of Tmax,
EMmax, and S XRmax relative to the flare start and end times, and the observed disk X- and Y-coordinates of the host
flare. In total, this data processing gives 12 parameters for every solar flare. For some flares, due to the complexity of
the X-ray emission variations and high background noise, this algorithm failed (producing unrealistic Tmax ≥ 100 MK,
and negative time differences), and such flares were excluded from our data set. The total number of flares included
in our analysis is 18311. Among these are: 5 A-class, 6919 B-class, 10074 C-class, 1207 M-class, and 106 X-class
flares according to the SXR classification. These flare classes were calculated after subtracting the SXR background.
As illustrated in Figure 4c of Sadykov et al. (2019), the background subtraction mostly affects the flare class of the
weak BC-class flares, yet leading to more reliable behaviors of T and EM curves.

To associate the flares with the SEP records, we utilize the list of the Solar Proton Events Affecting the Earth
Environment2 provided by the NOAA Space Environment Services Center. This data set represents the SEP events
with the peak flux of >10 MeV protons higher than 10 pfu. A total of 64 flares from our list were associated with
the SEP events and 18247 flares were without SEPs (non-SEP flares), providing an extreme class-imbalance ratio of

1https://data.nas.nasa.gov/helio/portals/solarflares/
2https://umbra.nascom.nasa.gov/SEP/
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Figure 1: The locations of the SEP and non-SEP flares in the data set on the solar disk. Gray dots mark the solar flares that did not produce SEP
events, and red dots mark the flares that resulted in the SEP events.

1/285. In terms of the S XRmax parameter, 8 of the SEPs correspond to the C-class flares, 36 — to M-class, and 20 —
to X-class flares. The list of the studied flares is publicly available at the Solar Energetic Particle Prediction Portal
(SEP3) website3. We note here, that the number of SEP events considered in some other works on the SEP prediction
problem (e.g., Papaioannou et al., 2016; Lavasa et al., 2021) was significantly larger (314 and 257, correspondingly)
than in the current work. Both of these studies consider a longer time span (events detected during 1984-2013 and
1988-2013) which led to larger statistics of SEP events. Also, in the current work, we omit from consideration the
SEP events which (1) do not have an association with the flare event, and (2) do not have the coordinates of the host
flare event identified according to the GOES flare catalog. Both restrictions are leading to the loss of 15 SEP event
records, leaving us with 64 events in total. Figure 1 illustrates the locations of the SEP and non-SEP flares on the
solar disk. It is evident that the SEP flares have a preference to originate in the Western hemisphere, which has a more
direct magnetic connectivity to Earth, although some SEP flares have originated close to the Eastern limb as well.

The distribution of the SEP-associated and non-SEP solar flares in the diagrams of the flare temperature vs. the
soft X-ray peak flux, the flare duration vs. the emission measure, and the flare rise time vs. the flare decay time
are presented in Figure 2. Here, the flare rise time is determined as the time of S XRmax minus the flare start time,
and the flare decay time is determined as the flare end time minus the time of S XRmax. One can see that the flares
that resulted in SEPs are not distributed randomly, even among the flares of the same SXR peak fluxes. Specifically,
Figure 2a indicates that SEP-associated flares are colder on average among the flares with the same SXR peak flux (or
the flare class). A similar dependence was found by Garcia (1994, 2004). While no obvious pattern is observed for
the parameters presented in Figures 2b and 2c, a more detailed investigation is required to understand their relations
to SEP-associated flares. For the ML analysis, we subdivide the data set into training and testing subsets; the latter
contains 30% of the full dataset. The train-test separation is randomly repeated ten times for every machine-learning
experiment presented in this paper.

3. Machine Learning Methodology

Three neural network-based approaches are considered in this paper for the problem of prediction of SEP events.
The first is the conventional neural network (hereafter CoNN), which represents a single fully connected neural net-
work architecture. For ensemble deep learners, two more neural network-based approaches are constructed. The first

3https://sun.njit.edu/SEP3/datasets.html
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Figure 2: (a) Distribution of the SEP and non-SEP flares in the soft X-ray flux at 1-8 Å and flare peak temperatures diagram, (b) the flare duration
and the peak emission measure diagram, and (c) the flare rise time and flare decay time diagram. Black dots mark the solar flares that did not
produce SEP events, and red dots mark the flares that resulted in the SEP events.

ensemble approach is the Committee scheme employed by Aminalragia-Giamini et al. (2021), which involves several
neural network estimators with the same input features and input layer shapes. The second ensemble approach is a
Random Hivemind (RH) built using random down-selection of the flare characteristics from the training data as input
features.

