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Low-buckled silicene, germanene, and stanene are group−IV graphene allotropes. They form a
honeycomb lattice out of two interpenetrating (A and B) triangular sublattices that are vertically
separated by a small distance ∆z. The atomic numbers Z of silicon, germanium, and tin are larger
to carbon’s (ZC = 6), making them the first experimentally viable two-dimensional topological
insulators. Those materials have a twice-energy-degenerate atomistic structure characterized by the
buckling direction of the B sublattice with respect to the A sublattice [whereby the B−atom either
protrudes above (∆z > 0) or below (∆z < 0) the A−atoms], and the consequences of that energy
degeneracy on their elastic and electronic properties have not been reported thus far. Here, we
uncover ferroelastic, bistable behavior on silicene, which turns into an average planar structure at
about 600 K. Further, the creation of electron and hole puddles obfuscates the zero-temperature
SOC induced band gaps at temperatures as low as 200 K, which may discard silicene as a viable
two-dimensional topological insulator for room temperature applications. Germanene, on the other
hand, never undergoes a low-buckled to planar 2D transformation, becoming amorphous at around
675 K instead, and preserving its SOC-induced bandgap despite of band broadening. Stanene
undergoes a transition onto a crystalline 3D structure at about 300 K, preserving its SOC-induced
electronic band gap up to that temperature. Unlike what is observed in silicene and germanene,
stanene readily develops a higher-coordinated structure with a high degree of structural order. The
structural phenomena is shown to have deep-reaching consequences for the electronic and vibrational
properties of those two dimensional topological insulators.

I. INTRODUCTION

Studies of the topology of the electronic structure orig-
inated on two-dimensional Kekulé [1] and hexagonal lat-
tices [2]. Spin-orbit coupling plays a key role on the
topology of the electronic band structure [3], and the
earliest studies of the effect of spin-orbit coupling (SOC)
on a hexagonal lattice (graphene) are due to Huertas-
Hernando, Guinea, and Brataas [4], and to Kane and
Mele [2]. The latter work emphasized the change of topol-
ogy of electrons in the valence and conduction bands due
to SOC. The SOC strength increases with the atomic
number Z as Z4 [5], and it can also be tuned by the
curvature induced the two atoms in the unit cell (u.c.)
are at a relative height ∆z 6= 0 [4]. (The word low-
buckled was first introduced in Ref. [6] which published
after Ref. [4], and it provides a conventional name for
those structures). Graphene’s SOC is small because of
carbon’s small ZC = 6, and it is larger on honeycomb
lattices containing heavier elements.

Proposals for graphene analogs with strong SOC began
appeared early on: low-buckled silicene and germanene’s
were first studied in 1994 [7], and low-buckled stanene in
2011 [8]. Nevertheless, germanene and stanene possess
what we called a “high-buckled” two-dimensional struc-
tural ground state structure with nine-fold coordination
(a hexagonal closed-packed bilayer) on their freestanding
form [9]. The high-buckled phase for stanene has been
suggested to be a two-dimensional superconductor [10].
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These two-dimensional materials continue to be explored,
with copious experimental work on growth and charac-
terization being reported [6, 11–20], as well as multiple
reviews on the subject [21–26].

There is still one intrinsic physical quality of freestand-
ing, low-buckled silicene, germanene, and stanene elud-
ing attention though: namely, their propensity to un-
dergo structural phase transformations, which necessar-
ily influence their electronic and vibrational properties.
Such study is the topic of this work. In fact, the buckled
structure of silicene, germanene, and stanene gives a rea-
son to expect structural transformations: the atomistic
energy remains the same upon a mirror reflection with
respect to the two-dimensional plane, making these ma-
terials structurally degenerate. Structural degeneracies
have been found to give rise to structural phase transi-
tions [27–34], to non-harmonic phonon modes [35], and
to softened elastic constants [36, 37].

The manuscript is structured as follows: a description
of computational methods is provided in Sec. II. The
structural energy of low- and high-buckled silicene, ger-
manene, and stanene is then studied as a function of the
two structural parameters (the lattice constant a0 and
the buckling height ∆z) at zero-temperature in Sec. III.
Such energy information then guides a finite-temperature
study of those materials (Section IV) in which the struc-
tural, vibrational, and electronic properties are compar-
atively studied. Conclusions are presented in Sec. V.
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II. COMPUTATIONAL METHODS

The study is based on density-functional theory [38]
as implemented in the SIESTA code [39], with in-house
tuned pseudopotentials [40] in the generalized gradient
approximation for the exchange-correlation functional
due to Perdew, Burke, and Ernzerhof [41].

A. Zero-temperature calculations

Zero-temperature calculations were first carried out to
understand the elastic energy landscape and vibrational
properties of low-buckled structures within the harmonic
approximation. Zero-temperature phonon calculations
within the harmonic approximation utilized a 9×15 rect-
angular supercell and atomic displacements of either 1.0
Bohr (silicene and germanene) or 0.9 Bohr (stanene).

B. Finite-temperature calculations

Ab initio molecular dynamics (MD) calculations within
the isothermal-isobaric (NPT) ensemble were carried out
at standard ambient pressure. Temperature was con-
trolled by a Nosé thermostat, while a target pressure
was set using the Parinello-Raman method [42]. We
opted away from a supercell having a diamond shape for
one with a configuration close to a square, and set up
a 7×12 supercell using a non-primitive rectangular cell
containing four atoms and in-plane lattice vectors a1 =
a0,lb(

√
3, 0, 0) and a2 = a0,lb(0, 1, 0) [with a0,lb the lattice

constant of the primitive unit cell (u.c.) at zero tem-
perature], which correspond to the armchair and zigzag
directions, respectively. The 7×12 supercells we built
have an almost one-to-one horizontal/vertical aspect ra-

tio, spanning an area 7
√

3a0 × 12a0 ' 12.12a0 × 12a0,
and contain 336 atoms. We initialized atomic positions
in the low-buckled two-dimensional silicene, germanene,
or stanene structure shown on Fig. 1(b)(i). The out-of-
plane lattice vector had a length of 15 Å.

MD calculations were carried out at temperatures
ranging from 200 K to 900 K for silicene, 100 K to 675
K for germanene, and 100 K to 400 K for stanene. A
MD time step length of 1.5 fs was used, unless indicated
otherwise. The instantaneous temperature, the energy
per primitive u. c., as well as a0 and ∆z were tracked.
∆z is a signed height obtained with the procedure given
in Appendix A. Pair-correlation functions g(r) were com-
puted as well, to hint of structural transitions onto three-
dimensional or disordered phases. Those were obtained
for all frames after 20 ps, by counting the number of
neighboring atoms located at a distance r at a given value
in between 0 Å to 5a0, with a 5a0×10−3 resolution. The
count was normalized by 4πr2.

