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Quantum coherence will undoubtedly play a fundamental role in understanding of the dynamics
of quantum many-body systems, thereby to reveal its genuine contribution is of great importance.
In this paper, we specialize our discussions to the one-dimensional transverse field quantum Ising
model initialized in the coherent Gibbs state. After quenching the strength of the transverse field,
the effects of quantum coherence are studied by the rate function of quantum work distribution. We
find that quantum coherence not only recovers the quantum phase transition destroyed by thermal
fluctuations, but also generates some entirely new singularities both in the static state and dynamics.
It can be manifested that these singularities are rooted in spin flips causing the sudden change of the
domain boundaries of spin polarization. This work sheds new light on the fundamental connection
between quantum critical phenomena and quantum coherence.

I. INTRODUCTION

Experiments with ultracold atom [1–4] and ion-trap
[5–7] provide opportunities to manipulate and control
the system, both in space and in time, with an unprece-
dented accuracy as compared to any solid-state counter-
part, preserving coherence over long time scales. With
these experimental advances, an in-depth study of the
dynamics of quantum many-body systems becomes pos-
sible. It aims to shed light on some fundamental issues
of quantum mechanics that have been recently resur-
faced, such as thermalization of closed systems [8, 9] or
the emergence of universality in the dynamics across a
critical point [10–12]. With these achievements, it has
become particularly relevant to develop specific theoret-
ical frameworks that could work in out-of-equilibrium
situations, overcoming the limitations of linear-response
and perturbation theory. In this regard, an important
progress of stochastic thermodynamics has been made
[13–17], where large deviations [18, 19] have allowed for
a better understanding of the emerging phenomena both
in the steady states and their fluctuations [20–22]. Par-
ticularly relevant has been the discovery of the exact fluc-
tuation theorems, which hold for the system arbitrarily
far from equilibrium [13–17], being able to characterize
the full non-linear response of the system to any (per-
turbative or not) driving. These rely on the analysis of
thermodynamic key concepts as work, heat, and entropy,
which represent stochastic variables with definite proba-
bility distributions.
One of the most intriguing examples of studying

the dynamics of quantum many-body systems in this
nonequilibrium thermodynamical formulation is dynam-
ical phase transition [23–25]. There has been quite a
remarkable amount of activity uncovering the features of
dynamical phase transition in a range of physical models
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including Hermitian [25–34] and non-Hermitian [35–37]
systems, topological matter [38–48], Floquet systems [49–
58], and many-body localized systems [59–61], etc. Dy-
namical phase transition, manifested as real-time singu-
larities in time-evolving quantum system after quenching
a set of control parameters of its Hamiltonian, is indeed
a dynamical analogue of equilibrium phase transition. It
is defined via the temporal nonanalytic behaviour of the
rate function, namely dynamical free energy density, an
analogue of the free energy, defined for the Loschmidt
echo rather than the partition function [25]. Loschmidt
echo is just the probability that the quench protocol does
not do work on the system, therefore, the dynamical
phase transition shows up as nonanalytic behavior in the
work distribution function: The cusps featured by the
rate function of quantum work distribution at critical
times [25]. This nonanalytic behavior can not be ob-
served at nonzero temperatures due to the presence of
thermal fluctuating [62]. All these afore mentioned stud-
ies require the initial ground or thermal equilibrium state
of the system in which there is no quantum coherence. In
the quantum realm, quantum coherence will undoubtedly
play a fundamental role, for instance it is strictly related
to the irreversible work [63–68] and it leads a genuine
quantum contribution to quantum critical phenomena
[68–74]. Very recently, a clear connection among coher-
ent signatures, enhanced work extraction and the critical
behaviors in quadratic fermionic systems has been found
via the Kirkwood-Dirac quasiprobability approach [75].
Therefore, reveal the effects of quantum coherence on the
dynamics of quantum many-body systems are important
and pivotal.

