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With synchronization being one of nature’s most ubiquitous collective behaviors, the field of
network synchronization has experienced tremendous growth, leading to significant theoretical de-
velopments. However, most of these previous studies consider uniform connection weights and
undirected networks with positive coupling. In the present article, we incorporate the asymme-
try in a two-layer multiplex network by assigning the ratio of the adjacent nodes’ degrees as the
weights to the intralayer edges. Despite the presence of degree-biased weighting mechanism and
attractive-repulsive coupling strengths, we are able to find the necessary conditions for intralayer
synchronization and interlayer antisynchronization and test whether these two macroscopic states
can withstand demultiplexing in a network. During the occurrence of these two states, we ana-
lytically calculate the oscillator’s amplitude. In addition to deriving the local stability conditions
for interlayer antisynchronization via the master stability function approach, we also construct a
suitable Lyapunov function to determine a sufficient condition for global stability. We provide nu-
merical evidence to show the necessity of negative interlayer coupling strength for the occurrence
of antisynchronization, and such repulsive interlayer coupling coefficients can not destroy intralayer
synchronization.

I. INTRODUCTION

Multilayer networks [1–3] of coupled oscillators pro-
vide a fascinating platform to study the collective asymp-
totic behavior of dynamical systems evolving on top of
it. Several layers of such a network prove to be a fertile
playground to reveal the interplay between the network
structure and the unfolding of collective phenomena of
various dynamical processes. The hallmark property of
a realistic system is the complex connectivity patterns
of its components, and it may often give rise to complex
dynamics. An isolated network can seldom describe such
collective dynamics of interconnected systems. Thus, re-
searchers often resort to multilayer networks anticipat-
ing some new fresh insights into complex systems. In the
past years, numerous studies have unfolded several emer-
gent collective phenomena, such as extreme events [4, 5],
percolation [6, 7], congestion of traffic [8, 9], epidemics
spreading [10, 11], controllability [12], evolutionary game
dynamics [13, 14], and diffusion [15], to name a few. The
results presented in these studies demonstrate a very dif-
ferent phenomenology from the one found in monolayer
networks. Various complex forms of synchronized dy-
namics of multilayer networks of the coupled oscillator,
as for instance interlayer synchronization [16, 17], re-
lay synchronization [18], antiphase synchronization [19],
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relay interlayer synchronization [20], intralayer synchro-
nization [21–23], cluster synchronization [24, 25], explo-
sive synchronization [26–28], breathing synchronization
[29], solitary states [30], and complete synchronization
[31], have been brought to the limelight by investigating
the role that network structure plays in the onset and
stability of such coherent states. Nevertheless, the study
of interlayer antisynchronization on multilayer structures
remains relatively unexplored to the best of our knowl-
edge under different contexts.

Interlayer antisynchronization in a multiplex network
refers to the dynamical process where two identical oscil-
lators directly connected through the interlayer link settle
down to an equal amplitude with a constant phase differ-
ence of π. Inspired by antiphase patterns in two-module
neuronal networks [32], we are interested in deriving the
criteria for the existence and stability of interlayer an-
tisynchronization state in a duplex (multiplex with two
layers). Apart from performing local stability analysis
of this state of the interacting systems with the help of
the master stability function (MSF) approach [33, 34],
we are equally interested in deriving the sufficient condi-
tion for global stability of interlayer antisynchronization
state. To do this, we construct a suitable Lyapunov func-
tion for deriving the global stability of this state. The
phrase ‘global stability’ here reflects that the system will
evolve into the interlayer antisynchronization state irre-
spective of the chosen initial conditions except for a set
of measure zero [35].

Most of the previous investigations on the synchroniza-
tion [36–41] of complex networks of coupled dynamical
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systems are performed by assuming (i) unweighted and
undirected networks and (ii) attractive (positive) cou-
pling strengths only. However, realistic systems are far
more complicated, and there are ample real-life exam-
ples where heterogeneous connectivity weights [42] and
the simultaneous presence of attractive-repulsive interac-
tions [43–47] are beneficial in portraying real-world sce-
narios. For instance, the number of emails exchanged
between two colleagues in an organization, and the num-
ber of scientific collaborations between two scientists de-
pend on different contexts. It is best to assign a weight
to each edge of the network to derive relationships be-
tween such interacting individuals. Instead of using the
random weighted directed network, we consider the in-
fluence of a node’s degree on its neighbors and construct
a degree-biased network to study the interlayer antisyn-
chronization and intralayer synchronization in the mul-
tiplex. Synchronization on weighted networks have been
studied extensively in the literature, as indicated in the
following references [48–52]. Nevertheless, to our knowl-
edge, the emergence and (local and global) stability of in-
terlayer antisynchronization on multiplex networks with
weighted intralayer connections have never been inves-
tigated. Furthermore, we introduce the negative inter-
layer coupling strength, which is found to be essential
for the onset of the interlayer antisynchronization as per
our numerical simulations. The positive intralayer cou-
pling strengths allow the system to settle into the in-
tralayer synchronization, despite the presence of negative
interlayer coupling strength. Numerous real-life scenar-
ios are highlighted in the review [53] to emphasize the
importance of attractive-repulsive interaction. As per
Ref. [54], all the pairs of interacting subunits of a system
can not minimize their energy due to opposing coupling
strengths. When network connections change over time,
such temporal networks with positive-negative coupling
may produce several peculiar states like static π state
[55], extreme events [56, 57], inhomogeneous small oscil-
lation [58], and many more. Ecologists and data analysts
also unveil the tug of war between positive and nega-
tive interactions for extracting useful information about
ecosystems’ diversity in species [59, 60].

Following the seminal works by Estrada and his col-
laborators [61, 62], we consider three distinct types of
intralayer networks, viz. hubs-attracting, hubs-repelling,
and unweighted network. We furnish analytical insights
about the conditions for the emergence of intralayer syn-
chronization and interlayer antisynchronization. We an-
alytically derive the necessary conditions for all the iden-
tical oscillators to evolve in unison within the layers. All
these analytical results help to design a duplex with suit-
able oscillators and couplings that allows the system to
achieve such coherent states. Our numerical simulations
also support that our analytical findings (existence and
stability criteria) effectively help to achieve intralayer
synchronization and interlayer antisynchronization when
appropriate conditions are met.

II. MATHEMATICAL MODEL

To illustrate our findings, we consider a multiplex net-
work with two layers. On top of the vertices of each
layer consisting of N nodes, we place an m-dimensional
identical dynamical system with state vectors xα,i ∈ Rm,
α = 1, 2 and i = 1, 2, 3, · · · , N . Here, the first compo-
nent (i.e., α) of the suffices of xα,i represents the number
of the layer, and the second component (i.e., i) depicts
the number of the node of the α-th layer. Each of these
isolated oscillators maintains the dynamical equations in
the absence of intralayer and interlayer couplings as fol-
lows

ẋα,i = f(xα,i), (1)

where f : Rm → Rm is the autonomous nonlinear evolu-
tion function. We assume this f is continuously differen-
tiable with respect to its argument. We need to consider
this assumption, which we need later for performing the

stability analysis. Let A
[α]
ij , α = 1, 2 be the elements of

the adjacency matrix encoding the intralayer topology of
the α-th layer. Precisely, for α = 1, 2;

A
[α]
ij =

{
1, if i -th and j-th nodes are connected in the α-th layer

0, otherwise

(2)
Since we are also interested in inspecting intralayer

synchronization, we only consider connected intralayer
networks. When both the layers are coupled, then we
can describe the dynamical evolution of the i-th node of
α-th layer as follows,

ẋ1,i = f(x1,i) + kA

N∑
j=1

Ã
[1]
ij G[x1,j ,x1,i] + kRH[x2,i,x1,i],

ẋ2,i = f(x2,i) + kA

N∑
j=1

Ã
[2]
ij G[x2,j ,x2,i] + kRH[x1,i,x2,i].