We also employed a non-perturbative method to obtain
the natural vibrational frequencies of these materials at
finite temperature, relying on the power spectrum of the

velocity autocorrelation function within MD trajectories.
The power spectrum is obtained at a discrete set of 7×12
k−points by (i) Fourier transforming atomic velocities,
(ii) carrying out a time autocorrelation, and (iii) Fourier
transforming the resulting function into frequency space
[43]. The process has been employed to determine finite-
temperature behavior of ferroic 2D materials, in which
softening of specific vibrational modes has been observed
[30, 32].

The electronic structure was calculated on one hundred
primitive u.c.s. Each u.c. contains the average atomic po-
sitions of a supercell at a fixed time during the structural
time-evolution. The use of multiple unit cells permits
capturing structural fluctuations as time evolves, and
each bandstructure at a given time is independently plot-
ted to make such fluctuations observable. Those struc-
tures were obtained at times equally spaced within 300
fs after thermal equilibration.

III. ATOMISTIC STRUCTURE AND ENERGY
DEGENERACIES

Figure 1(a) shows side and top views of a planar honey-
comb structure. A primitive unit cell has been indicated
by a diamond on the top view plot, with atoms on the A−
and B−sublattices indicated as well. The buckling height
∆z is an order parameter, a signed measure of the rela-
tive displacement among A− and B−sublattices along
the z−direction, and it has a zero magnitude for planar
structures: ∆z,pl = 0 Å. Fig. 1(b) depicts two degener-
ate three-fold coordinated, low-buckled structures, which
are determined by two structural parameters: a0,lb, and
∆z,lb, which is greater than zero on Fig. 1(b)(i), and
smaller than zero on Fig. 1(b)(ii). We define ∆z to be
positive when the B atoms sit above the A−atoms on the
zero-temperature (initial MD frame) structure. A non-
primitive, rectangular unit cell is shown in dashed lines
on the top view as well. Fig. 1(c) shows two degener-
ate high-buckled, nine-fold coordinated two-dimensional
structures [40].

Figures 1(d) through 1(g) display elastic energy land-
scapes for graphene, silicene, germanene, and stanene, re-
spectively. Energy landscapes were obtained by stretch-
ing the two in-plane primitive lattice vectors by the same
amount–this is, by increasing the lattice constant a0

only, without changing the 60◦ angle among primitive
lattice vectors a1 and a2 [see Fig. 1(b)]–while maintain-
ing an identical distance and angular separation among
the atoms belonging to opposite sublattices. Under
those constraints, the lattice constant a0 is shown as
the horizontal axis, while ∆z is represented by the ver-
tical axis, and the false color serves to indicate the rel-
ative depth of global and/or local minima for each of
these four two-dimensional materials. The landscapes on
Figs. 1(d) through 1(g) are similar to those published for
other 2D materials with structural degeneracies before
[27, 29, 30, 34].
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FIG. 1. Illustration of (a) planar and energy-degenerate (b)
low-buckled, and (c) high-buckled two-dimensional lattices.
Elastic energy landscape for (d) graphene, (e) silicene, (f)
germanene, and (g) stanene. The horizontal axis on subplots
(d-g) is a0, while the vertical axis is ∆z. A path of steepest de-
scent joining planar, low-buckled and high-buckled structures
was overlaid on subplots (e) through (g) in white.

Energy densities on Figs. 1(d-g) are reported in units
of K/u.c., because a comparison of these values with
critical temperatures TC obtained via molecular dynam-
ics (obtained with the same ab initio numerical tool)
gives a relation among the barriers J obtained from the
landscapes and TC of the order J ≤ TC < 3J (see
Refs. [27, 29, 44] and [33] for group-IV monochalcogenide
monolayers; Refs. [30, 36, 45] for SnO monolayers, and
Ref. [34] for ferroelectric transition metal dichalcogenide
bilayers). Areas on the landscape for which the energy
exceeds 15,000 K/u.c. are just shown in red. (This upper
limit makes sense as the temperature at the sun’s surface
is close to 6,000 K, and at that temperature materials
would have long melted down). As seen on Figs. 1(e-g),
the local minima can be traveled about within a “trench”
on the energy landscape, and all the available local min-
ima for buckled, hexagonal configurations are included in
those plots. A one-dimensional path of steepest descent–
similar to those drawn in Refs. [29] and [30]–is shown in
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FIG. 2. One-dimensional cuts of the elastic energy land-
scapes along the steepest descent paths shown in white
on Fig. 1. (a) Two cuts along orthogonal directions for
graphene. (b) Double-well elastic energy for silicene separat-
ing two low-buckled configurations with a barrier Jpl−lb of 621
K/u.c. (contrast against the profiles depicted in Refs. [29, 30],
which show double-well potentials as well). High-buckled con-
figurations require overcoming larger barriers. (c) and (d):
Energy cuts for germanene and stanene, in which the high-
buckled configurations are the lowest-energy ones, and the
barrier Jhb−lb to turn from a low-buckled configuration onto
a high-buckled one becomes negative.

white as well.
To motivate the usefulness of the elastic energy land-

scape, and as seen on Fig. 1(d), graphene has a single
(non-degenerate) structural ground state with a planar
structure; a result that is expected. Silicene, on the
other hand, displays two degenerate global minima upon
a change of sign on ∆z,lb in the low-buckled configura-
tion [Fig. 1(e)]. These two distinguishable structures are
related by a reflection with respect to the xy plane, and
may be switchable (making silicene a new ferroelastic two-
dimensional material) by a deformation whereby the lat-
tice constant increases slightly and the order parameter
∆z becomes zero on average.

To start arguing for ferroelastic behavior on silicene–
and for a possible two-dimensional phase transformation
on this two-dimensional material–Fig. 2 shows the elastic
energy along the one-dimensional steepest descent paths
d = d(a0,∆z) depicted on Fig. 1(d) through Fig. 1(g).
While graphene [Fig. 2(a)] has a single, non-degenerate
energy minima on this landscape, silicene, germanene,
and stanene display four local minima corresponding to
low-buckled or high-buckled configurations.

As seen on Fig. 2(b), the energy region shown for low
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TABLE I. Relaxed low-buckled and planar structural param-
eters at zero-temperature. Energy barriers in between low-
buckled and planar (for which ∆z,pl = 0) configurations are
listed as well. See Fig. 1 for the definition of structural param-
eters, and Fig. 2 for a definition of the energy barrier Jpl−lb.