There are several motivations to consider the development of the RH approach. First, the RH allows for individual
estimators to be grown individually to accommodate additional features without the need to retrain the entire ensemble.
By requiring some, but not all, of the estimators to be retrained, this may reduce the amount of time it takes to
retrain deep learning models. Second, the RH not only takes advantage of the ability of ensemble learning to counter
overfitting in general (Cunningham, 2000), but also adjusts the training epoch counts, learning rates, and voting
weights of individual estimators depending on the importance of the features used in these estimators. This allows RH
to accommodate the risk of overfitting by reducing the chances of less important features being included or influencing
the prediction.

For the series of tests presented in this paper, we consider two RH realizations that have several differences. First,
the realizations are using a different number of input features. The first RH implementation (hereafter RH.v1) uses
the square root of the total number of features, rounded up, as the number of input features for each neural network
within an RH. The second implementation (hereafter RH v2) uses half of the features as input. The layout between
estimators remains unchanged within each Committee. In some sense, the semi-random selection of features (the
probability of selection is yet proportional to their weight; see below) is inspired by the Random Forest ensemble
learning algorithm (Breiman, 2001). Correspondingly, one has 12 features entering the CoNN or each committee
member, and 4 or 6 features selected using the procedure described below entering the RH classifier. Each ensemble
setup (i.e. Committee, RH v1, and RH v2) has 10 neural network estimators. The architectures of the utilized ML
methods are schematically illustrated in Figure 3.

The random permutations of features are chosen by first computing the χ-squared and mutual information gain
statistics between the features and the SEP presence to assign scores to each feature based on how significant each is
in determining whether or not a given flare caused a SEP event. Each feature’s score is calculated using this formula:

si =

√
χ2

i + κi (1)

Here, si is a given feature’s total score, χ2
i is the χ-squared statistic between a given feature and SEP presence,

and κi is the mutual information gain statistic between a given feature and SEP presence. After each feature is scored
based on this formula, the scores are normalized so that the sum of these scores (“feature weights”) equals one. The
feature weights are then used as the probabilities that given features with their respective weights will be chosen for a
given RH estimator.
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Figure 3: The schematic representation of the layouts of the Conventional Neural Network (CoNN), Committee Network, and Random Hivemind
Network (RH). The numbers in parentheses for the linear layers indicate the number of neurons in the layer, and the number in parentheses for the
dropout layer indicates the probability of each connection/weight being dropped from the training procedure.

Each neural network, including CoNNs, Committee estimators, and RH estimators, has an input layer equal to
the number of features being tested by the estimator, a dense layer with an input and output shape of 10, a dropout
layer with a probability of 0.2, and an output layer with an output shape equal to the number of predicted features.
The networks are implemented using the Skorch library (Tietz et al., 2017). The numbers of epochs and learning
rates for all CoNN and Committee setups are nepochs = 500 and α = 0.001 following the hyperparameter optimization
discussed later. In addition, RH boosts its epoch counts and learning rates using these formulae:

nepochs = 500 × (2 − x) (2)

αRH v1 = 0.001 ×
[
1 + ln

(
ex − x
η
+ 1

)]
(3)

αRH v2 = 0.001 × (0.5 + x) (4)

Here, x is the total sum of feature weights for a given estimator, nepochs is the number of epochs during the training
process, α is the learning rate, and e is the base of the natural logarithm. The parameter η = exΣx

nfeatures
, where nfeatures is the
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number of features selected for the given estimator, and Σx is the total weight of all features in all estimators within
the ensemble. The RH classifier is tested twice, with α equal to α1 in the first test and α2 in the second. Outcomes are
predicted by putting prediction data through each of the estimators constructed during the training phase and seeing
what each estimator chooses as a predicted result. Each committee considers all results by all estimators as equal,
using a simple plurality vote to determine which class a given datum belongs to. Each RH considers each estimator’s
value in a classification vote as equal to the sum of the feature weights said estimator’s input features have. For all
neural networks, including CoNNs, Committee estimators, and RH estimators, the Adam optimizer (Kingma and Ba,
2015) is used, the cross-entropy loss function is used with balanced class weights, and overfit prevention measures
including dropout layers with probabilities of 0.2 and data shuffling are used.

