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The inclusion of inertia in the Kuramoto model has been long reported to change the nature
of phase transition, providing a fertile ground to model the dynamical behaviors of interacting
units. More recently, higher-order interactions have been realized as essential for the functioning
of real-world complex systems ranging from the brain to disease spreading. Yet, analytical insights
to decipher the role of inertia with higher-order interactions remain challenging. Here, we study
Kuramoto model with inertia on simplicial complexes, merging two research domains. We develop
an analytical framework in a mean-field setting using self-consistent equations to describe the steady-
state behavior, which reveals a prolonged hysteresis in the synchronization profile. Inertia and triadic
interaction strength exhibit isolated influence on system dynamics by predominantly governing,
respectively, the forward and backward transition points. This work sets a paradigm to deepen our
understanding of real-world complex systems such as power grids modeled as the Kuramoto model
with inertia.

I. INTRODUCTION

The emergence of collective behavior in complex real-
world systems has been a long-standing research inter-
est [1]. It was initially in the landmark paper [2] that
Kuramoto modeled the phenomenon of synchronization
using a system of network-coupled oscillators in an an-
alytically tractable setting, illustrating that the system
underwent a second-order phase transition from incoher-
ent to a coherent state. Since then, numerous works
on various extensions of the Kuramoto Model have been
done, revealing several phenomena [3–7]. Of particular
interest to us is the Kuramoto Model with inertia (also
known as the second-order Kuramoto model). Inspired
by the modeling of synchronized flashing in Pteroptix
malaccae by Ermentrout [8], a second-order extension of
the Kuramoto model was first proposed by Tanaka et al.
[9, 10]. They showed that the system experienced a first-
order phase transition upon introducing inertia rather
than the smooth second-order phase transition observed
in the Kuramoto model. They put forth a self-consistent
method akin to the one proposed by Kuramoto to study
the steady-state behavior of the coupled oscillator sys-
tem. Since then, the second-order Kuramoto model has
been extensively explored in diluted networks [11] and
various real-world complex systems like Josephson junc-
tions [12] and power grids [13–17]. In [18], Filatrella et al.
explained how the second-order Kuramoto model origi-
nates in power grids by simply accounting for power con-
servation at each node of the grid, rendering it more than
just a mathematical convenience.
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However, all these results were obtained by focusing on
the interactions to be purely dyadic in nature. Recent re-
search highlights that such a reductionist view might not
reveal the complete picture of the underlying mechanism
of exotic phenomena observed in some real-world com-
plex systems where the interactions between agents are
inherently higher-order in nature [19–22]. Using the Ott-
Antonsen (OA) dimensionality reduction method [23]
Skardal & Arenas [24] showed that incorporating higher-
order interactions into the Kuramoto model resulted in
abrupt (de)synchronization transitions. It was remark-
able to observe that adding an inertia term to the Ku-
ramoto model or incorporating higher-order interactions
independently gave rise to a first-order phase transition
in the system. Here, we are interested in understanding
how the interplay of inertia and higher-order interactions
manifests itself in the system and affects the synchroniza-
tion profile, which has not been explored before.

This article unifies these two disparate fields by providing
a generalized analytical framework to predict the steady-
state behavior of coupled oscillator systems with iner-
tia interacting via higher-order interactions. The first
challenge lies in the fact that using dimensionality re-
duction methods like the OA does not carry over easily
towards analyzing second-order Kuramoto models [26] as
the density function, which is usually Fourier expanded
in terms of the phase now also depends on the velocity
of the oscillators. Hence, in this study, we develop novel
analytics using the self-consistency methodology origi-
nally proposed by Kuramoto and later extended to the
second-order Kuramoto model by Tanaka et al. [9]. We
show that the effect of inertia and higher-order inter-
actions manifest independently, resulting in a prolonged
hysteresis-driven synchronization transition within the
system. The forward and backward transition points
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are found to be predominantly dependent on inertia and
higher-order interaction, respectively Fig. 1.

II. MODEL

We study the inertial effects in a globally coupled oscil-
lator network considering the simultaneous presence of
dyadic and triadic interactions. Phases of N -coupled os-
cillators, each with massm, evolve based on the following
coupled nonlinear equations,

mθ̈i = −θ̇i + ωi +
K1

N

N∑
j=1

sin(θj − θi)

+
K2

N2

N∑
j=1

N∑
k=1

sin(2θj − θk − θi).