Material a0,lb (Å) ∆z,lb (Å) a0,pl (Å) Jpl−lb (K/u.c.)
graphene — 0.000 2.475 —
silicene 3.870 ±0.482 3.902 621

germanene 4.081 ±0.710 4.154 3687
stanene 4.676 ±0.896 4.831 4541

TABLE II. Relaxed high-buckled structural parameters at
zero-temperature and energy barriers among low-buckled and
high-buckled structures. Negative barriers indicate that the
high-buckled structure is energetically preferred. See Fig. 1
for the definition of structural parameters, and Fig. 2 for a
definition of the energy barrier Jhb−lb.

Material a0,hb (Å) ∆z,hb (Å) Jhb−lb (K/u.c.)
silicene 2.688 2.143 1784

germanene 3.022 2.246 −1621
stanene 3.436 2.613 −5448

buckled silicene around |d| ≤ 0.8 Å displays an (anhar-
monic) double-well potential, which was fitted to:

E(d) = 12976
K

Å
4
u.c.

d4 − 5639
K

Å
2
u.c.

d2 + 621
K

u.c.
(1)

The existence of two minima at d = ±0.6 Å is a prelude
of the bistable behavior of this 2D material [29, 30], es-
pecially due to the low magnitude of the energy barrier
Jpl−lb=621 K/u.c. (see Table I), which corresponds to
d = 0. Now, although germanene and stanene also have
local minima at their low-buckled conformations, the bar-
rier Jpl−lb among them listed in Table I is significantly
higher (hindering the appearance of an average planar
configuration), and high-buckled structures lie lower in
energy. The differences in each subplot on Fig. 2 under-
score what should be different, distinct possible finite-
temperature behaviors for each of those two-dimensional
materials.

Table I lists the optimal structural parameters at
(a0,lb,±∆z,lb); i.e., at the (global or local) minima for
low-buckled structures (with positive and negative signs
on ∆z,lb indicating the inherent two-fold structural de-
generacy), the lattice constant a0,pl for the optimal (low-
est energy) planar structure, and the energy Jpl−lb (in
units of Kelvin per primitive u.c.) needed to reach the
planar structure from any of the degenerate low-buckled
ones; see Fig. 1. Prior experience tells us that a critical
temperature Tc for a two-dimensional phase transforma-
tion onto another structure will be of the same order of
magnitude than the barrier Jpl−lb = Epl − Elb, when
Jpl−lb is smaller than the melting point. Jpl−lb is de-
picted in Fig. 2. According to Table I, one may observe
a transformation onto planar freestanding silicene at tem-

peratures above 621 K.
Consistent with previous work [9], the high-buckled

phases–defined by the coordinates (a0,hb,±∆z,hb) on
Fig. 1–become preferable two-dimensional structure as
the atomic mass of group-IV elements increases–see
Figs. 2(c) and 2(d). This statement is made quantitative
by reporting the energy difference Jhb−lb = Ehb −Elb on
Table II: As seen on Fig. 2, negative values of Jhb−lb =
Ehb − Elb indicate a lower energy of the high-buckled
2D phase for both germanene and stanene. The con-
sequence of the low-buckled phase turning metastable
is that–starting on a low-buckled structure–germanene
and stanene may melt, become amorphous, or turn into
their high-buckled phase, rather than turning planar. Re-
sults of MD calculations, to be described next, shed light
into the finite-temperature behavior of freestanding, low-
buckled group-IV materials.

IV. STRUCTURAL BEHAVIOR OF
FREESTANDING SILICENE, GERMANENE,
AND STANENE AT FINITE TEMPERATURE

We now contrast the information provided on Fig. 1,
Fig. 2, Table I, and Table II, with the finite-temperature
behavior of low-buckled silicene, germanene, and stanene.
This comparative study contains (i) instantaneous tem-
perature, structural energy, supercell-averaged lattice
constants for the primitive unit cell 〈a0〉, and supercell-
averaged buckling height 〈∆z〉 as a function of time at se-
lected target temperatures; (ii) structural snapshots and
pair-correlation functions; (iii) the evolution of 〈a0〉 and
of 〈∆z〉 as a function of temperature, to observe or dis-
card a low-buckled-to-planar two-dimensional transition;
and (iv) electronic structures. These four sets of informa-
tion will be provided gradually for silicene (Sec. IV A),
germanene (Sec. IV B), and stanene (Sec. IV C) in what
follows.

A. Silicene’s finite-temperature behavior

Fig. 3(a) displays the instantaneous temperature over
a period of up to 50 ps for silicene supercells set at 200
K, 550 K, 600 K, 650 K, and 800 K, respectively. An
additional plot at a target temperature of 900 K ends
shortly before 40 ps for reasons that will be made clear
in a moment. The takeaway point from Fig. 3(a) is that
there are dramatic temperature fluctuations for the first
10 ps, and thermal equilibration sets in for longer times.
Fig. 3(b) shows the time evolution of the instantaneous
total energy per primitive u.c. at 200 K, 550 K, 600 K,
650 K, 800 K, and 900 K: the total energy steadily in-
creases with temperature for target temperatures up to
800 K. The marked decrease of the instantaneous total
energy at 900 K on Fig. 3(b) is a sign of a sudden atom-
istic reconfiguration onto a more energetically favorable
structure. Since atomistic forces on ab initio MD neces-
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FIG. 3. Instantaneous (a) temperature and (b) structural en-
ergy for silicene at finite temperature; the 2D supercell struc-
ture was originally set in the low-buckled, zero-Kelvin con-
figuration. Target temperatures are indicated in bold font.
The yellow shading seen on subplots at 200, 550, 600, 650,
and 800 K indicates the time interval that will be employed
to calculate averages later on. At 900 K, the original time
step resulted too large to properly converge the electronic
density, and a smaller timestep was employed. The energy
trace (drawn in brown) indicates a sudden decrease of energy,
whose consequences on structure are highlighted on Fig. 4.

sitate the convergence of the electronic density, we de-
creased the time step from 1.5 fs down to 0.5 fs at this
higher temperature (since a smaller time step implies a
smaller displacement, and an easier to converge electron
density at each consecutive MD step), and collected the
dynamics up to a shorter time as a result. Nevertheless,
the relative flatness of the instantaneous energy above 30
ps on Fig. 3(b) at 900 K indicates that a further sudden
drop of the total energy may not occur within the time
window studied.