(3)

Here, Ã
[α]
ij is generated by assigning a weight to each

element A
[α]
ij as follows

Ã
[α]
ij =

(
dj
di

)β
A

[α]
ij , (4)

where β ∈ {0, 1,−1} and di denotes the degree of the i-
th node in the whole multiplex network whose adjacency
matrix is given by

A =

(
A [1] I
I A [2]

)
. (5)
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Here, I is the identity matrix of order N . When β =
+1, we have a hub-attracting intralayer adjacency matrix
by adopting the terminology from Ref. [62]. This rescaled
unsymmetric hub-attracting matrix reflects the tendency
to produce a strong influence on the low-degree neighbors
by the high-degree nodes [63]. We can inspect the reverse
scenario of biased domination from low to high-degree
nodes with the hub-repelling matrix by considering β =
−1 [61, 63]. However, the matrix remains unaltered for

β = 0, i.e., we have Ã
[α]
ij = A

[α]
ij for β = 0. Thus, Eq. 3

reduces to

ẋ1,i = f(x1,i) + kA

N∑
j=1

(
dj
di

)β
A

[1]
ij G[x1,j ,x1,i]

+kRH[x2,i,x1,i],

ẋ2,i = f(x2,i) + kA

N∑
j=1

(
dj
di

)β
A

[2]
ij G[x2,j ,x2,i]

+kRH[x1,i,x2,i].

(6)

Here, kA is the intralayer coupling strength, and G :
Rm × Rm → Rm is the output vectorial function within
the layers. On the other hand, kR is the interlayer cou-
pling strength, and H : Rm×Rm → Rm is the interlayer
coupling vectorial function. In the next section, we rigor-
ously investigate the necessary criteria for the existence
of interlayer antisynchronization state and intralayer syn-
chronization.

III. ANALYTICAL FINDINGS

Before representing our key analytical findings, first,
we briefly define two synchronized states, viz. (i) inter-
layer antisynchronization and (ii) intralayer synchroniza-
tion states.

The interlayer antisynchronization depicts the syn-
chronous time evolution of the oscillators situated on top
of the replica nodes with a constant phase difference of
π, i.e., the sum (x1,i(t) + x2,i(t)) of the dynamics of the
state variables of the i-th oscillators of both layers van-
ishes after the transient. Mathematically, when the sys-
tem evolves in the interlayer antisynchronization state,
we have

x1,i(t) + x2,i(t) = 0, ∀ i = 1, 2, · · · , N. (7)

We define the interlayer antisynchronization error as
the following

E = lim
t→∞

1

T

∫ t+T

t

N∑
i=1

‖x1,i(t) + x2,i(t)‖
N

dτ (8)

Clearly, E necessarily becomes zero in the state of in-
terlayer antisynchronization and remains non-zero other-
wise.

On the other hand, intralayer synchronization remains
completely independent of the interlayer antisynchroniza-
tion. A system may evolve in the interlayer antisyn-
chronization state; however, it may not maintain the in-
tralayer synchronization and vice-versa. Intralayer syn-
chronization refers to the synchronous evolution of all
dynamical units within each layer. In other words, pro-
ceeding to the limit as t→∞ for all i = 1, 2, · · · , N and
α = 1, 2, there definitely exists intralayer synchronization
solution xα(t) ∈ Rm such that

xα,i(t)→ xα(t) (9)

Now, we move on to prove the necessary conditions on
the individual node dynamics f , the network topology

Ã
[α]
ij , the coupling functions G and H for the emergence

of interlayer antisynchronization and intralayer synchro-
nization states.

A. Necessary condition for interlayer anti
synchronization state

When the system evolves in the interlayer antisynchro-
nization state , all the vertices of one layer maintain the
same amplitude with its replica nodes of the different lay-
ers. Still, their phase difference will be π. Thus, using
Eq. (7), we obtain the following set of equations from Eq.
(3) as follows

ẋ1,i = f(x1,i) + kA

N∑
j=1

Ã
[1]
ij G[x1,j ,x1,i]

+kRH[−x1,i,x1,i],

ẋ1,i = −f(−x1,i)− kA
N∑
j=1

Ã
[2]
ij G[−x1,j ,−x1,i]

−kRH[x1,i,−x1,i].

(10)

These equations remain consistent if

1. f(x)= −f(−x), i.e., f is an odd function,

2.
∑N
j=1 Ã

[1]
ij G[x1,j ,x1,i]

= −
∑N
j=1 Ã

[2]
ij G[−x1,j ,−x1,i], and

3. H(−x,x)= −H(x,−x), i.e., H is an odd function.

These three conditions are necessary for obtaining in-
terlayer antisynchronization and, by no means, sufficient
ones. Mere fulfilling these three conditions, one can not
anticipate interlayer antisynchronization.

B. Necessary condition for intralayer
synchronization

Let all the trajectories of the first layer maintain a
coherent rhythm, i.e., x1,i(t) converges to x1(t) at some
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time t = t1 (say). Similarly, x2,i(t) of the second layer
converges to x2(t) at some time t = t2. Let t0 be the
maximum of {t1, t2}. Thus, for any time t ≥ t0, the
rate of changes of all the state variables in all respective
layers should be identical. The system converges into
the intralayer synchronization manifold (x1(t),x2(t)) for
t ≥ t0.

Without loss of any generality, we choose two arbitrary
nodes i and l (say) from both the layers. Therefore, we
have x1,i(t) = x1,l(t) = x1(t) and x2,i(t) = x2,l(t) =
x2(t), once the system (3) settles into the intralayer syn-
chronization manifold. Then the corresponding dynamics
of the i-th and l-th nodes of the first layer are governed
by the following ordinary differential equations

ẋ1 = ẋ1,i = f(x1) + kA

N∑
j=1

Ã
[1]
ij G[x1,x1]

+kRH[x2,x1],

ẋ1 = ẋ1,l = f(x1) + kA

N∑
j=1

Ã
[1]
lj G[x1,x1]

+kRH[x2,x1].

(11)

Substracting these two equations, we obtain

N∑
j=1

(Ã
[1]
ij − Ã

[1]
lj )G[x1,x1] = 0. (12)

Similarly, the dynamics of the i-th and l-th nodes of
the second layer yield the following equation

N∑
j=1

(Ã
[2]
ij − Ã

[2]
lj )G[x2,x2] = 0. (13)

Since both the two chosen nodes i and l are arbitrary,
thus the necessary condition for the intralayer synchro-
nization gives the following criteria∑N

j=1 Ã
[α]
ij =

∑N
j=1 Ã

[α]
lj , α = 1, 2, i.e., the in-degree

of each node in the each layer must be equal.
or, G[xα,xα] = 0, α = 1, 2, i.e., the intralayer coupling
function G vanishes after the oscillators of each layer
evolve synchronously.