Let us consider an example of feature weights in more detail. If a given flare’s SXR peak flux had a feature weight
of 0.25, its emission measure peak value had one of 0.1, its temperature peak value had one of 0.05, and its duration
had one of 0.01, and the total sum of all the feature weights was 1, the peak SXR flux would have a probability of
0.25 of being chosen to be in an RH estimator, the emission measure peak flux would have one of 0.1, etc. A CoNN
and a Committee, however, would consider all available features equally as input features. During training, an RH
estimator that uses all four of these parameters would go through 15 epochs with learning rates of approximately
αRH v1 = 0.00162 in the first test and αRH v2 = 0.00186 in the second. A CoNN and a Committee estimator in
this example, however, would each only go through 10 epochs with a learning rate of α = 0.001, since they cannot
automatically calculate these parameters based on feature selection. When deciding, each RH estimator would use
the sums of its feature weights as values, so an estimator with these four parameters would have a value of 0.5 when
voting. Each Committee estimator would have a value of 1, since, again, no mechanism exists to determine how to
calculate these figures based on feature selection.

Tuning of hyperparameters is of known importance for machine learning. For the neural network-based ap-
proaches, hyperparameters may include those related to the network architecture (number of hidden layers, neurons
in each layer, activation functions, etc.) and the training process (number of epochs, learning rate, optimizer, and
regularization parameters, etc.). The parameter space increases even further if considering ensemble approaches. Ex-
ploring the entire parameter space is very costly. Therefore, in this work, we restrict the model architectures to those
illustrated in Figure 3, leaving only the training process-related parameters for optimization. We also notice that the
ensemble approaches used in this work have the common CoNN structure as their basis; therefore, optimizing the
training for CoNN should deliver the optimal training for the ensemble approaches as well. We explore a grid of the
learning rates of α = {0.01, 0.0025, 0.001, 0.0005}, and epoch counts up to nepochs = 2000, with 10 experiments per
each parameter pair, to find the optimal, yet not relatively costly, CoNN training procedure.

Our results for optimization of CoNN with the α = 0.001 are illustrated in Figure 4. We note here that the further
decrease of the learning rate to α = 0.0005 did not lead to an increase in the HSS and TSS scores. As one can see, the
CoNN performance roughly increases with the increase in the number of epochs. We decided to select nepochs = 500
for the prediction experiments: as evident, at this number of epochs trained, the classifier’s TSS score starts to decrease
significantly for the first time. It is also a relatively low number of epoch counts which provides a possibility to perform
a massive number of runs for CoNN and ensemble approaches while evaluating their performance. However, we note
here that further fine-tuning of the hyperparameters is possible for this problem.

Overall, the hyperparameters of the RH algorithm include the architectures of the individual estimators, the im-
plementation of the particular weighting scheme, feature importance estimation, the number of features to use in each
estimator, and the adjustment of the RH training parameters, etc. The RH implementations considered here were only
constructed to demonstrate a proof-of-concept for RH. In particular, we show further that RH v2 is performing better
compared to RH v1 on the problem of SEP prediction. This illustrates that different realizations of the RH algorithm
may work differently on the same data set and that a careful tuning of RH parameters and options is required to
construct the most optimal model for the particular task.

The CoNN and each ensemble member have two output channels predicting the likelihood of the entry belonging
to the positive (SEP-associated) or the negative (non-SEP) class. For the binary classification, the class of the larger
likelihood is chosen as the prediction. To issue the ensemble prediction, an RH classifier chooses the result that
receives the highest number of weighted votes. We demonstrate the individual elements of the confusion matrix (true
positive predictions, T P, true negative predictions, T N, false positive predictions, FP, and false negative predictions,
FN) for each approach averaged over 50 random train-test splits. We also use various metrics to compare binary
classification predictions including accuracy, true skill score (TSS), Heidke skill score 2 (HSS), precision, and recall.

7



Figure 4: Median (red) and median absolute deviation (orange) performance of the CoNN for the different number of the training epochs and the
learning rate of α = 0.001. Panel (a) corresponds to the TSS score, and panel (b) corresponds to the HSS score. Gray points indicate the results of
individual experiments. black dotted line indicates the number of epochs considered as optimal and is used for the study.