In this paper, we aim at revealing some unique ef-
fects of quantum coherence on the critical phenomena of
quantum many-body system in the nonequilibrium ther-
modynamical formulation with the aid of large devia-
tion theory [18, 19]. To accomplish this, we specialize
our discussions to the quenched one-dimensional trans-
verse field quantum Ising model, one of two prototypi-
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cal models to understand the quantum phase transition
[76]. The system is first prepared in the coherent Gibbs
state [68, 77, 78], an extreme example of coherent re-
sources in quantum thermodynamics, and then quenched
by suddenly changing the transverse field, a common
way to drive an isolated quantum system out of equi-
librium. By treating the quench as a thermodynamic
transformation, the quantum work distribution and its
rate function are determined by Gaussian measurement
scheme [79] rather than projective measurement, because
projective measurement will completely destroy quantum
coherence. With these nonequilibrium thermodynamical
formulation at hand, we then discuss the effects of quan-
tum coherence on the dynamics of quantum many-body
systems, especially on some dynamical singularities.

This paper is organized as follows: In the next section,
we introduce the quenched one-dimensional transverse
Ising model and derive the rate function of quantum work
distribution, which will be considered in the following.
The results that the static and dynamical singularities
of rate function are discussed in Sec. III and Sec. IV,
respectively. Finally, Sec. V closes the paper with some
concluding remarks.

II. QUENCHED ONE-DIMENSIONAL

TRANSVERSE FIELD ISING MODEL

The Hamiltonian of the one-dimensional transverse
field Ising model is

Ĥ
(

λt
)

= −
J

2

N
∑

j=1

[

σ̂z
j σ̂

z
j+1 + λσ̂x

j

]

, (1)

where J is longitudinal spin-spin coupling, λ is a dimen-
sionless parameter measuring the strength of the trans-
verse field with respect to the longitudinal spin-spin cou-
pling. In this work, we set J = 1 as the overall energy
scale and only consider λ ≥ 0 without loss of generality.
σ̂α
j (α = x, y, z) is the spin-1/2 Pauli operator at lattice

site j and the periodic boundary conditions are imposed
as σ̂α

N+1 = σ̂α
1 . Here we only consider that N is even.

The one-dimensional quantum Ising model is the pro-
totypical, exactly solvable example of a quantum phase
transition, with a quantum critical point at λc = 1 sepa-
rating a quantum paramagnetic phase at λ > λc from a
ferromagnetic one at λ < λc.

After Jordan-Wigner transformation and Fourier
transforming, the Hamiltonian becomes a sum of two-
level systems [80]:

Ĥ(λ) =
∑

k

Ĥk(λ). (2)

Each Ĥk(λ) acts on a two-dimensional Hilbert space gen-

erated by {ĉ†kĉ
†
−k|0〉, |0〉}, where |0〉 is the vacuum of the

Jordan-Wigner fermions ĉk, and can be represented in

that basis by a 2× 2 matrix

Ĥk(λ) = (λ− cos k)σ̂z + sin kσ̂y, (3)

where k = (2n−1)π/N with n = 1 · · ·N/2, corresponding
to antiperiodic boundary conditions for N is even. The
instantaneous eigenvalues are εk(λ) and −εk(λ) with

εk(λ) =

√

(λ− cos k)2 + sin2 k. (4)

The corresponding eigenvectors are

|ε+k (λ)〉 =
[

cos θk + i sin θkĉ
†
k ĉ

†
−k

]

|0〉 (5)

and

|ε−k (λ)〉 =
[

i sin θk + cos θkĉ
†
k ĉ

†
−k

]

|0〉, (6)

respectively, where θk is determined by the relation

eiθk =
λ− εk(λ)− e−ik

√

sin2 k + [λ− cos k − εk(λ)]2
. (7)

In order to explore the effects of quantum coherence,
we consider the system to be initially in the coherent
Gibbs state

|ψth(λ)〉 =
⊗

k

√

e−βĤk(λ)

Zk(λ)

(

|ε+k (λ)〉 + |ε−k (λ)〉

)

(8)

compared with the corresponding thermal equilibrium
state

ρ̂th(λ) =
⊗

k

e−βĤk(λ)

Zk(λ)
. (9)

In the expression above, β = 1/T is the inverse of the
temperature (we have set Boltzmann constant kB = 1),
Zk(λ) = 2 cosh[βεk(λ)] refers to the partition function of
mode k.