IV. RESULTS

For numerical simulations, we utilize FORTRAN 90
compiler. We integrate Eq. (3) using the fifth-order
Runge-Kutta-Fehlberg method with integration time
step h = 0.01. As per our derived necessary conditions on
the interlayer antisynchronization, H needs to be an odd
function. Hence, we choose H(xi,xj) = [xj+xi, yj+yi]

T

where T represents the transpose of a vector. Similarly,

the necessary conditions for the intralayer synchroniza-
tion reveal either the in-degree of each node of the in-
tralayer network is equal or G should vanish after the
intralayer synchronization is achieved. Hence, we choose
G(xi,xj) = [xj − xi, yj − yi]T as in the form of the lin-
ear diffusive coupling, so that G will become identically
zero after achieving the intralayer synchronization state.
The diffusive coupling was previously used in many sys-
tems [64], which removes the restriction on the intralayer
network connectivity. This choice of G will allow us to
choose any connected intralayer network.

A. Stuart-Landau Oscillators

We first choose identical Stuart-Landau (SL) oscilla-
tors [65] to begin our numerical investigations. The state
dynamics of the limit cycle oscillator situated on top of
the i-th node is represented by

f(xi) =

 [1− (xi2 + yi
2
)]
xi − ωiyi[

1−
(
xi

2 + yi
2
)]
yi + ωixi

 , (14)

where xi ∈ R2. Since we are basically interested
in the interlayer antisynchronization and intralayer syn-
chronization, thus we choose the same intrinsic frequency
ωi = ω = 3 for all oscillators. Clearly, this f , being
the odd function, satisfies the necessary condition for the
emergence of the interlayer antisynchronization state.

1. Amplitude of each oscillator maintaining interlayer
antisynchronization and intralayer synchronization

We analytically calculate the amplitude of each SL os-
cillator when each oscillator in a single layer undergoes
a synchronous evolution with all the other units of the
same layer, and simultaneously, each oscillator maintains
an antisynchronization state with all its replicas in dif-
ferent layers. The chosen functions G and H help us to
write the dynamical evolution of each l-th SL oscillator
(l = 1, 2, · · · , N) in the α-th layer (α = 1, 2) in terms of
the complex variable zα,l = xα,l + kyα,l = rα,le

kθα,l ∈ C
as follows

ż1,l = (1− |z1,l|2)z1,l + kωz1,l + kA
∑N
j=1 Ã

[1]
lj (z1,j − z1,l)

+kR(z2,l + z1,l),

ż2,l = (1− |z2,l|2)z2,l + kωz2,l + kA
∑N
j=1 Ã

[2]
lj (z2,j − z2,l)

+kR(z1,l + z2,l),
(15)

where k =
√
−1, rα,l =

√
x2α,l + y2α,l is the amplitude

of the SL oscillator situated in the l-th node of the α-th
layer and the phase of that SL oscillator, θα,l is given by
the principal value of argument of the complex number
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zα,l, i.e., θα,l = tan−1
(
yα,l
xα,l

)
. By substituting z1,l =

r1,le
kθ1,l and z2,l = r2,le

kθ2,l in (15), we find the phase
of the oscillators obeys the following ordinary differential
equations

θ̇1,l = ω + kA

N∑
j=1

Ã
[1]
lj

r1,j
r1,l

sin (θ1,j − θ1,l)

+kR
r2,l
r1,l

sin (θ2,l − θ1,l),

θ̇2,l = ω + kA

N∑
j=1

Ã
[2]
lj

r2,j
r2,l

sin (θ2,j − θ2,l)

+kR
r1,l
r2,l

sin (θ1,l − θ2,l).

(16)

In order to obtain these equations, we assume rα,l 6=
0, l = 1, 2, · · · , N and α = 1, 2. Clearly, if rα,l = 0,
then the system converges to the origin giving rise to the
amplitude death state [66–69]. Hence for rα,l = 0, we can
not anticipate interlayer antisynchronization state. Thus,
we neglect the case of rα,l = 0. Similarly, we derive the
rate of change of amplitude of the l-th SL oscillator as
follows,

ṙ1,l = (1− r21,l)r1,l + kA

N∑
j=1

Ã
[1]
lj (r1,j cos (θ1,j − θ1,l)− r1,l)

+kR(r2,l cos (θ2,l − θ1,l) + r1,l),

ṙ2,l = (1− r22,l)r2,l + kA

N∑
j=1

Ã
[2]
lj (r2,j cos (θ2,j − θ2,l)− r2,l)

+kR(r1,l cos (θ1,l − θ2,l) + r2,l).

(17)

For complete intralayer synchronization state, we have

rα,i = rα,

θα,i = θα
(18)

for α = 1, 2 and i = 1, 2, · · · , N .
Furthermore, if the system evolves in the interlayer

antisynchronization state, then we have

r1 = r2,

θ1 − θ2 = ±π.
(19)

Using Eqs. (18) and (19), Eq. (17) becomes

ṙ1 = (1− r21)r1. (20)

Thus, the duplex networks in the presence of intralayer
synchronization and interlayer antisynchronization states

FIG. 1. A multiplex network: We here visualize a duplex
network (a multiplex network with two layers) with the help
of Gephi [70]. Each of these layers consists of a connected
intralayer network. This network used for the numerical ex-
periments (unless stated otherwise) contains 12 nodes and
21 links. The six interlayer edges (dotted lines) connect the
replica nodes and help to connect the two connected layers.

can be described by Eq. (20), where the local dynamics
of each node are associated with the SL oscillator (14).
Solving Eq. (20) as a function of time t, we have

r1 = +

√
e2t

e2t − c1
. (21)

Here, c1 is the integration constant. Also, the linear
stability analysis of (20) suggests there are two station-
ary points, viz. (i) r1 = 0, and (ii) r1 = 1. The station-
ary point r1 = 0 is unstable. In fact, we are not inter-
ested in r1 = 0, as r1 = 0 corresponds to the amplitude
death state, which contradicts the emergence of the in-
terlayer antisynchronization state. The other stationary
point r1 = 1 is stable. Thus, the system (15) experienc-
ing the intralayer synchronization and the interlayer an-
tisynchronization possesses the unit amplitude (r1 = 1)
irrespective of the choice of the coupling coefficients kA
and kR.

2. Numerical illustration and Demultiplexing effect

To validate our analytical findings, we consider the
multiplex network given in Fig. (1). This multiplex net-
work contains two layers, where each layer consists of two
different connected intralayer networks. The first layer
contains 6 nodes and 7 links, whereas the second layer is
made of 6 nodes and 8 edges. On top of each of these
vertices, we place identical SL oscillators (14) with the
same intrinsic frequency ω = 3.0. To verify our findings,
here we propose two different measures, viz.