To link the total energy to atomistic configurations,
Fig. 4 shows side and top view snapshots of the sil-
icene supercell taken at the last simulated frame, at tem-
peratures consistent with those shown on Fig. 3. The
hexagonal lattice is visible at most temperatures, and the
sudden drop of the total energy at 900 K on Fig. 3(b)
is linked with a transition onto an amorphous phase
[Fig. 4(f)], further confirmed by the pair-correlation func-
tions g(r) depicted on Fig. 5, which were vertically offset
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z
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y
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y

x
y

(d) 650 K
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FIG. 4. Side and top snapshots at the last frame during sim-
ulations. The snapshots depict a 4× 7 portion of the (7× 12)
silicene supercell at 200, 550, 600, 650, 800, and 900 K target
temperatures. Silicene turns amorphous at 900 K, explain-
ing the sudden drop of energy on Fig. 3, and hinting at the
inherent structural instability of 2D silicon.

to better convey that the atomistic coordination remains
almost unaltered for temperatures up to 800 K.

We argue that a two-dimensional phase transformation
onto an average planar structure is taking place at around
600 K. Unveiling it requires paying close attention to the
order parameter amounting to the relative height among
atoms belonging to opposite sublattices including sign.
Details follow.

1. Relative height of the two atoms in the unit cell as an
order parameter

As a starting configuration, all supercells have all B
atoms above A atoms at the onset of MD calculations
[Fig. 1(b)(i)]. This means that every u.c. has a posi-
tive value of d on Fig. 2(b). This assertion is verified on
Figs. 1(e-g), which show a value of the order parameter
∆z,lb > 0. Correspondingly, negative values of d on Fig. 2
imply that all B atoms on a crystal sit “below” nearest
neighboring A atoms. Identification of “above” and “be-
low” is straightforward on an ideal crystal at zero temper-
ature [in this particular situation, ∆z = (rB−rA)·ẑ gives
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K, nevertheless, one observes only two well-defined peaks at
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plies dimerization and the creation of an amorphous phase at
that temperature.

away if the B atom is above (∆z > 0), below (∆z < 0), or
if the structure is planar (∆z = 0), where rA (rB) is a po-
sition vector for any A (B) atom, and ẑ = (0, 0, 1)], and
it requires defining the projection of the position vector
of B atoms onto local signed normals set by the planes
defined by the three closest A atoms at finite tempera-
ture. (Initial structures for which a section contains B
atoms above A atoms, while another section contains A
atoms above B atoms, will have domain walls in which
a pair of neighboring A and B atoms reside at the same
height. Structures containing those domain walls were
not considered here.)

While the supercells for MD calculations are originally
set with ∆z > 0 at every primitive u.c. (no domain
behavior was considered), identification of unit cells for
which ∆z < 0 [d > 0 on Fig. 3(b))] at finite temperature
imply that B atoms (originally above A atoms) would
have sufficient elastic energy to jump the double poten-
tial well on some u.c.s of the supercell and turn below A
atoms. This means that B atoms on those u.c.s would be
exploring the region d < 0 on Fig. 2, setting the material
at the onset of a two-dimensional structural transforma-
tion [29, 30]. Details follow.

2. Transformation onto a planar two-dimensional silicene
on average at a critical temperature

A hexagonal lattice is created by two interconnected
triangular lattices, and an atom belonging to the
B−sublattice with coordinates rB is always neighboring
three atoms on the A−sublattice (A1, A2, and A3) with
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(b)
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(Å
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1.0

−1.0

0.0

1.0

300 300
Time for averaging (ps)

10 20 10 20

300 10 20
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A2

A3B

x

z
y

rA1

rA2
rA3

rB

FIG. 6. (a) a0 as a function of time and temperature. The
inset at the lower right indicates a B−atom, and the three
nearest A atoms on the low-buckled configuration; see text
for details. (b) Time evolution of order parameter ∆z as a
function of time at a given target temperature. The yellow
shading on all suplots stems from the fact that they were ob-
tained past the first 20 ps; see Fig. 3. Red traces at 600 K,
650 K, and 800 K indicate that the average buckling height
begins to take both positive and negative values, as the two
wells seen for |d| < 0.6 Å on Fig. 2(b) begin to be both ex-
plored. The average (〈·〉) notation implies a supercell average
of either a0 or ∆z at a fixed time during the MD evolution.

coordinates rA1 , rA2 , and rA3 . As seen on the lower-
right inset on Fig. 6(a), we choose the labels on the
A−sublattice atoms to run counter-clockwise. Then, lo-
cal lattice vectors a1 and a2 are defined as:

a1 = rA2
− rA1

, and a2 = rA3
− rA1

. (2)

Local vectors a1 and a2 fluctuate at finite temperature.
Panels on Fig. 6(a) display the lattice constant 〈a0〉 at
finite temperature, which is obtained at each time step
as the average of all possible local magnitudes of |a1| and
|a2| within the 7× 12 supercell. Fluctuations of 〈a0〉 are
due to the fact that the containing walls are not fixed on
the NPT ensemble, allowing for the low-buckled silicene
supercell to slightly expand and compress as time goes
on. The horizontal dashed line on Fig. 6(a) indicates the
zero-temperature value of a0,p for planar silicene listed
on Table I, and one observes that 〈a0〉 raises onto a0,p as
temperature increases.
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Determining ∆z requires specifying the direction of the
local plane defined by the three atoms A1, A2, and A3,
and one gets one value of ∆z per primitive u.c. We define
the local plane’s normal as:

n̂ =
a1 × a2

|a1 × a2|
. (3)

(Note that n̂′ = a2×a1

|a1×a2| is anti-parallel to n̂.) The

(signed) local buckling height ∆z is generalized for tilted
honeycomb lattices at finite temperature as:

∆z = (rB − rA1
) · n̂. (4)

See Appendix A for details. Figure 6(b) displays the
average height 〈∆z〉 over the supercell at a given tem-
perature and time, revealing a situation in which 〈∆z〉
suddenly fluctuates among positive and negative values
for temperatures of 600 K or larger.