To study the dynamics of quantum many-body sys-
tems, one can analyze an experimentally tractable quan-
tity: the work done in a nonequilibrium process, such
as unitary evolution, sudden quench, or the mixture
of them. Without loss of generality, the nonequilib-
rium process can be expressed as Lt(·), which transforms
the system from its initial state ρ̂(0) to the final state
ρ̂(t) = Lt

(

ρ̂(0)
)

, changing the system Hamiltonian from

Ĥ(λ) to Ĥ(λ′). The work done in this process is usu-
ally determined by two-point measurement scheme: per-
forming two projective energy measurements at the be-
ginning and the end of external protocol. If the initial
state ρ̂(0) has quantum coherence, the first projective
measurement will destroy it and severely impact the sys-
tem dynamics and the work statistics. In order to in-
clude the effects of initial quantum coherence, a Gaus-
sian measurement scheme was proposed in Ref. [79].
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Based on this Gaussian measurement scheme, the cumu-
lant generating function of the work distribution function
G(R, t) =

∫

dWP (W, t)e−RW (R ∈ R) can be expressed
as

G(R, t) = e
R

2
σ
2

2

∏

k

Gk(R, t) (10)

with

Gk(R, t) = Tr

[

e−RĤk(λ
′)Lt

(

e
RĤ

k
(λ)

2 ˆ̺(0)e
RĤ

k
(λ)

2

)

]

,

(11)
where ˆ̺(0) is the system state after the first Gaussian
measurement with error σ. If the system is initialized
in the thermal equilibrium state, i.e., ρ̂(0) = ρ̂th(λ), the
system state after the first Gaussian measurement is still
the thermal equilibrium state, i.e., ˆ̺(0) = ρ̂th(λ). If
the system is initialized in the coherent Gibbs state, i.e.,
ρ̂(0) = |ψth(λ)〉〈ψth(λ)|, the system state after the first
Gaussian measurement is ˆ̺(0) = ⊗k ˆ̺k(λ) with

ˆ̺k(λ) =
1

Zk(λ)





e−βεk(λ) e−
(

ε
k
(λ)

σ

)2

e−
(

ε
k
(λ)

σ

)2

eβεk(λ)



 . (12)

The work distribution obeys a large deviation form
P (W, t) ∼ e−Nr(w,t) with a rate function r(w, t) ≥ 0 de-
pending on the work density w = W/N . In the thermo-
dynamic limit one can derive an exact result for r(w, t):
According to the Gaärtner-Ellis theorem [18] it is just
the Legendre transform

− r(w, t) = inf
R∈R

[wR − c(R, t)], (13)

where

c(R, t) = − lim
N→∞

1

N
lnG(R, t) (14)

is the rate function for the cumulant generating function
of the work distribution function G(R, t). c(R, t) is al-
ways concave and continuous inside the relevant domain
of definition. Because G(R, t) splits into products over
k, the function c(R, t) can be simplified significantly:

c(R, t) =− lim
N→∞

1

N

∑

k

lnGk(R, t)

=−
1

π

∫ π

0

dk lnGk(R, t),

(15)

here, the constant term R2σ2

2N is disappeared.