1. The first one
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FIG. 2. The variation of FLayer1, FLayer2, and FReplica as a function of interlayer coupling strength kR: We
choose the multiplex network shown in Fig. (1), and place an identical limit cycle oscillator (14) on top of each node with
ωi = ω = 3. We vary the interlayer coupling strength kR from 0.01 to −0.01 with fixed space −0.0001 and fixed intralayer
coupling strength kA = 0.1. For each of these 200 kRs, we choose the initial condition of each oscillator randomly within the
interval [−1, 1] × [−1, 1]. For kR > 0, the system remains in interlayer phase synchronization (i.e., FReplica = 2) beyond a
critical value of kR. However, the system attains interlayer antisynchronization (FReplica = 0) for a suitable negative interlayer

coupling strength. Each of these subfigures is drawn with different adjacency matrices Ã [α] using the multiplex network in
Fig. (1). Subfigure (a) represents the results for hub-attracting intralayer matrix (β = 1), whereas the subfigure (c) depicts
the results for the hub-repelling intralayer matrix (β = −1). The middle panel (subfigure (b)) contemplates the results for
the unweighted intralayer matrix (β = 0). Irrespective of the chosen value of β, the system settles down to an interlayer
antisynchronized state for negative interlayer coupling strength (See blue square markers). In spite of choosing negative kR,
each layer maintains intralayer synchronization as FLayer1 (red plus (+) markers) = FLayer2 (magenta circle markers) = 2
throughout the subfigures.

FReplica =
〈 1

N

N∑
i=1

[1 + cos (θ1,i − θ2,i)]
〉

(22)

is to measure the interlayer antisynchronization.
〈·〉 represents here the time average, and for nu-
merical simulation, we choose 0.5 × 105 steps to
average this measure after the initial transients of
1.5× 105 steps. The scaling factor 1

N accounts for
the N number of interlayer links. We are basically
interested with only two values of FReplica, viz.
FReplica = 2, which indicates the interlayer phase
synchronization, and FReplica = 0 representing the
interlayer antisynchronization. However, this mea-
sure deals with only the phase of each oscillator;
thus, to ensure the intralayer synchronization and
interlayer antisynchronization, we need to see the
temporal evolution of the state vectors too.

2. To measure intralayer phase synchronization, we
define

FLayer1 =
〈 1

L1

∑
i<j

A
[1]
ij [1 + cos (θ1,i − θ1,j)]

〉
,

FLayer2 =
〈 1

L2

∑
i<j

A
[2]
ij [1 + cos (θ2,i − θ2,j)]

〉
.

(23)

Here, L1 and L2 are the numbers of edges of both
connected layers, respectively. If these two mea-
sures attain their respective maximum values of 2,
the system achieves intralayer phase synchroniza-
tion. Besides, if they both acquire their respective
minimum values 0, the system reaches intralayer
antiphase synchronization.

Using the multiplex network in Fig. (1), we have con-
struct the adjacency matrix A (See (5)). The degree of
each node is given by d1 = d5 = d7 = d9 = d11 = d12 = 4
and d2 = d3 = d4 = d6 = d8 = d10 = 3. Us-
ing these degrees di and intralayer graphs, we construct
the weighted directed networks with adjacency matrices
Ã [α], α = 1, 2. In Fig. (2), we plot the variation of
FLayer1, FLayer2, and FReplica by numerically integrat-
ing Eqs. (3) with intralayer coupling strength kA = 0.1.
For all the numerical simulations with identical SL os-
cillators, we choose initial conditions randomly for each
oscillator within the interval [−1, 1] × [−1, 1]. An ex-
citing observation of Fig. (2) is that the system does not
exhibit interlayer antisynchronization for any positive in-
terlayer coupling coefficient kR. Once the interlayer cou-
pling strength kR becomes negative and attains a suffi-
cient value, FReplica diminishes to zero and continues to
be at zero, suggesting the occurrence of interlayer an-
tisynchronization. To compare the results, we vary kR
within the interval

[
− kA

10 ,
kA
10

]
in each subfigures, where

kA = 0.1. We vary kR from 0.01 to −0.01 with small
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FIG. 3. Intralayer synchronization and interlayer antisynchronization for hub-attracting intralayer matrix (β =
1): All the trajectories of the first layer collapse to a single trajectory (red line), and similarly, the trajectories of the second
layer oscillate within [−1, 1] maintaining the same path (magenta line) in subfigure (a). This attests to the occurrence of
intralayer synchronization. The sum (x1,i + x2,i) converges to a fixed value zero (blue line) after the transient. This validates
the emergence of interlayer antisynchronization. Subfigure (b) contemplates the appearance of two clusters. The SL oscillators
of the first layer lie within a synchronized group, and the oscillators of the second layer stay in another cluster. Due to the
presence of repulsive interlayer coupling strength kR = −0.1, these two clusters maintain a constant phase difference of π.
All the subfigures are drawn using random initial conditions from [−1, 1] × [−1, 1]. We choose the oscillators on top of the
node-1, 2, and 7 respectively, from the multiplex network given in Fig. (1). We plot the phase portrait of these oscillators
after the transient. Clearly, we have x1,1 = x1,2 = −x2,1. More importantly, subfigures (a) and (c) confirm our analytical
calculation revealing each SL oscillator evolves with a unit radius after reaching the interlayer antisynchronization manifold
and the intralayer synchronization manifold. For each subfigure, we choose kA = |kR| = 0.1.

space−0.0001, and for each step, we select the initial con-
ditions randomly from [−1, 1] × [−1, 1]. The subfigures
(a-c) are plotted for the hub-attracting intralayer matrix
(β = 1), the unweighted intralayer matrix (β = 0), and
the hub-repelling intralayer matrix (β = −1), respec-
tively. Depending on the initial conditions in the small
neighborhood of kR = 0, FReplica attains multiple val-
ues. However, the measures FLayer1 and FLayer2 reach
their maximum values of 2 for all chosen values of the in-
terlayer coupling strength kR, even when kR is negative.
This suggests our chosen intralayer coupling strength kA
for this simulation is sufficient to maintain the coher-
ent behavior among the identical SL oscillators within
the layers, and the interlayer coupling strength kR, even
when it is negative, can not destroy the intralayer coher-
ence. Nevertheless, for all these three matrices, FReplica
becomes zero beyond a critical value of kR < 0. The re-
quired interlayer coupling strength with fixed kA = 0.1
for the multiplex network given in Fig. (1) is as follows:
(i) kR ≈ −0.0037 for hub-attracting intralayer matrix
(β = 1), (ii) kR ≈ −0.0033 for unweighted intralayer ma-
trix (β = 0), and (iii) kR ≈ −0.0032 for hub-repelling
intralayer matrix (β = −1). All these critical values are
obtained after averaging over 100 independent numerical
simulations. We have the same underlying network struc-
ture in all these realizations but possess different random
initial conditions. Thus, the critical interlayer coupling
strength varies with each realization. Note that we do
not want to emphasize the role of enhancement of inter-
layer antisynchronization here by changing the values of

β. This topic is a subject of rigorous investigation and
beyond the scope of the present work. The impact of
β on the enhancement of interlayer antisynchronization
and determine the critical value of kR for different mul-
tiplex networks may be investigated in the near future.
Nevertheless, we later perform the global stability analy-
sis of the interlayer antisynchronization for a few special
intralayer networks to elucidate the effect of initial con-
ditions. i.e., we will determine an approximate value of
interlayer coupling strength kR < 0 for which the system
evolves interlayer antisynchronously irrespective of the
choice of initial conditions, except for a set of measure
zero.