Figure 7(a) shows 〈a0〉 and its standard deviation,
taken for the 20,000 frames captured within the last 30
ps (this is, after thermal equilibration; this time interval
shown in yellow on Figs. 3 and 6). The dashed horizontal
line on Fig. 7(a) once again indicates that the lattice con-
stant of silicene steadily approaches the magnitude of the
zero-temperature planar structure, a0,p, as temperature

increases. a0,lb = 3.8733 Å at ambient conditions.
As indicated earlier on, we originally set the sil-

icene structure at the configuration indicated by a
“low-buckled” label for ∆z > 0 [Fig. 1(b)(i); point
(a0,lb,+∆z,lb) on Fig. 1(e); and d ' 0.6 Å on Fig. 3(b)].
Furthermore, Table I indicates that the planar structure
can be created by adding and energy of 621 K per prim-
itive unit cell. If that energy could be facilitated ther-
mally, one would expect to reach a dynamical situation
in which both low-buckled structural configurations [one
in which ∆z > 0 as in Fig. 1(b)(i); another in which
∆z < 0 as in Fig. 1(b)(ii)] could be accessible with equal
(50%) probability. As seen on Fig. 7(b), such scenario
takes place indeed. It reminisces of the 2D transforma-
tions discussed in Refs. [27–29, 31] and [30] for other 2D
materials in which a double-well potential with a small
barrier is crossed at finite temperature, unleashing 2D
transformations of the order-by-disorder type. Indeed,
close observation to fluctuations of lattice parameters in
Refs. [28] and [30] indicates that square unit cells are, in
fact, time averages of highly-fluctuating rectangular unit
cells. Here, a planar structure is the average result of
floppy vibrational modes enabled by a shallow degenerate
wells on a Landau-type, similar elastic potential [inset on
Fig. 2(b)].

Fig. 7(c) shows the collapse of the order parameter
〈∆z〉, further confirming the similarity of the phenomena
observed in silicene and other phase-changing 2D mate-
rials [27–30, 34] (see Table III for a comparison). The
collapse of 〈∆z〉 past 600 K further confirms the use of
the barrier Jpl−lb among planar and low-buckled silicene
to provide valuable intuition into the magnitude of the
critical temperature. We are unaware of previous reports
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FIG. 7. (a) Thermal evolution of 〈a0〉 for silicene, initially set
on its low-buckled structure. Average values and standard
deviations from data presented on Fig. 6, and at additional in-
termediate temperatures are shown. Zero-temperature values
for low-buckled and planar structures are taken from Table I.
(b) Tracking of the percent of unit cells along for which the
B atom flips down below the nearest neighboring A atoms:
An equal distribution of “above” and “below” indicates that
the two wells for |d| < 0.6 Å in Fig. 2(b) are equally sampled,
and that the unit cell is planar on average. (c) A transition
onto the planar structure is indicated by the dramatic coales-
cence of the order parameter 〈∆z〉 down to zero (with large
fluctuations as well) for temperatures above ∼600 K, which
is similar to the value of Jpl−lb listed in Table I. The struc-
ture turns amorphous at 900 K, and both a0 and ∆z are not
properly defined then due to atomistic disorder; their values
at that temperature are not shown for that reason.

TABLE III. Contrasting the existence of degenerate energies,
order parameters, and change of coordination on novel 2D
ferroelastic and ferroelectric materials against silicene’s prop-
erties.

2D Material Degeneracy Order par. Coord. change?
SnO[30, 45] Two-fold ∆α No

SnSe[33] Two-fold ∆α 3-fold to 5-fold
TMDC Infinite Interlayer No

bilayers[34, 46] displacement
silicene Two-fold ∆z No

indicating such a two-dimensional structural transforma-
tion on silicene. At this point, we remind the reader that
silicene is turning amorphous at 900 K (Fig. 4(f)), and
that the barriers Jpl−lb for both germanene and stanene
exceed 3,500 K/u.c. (Table I): one should not expect a
transition like the one we just documented for silicene on
those other two-dimensional materials.
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FIG. 8. Finite-temperature phonon modes for silicene ob-
tained on a rectangular (non-primitive) unit cell containing
four atoms. The diameter of the red circles indicates the rela-
tive intensity of a given power spectral line, and a collection of
nearby circles tells the width (lifetime) of a given vibrational
mode. The zero-temperature phonon spectra, obtained within
the harmonic approximation, is shown by yellow curves. (Due
to numerical precision, the lowest mode yields a minuscule,
negligible, imaginary frequency of only 2.34 cm−1 at Γ.) The
out-of-plane optical mode leading to a planar configuration
was highlighted by dotted lines–and by a diagram on subplot
(a)–to better see that mode’s softening at finite temperature.

The existence of degenerate minima and a thermally
reachable energy barrier necessarily guarantees anhar-
monic vibrational properties, and a strong electron-
phonon coupling [32]. Fig. 8 shows both the vibrational
spectra of low-buckled silicene as obtained within the
harmonic approximation (yellow curves), and that ob-
tained from the non-perturbative power spectrum of the
velocity autocorrelation approach [43] shown in (red) cir-
cles. The circles indicate the relative peak intensity, and
the coalescence of multiple circles around a given zero-
temperature phonon line is indicative of the lifetime of
the vibrations obtained from MD. The choice of a rect-
angular cell on MD simulations was deliberate, as we
wanted to simulate a near-square structure with equal
dimensions to permit vibrations that could be homoge-
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FIG. 9. Silicene electronic band structures around the K −
point at increasing temperature. For a given temperature,
one hundred different band structures are overlapped to give
a sense of broadening due to the atomistic vibrations. The
1.3 meV SOC-induced band gap of low-buckled silicene is ob-
fuscated at every finite temperature due to the presence of
electron and hole puddles. The band-broadening ranges from
about 3 meV at 200 K, up to roughly 18 meV at 650 K, due to
the disorder induced by the vertical flips above the transition
temperature. At 600 and 650 K (for which the energy range
was increased into ±0.03 eV), the band gap is further reduced
due to the advent of the planar phase; see Ref. [4] for details.

neous along the x− and y−directions.
The softening of specific bands can be seen in multiple

suplots of 8. See, for instance, the dotted band corre-
sponding to the out-of-plane optical mode, which soft-
ens in all plots (taking the average separation between
the visible finite-temperature points and the continuous,
zero-temperature lines on Fig. 8, it becomes smaller by
3.35 cm−1 at 200 K, 4.17 cm−1 at 550 K, 6.87 cm−1 at
600 K, 5.40 cm−1 at 650 K, and 9.26 cm−1 at 800 K).

3. Consequences for the SOC-induced bandgap

The broadening of finite-temperature vibrational
eigenmodes hinted at on Fig. 8 should also broaden the
electronic dispersion. To begin with, oscillations create
strain and curvature, giving rise to electron-hole puddles
arising from inhomogeneities of the local deformation po-
tential on 2D materials [47–51]. Those fluctuations of the
deformation potential may be larger than silicene’s zero-
temperature 1.3 meV band gap, and it is a point we have
not seen raised in the literature. In addition and ac-
cording to Huertas-Hernando, Guinea, and Braatas, the
intrinsic spin-orbit coupling can be greatly enhanced by
buckling [4], and diminished in planar configurations.
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FIG. 10. Instantaneous (a) temperature, (b) structural energy, 〈a0〉, and (d) 〈∆z〉 for germanene at finite temperature; the 2D
supercell structure was originally set in the low-buckled, zero-Kelvin configuration. Target temperatures are indicated in bold
font. The yellow shading seen on subplots at 100, 500, 600, and 650 K indicates the time interval that will be employed to
calculate averages later on. At 675 K, the original time step resulted too large to properly converge the electronic density, and a
smaller timestep was employed. The energy trace (drawn in brown) indicates a sudden decrease of energy, whose consequences
on structure are discussed on Fig. 11.