For a definition of these metrics, see, for example, Bobra and Couvidat (2015) and references therein. TSS and HSS
scores are also discussed in more detail in Section 4. In order to mitigate the susceptibility of the accuracy metric to
the high-class imbalance of the data set, we consider in addition the balanced accuracy, defined here as:

BA =
1
2

( T P
T P + FN

+
T N

T N + FP

)
. (5)

We also construct the Receiver Operating Characteristic curves for each classifier and calculate the area under the
curve (ROC AUC) as a prediction metric. The probabilities of classes for the individual estimators are obtained from
likelihoods using a softmax function. The positive class probabilities (which are to construct the ROCs) for the RH
tests are calculated by taking weighted averages of the probability predictions of each estimator, with each weight
being the total sum weight for each estimator following the normalizations of all weight sums.

4. Results and Discussion

The results of the classification algorithms employed in this study in terms of confusion matrix elements and
various prediction scores are presented in Table 1 (summary results for all classifiers as the average scores and standard
deviations) and Table 2 (summary results for all classifiers as the median scores and median absolute deviations). The
statistics of the results are also illustrated in the box-and-whisker plot presented in Figure 5 and the Receiver Operating
Characteristic (ROC) curves averaged over 50 experiments in Figure 6. One of the indicators of the sufficiency of 50
experiments for the statistical robustness of the conclusions is that the mean and median values agree with each other
to the last significant digit for almost every single metric and classifier considered.

Tables 1 and 2 indicate that the ensemble approaches are performing better, in general, than the CoNN classifiers
with respect to the measures typically used in space weather forecasting, HS S and TS S , both in terms of the mean
and median values. For example, the TS S score had its median value of TS S=0.906±0.042 for the CoNN classifier
and increased to TS S=0.926±0.023, TS S=0.915±0.010, and TS S=0.944±0.005 (RH v2) for the Committee and
two RH ensemble classifiers. Although the HS S scores were relatively low, they still demonstrated either no drop or
an increase from HS S =0.163±0.026 to HS S =0.168±0.005, HS S =0.163±0.010, and HS S =0.168±0.008 when
transitioning from the CoNN to ensembles. This demonstrates that the ensemble approaches are performing better,
on average, with respect to the CoNN classifier. On the other hand, we point out here that both the TSS and HSS
scores for all classifiers almost always intersected within the uncertainties (either the standard deviation or the median
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Algorithm /Metrics CoNN Committee RH v1 RH v2
TN 5233.0±74.4 5250.9±18.9 5244.2±25.5 5245.2±22.8
FP 237.0±74.4 219.0±18.9 225.7±25.5 224.8±22.8
FN 1.2±1.3 0.8±0.9 1.1±0.7 0.4±0.6
TP 22.8±1.3 23.2±0.9 22.9±0.7 23.6±0.6

Precision 0.094±0.022 0.096±0.005 0.093±0.009 0.096±0.008
Recall 0.945±0.053 0.966±0.038 0.956±0.031 0.985±0.025

Accuracy 0.957±0.013 0.960±0.003 0.959±0.005 0.959±0.004
Balanced Accuracy 0.953±0.021 0.963±0.018 0.957±0.014 0.972±0.011

TSS 0.906±0.043 0.926±0.035 0.915±0.029 0.944±0.023
HSS 0.163±0.036 0.168±0.009 0.163±0.014 0.168±0.013

ROC AUC 0.9903±0.0005 0.9907±0.0001 0.9901±0.0005 0.9906±0.0003

Table 1: Average values and standard deviations of the performances of the classifiers considered in this paper.

Algorithm /Metrics CoNN Committee RH v1 RH v2
TN 5233.0±46.5 5250.9±10.0 5244.2±20.0 5245.2±15.5
FP 237.0±46.5 219.0±10.0 225.7±20.0 224.8±15.5
FN 1.2±1.5 0.8±0.5 1.1±0.0 0.4±0.0
TP 22.8±1.5 23.2±0.5 22.9±0.0 23.6±0.0

Precision 0.094±0.016 0.096±0.003 0.093±0.006 0.096±0.005
Recall 0.949±0.063 0.966±0.021 0.956±0.0 0.985±0.0

Accuracy 0.957±0.008 0.960±0.002 0.959±0.004 0.959±0.003
Balanced Accuracy 0.953±0.021 0.963±0.011 0.957±0.005 0.972±0.002