Thus, our selected intralayer coupling function G, in-
terlayer coupling functionH, intralayer coupling strength
kA > 0, and intralayer coupling strength kR < 0 work
immensely well for the emergence of intralayer synchro-
nization and interlayer antisynchronization states. How-
ever, as mentioned earlier, the proposed measures do not
incorporate the amplitude of the oscillators. Hence, we
plot the dynamics of each SL oscillator in Fig. (3). To
avoid monotonicity, we show the results in Fig. (3) with
only hub-attracting intralayer matrix (β = 1). Although
we plot all twelve oscillators’ temporal evolution in sub-
figure (a) of Fig. (3), however, we can only see two trajec-
tories in this subfigure. This is due to the simultaneous
appearance of intralayer synchronization in both layers.
All trajectories of the same layer collapse into a single
one. To generate this figure, we choose the same mul-
tiplex network given in Fig. (1). We set the intralayer
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coupling strength kA = 0.1 and the intralayer coupling
strength kR = −0.1, so that |kA| = |kR|. We again choose
initial conditions randomly for each SL oscillator within
the interval [−1, 1] × [−1, 1]. Interestingly, the two in-
tralayer synchronized trajectories maintain a constant π
phase difference as revealed through Fig. (3) (a). Apart
from that, we also plot the sum (x1,i + x2,i) (See blue
line) that indicates the sum of the dynamics of the oscil-
lators situated on top of the replica nodes. This temporal
evolution of (x1,i + x2,i) remains at zero after the initial
transient as depicted in the subfigure (a) of Fig. (3). This
(x1,i + x2,i) = 0 suggests the emergence of interlayer an-
tisynchronization. We also plot the positions of x1,i and
x2,i of the multiplex at a particular time after the ini-
tial transient in subfigure (b). This snapshot indicates

the occurrence of two synchronized clusters with π phase
difference. Evidently, one of these synchronized clusters
represents the state of the oscillators of one layer, and the
other cluster reflects the dynamics of another layer. Sub-
figure (c) reveals any oscillator of the first layer (here,
without any loss of generality, we choose x1,1, i.e., the
first oscillator) maintains a synchronized rhythm with
any oscillator of the same layer (here, we choose x1,2, i.e.,
the second oscillator for visualization) and preserves the
interlayer antisynchronization with the oscillators on top
of the replica node of the other layer (See x1,1 = −x2,1
in Fig. (3) (c)). Further, these two subfigures (a) and (c)
of Fig. (3) ensure that the identical SL oscillators sustain
a unit radius after achieving the intralayer synchroniza-
tion and interlayer antisynchronization. This validates
our analytical findings too.

TABLE I. Demultiplexing of the network

Removal of interlayer links FLayer1 FLayer2 FReplica

1− 7 2 2 0
2− 8 2 2 0
3− 9 2 2 0
4− 10 2 2 0
5− 11 2 2 0
6− 12 2 2 Initial conditions dependent value

Now, we want to understand whether all these N = 6
interlayer links are necessary or not to achieve inter-
layer antisynchronization in the multiplex, chosen in Fig.
(1). Instead of demultiplexing the multiplex randomly,
we prefer a systematic way to demultiplex the network.
First, we remove the connections between the first oscil-
lator of both layers, i.e., we disconnect the interlayer link
1 − 7 of the multiplex shown in Fig. (1). Now, in the
absence of this link 1 − 7, the network does not remain
as a multiplex. However, it remains a multilayer net-
work. Now, we integrate the system (3) by placing iden-
tical SL oscillators (14) on top of each node with ω = 3.
We choose the interlayer coupling strength kR = −0.1
and set the intralayer coupling strength as kA = |kR|.
We again choose the initial conditions randomly within
[−1, 1]×[−1, 1]. The chosen coupling strengths still allow
the system to maintain the interlayer antisynchronization
along with intralayer synchronization. Keeping the same
coupling strengths and random initial conditions from
[−1, 1] × [−1, 1], we remove the link 2 − 8 between the
second oscillators of both layers. Interestingly, even this
link removal does not destroy both the interlayer anti-
synchronization and intralayer synchronization. In fact,
in this way, we gradually disconnect the interlayer links
one by one. We find the system evolves in the interlayer

antisynchronization and intralayer synchronization; still,
there exists at least one interlayer link between the two
layers. Unless we detach the last interlayer link 6 − 12,
i.e., the connection between the sixth oscillators of both
layers, the system settles in the interlayer antisynchro-
nization state. Thus, only one interlayer link is sufficient
to entertain the interlayer antisynchronization once the
oscillators settle themselves into the intralayer synchro-
nization manifold.

Here is a feasible explanation behind this occurrence
of interlayer antisynchronization with only one interlayer
link. Once the oscillators attain intralayer synchroniza-
tion, this coherence will not be destroyed with nega-
tive interlayer coupling strength, as shown in Figs. (2)
and (3). Thus, each of these two layers can be repre-
sented by two state vectors x1(t) and x2(t) (say), respec-
tively. Now, since that one single interlayer link con-
nects these two layers with repulsive interlayer coupling
strength, thus these two state vectors x1(t) and x2(t)
try to maximize their phase difference. Hence, we have
|x1(t)| = |x2(t)| and their phase difference is exactly π.
In other words, we have x1(t)+x2(t) = 0. In the table (I),
we represent how the gradual removal of interlayer links
results in the values of FLayer1, FLayer2, and FReplica. We
find FReplica = 0 until the single interlayer link 6−12 re-
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FIG. 4. The intralayer synchronization and intralayer antisynchronization with identical Thomas’ cyclically
symmetric attractor: The figures are drawn for (a) b = 0.10, (b) b = 0.20, and (c) b = 0.30. We consider the same multiplex
network with 12 vertices and 21 edges, shown in Fig. (1). Initial conditions are chosen randomly from [−4, 4]× [−4, 4]× [−4, 4].
The interlayer coupling strength kR is set at −0.3, and the intralayer coupling strength kA is kept fixed at 1.0. We choose
β = −1; thus, we have the hub-repelling intralayer matrices. In all these subfigures, we find (x1,i + x2,i) converges to a fixed
value zero after the initial transient. Hence, the emergence of interlayer antisynchronization is confirmed. Moreover, all the
trajectories of the same layer collapse into a single trajectory (shown in the red (magenta) line for the first (second) layer).

mains. After removing all interlayer links, FReplica will
give an initial condition-dependent value. Deleting all in-
terlayer links still entertains the intralayer synchroniza-
tion as the intralayer coupling strength kA = 0.1 pro-
vides sufficient coherence among the oscillators within
the same layer. Thus, we have FLayer1 = FLayer2 = 2
even without all interlayer connections.

B. Thomas’ cyclically symmetric attractor

It is already established in Sec. III that the vector field
f should be an odd function in order to realize one of
the necessary conditions of interlayer antisynchronization
along with intralayer synchronization. We already repre-
sent the results with the help of SL oscillators in the ear-
lier subsection. To further validate our claim, we choose a
different system with a self-excited attractor [71, 72], viz.
Thomas’ cyclically symmetric attractor [73–75], where
the state dynamics of the i-th oscillator is represented by

f(xi) =

 sin (yi)− bxi
sin (zi)− byi
sin (xi)− bzi

 , (24)

where b is a constant. For b > 1, the origin is the sin-
gle stable equilibrium. The system undergoes a pitchfork
bifurcation at b = 1. As the parameter b is further de-
creased, the system undergoes a Hopf bifurcation around
b ≈ 0.32899, creating stable limit cycles. Through a
period-doubling cascade, the system becomes chaotic at
b ≈ 0.208186.