Following an ergodic assumption–i.e., that spatial av-
erages give equivalent results to time averages–and using
the method delineated in Appendix B, we present what
perhaps is the most surprising result from the present
work: that atomistic vibrations obfuscate the 1.3 meV
SOC-induced band gap of low-buckled silicene; this aver-
age closing of the SOC-induced bandgap occurs at a tem-
perature as low as 200 K [Fig. 9(b)]. In addition, SOC
band gaps depend on curvature [4], and close on the pla-
nar configuration. This effect is clearly seen by compar-
ing subplots 9(a) with 9(d) and 9(e). The net fluctuations
of the deformation potential are listed in Table IV at Ap-
pendix B. That the minuscule band gap of silicene will
be obscured by fluctuations of the deformation potential
is an unquestionable result.

It is time to discuss how low-buckled germanene and
low-buckled stanene behave at finite temperature in com-
parison. At this point, most methods have been intro-
duced, which will give us the opportunity to mostly focus
on different behaviors with respect to those seen in sil-
icene.

B. Germanene’s finite-temperature behavior

It is time to refer, once again, to Tables I and II,
and to Figs. 1(f) and 2(c). To begin with, the barrier
to turn into a planar structure is much higher in ger-
manene (Jpl−lb =3687 K/u.c.) than it is for silicene (621
K/u.c.): this should imply that one is not to observe a
transition from a low-buckled onto a planar germanene
phase. Furthermore, while the low-buckled phase of sil-
icene was more stable than its high-buckled one [9], the
negative sign of Jhb−lb for germanene in Table II says
that a high-buckled phase should be more stable than
the low-buckled structure set at the start of the MD evo-
lution.

Figure 10(a) shows the instantaneous temperature of
germanene along the molecular dynamics simulation.
As seen on Fig. 10(b), the finite-temperature behavior
of low-buckled germanene indicates a transition onto a
lower-energy phase at 675 K, which is a lower temper-
ature than that in which we observed the creation of
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FIG. 11. Side and top snapshots at the last frame during
germanene simulations. The snapshots depict a 4 × 7 por-
tion of the (7 × 12) supercell at 100, 500, 600, 650, and 675
K target temperatures. Germanene turns amorphous at 675
K, explaining the sudden drop of energy on Fig. 10(b), and
showing the structural instability of 2D germanium.

amorphous silicon (900 K; see Fig. 4). Furthermore, for
temperatures up to 650 K, germanene never reaches a
transition into a planar structure given that Jpl−lb=3687
K/u.c. [see the distance to the horizontal dashed line
on Fig. 10(c), and that 〈∆z〉 never ever reduces its zero-
magnitude value on Fig. 10(d)]. Verification of a transi-
tion of germanene onto an amorphous phase at 675 K is
provided on Fig. 11(e), as well as on Fig. 12. The fact
that a transition onto an amorphous phase [see the sud-
den broadening of g(r) in the 675 K trace on Fig. 12] takes
place is related to the fact that the high-buckled phase is
a ground state here, and that low-buckled germanene is
a local (metastable) two-dimensional configuration; see
Fig. 2(c).

Figure 13 demonstrates that thermal expansion alone
is not sufficient for germanene to undergo a transition
onto a planar structure: the expansion seen on Fig. 13(a)
is not sufficient to reach the magnitude a0,pl displayed
as a horizontal line up to the temperature at which it
melts. Nevertheless, ∆z on Fig. 13(b) remains almost
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FIG. 12. Germanene pair correlation function g(r) versus
temperature. These are vertically offset from one another to
better contrast the locations of neighboring atoms as temper-
ature increases. Well-resolved peaks for up to twelve nearest
neighbors at 100, 500, 600, and 650 K (dashed vertical lines)
indicate that a hexagonal lattice is preserved. At 675 K, an
amorphous phase is revealed by the sudden loss of resolution
of a number of nearest-atom peaks.
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FIG. 13. Thermal evolution of (a) 〈a0〉 and of (b) 〈∆z〉 for
germanene, initially set on its low-buckled structure. The
data points shown are the average values and standard de-
viations from the data presented on Fig. 6 and at additional
intermediate temperatures. Zero-temperature values for low-
buckled and planar structures are taken from Table I, and
room temperature values of a0 and ∆z are taken from the fits
shown.

unchanged up to the melting point. The lack of flips
on germanene is explained by the tall elastic energy bar-
rier Jpl−lb observed on Fig. 2(c) and reported in Table I.
That it melts at a lower temperature than silicene may
be underpinned by the fact that the low-buckled phase
is a metastable one. Ambient values of a0,pl and of ∆z,pl

(4.0892 Å, and 0.7091 Å, respectively) can be found in
Fig. 13 as well.

Figure 14 shows the vibrational properties of low-
buckled germanene. Here, the softening of vibrational
bands can be seen in a similar way than in silicene. For
example, the dotted band, corresponding to the optical
out-of-plane mode softens as a function of temperature
as follows: by -1.36 cm−1 at 100 K, -6.19 cm−1 at 500,
-10.88 cm−1 at 600, and by -10.72 cm−1 at 650 K.
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FIG. 14. Finite-temperature phonon modes for germanene
obtained on a rectangular unit cell containing four atoms.
The diameter of the red circles indicates the relative inten-
sity of a given power spectral line, and a collection of nearby
circles tells the width (lifetime) of a given vibrational mode.
The zero-temperature phonon spectra, obtained within the
harmonic approximation, is shown by yellow curves. (Due
to numerical precision, the lowest mode yields a minuscule,
negligible, imaginary frequency of just 0.57 cm−1 at Γ.) The
out-of-plane optical mode leading to a planar configuration
was highlighted by dotted lines–and by a diagram on subplot
(a)–to better see that mode’s softening at finite temperature.

As for germanene’s electronic properties, Fig. 15 indi-
cates that the SOC-induced 20 meV band gap persists up
to the melting point up to 650 K, despite of the observed
phonon-induced broadening, which is as large as 8 meV
at 650 K and it is due to fluctuations of the deformation
potential only. That silicene has a larger broadening at
similar temperatures is a combined result of the defor-
mation potential and the sudden changes in curvature;
see Huertas-Hernando et al. [4].