III. STATIC SINGULARITY OF RATE

FUNCTION

In this section, we investigate the effects of quantum
coherence on the properties of quantum work performed

(b)

dr
(w

)/
d
l

l

FIG. 1. (Color online) The curves of (a) rate function r(w)
and (b) its susceptibility dr(w)/dλ as the functions of λ for
w = 0, 0.01, 0.02, 0.03, 0.04 and 0.05 at very low temperature
T = 0.01. The intensity of the quench is 0.01, i.e., λ′ =
λ + 0.01. It should be noted that the measurement error σ
has no effect because there is no quantum coherence at very
low temperature.

by the quench of transverse field from λ to λ′. For this
purpose, the system does not need to evolve after quench
because it has no influence on work statistics. In this
sense, we believe the system state is static and denote
the singularities discussed in the following as the static
singularities. The cumulant generating function (11) can
be expressed as

Gk(R) = Tr
[

e−RĤk(λ
′)e

RĤ
k
(λ)

2 ˆ̺k(λ)e
RĤ

k
(λ)

2

]

. (16)

Substituting Eq. (16) into Eq. (15) and Eq. (13), one
can obtain the rate function r(w).

In the low-temperature limit, the occupation number
of only ground state energy is significant, and there is
no quantum coherence. After quenching, the system is
no longer in the ground state, but a superposition of
different energy levels, causing the expectation value of
work to be shifted. In Fig. 1(a), we plot rate func-
tion r(w) for a series of sudden quenches with amplitude
|λ′−λ| = 0.01. The rate function changes smoothly with
transverse field λ. The interpretation of this smooth be-
haviour is straight: Continues to increase the transverse
field, the energy levels of the system changes smoothly.
It is well known that the increasing transverse field drives
the Ising model from ferromagnetically ordered phase at
λ < 1 to a paramagnet at λ > 1. This quantum phase
transition is described by the nonanalytic behavior of
the susceptibilities about magnetization [76, 81] and fi-
delity [82–90] at critical point λ = 1. Herein, the quan-
tum phase transition in the Ising model is also observed,
where the nonanalytic behavior of the susceptibility of
the rate function occurs at the critical point λ = 1 [see
Fig. 1(b)]. This can be understood as follows: Work
is performed to drive the system across the critical re-
gion and, due to the vanishing energy gap, the system
becomes extremely susceptible to the driving, thereby
sharpening the susceptibility of the rate function of work
distribution.
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(a)
r(
w
)

l

-0.010

FIG. 2. (Color online) The curves of rate function r(w, t) as
the function of λ for w = 0,−0.002,−0.004,−0.006,−0.008
and −0.01 at temperature T = 1. The system is initially in
(a) thermal equilibrium and (b) coherent Gibbs states. The
intensity of the quench is 0.01, i.e., λ′ = λ + 0.01. The mea-
surement error is σ = 1.

With temperature increasing, the quantum phase tran-
sition is destroyed, thereby no point of nonanalyticity can
be observed in the rate function and its susceptibility [see
Fig. 2(a)]. The temperature increases the occupation
number of excited states, and the quantum coherence be-
tween energy levels becomes significant in coherent Gibbs
state. Taking coherent Gibbs state as the initial state of
the system, we plot the rate function r(w) in Fig. 2(b).
The rate function shows a kink at critical point λ = 1,
that is to say, with the aid of quantum coherence, the
disappeared nonanalytic behavior in the susceptibility of
the rate function is replaced by a kink singularity in the
rate function itself. In this case, the kink singularity in-
duced by quantum coherence is the first order, a new
form of the demonstration of quantum phase transition
in Ising model. In addition to the kink at critical point
λ = 1, some new kinks for different work densities can
be found at the ferromagnetic region λ < 1 [see the blue,
green and pink curves in Fig. 2(b)], which implies an
entirely new kind of singularity beyond the traditional
quantum phase transitions.
Before explaining the singularities caused by quantum

coherence, let us briefly review quantum phase transi-
tion at ground state, see Refs. [91, 92]. Quantum phase
transition, driven by quantum fluctuations, takes place
at the critical value λ = 1 of the transverse field. When
λ≫ 1, the ground state is a paramagnet | →→→ · · · →〉
with all spins polarized along the x-axis. On the other
hand, when λ ≪ 1, then there are two degenerate fer-
romagnetic ground states with all spins pointing either
up or down along the z-axis: | ↑↑↑ · · · ↑〉 or | ↓↓↓ · · · ↓〉.
However, when N → ∞, then energy gap at λ = 1 tends
to zero (quantum version of the critical slowing down)
and it is impossible to pass the critical point at a fi-
nite speed without exciting the system. As a result, the
system ends in a quantum superposition of states like
| · · · ↑↓↓↓↓↓↑↑↑↑↑↑↑↓↓↓↓↑↑↑↑↑↑↓ · · · 〉 with finite domains
of spins pointing up or down and separated by kinks
where the polarization of spins changes its orientation.
Beyond the ground state, the character of the excitations