We integrate Eqs. (6) with β = −1 by placing iden-
tical Thomas’ cyclically symmetric attractor on top of

each node. We simulate the system for 3 × 105 steps
and discard the initial 2.7 × 105 steps treating them
as transient. We choose the same coupling functions
G(xi,xj) = [xj − xi, yj − yi, zj − zi]T and H(xi,xj) =
[xj+xi, yj+yi, zj+zi]

T for the numerical simulation. All
the subfigures in Fig. (4) are drawn with fixed kA = 1.0
and kR = −0.3. We choose three distinct values of the
system parameter b. All these subfigures suggest all the
six oscillators of the same layer coincide in a single trajec-
tory, indicating the intralayer synchronization. However,
they exhibit replica-wise antiphase synchronization. We
find (x1,i+x2,i) (blue line) converges to exactly zero after
the initial transient in Fig. (4). Hence, we again confirm
the emergence of the interlayer antisynchronization with
Thomas’ cyclically symmetric attractor and validate our
analytical calculations for such a state’s existence.

V. LOCAL STABILITY ANALYSIS OF
INTERLAYER ANTISYNCHRONIZATION

STATE

We already derive a necessary condition

N∑
j=1

Ã
[1]
ij G[x1,j ,x1,i] = −

N∑
j=1

Ã
[2]
ij G[−x1,j ,−x1,i] (25)

for the emergence of interlayer antisynchronization.
Still, now, we ignore this condition as the function G
is chosen as the diffusive function and it will vanish iden-
tically after the occurrence of the intralayer synchroniza-
tion. Therefore, the condition (25) mentioned above is
trivially satisfied. Since, G is chosen as G(xi,xj) =
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[xj − xi, yj − yi, zj − zi]T = G[xi − xj ] (say). Thus from
Eq. (25), we have

N∑
j=1

Ã
[1]
ij G[x1,j − x1,i] = −

N∑
j=1

Ã
[2]
ij G[−x1,j + x1,i],

⇒
N∑
j=1

Ã
[1]
ij G[x1,j − x1,i] =

N∑
j=1

Ã
[2]
ij G[x1,j − x1,i].

(26)

The interlayer antisynchronization and the intralayer
synchronization states are two completely independent
emerging phenomena of a multiplex network. Thus, the
system does not need to evolve into intralayer synchrony
during the appearance of interlayer antisynchronization.
Therefore, G may not vanish during the sole occurrence
of interlayer antisynchronization. Hence for G 6= 0, we
have from Eq. (26) the following simplistic choice

Ã [1] = Ã [2] = B̃(say). (27)

Thus, both the connected layers contain the same in-
tralayer networks. Hence, Eqs. (3) transform to the fol-
lowing set of equations

ẋ1,i = f(x1,i) + kA
N∑
j=1

B̃ijG[x1,j − x1,i]

+kRH[x2,i + x1,i],

ẋ2,i = f(x2,i) + kA
N∑
j=1

B̃ijG[x2,j − x2,i]

+kRH[x2,i + x1,i],

(28)

During the occurrence of interlayer antisynchroniza-
tion state, the synchronous solution satisfies

ẋ1,i = f(x1,i) + kA
N∑
j=1

B̃ijG[x1,j − x1,i],

ẋ2,i = −ẋ1,i,

(29)

Let, δχi(t) be a tiny amount of feasible perturbation
on the i-th node of the second layer from its interlayer
antisynchronization state. Then, we have

x2,i(t) = −x1,i(t) + δχi(t). (30)

Thus, the error dynamics transverse to the
interlayer antisynchronization manifold Ξ ={(

x1,1(t),x1,2(t), . . . ,x1,N (t)
)
⊆ RmN : x1,i(t) +

x2,i(t) = 0 for all i = 1, 2, . . . , N and t ∈ R+
}

is given
by the following equations

δχ̇i = ẋ1,i + ẋ2,i

= f(x1,i) + f(−x1,i + δχi)

+ kA
N∑
j=1

B̃ijG[δχj − δχi] + 2kRHδχi,

= Jf(x1,i)δχi − kA
N∑
j=1

L̃ijGδχj + 2kRHδχi,

(31)

for all i = 1, 2, . . . , N . Here, Jf(x1,i) =
∂f(x)

∂x

∣∣∣
x=x1,i

,

where x1,i satisfies Eq. (29). Also, L̃ be the zero-row
sum intralayer Laplacian matrix [76], defined as Lij =

−Bij for i 6= j and Lii =
∑N
j=1 Bij , i = 1, 2, 3, · · · , N .

Due to the linear independence of these error compo-
nents, all the state variables of Eq. (31) evolve transverse
to the interlayer antisynchronization manifold. There-
fore, the Lyapunov exponents of the Eq. (31) are all
transverse to Ξ.

Now we place Thomas cyclically symmetric attractor
on top of each node of the multiplex, and thus, using Eq.
(31), we derive the following transverse error equation

δẋi = cos(yi)δyi − bδxi − kA
N∑
j=1

L̃ijδxj + 2kRδxi,

δẏi = cos(zi)δzi − bδyi − kA
N∑
j=1

L̃ijδyj + 2kRδyi,

δżi = cos(xi)δxi − bδzi − kA
N∑
j=1

L̃ijδzj + 2kRδzi.

(32)
For each i = 1, 2, · · · , N , the state variable (xi, yi, zi),

being lying on the interlayer antisynchronization mani-
fold, satisfies the following equations

ẋi = cos(yi)− bxi − kA
N∑
j=1

L̃ijxj ,

ẏi = cos(zi)− byi − kA
N∑
j=1

L̃ijyj ,

żi = cos(xi)− bzi − kA
N∑
j=1

L̃ijzj .

(33)

Since we are interested in investigating the local sta-
bility of the interlayer antisynchronization state for the
duplex network of Thomas cyclically symmetric attrac-
tor, we calculate 3N Lyapunov exponents by solving the
linearized equation (32) along with the equation of mo-
tion (33) of the interlayer antisynchronization state. Out
of these 3N Lyapunov exponents, the maximum Lya-
punov exponent Λmax will provide us the transition point
from desynchronization to interlayer antisynchronization
state. By keeping fixed the intralayer coupling strength
kA, we plot Λmax as a function of the interlayer cou-
pling strength kR. Λmax < 0 will provide the necessary
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FIG. 5. The interlayer antisynchronization error E
(blue) and the maximum transverse Lyapunov expo-
nent Λmax (red) as a function of the interlayer cou-
pling strength kR: Both layers contain the same ring in-
tralayer network with four vertices. In subfigure (a) for the
SL oscillator, we set the system’s parameter at kA = 0.1 and
ω = 3.0. Whereas, in subfigure (b) for the Thomas cyclically
symmetric attractor, we set kA = 1.0 and b = 0.2. E reduces
to zero suggesting the occurrence of interlayer antisynchro-
nization. Simultaneously, Λmax crosses zero and becomes neg-
ative, revealing the appearance of interlayer antisynchroniza-
tion. This indicates that our local stability condition agrees
quite well with our numerical simulation.

condition for the local stability of the interlayer antisyn-
chronization state.