(1)

In Eq. 1, θi and θ̇i refer to the instantaneous phase and
angular velocity of the ith oscillator, respectively. ωi is
the intrinsic frequency of the ith oscillator derived from
a unimodal symmetric probability distribution g(ω) with
mean Ω. The coupling constants K1 ≥ 0 and K2 are the
dyadic and triadic coupling strengths, respectively. The
form of the higher order coupling term directly falls from
the phase reduction of mean-field complex Ginzburg-
Landau equation [25].

We decouple the differential equations in Eq. 1 and write
them in terms of mean-field quantities by introducing the
following general order parameter for p ∈ {1, 2},

rpe
iψp =

1

N

N∑
j=1

eipθj . (2)

From the above definition, r1 measures the global phase
coherence and can be interpreted as the centroid of
phases of oscillators on a unit circle in the complex plane,
and ψ1 measures the average phase of the oscillators.
r2, referred to as the Daido order parameter [27] cap-
tures cluster synchronization. As we are interested in
the steady state behavior of the system, we omit the
time dependence in the definition of the general order
parameter. In the incoherent state, the phases of the os-
cillators are scattered uniformly on the unit circle and
hence r1 ≈ r2 ≈ 0. Meanwhile, in the coherent state, a
single group of oscillators is formed locked to the mean
phase ψ1 rotating uniformly at angular velocity Ω, hence
r1 ≈ r2 ≈ 1. Using Eq. 2, Eq. 1 can be written in terms
of mean-field quantities as,

mθ̈i = −θ̇i + ωi +K1r1 sin(ψ1 − θi)

+K2r1r2 sin(ψ2 − ψ1 − θi).
(3)

Because of the rotational symmetry in the model, the
mean of the g(ω) distribution can be set to zero by mov-
ing into the rotating frame at the frequency Ω. This can

be facilitated by making the transformation θi → θi+Ωt
in Eq. 1. Once in the rotating frame, ψ1 and ψ2 can
be set to zero by appropriately shifting the origin, i.e.,
θi(0) → θi(0) + ψ1(0). Eq. 3, now takes the following
form,

mθ̈i = −θ̇i + ωi − q sin(θi), (4)

where, for the ease of notation, q = r1(K1 +K2r2).

III. ANALYTICAL RESULTS

Note that for fixed parameter values K1 and K2, Eq. 4
has two variables r1 and r2. Hence, to chalk out
the steady state behavior of Eq. 4, we develop a sys-
tem of self-consistent equations and seek the values of
(K1, r1, r2) which simultaneously satisfy them. We start
by taking the thermodynamic limit (N → ∞); the cou-
pled oscillator system in the steady state is then de-
scribed by a probability density ρ(θ, ω) where for a given
intrinsic frequency ω, ρ(θ, ω)dθ represents the fraction of
oscillators with their phase between θ and θ + dθ. The
general order parameter in Eq 2 takes the following form
in the continuum limit,

rpe
iψp =

∫ ∞

−∞

∫ π

−π
eipθρ(θ, ω)g(ω)dωdθ.

In the steady state, the oscillator population splits up
into two groups depending on their intrinsic frequency.
One group of oscillators is locked to the mean phase;
meanwhile, the other oscillators drift over the locked os-
cillators. Hence the overall phase coherence (rp) can be
split into contributions from the locked (rlp) and drifting

(rdp) oscillators, i.e, rp = rlp + rdp. Before calculating rlp
and rdp, we point out that systems whose motion is gov-
erned by Eq. 4 are known to depict hysteresis and have
been well studied in [9, 10, 28]. For completeness, we
briefly summarise the reason for the hysteretic behavior
here. Dropping the subscript i and by introducing a new
timescale τ =