This manuscript ends with a comparative discussion of
low-buckled stanene at finite temperature.

C. Stanene’s finite-temperature behavior

We refer to Tables I and II one more time, and to
Figs. 1(g) and 2(d), to continue making the point that
they contain crucial information that can be used to un-
derstand the finite-temperature behavior of low-buckled,
freestanding, group-IV monoatomic two-dimensional ma-
terials.

The barrier to transition from a low-buckled onto
a planar stanene configuration is a prohibitive 4541
K/u.c. now. Furthermore, the high-buckled structure
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FIG. 15. Germanene electronic band structures around the
K − point at increasing temperature. For a given temper-
ature, one hundred different band structures are overlapped
to give a sense of broadening due to the atomistic vibrations.
Unlike what was observed on Fig. 9 for silicene, the SOC-
induced band gap of low-buckled germanene is larger, and it
persists up to the transition onto a disordered phase despite of
atomistic vibrations. The fact that ∆z persists unchanged for
germanene precludes the creation of additional fluctuations in
the electronic band gap due to (above/below) flips among A
and B atoms; see Ref. [4].
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zero-Kelvin configuration. Target temperatures are indicated
in bold font. The yellow shading seen on subplots at 100
and 300 K indicates the time interval employed to calculate
time averages. At 325 K, the original time step resulted too
large to properly converge the electronic density, and a smaller
timestep was employed. The energy trace (drawn in brown)
indicates a sudden decrease of energy, whose consequences on
structure are seen on Fig. 17.
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FIG. 17. Side and top snapshots at the last frame during
stanene MD simulations. The snapshots depict a 4 × 7 por-
tion of the (7 × 12) supercell at 100, 300, and 325 K target
temperatures. Stanene turns onto a bulk phase at 325 K, ex-
plaining the sudden drop of energy on Fig. 16(b), and showing
the comparatively higher structural instability of 2D tin.
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FIG. 18. Thermal evolution of (a) 〈a0〉 and of (b) 〈∆z〉
for stanene, initially set on its low-buckled structure. Zero-
temperature values for low-buckled and planar structures are
taken from Table I. Stanene changed onto a thicker structure
at 325 K.

is now at a much lower, 5448 K/u.c. below the low-
buckled phase. This way, and as seen on Fig. 16, low-
buckled stanene transitions onto another phase at just
325 K, without undergoing an intermediate planar phase
(for which 〈∆z〉 = 0) in the interim. The structural
plots at 325 K on Figure 17 confirm this observation,
although a larger degree of order is observed when con-
trasted to silicene at 900 K [4(f)], or to germanene at 675
K [Fig. 11(e)].

Figure 18 contains average values for stanene’s lattice
constant and the buckling height, when started at the
low-buckled configuration, and before it turns into the
ordered, thicker phase observed on Fig. 17(c). One ob-
serves the thermal expansion of a0,lb and an almost con-
stant value of ∆z,lb, which remains stiff as in the case of
germanene [Fig. 13] due to the even taller elastic energy
barrier Jpl−lb = 4541 K/u.c. [see Table I], and unlike sil-
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FIG. 19. Stanene pair correlation function g(r) versus tem-
perature. These are vertically offset from one another to bet-
ter contrast the locations of neighboring atoms as temperature
increases. A transition onto a new ordered phase is revealed
by well-defined peaks at shifted locations for the traces at 325
and 400 K.

icene [Fig. 7(c)] which was shown to undergo a transition
whereby 50% of the B atoms are above A atoms and 50%
lie below on average. The lattice constant and buckling
height are equal to 4.6834 Å and 0.8954 Å at ambient
conditions.

The temperature-dependent pair correlation functions
shown in Fig. 19 differ from those shown on Figs. 5 and
12, in that peaks develop at different distances, as op-
posed to the gradual blurring that was observed for sil-
icene and germanene. The displacements of the peaks
that are observed in Fig. 19 support the fact that a new,
thicker and (hexagonal-closed-packed) bulk-like phase is
being generated on tin at 325 K. This fact is further con-
firmed by showing a pair correlation function at a higher
temperature of 400 K.

The last point of discussion concerns the vibrational
and electronic properties of low-buckled stanene prior to
its structural transition onto a thicker structure. Figure
20 shows that the vibrational modes are consistent with
those of the low-buckled structure up to room temper-
ature, and the mode highlighted by dotted lines softens
by 0.56 cm−1 at 300 K, and by 3.01 cm−1 at 300 K.
Figure 21 shows that the 72 meV SOC-induced bandgap
remains robust despite of the electron-phonon coupling
because of the lack of vertical flips [see Fig. 18(b)].

This way, we have provided a crucial assessment of
2D topological insulators at finite temperature, and pro-
vided guidance as to possible structural transformations
that may affect intended topological properties of those
materials on their freestanding form. The observations
made using MD on this work support and complement
those made earlier on [9].
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FIG. 20. Finite-temperature phonon modes for stanene ob-
tained on a rectangular unit cell containing four atoms. The
diameter of the red circles indicates the relative intensity of
a given power spectral line, and a collection of nearby circles
tells the width (lifetime) of a given vibrational mode. The
zero-temperature phonon spectra, obtained within the har-
monic approximation, is shown by yellow curves. (Due to
numerical precision, the lowest mode yields a minuscule, neg-
ligible, imaginary frequency of just 0.29 cm−1 at Γ.) The
out-of-plane optical mode leading to a planar configuration
was highlighted by dotted lines–and by a diagram on subplot
(a)–to better see that mode’s softening at finite temperature.

V. CONCLUSION

Exhaustive molecular dynamics simulations and zero-
temperature calculations were employed to understand
the finite-temperature behavior of silicene, germanene,
and stanene, initially set into their low-buckled atomistic
configuration. The structural degeneracy (positive and
negative buckling) suggested a possibility of ferroelas-
tic behavior on these materials, anharmonic vibrational
properties, and phase transitions.

Ferroelastic behavior, and a transition onto an average
planar 2D structure was indeed observed in freestanding
low-buckled silicene above 600 K. Numerical evidence
shows that it melts at 900 K. We also found that the
1.3 meV SOC-induced bandgap of silicene is smaller in
magnitude than fluctuations of the local deformation po-
tential, which will hinder observation of said bandgap at
temperatures as small as 200 K.

The high-buckled two-dimensional structure is prefer-
able for germanene and stanene. Germanene reaches its
melting phase transformation at 675 K, and it does not
transition onto a planar phase at intermediate tempera-
tures. The SOC-induced bandgap is robust against ther-
mal oscillations.