Similarly, if we place identical SL oscillators on top
of each node of the multiplex instead of Thomas cycli-
cally symmetric attractor, the error components trans-
verse to the interlayer antisynchronization manifold sat-
isfy the following evolution equation

δẋi = [1− 3x2i − y2i ]δxi − [ω + 2xiyi]δyi

−kA
N∑
j=1

L̃ijδxj + 2kRδxi,

δẏi = (ω − 2xiyi)δxi + [1− x2i − 3y2i ]δyi

−kA
N∑
j=1

L̃ijδyj + 2kRδyi.

(34)

For each i = 1, 2, · · · , N , the state variable (xi, yi, zi)
of the interlayer antisynchronization state satisfies the
following equations

ẋi = [1− (x2i + y2i )]xi − ωyi − kA
N∑
j=1

L̃ijxj ,

ẏi = [1− (x2i + y2i )]yi + ωxi − kA
N∑
j=1

L̃ijyj .

(35)

For the computation of the maximum Lyapunov ex-
ponent Λmax for the duplex of SL oscillators, we need
to solve the linearized Eq. (34) along with Eq. (35) of
the interlayer antisynchronization state, yielding the 2N
Lyapunov exponents.

Figure (5) indicates our derived local stability condi-
tion works quite well. We choose the intralayer coupling
strength kA = 0.1 and the system parameter ω = 3.0
for the SL oscillator in Fig. (5) (a). Whereas we keep
fixed kA = 1.0, and the system parameter b = 0.2 for the
Thomas cyclically symmetric attractor in Fig. (5) (b).
We choose a ring network of four nodes in each layer for
this simulation. As the constructed multiplex is a regular
graph where the degree of each vertex of the multiplex is
three, thus we have Ã = A from Eq. (4). We plot the in-
terlayer antisynchronization error E (See Eq. (8)) in Fig.
(5) for both coupled systems. Clearly, E (blue) dimin-
ishes to zero gradually with the decrement of kR. This
E = 0 attests to the emergence of the interlayer antisyn-
chronization state x1,i(t) + x2,i(t) = 0, ∀ i = 1, 2, 3, 4.
Similarly, the red lines in Fig. (5) contemplate the vari-
ation of the maximum Lyapunov exponent Λmax as a
function of kR. As evident from Fig. (5), Λmax becomes
negative where E becomes zero in Fig. (5).

VI. SUFFICIENT CONDITION OF GLOBAL
STABILITY ANALYSIS FOR INTERLAYER

ANTISYNCHRONIZATION STATE

To derive the global stability condition for the inter-
layer antisynchronization state, we need to assume a few
conditions which need to be satisfied for our calculations.
If the following conditions are satisfied, our derived in-
terlayer coupling strength kR leads to the interlayer anti-
synchronization in the duplex network irrespective of the
chosen initial conditions except for a set of measure zero.

1. The first condition is the individual vector field f
must be Lipschitz continuous, i.e., there exists a
positive real constant M such that

‖f(x)− f(y)‖
‖x− y‖

≤M, x 6= y. (36)

If the relation mentioned above holds, i.e., if there
is an upper bound of the rate of change of the iso-
late oscillators’ dynamics in the phase space, then
capitalizing on the Cauchy-Schwarz inequality, we
have
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[x− y]T [f(x)− f(y)] ≤ ‖x− y‖‖f(x)− f(y)‖
≤M(x− y)T (x− y)

∀ x,y ∈ Rm
(37)

2. The intralayer Laplacian matrix L̃ must be a sym-
metric matrix. However, as per our construction,
L̃ is a symmetric matrix if and only if the in-
tralayer network is a regular graph (i.e., di = dj
for all i and j), or we choose β = 0, i.e., we
consider only the unweighted case. Thus, we re-
strict our global stability analysis to two types of
intralayer networks, viz. β = 0 or the regular in-
tralayer networks where each node has the same
degree. Hence under these two specific choices, the
intralayer Laplacian matrix L̃ is a symmetric posi-
tive semi-definite matrix. Thus, one of its eigenval-
ues is zero, and all the other eigenvalues are posi-
tive.

3. The interlayer coupling matrix H must be a sym-
metric positive definite. Thus all of its eigenvalues
are strictly positive.

4. The intralayer coupling matrix G is a symmetric
positive semi-definite matrix. Therefore all the
eigenvalues of G are non-negative.

Let us define the interlayer antisynchronization error
for each replica as follows

ei = x1,i + x2,i for i = 1, 2, · · · , N. (38)

Hence, we have

ėi = ẋ1,i + ẋ2,i

= f(x1,i) + f(−x1,i + ei) + kA
N∑
j=1

B̃ijG[ej − ei]

+2kRHei,

= f(x1,i)− f(x1,i − ei)− kA
N∑
j=1

L̃ijGej + 2kRHei.

(39)
Let e be the stack of the error terms e1, e2, . . . , eN

in the vectorial form. Then, we can rewrite the rate of
change of this error system in the following form,

ė =
N⊕
i=1

[
f(x1,i)− f(x1,i − ei)

]
− kAL̃ ⊗Ge

+2kRIN ⊗He,
(40)

where x1,i,x2,i satisfy Eq. (28). Here,
⊕

and ⊗ rep-
resent the matrix direct sum and Kronecker product, re-
spectively.

Let us define a Lyapunov function in terms of the error
quantities as

V (t) = 1
2e
Te. (41)

Then using Eq. (40), we have

V̇ (t) = eT ė

= eT
N⊕
i=1

[
f(x1,i)− f(x1,i − ei)

]
− kAeT [L̃ ⊗G]e

+2kRe
T [IN ⊗H]e

=
N⊕
i=1

eTi
[
f(x1,i)− f(x1,i − ei)

]
− kAeT [L̃ ⊗G]e

+2kRe
T [IN ⊗H]e.

(42)
To further proceed, we have to utilize the following

boundedness of the quadratic form xTDx, where xT de-
notes the transpose of x . Now if D is a real symmetric
matrix of order N , then for all x ∈ RN

λmin[D]xTx ≤ xTDx ≤ λmax[D]xTx, (43)

where λmin[D] and λmax[D] are the minimum and maxi-
mum eigenvalues of D, respectively.

These inequalities (37) and (43) help to convert Eq.
(42) as follows

V̇ (t) ≤
[
M − kAλmin[L̃ ⊗G] + 2kRλmax[IN ⊗H]

]
eTe.