also undergoes a qualitative change across the quantum
critical point, which is described in the Landau quasipar-
ticle scheme, i.e., as superpositions of nearly independent
particle-like excitations [76].

With temperature increasing, quantum fluctuations
are overwhelmed by thermal fluctuations, compelling the
symmetry-breaking order-disorder transition caused by
quantum fluctuations to be disappeared. Quantum co-
herence, as a kind of information, is used to do work
and, due to its extreme sensitivity nature to energy level
structure, the resulting coherent work, i.e., the work in-
volving quantum coherence, is highly susceptible to the
change of energy level structure. On the other hand,
quantum coherence enhances quantum fluctuations, en-
abling them to overcome thermal fluctuations, thus re-
viving the symmetry-breaking order-disorder transition.
This symmetry breaking causes the rate function of work
distribution to be singular at the phase transition point.
The kinks in the ferromagnetic region comes from the
spin flips driven by transverse field in different energy
levels. The spin flips in different energy levels gener-
ate different energy changes corresponding to different
work densities. After quenching transverse field, the do-
main boundaries of spins pointing up or down in some
energy levels to be changed suddenly, thereby occurring
the kinks in the corresponding work densities. In the
paramagnetic region, the system is already disordered,
the effect of quantum coherence is no longer significant.

IV. DYNAMICAL SINGULARITY OF RATE

FUNCTION

In this section, we investigate the quench dynamics in
the nonequilibrium thermodynamical formulation. For
this, we consider a double quench protocol: At t = 0
the parameter λ is quenched from λ to λ′ such that the
Hamiltonian Ĥ(λ′) governs the nontrivial time evolution

Û(t) = e−iĤ(λ′)t; at time t the system is quenched back.
For this double quench protocol, the cumulant generating
function (11) can be expressed as

Gk(R, t) = Tr
[

e−RĤk(λ)Û(t)e
RĤ

k
(λ)

2 ˆ̺k(λ)e
RĤ

k
(λ)

2 Û †(t)
]

.

(17)
Substituting Eq. (17) into Eq. (15) and Eq. (13), one
can obtain the rate function r(w, t). It is well known that
if the system is initialized in the ground state, the tem-
poral nonanalytic behaviours of the rate function, fea-
turing the dynamical phase transition, can be observed
[25]. However, if the system is initially in the thermal
equilibrium state at finite temperature, thermal fluctu-
ations will destroy dynamical phase transition and the
nonanalyticities will disappear [62]. Herein we consider
the effects of quantum coherence on the quench dynamics
by initializing the system in the coherent Gibbs state.

Fig. 3 shows the dynamics of rat function. At short
time, the rate functions for both thermal equilibrium and
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(c) 

FIG. 3. (Color online) The dynamics of rate function r(w, t)
for coherent Gibbs (blue) and thermal equilibrium (red) states
with temperature T = 1. The double quenches are performed
in (a) ferromagnetic region (λ = 0 and λ′ = 0.5) and (b)
paramagnetic phase region (λ = 1.5 and λ′ = 2) and (c) across
from ferromagnetic phase region to paramagnetic phase one
(λ = 0.75 and λ′ = 1.25). It should be noted that three double
quenches considered have the same perturbation strength, i.e.,
δλ = λ′

− λ = 0.5. In the dynamics of rate function r(w, t),
the work densities are given as w = 0.03, 0.02 and 0.005 in (a),
(b) and (c), respectively. The measurement error is σ = 1.