Stanene reconfigures itself above room temperature
(325 K) into a bulk HCP crystal, as is expected of heav-
ier metallic materials. We did not observe ferroelastic
behavior for germanene nor stanene.

Those results could be useful to link these mate-
rial’s expected atomistic and electronic structure at fi-
nite temperature (especially considering operation tem-
peratures on actual devices), and gives information about
expected phase transitions onto planar 2D structures (sil-
icene), disordered ones (silicene and germanene), or bulk
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FIG. 21. Stanene electronic band structures around the
K−point at increasing temperature. For a given temperature,
one hundred different band structures are overlapped to give
a sense of broadening due to the atomistic vibrations. Simi-
lar to germanene, the SOC-induced band gap of low-buckled
stanene persists up to the transition onto a bulk-like phase.
The fact that ∆z persists unchanged for stanene precludes
the creation of additional fluctuations in the electronic band
gap due to (above/below) flips among A and B atoms; see
Ref. [4].

(stanene) phases.

VI. ACKNOWLEDGMENTS

We thank Dr. Pradeep Kumar for insightful conversa-
tions, and Shiva P. Poudel for technical assistance. Work
funded by the U.S. Department of Energy (Award DE-
SC0022120).

Appendix A: Determination of the local value of ∆z

Taking the normal to the plane defined by atoms A1,
A2, and A3 as given in Eqn. (3), the equation of the plane
spanned by these three points is given by:

[r− (rA1
· n̂)n̂] · n̂ = 0. (A1)

In Eqn. (A1), r = (x, y, z) is a coordinate within the
plane. Indeed, Eqn. (A1) can be used to solve for, say, z
as a function of x and y; x and y then become the two
independent variables defining the plane.

We next need to determine whether point B lies “be-
low” or “above” the plane defined by A1, A2, and A3.
Quotation marks are added because, as seen on the side
views of Figs. 4, 11, and 17, the planes defined by any
three neighboring atoms on the A−sublattice tilt with
respect to the xy plane one had at zero temperature, re-
quiring additional clarification on the meaning of an atom
being “up” or “down” a plane. We will use the normal
vector n̂ to set a formal definition of an atom being up
or down a plane next.

To do so, we need to find a specific point within the
plane, which we will call r0, such that the distance be-
tween point rB and r0 takes its minimum value. This
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condition occurs when the vector rB − r0 is parallel or
antiparallel to n̂.

Now, a parametrization of a straight line containing
the vector n̂ is given by λn̂, with λ a real number. This
line does not necessarily pass through point rB though.
Nevertheless, the following straight line:

λn̂ + rB (A2)

will pass through rB when λ = 0 and, being parallel to
the plane’s normal, it will pierce through the plane span-
ning the smallest distance among the point and the plane.
Let’s parameterize that special value for λ as λ0. Then,
Eqn. (A1) turns more specific (because the intersection
of a plane and a straight line is a point), and it helps
us determine λ0 explicitly. Indeed, substituting for r the
equation of the straight line, Eqn. (A2) for the value of
λ = λ0 for which the line pierces the plane, we get:

[λ0n̂ + rB − (rA1
· n̂)n̂] · n̂ = 0, (A3)

which can be simplified into

λ0 = (rA1
− rB) · n̂. (A4)

This way, plugging the value of λ0 found in Eqn. (A4)
into Eqn. A2, the closest point to rB within the plane
(which we will call r0) ends up being given by:

r0 = [(rA1
− rB) · n̂] n̂ + rB , (A5)

so the shortest vector between point rB and r0 (i.e., rB−
r0) ends up being

rB − r0 = [(rB − rA1
) · n̂] n̂. (A6)

∆z is the projection of rB − r0 into the local normal
n̂:

∆z = (rB − r0) · n̂ = (rB − rA1
) · n̂, (A7)

where n̂ · n̂ = 1 was employed. Eqn. (A7) formalizes the
concept of “up” or “down” for every B atom within the
supercell, at any temperature, and at any time, as long
as the supercell does not turn amorphous.

Appendix B: Band broadening arising from
deformation potential

We follow the process introduced in Ref. [49] to esti-
mate band broadening due to finite-temperature atom-
istic motion. Here, we use one hundred snapshots,
equally separated, and create a primitive unit cell us-
ing the average lattice constant and buckling height per
snapshot. The distance among three neighboring atoms
on each of these average primitive unit cells is called d.

We also calculate the π−electron hopping integral t
at zero temperature, by fitting the linear dispersion of
these materials away from the gap (they all obey a Dirac

TABLE IV. Average and standard deviation of deforma-
tion potential, Es, for low-buckled silicene, germanene, and
stanene.

Material Temperature (K) Ēs (eV) σEs (eV)

silicene 200 0.0001 0.0009
silicene 550 0.0002 0.0026
silicene 600 0.0000 0.0060
silicene 650 0.0001 0.0052

germanene 100 0.0000 0.0012
germanene 500 0.0000 0.0022
germanene 600 0.0000 0.0025
germanene 650 0.0000 0.0020

stanene 100 0.0000 0.0010
stanene 300 0.0000 0.0013

Equation for fermions with mass). In that linear region,
the electron’s velocity (known as Fermi velocity vF ) is
given by vF = ∆E

~∆k , and the hopping integral t is

t =
2√

3a0,lb

∆E

∆k
, (B1)

with a0,lb the zero-temperature lattice constant from Ta-

ble I. Furthermore, d0 =

√(
a0,lb√

3

)2

+ ∆2
z,lb.

With this procedure, we found t = 1.000 eV for low-
buckled silicene, t=0.954 eV for low-buckled germanene,
and t=0.744 eV for low-buckled stanene, and the defor-
mation potential Es is estimated as a linear deviation
related to the average change in interatomic distances on
the unit cell:

Es = −td− d0

d0
, (B2)

which is adapted from Ref. [49]. A reduction of the size
of the unit cell makes d < 0 and increases the electron
cloud density, which results on electron repulsion and a
local upshift of the chemical potential Es [Eqn. (B2)], for
an electron-deficient region. Alternately, an increase of
the size of the unit cell makes d > 0 and decreases the
local electron density, which results on a downshift of Es,
and an electron-rich region. See Refs. [48–50] for more
details.

On a real material, there are electron-rich and electron-
rich regions [see, e.g., Refs. [47–51]], which make the local
conduction and valence band fluctuate with respect to
the midgap. Assuming ergodic behavior, we calculate the
electronic structure on a given average primitive unit cell,
and extract the band lifetime and the effects of electron-
phonon coupling at finite temperature as listed in Table
IV.
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