TSS 0.906±0.042 0.926±0.023 0.915±0.010 0.944±0.005
HSS 0.163±0.026 0.168±0.005 0.163±0.010 0.168±0.008

ROC AUC 0.9903±0.0002 0.9907±0.0001 0.9901±0.0003 0.9906±0.0001

Table 2: Median values and median absolute deviations (computed as median values of the absolute deviations of the individual scores from the
median) of the performances of the classifiers considered in this paper.

absolution deviation) arising from the results of individual experiments. The overall closeness of the performance of
the classifiers is evident as well from the ROC curves presented in Figure 6 which experience a significant overlap.
The good performance of the ensemble classifiers was previously noticed in the works of Aminalragia-Giamini et al.
(2021) for the Committee approach and Lavasa et al. (2021) for the random forest classifier. Interestingly, the case
performances of the CoNN classifier may even outperform the individual ensemble classifier tests (as evident from
the upper boundary for interquartile ranges for CoNN in Figure 5), which reveals the importance of evaluation of the
methods on several train-test splits and demonstration of its robustness with respect to the random splitting.

Another pattern evident from Tables 1 and 2 is the noticeable differences between the standard deviations or
median absolute deviations for the CoNN and ensemble classifiers. For example, the mean TS S score and its stan-
dard deviation for CoNN is TS S=0.906±0.043 compared to the TS S=0.926±0.035 (Committee), TS S=0.915±0.029
(RH v1), and TS S=0.944±0.023 (RH v2). The tendency is even sharper for the medians and median absolute devia-
tions (compare TS S=0.906±0.042 for CoNN with TS S=0.926±0.023, TS S=0.915±0.010, and TS S=0.944±0.005
for aforementioned ensemble approaches). The tendency of lower spread remains the same for all other scores consid-
ered in the tables. Figure 5 also indicates that the interquartile range and the span of whiskers (indicating the spread
of individual experiments outside of the interquartile range) is typically larger for CoNN, especially in the case of
HS S skill score. Overall, such behavior indicates the relative robustness of the ensemble approaches with respect to
the random train-test splits for the data set and the training process, while the training of the individual classifiers may
fail. Therefore, the increase in the complexity of these ensemble algorithms is justified by their robust performance
on the imbalanced data sets (Galar et al., 2012).

Tables 1 and 2 also demonstrate that the RH classifier (1) does not necessarily outperform the Committee approach,
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Figure 5: Box-and-whiskers plots summarizing the performances of the CoNN, Committee, and two considered versions of RH, over the 50
experiments in terms of the TSS and HSS scores. Each colored rectangle spans through the second and third quartiles of the scores, with the
horizontal bar marking the median. The whiskers indicate the locations of the last individual test results within the interquartile range from the
boxes. The rhombus points mark outliers outside the interquartile range from the boxes.

and (2) depends on the selection of its parameters. This is concluded from the fact that the performance of the RH v2
is, on average, the same or better, with respect to almost any metrics than that of the Committee or RH v1. Another
noticeable difference between the Committee and RH classifiers is the step-wise behavior of the ROC curve for the
Committee compared to a smoother curve for the RH, evident in Figure 6. The key difference between the RH and the
Committee classifier is in the selection of features used for each individual ensemble member. While the committee
members use all features available, RH members use the down-selected number of features (either 4 or 6 out of 12 in
our case) and use the deterministic algorithm of the contribution of each Committee member to the final result. We
may assume that the down-selection of features for each member increases the forecasting scores because it helps to
filter out the attention of the individual committee member to the noisy or irrelevant features and prevents its members
from “agreeing” on identical sets of model parameters (weights and biases). This confirms the importance of the
feature selection process, which remains an active topic in predicting solar transient events (Bobra and Couvidat,
2015; Sadykov and Kosovichev, 2017; Yeolekar et al., 2021). Also, although the Committee approach (Aminalragia-
Giamini et al., 2021) helps to reduce the “reliance on chance” in terms of the convergence of the network parameters
(weights and biases) to the local or global minima, it still contains similarly-structured CoNNs as ensemble members.
The RH introduces a more diverse population of ensemble members with the variable down-selected set of features
as an input, which can be more beneficial than having full-scale but nearly identical learners.