coherent Gibbs states satisfy r(w, t) ∼ −α ln t, which im-
plies that work distribution P (W, t) ∼ e−Nr(w,t) ∼ tNα,
i.e., the dynamics of work distribution at short time
obeys the power law. After a period of evolution, the
effects of quantum coherence become significant, causing
a sudden change in the dynamics of the work distribution,
which otherwise changes smoothly in the absence of co-
herence. The sudden change of the dynamics of the work
distribution is shown by the kink in the rate function [see
the blue curves in Fig. 3]. This sudden change behavior
depends on work density. Taking the ferromagnetic phase
(λ = 0 and λ′ = 0.5) as an example, we plot the short
time dynamics of rate function for different work densities
in Fig. 4. As shown in Fig. 4, the dynamical kinks only
occur for the low but not zero work density 0 < w . 0.05.
With the work density increasing, the transition time re-
quired for singularity occurrence increases, but must be
kept in the short region t . 0.1. Quantum coherence in
the initial state will be destroyed after sufficiently long
time relaxation, even though the relaxation process is
unitary. Therefore, the rate function for any work den-
sity stabilizes at a constant value. Constant rate function
in the long time limit means that the work distribution

0.001 0.01 0.1 1
0.0

0.1

0.2

0.07

r(
w
,t
)

t

0

FIG. 4. (Color online) The short time dynamics of rate func-
tion r(w, t) for w = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 and 0.07.
The double quenches are performed in ferromagnetic phase
region with λ = 0 and λ′ = 0.5. The initial state of the sys-
tem is coherent Gibbs state with temperature T = 1. The
measurement error is σ = 1.

and the average work no longer change over time, i.e.,
limt→0 dP (W, t)/dt = 0 and limt→0 d〈W (t)〉/dt = 0.
These results also root in spin flips. After the first

quench, the system begins to evolve with the spin flips
driven by Hamiltonian H(λ′). The effect of quantum co-
herence is only visible when a large number of spin flips
are involved. At short time, the spins have no enough
time to slip and quantum coherence does not have a
significant effect, therefore work distributions both obey
the same power law with or without coherence. After
a period of evolution, enough spins have flipped that
the domain boundaries of spins pointing up or down
in energy levels can be changed suddenly. These sud-
den changes will be smoothed by thermal fluctuations,
thereby smoothing the dynamics of rate function, if the
system is initially in the thermal equilibrium state. How-
ever, quantum coherence highlights the contribution of
some energy levels, making their domains particularly
important. The sudden change in these domains alters
the work distribution so that a kink is observed in the
rate function. In the long time limit, all spins are flipped
and the system is disordered, eliminating the effects of
quantum coherence.

V. CONCLUSIONS

To summarize, the effects of quantum coherence on
the nonequilibrium dynamics have been studied by fo-
cusing the rate function of quantum work distribution
after quenching the strength of transverse field in the
one-dimensional quantum Ising model, where the quan-
tum Ising model is initialized in the coherent Gibbs state.
After quench, the rate function of quantum work distri-
bution shows a second-order quantum phase transition
at very low temperature, but it is destroyed by thermal
fluctuations when temperature goes up. With the help
of quantum coherence, this disappeared quantum phase
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transition can be recovered by a kink singularity, beyond
this, another entirely new kink singularity also occurs in
ferromagnetic region. The unitary time evolution of a
quantum system after a sudden global quench plays a
substantial role in understanding nonequilibrium quan-
tum physics. It has been demonstrated that the initial
quantum coherence plays a role only at short periods of
evolution because it will be destroyed after sufficiently
long time relaxation. At short time, the dynamics of
work distribution obeys a power law, but can be changed
suddenly with the influence of quantum coherence, caus-
ing a dynamical kink. These unique kink singularities
generated by quantum coherence have been interpreted

by spin flips. These unique effects of quantum coherence
on work statistics shed light on the important tasks of
studying what thermodynamic quantity mean in quan-
tum mechanics and how to extend the principles of ther-
modynamics to the quantum regime.
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