(44)
Now, as per our assumption, G is a positive semi-

definite matrix. Therefore all the eigenvalues of G are
non-negative. Also, the minimum eigenvalue of L̃ is zero.
Thus, we have

λmin[L̃ ⊗G] = λmin[L̃ ]λmin[G] = 0. (45)

Also, all the eigenvalues of IN is 1. Thus we have

λmax[IN ⊗H] = λmax[H]. (46)

Hence, Eq. (44) reduces to

V̇ (t) ≤
[
M + 2kRλmax[H]

]
eTe. (47)

Since as per assumption, λmax[H] > 0. Thus, we know

V̇ (t) < 0 yields the required global stability condition.
Hence, Eq. (47) provides

kR < −
M

2λmax[H]
. (48)
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Thus, whenever we choose an interlayer coupling

strength kR less than
−M

2λmax[H]
, the global stability of

the interlayer antisynchronization state is assured irre-
spective of the chosen initial conditions (except for a set
of measure zero) if our earlier mentioned assumptions
hold. Note that the derived interlayer coupling strength
is not optimized in the sense that it may be possible to
calculate a better (optimal) interlayer coupling strength
to achieve such an interlayer antisynchronization state by
introducing more higher-order error terms in the func-
tion (41). One more noticeable thing from the relation
(48) is one needs negative interlayer coupling strength to
establish the convergence of each oscillator in one layer
anti synchronously to its counterpart oscillator on the
other layer, irrespective of their initial conditions except
for a set of measure zero. As per our specific choice
of the interlayer coupling matrix H = diag(1, 1, 1), we
have λmax[H] = 1. Thus, the required interlayer cou-
pling strength reduces to

kR < −
M

2
. (49)

Thus, our calculated interlayer coupling strength for
the global convergence to the antisynchronization state
of each replica node, irrespective of initial conditions,
depends crucially on the Lipschitz constant of the iso-
lated dynamics. Hence, one requires different coupling
strengths for distinct dynamical systems. For instance,
the Lipschitz constant for the SL oscillator with ωi =
ω = 3 is approximately 3.0. Similarly, the Lipschitz con-
stant for the Thomas cyclically cylindrical oscillator with
b = 0.2 is approximately 1.0711. Therefore, the required
kR for the global convergence of the replica-wise antisyn-
chronization trajectories irrespective of initial conditions
except for a set of measure zero is

kR < −1.5

for the SL oscillators with the chosen system parameter
as the local dynamics, and

kR < −0.53555

for the Thomas cyclically cylindrical oscillators with the
chosen system parameter as the local dynamics on top of
the multiplex.

VII. DISCUSSIONS

It is noteworthy that one can map the interlayer anti-
synchronization problem into the interlayer synchroniza-
tion by applying a suitable coordinate translation, viz.
x2,i → −x

′

2,i. Definitely, such a transformation allows
us to arrive at the standard synchronization problem;
hence, we can use traditional techniques to study the

phenomenon. However, by doing such a transformation,
we will mathematically lose some valuable information
about this phenomenon. Our derivations indicate that we
need something extra apart from being identical for ob-
taining interlayer antisynchronization. Specifically, the
oscillators should maintain symmetry in the form of an
odd evolution function, which is necessary for achieving
such a novel state. Furthermore, a few steps of calcula-
tions affirm that mathematically there are no restrictions
in the interlayer coupling functions for maintaining inter-
layer complete synchronization in the translated coordi-
nates. However, we successfully derive that one needs
odd interlayer coupling functions to obtain interlayer an-
tisynchronization.

Physically, we also lose the phenomenon of antisyn-
chronization when we apply such a coordinate transfor-
mation, as the translated coordinates lead to the stan-
dard complete synchronization phenomenon. However,
such a peculiar antisynchronization state is worthy of in-
vestigation. For instance, Christiaan Huygens observed
the opposite type of oscillation of two pendulums hanging
from the same base in 1665 [64, 77–79]. So, one can also
map this phenomenon with “standard complete sync” in
a translated coordinate system. But we know this is a
particular type of “standard sync”. Transforming the an-
tiphase synchronization achieved by two pendulum clocks
hanging on a common base into a synchronization phe-
nomenon may solve the same problem mathematically,
however, at the cost of losing the novel feature of the
physical event.

Studying antiphase synchronization gained immense
attention among researchers after the experiment by
Huygens. For instance, Ref. [80] studies the existence and
stabilization of various multi-cluster states, which may
not be stable (even if it exists) in single-layer networks.
References [81, 82] investigated the partial synchroniza-
tions in the form of clusters in adaptively coupled phase
oscillators. A numerical study of antiphase synchroniza-
tion in a bilayer network of repulsively and bidirectionally
coupled 2D lattices of van der Pol oscillators is furnished
on Ref. [83]. Notably, the numerical study on van der
Pol oscillators by Shepelev et al. supports our analytical
findings too. Since its evolution function is an odd func-
tion, thus it is possible to observe interlayer antisynchro-
nization in such a system. Using multiplex architectures
in combination with attractive intralayer and repulsive
interlayer connections, the antiphase synchronization of
identical dynamical systems is analytically investigated
in Ref. [19]. This study provides an elegant way of estab-
lishing antiphase synchronization in a multiplex network
by introducing repulsive coupling through any spanning
tree of a single connected layer and the interlayer links.

In fact, there are numerous investigations on antiphase
synchronization [54, 84–87] and antisynchronization [88–
99]. However, our goal is to look at the interlayer antisyn-
chronization of attractive-repulsively coupled amplitude
oscillators in a multilayer network. And each of its layers
may consist of a hubs-attracting, hubs-repelling, or un-
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weighted network. The inclusion of diverse factors like (i)
attractive-repulsive interaction, (ii) multilayer networks,
(iii) amplitude oscillators, and (iv) hub-attracting, hub-
repelling, and unweighted intralayer adjacency matrix,
leads to a complex system, and despite the complexities
of our proposed model, we can provide a few exciting
outcomes of this novel form of synchronization, includ-
ing (1) necessary conditions for the existence of intralayer
synchronization and interlayer antisynchronization, (2)
calculating the amplitude of each oscillator by analyti-
cally solving 2N -coupled ordinary differential equations,
(3) impact of demultiplexing, and (4) local and global
stability analysis of interlayer antisynchronization state.

VIII. SUMMARY AND REMARKS

The present article offers a thorough understand-
ing of interlayer antisynchronization, a novel form of
synchronization that emerges in multiplex networks
with hubs-attracting, hubs-repelling, and unweighted
intralayer networks. Our mathematics-inspired studies
allow drawing a series of important conclusions about
this unique dynamical phenomenon occurring in multi-
plex networks in terms of its local and global stability
conditions, relation to network topology, coupling
functions, and robustness under demultiplexing of the
network. We have demonstrated that our analytically
derived conditions for the existence and stability of
such a solution agree perfectly well with numerical
simulations. Further, we have derived a few necessary
conditions analytically for the intralayer synchronization
in multiplex networks and numerically verified it by
assigning two different oscillators as the local dynamics
at the top of the network’s nodes. Apart from that, we

successfully analytically predict the SL oscillators’ am-
plitude during the simultaneous occurrence of interlayer
antisynchronization and intralayer synchronization. Our
results may serve as a starting point for unveiling the
novel emergent collective dynamics in various natural
systems. Although we are unaware of any immediate
applications of the model studied here; however, our
model may prove to be beneficial for studying the com-
plex topological behavior of brain dynamics. References
[100, 101] demonstrate the usefulness of studying brain
dynamics using multilayer networks, and smooth brain
functioning depends crucially on the co-existence of
excitatory and inhibitory neurons [102, 103]. Examining
the theoretical grounds of interlayer antisynchronization
is essential in gaining some intuition about the cortical
neuronal networks. We conclude with the hope that our
systematic investigations with the theoretical framework
may offer many possibilities for future research in generic
multilayer networks, revealing far more fundamental
aspects of these complex forms of synchronization.
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