√
q
m t, Eq. 4 is transformed to a second

order differential equation with just two parameters as,

θ̈ = −αθ̇ + β − sin(θ), (5)

where α = 1√
qm and β = ω

q . This equation has two

fixed point solutions, a saddle point and a stable node
for β < 1, obtained by setting θ̇ = 0 and θ̈ = 0. At
β = 1, the system undergoes a saddle-node bifurcation,
annihilating the two fixed point solutions and admitting
a unique stable limit cycle solution for all β > 1 [29].
However, it so happens that as we decrease the value of
β to be less than one, the limit cycle persists for some
small values of α. Hence, bistability exists in the sys-
tem, where a stable limit cycle and a stable node coexist.
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FIG. 1: (Color online) Prolonged Hysteresis. a) Schematic depiction of emerging collective behavior in the
Kuramoto Model (KM). (a′), (c′), and (d′) plot the usual behavior of KM [2] in the sole impression of higher-order
[24] or inertia [9], whereas (b′) illustrates a simultaneous forward and backward shift in the transition points upon
introduction of m and K2 in KM (Eq. 1), revealing a prolonged hysteresis. The green arrow indicates the direction
of the shift in the transition points. b) r1 versus K1 plot for K2 = 1 and m = 1 (blue-circles) and K2 = 7 and m = 3

(red-squares). Filled circles and squares represent the simulation results for the forward, and hollow circles and
squares represent the backward processes. The dashed and continuous curves represent the forward and backward

analytical predictions, respectively.

A further decrease in β will disintegrate the limit cycle
via a homoclinic bifurcation. Fig. 2a displays these three
dynamical regimes in the α − β parameter space. For
small values of the damping term α, ensured by keeping
finite inertia, the homoclinic bifurcation curve is seen to
be approximated by a straight line Fig. 2a. Upon im-
plementing Melnikov’s method, [28, 30] the equation of
the straight line comes out to be β = 4

πα. In conclusion,
we see the presence of three different dynamical regimes,
namely a limit-cycle regime (β > 1), a bi-stable regime
which can be approximated by ( 4πα < β ≤ 1), and a fixed

point regime approximated by (β ≤ 4
πα) [28].

The bi-stable region is responsible for hysteresis in sys-
tems governed by equations like Eq. 5. Hence, following
[9], instead of studying the system in its full general-
ity, we break down the self-consistency analysis for our
model into forward (f) and backward (b) processes. In
the forward process, we start from a small K1 value, and
therefore, the system is in an incoherent state (r1 ≈ 0).
This leads to high α and β values, indicating that the
oscillators are in the limit cycle regime. As we adia-
batically increase K1, the oscillators stay in the basin
of attraction of the stable limit cycle even after cross-
ing β = 1(ω = q) and fall into the locked cluster only
after β ≈ 4

π α(ω ≈ 4
π

√
q
m ), below which the limit cy-

cle vanishes. For the backward process, we start from
a high K1 value, and hence the oscillators exist in the
fixed point regime, i.e., the oscillators are locked in a
cluster and therefore, the system is in a coherent state
(0 << r1 < 1). As we adiabatically decrease K1, the os-

cillators remain in the basin of attraction of the stable
node until β = 1, when the stable node vanishes via a
saddle-node bifurcation. Thus, in the backward process,
oscillators having |ω| ≤ q = ωb contribute to the locked
oscillators, while in the forward process, only those with
|ω| ≤ 4

π

√
q
m = ωf are in a locked state and all the oscil-

lators with ω > ωf,b drift around the locked cluster. We
point out that K2 is concealed in q and directly affects
the fraction of oscillators in a locked or drifting state.

The contribution of the locked oscillator(rlp) to overall
coherence for the forward/backward process can now be

calculated as rlp =
∫ ωf,b

−ωf,b
eip sin

−1(ω
q )g(ω)dω. The imagi-

nary part of rlp is zero as g(−ω) = g(ω). Hence taking

only the real part and noting that θf,b = sin−1(ωf,b/q),
we arrive at the expression for rlp as follows,

rlp = q

∫ θf,b

−θf,b
cos(θ) cos(pθ)g(q sin(θ))dθ. (6)

The contribution to overall coherence from the drift-
ing oscillators can be accounted for by calculating rdp =∫
|ω|>ωf,b

∫ π
−π e

ipθρd(θ, ω)g(ω)dωdθ where ρd(θ, ω) is the

density of drifting oscillator which satisfies ρd(θ, ω) ∝
1/|θ̇| [9]. The normalization condition for ρd(θ, ω) gives,∫ π
−π ρd(θ, ω)dθ =