As noted earlier, the results in Tables 1 and 2 indicate relatively low values for the precision and HSS scores
for all classifiers tested, including the RH classifiers. At the same time, the corresponding TSS scores are high.
To understand the reason behind this behavior of the models, let us indicate some patterns in our SEP prediction.
Looking at the median confusion matrix elements, one can notice the RH classifiers that, arranged by larger to smaller,
T N ≈ 5244 ≫ FP ≈ 226 ≫ T P ≈ 22.9 ≫ FN ≈ 1.1 and that T N ≈ 5245 ≫ FP ≈ 225 ≫ T P ≈ 23.6 ≫ FN ≈ 0.4.
Assuming that one can neglect the term of the next order of smallness, one can rewrite the metrics of interest as:

Precision =
T P

T P + FP
≈

T P
FP

(6)

HS S =
2 · (T P · T N − FP · FN)

(T P + FN)(FN + T N) + (T P + FP)(FP + T N)
≈

≈
2 · T P · T N

T P · T N + FP · T N
≈

2 · T P
T P + FP

= 2 · Precision (7)

TS S =
T P

T P + FN
−

FP
FP + T N

= 1 −
FN

T P + FN
−

FP
FP + T N

≈ 1 −
FN
T P
−

FP
T N
→ 1 (8)

Both the precision and HSS scores, under the conditions for the confusion matrix elements indicated above, are
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Figure 6: (a) Receiver Operating Characteristic (ROC) curves averaged over 50 experiments for the classifiers considered in the current work. (b)
The same curves zoomed in for the small False Positive Rates only.

determined by the T P/FP ratio, which is of the order of ∼1/10 for the models implemented in this study. At the
same time, the TSS score is very close to 1 because both subtrahends are small: FN/T P ∼1/20 or smaller, and
FP/T N ∼1/23. While capturing almost every single SEP flare in the test data set (which is 24 events on average),
the models produce almost ten times larger number of false alarms than the number of SEP flares (with the median
values of FP = 225.7 ± 20.0 and FP = 224.8 ± 15.5 for RH v1 and RH v2, correspondingly). The considered data
set is also highly imbalanced given that the ratio of the positive to negative samples is ∼1/285. The conditions above
limit the HSS score to HS S ≈ 2 × T P/FP ≤ 2 × P/FP. They also make the HSS scores to be very susceptible to
the change in the number of false alarms. For example, if one manages to decrease the number of false alarms twice
(FP = 224.8 → FP = 112.4 and T N = 5245.2 → T N = 5357.6 for RH v2), the corresponding HSS score would
increase almost twice, to HS S ≈ 0.290. At the same time, the TSS score would increase from TS S ≈ 0.944 to
TS S ≈ 0.963, experiencing a mild relative change. One can conclude that for highly imbalanced data sets the small
HSS scores are related to the large number of false alarms produced by the model (with respect to the number of
positive samples in the test data set) and may still be accompanied by TSS scores very close to one.

Also, we note that while the Heidke Skill Score 2 (HSS) is often annotated as a measure of the performance
with respect to a random chance forecast, the forecast presented here is definitely far from being random: with
RH v1, the missed event rate FN/(FN + T P) ≈ 0.046 is low (almost every SEP event is hit for each trial) and
the false alarm rate FP/(FP + T N) ≈ 0.041 is low as well, while with RH v2, the missed event rate is even more
promising FN/(FN + T P) ≈ 0.017 and the false alarm rate is at the still the same value of approximately 0.041.
Nevertheless, the HSS scores are not so strongly deviating from 0 (on average, HS S = 0.163± 0.014 with RH v1 and
HS S = 0.168 ± 0.013 with RH v2). Therefore, we argue that it is not correct to associate low HS S scores with the
forecast being close to a random chance forecast. Moreover, the example in the previous paragraph demonstrates that
it is very beneficial to consider the HS S scores complementary to the TS S scores for forecasting purposes. The HS S
score is much more sensitive to the decrease of the false alarms, FP, if compared to the TS S . Therefore, it would
allow one to better differentiate between the models with approximately the same number of missed events based on
the number of false alarms they produce.

Although not tested for the all-clear forecasting explicitly, the classification approaches implemented here demon-
strate usefulness with respect to the all-clear setting. We note here that the all-clear SEP forecasting is typically
defined as the whole-disk endeavor which also has to be accompanied by the specification of the time window for
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which the forecast is issued. Here we discuss a related, but not identical, problem when one would like to predict
very reliably every SEP-active flare (with the missed events being very undesirable) yet maintaining a low false alarm
rate. Here the very low rate of missed events (the average rate of the missed events is FN/(FN + T P) ≈ 0.05 even for
CoNN) is what is typically desirable for such a type of forecast (Sadykov et al., 2021). For the RH v2 classifier, the
virtually zero rate of missed events (FN/(FN+T P) ≈ 0.017) renders the RH viable for this task. Although the median
number of the FN was still relatively low for the CoNN classifier (FN = 1.2 ± 1.5, see Table 2) and the Committee
approach (FN = 0.8± 0.5), the RH v2 has even lower FN = 0.4± 0.0. The median absolute deviation of 0.0 indicates
that more than half (i.e., more than 25 out of 50) trials of RH v2 had zero false negative predictions as an outcome.
Overall, we can also potentially expect, that certain configurations of the RH approach can be useful in delivering
near-zero missed event forecasting with low false-alarm rates for other machine-learning problems, including those
involving highly imbalanced classes.

5. Conclusion

In this work, we have introduced an ensemble algorithm — a Random Hivemind (RH) — and compared two
selected implementations of it with respect to the Conventional Neural Network (CoNN) and a Committee ensemble
approach for CoNNs. The comparison was done for the problem of the prediction of Solar Energetic Particle (SEP)
events based on the properties of the host soft X-ray flares. The key outcomes of our work are as follows:

• The performance of the RH algorithm depends on the implementation and training parameters (which may
include the number of input features, their weighting schemes, learning rate boosting strategies, etc.). The
corresponding TSS and HSS scores for the RH v1 and RH v2 implementations are TS S = 0.915 ± 0.010 and
TS S = 0.944 ± 0.005, and HS S = 0.163 ± 0.010 and HS S = 0.168 ± 0.008, correspondingly.

• Both ensemble approaches (Committee and RH) demonstrate the robustness of their performance with respect to
the random train-test splits for the data set, which was reflected in the low standard deviations or median absolute
deviations. Although often performing comparably to the committee approach in terms of the forecasting
metrics, CoNN demonstrated much higher standard deviations (and often higher median absolute deviations).

• Both ensemble approaches demonstrated similar or better performance in terms of mean and median values
compared to the metrics typically used in space weather forecasting, HS S and TS S . One can compare the
median TS S = 0.906 ± 0.042 for CoNN with TS S = 0.926 ± 0.023, TS S = 0.915 ± 0.010, and TS S =
0.944 ± 0.005 for the committee, RH v1, and RH v2 correspondingly, and HS S = 0.163 ± 0.026 with HS S =
0.168 ± 0.005, HS S = 0.163 ± 0.010, and HS S = 0.168 ± 0.008.

• The RH v2 ensemble classifier performs better, on average, than the Committee, CoNN, and RH v1 approaches
in terms of almost every metric and delivers consistent results over the ten random train-test split experiments.

• The performance of all classifiers, including RH, demonstrated relatively low precision and HS S scores for the
SEP prediction problem. Nevertheless, it is very beneficial to consider the HS S as a complementary metric for
the forecast as it is more susceptible to a decrease in the false alarm rate than the TS S . This leads to a better
differentiation between the models with approximately the same number of missed events based on the number
of false alarms they produce.

• All classifiers had a very low number of false negative predictions. Median values of FN = 1.2 ± 1.5, FN =
0.8 ± 0.5, FN = 1.1 ± 0.0, and FN = 0.4 ± 0.0, were measured for the CoNN, Committee, RH v1, and RH v2
classifiers, respectively. However, the robustness of the RH classifiers noted previously, especially for the case
of RH v2, makes it the viable candidate for employment in solving the “all-clear”-like forecasting problem for
SEP-active flares.

From the results above, we can conclude that RH is a valid machine learning algorithm that can perform well
despite class imbalance. RH is performing, on average, comparably or better to CoNNs and unweighted, identical
CoNN committee machines. Further studies of the RH approach (including different implementations for the feature
weights and handling, learning rate and epoch number adjustments, and the flare class boundaries considered for RH

12



training) are required to understand its potential in general and specifically for space weather prediction purposes,
including “all-clear” forecasting of SEPs.
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