∫ T
0
ρd(θ, ω)θ̇dt = 1 (for a given ω),

where T is the time period of the limit cycle solution.
Hence we end up with the relation ρd(θ, ω) =

1
|θ̇|T , which
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when plugged into the form of rdp gives us,

rdp =

∫
|ω|>ωf,b

[
1

T

∫ T

0

eipθdt

]
g(ω)dω. (7)

To calculate rdp, we first need to obtain an approximate
analytic expression for the limit cycle solution of Eq. 5.
We follow the method specified in [31] of writing θ̇ as a
Fourier series in θ by only considering the first harmonics
(θ̇(θ) = A0+A1 cos(θ)+B1 sin(θ)). On substituting this
in Eq. 5, we find the expression of the coefficients in terms
of α(= 1√

qm ) and β(= ω
q ) such that the first harmonic

vanishes, giving us,

θ̇(θ) =
β

α
+

α2

α4 + β2

[
β

α
cos(θ)− α sin(θ)

]
, (8)

and θ(t, ω) by integrating Eq. 8 with time [31]. As it
turns out that θ(t,−ω) = −θ(t, ω), and g(−ω) = g(ω),
the imaginary part in Eq. 7 is zero. Thus,

rdp =

∫
|ω|>ωf,b

⟨cos(pθ)⟩ g(ω)dω. (9)

The expression for ⟨cos(pθ)⟩ (for p ∈ {1, 2}) can now

be readily calculated as ⟨cos(pθ)⟩ = 1
T

∫ T
0
cos(pθ)dt =∫ 2π

0
cos(pθ)

θ̇
dθ/ ∫ 2π

0
1
θ̇
dθ to obtain,

⟨cos(θ)⟩ = β

α

[√
β2

α2
− α2

β2 + α4
− β

α

]
,

⟨cos(2θ)⟩ =
[
β2 − α4

β2 + α4

]
×[

2β(β2 + α4)

α3

(
β

α
−

√
β2

α2
− α2

β2 + α4

)
− 1

]
.

We are now finally ready to write down the self-consistent
equations that let us describe the steady state of the cou-
pled oscillator system governed by Eq. 1. For the remain-
der of the work, we consider the intrinsic frequency to be
derived from Lorentz distribution, g(ω) = 1

π
1

1+ω2 cen-
tered around zero. Noting that the integrands in Eqs. 6
and 9 for p ∈ {1, 2} are even functions, we arrive at,

rp = 2q

∫ θf,b

0

cos(θ) cos(pθ)g(q sin(θ))dθ

+2

∫ ∞

ωf,b

⟨cos(pθ)⟩ g(ω)dω.
(10)

These two equations together describe the steady-state

behavior of the system.

IV. NUMERICAL RESULTS

We numerically solve the set of self-consistent equations,
Eq. 10 to find the nontrivial branch of solutions for the
order parameter (both forward and backward processes).
Fig. 1a provides a schematic representation of the syn-
chronization profiles of our result in comparison to pre-
viously explored models [2, 9, 24]. Fig. 1b presents ana-
lytical and simulation results for the r1 vs. K1 curves for
(m,K2) = (1, 1) and (m,K2) = (3, 7). As for the simula-
tion protocol, we simulate Eq. 3 on a network of N = 104

nodes by splitting it into a pair of first-order differen-
tial equations and integrating them using the Runge-
Kutta 4 algorithm (time-step 0.1). For a chosen value
of m and K2, we start with random initial conditions for
θ(∈ [0, 2π)) and θ̇(∈ [−1, 1]) and K1 = 0. We adiabati-
cally increase K1 in steps of ∆K1 (= 0.1, unless specified
otherwise) till K1 = 12 is reached (forward), followed
by an adiabatic decrease till K1 = 0 (backward). By
adiabatic increase/decrease, we imply that for every K1

except the first (K1 = 0), the initial conditions are taken
as the final state obtained for the previous K1 value. At
all coupling strengths K1, the order parameter values are
calculated after discarding transients by averaging over
the steady state.

Fig. 1b displays a good agreement between the simulation
and analytical results. For the forward process, as K1 is
increased from zero, the system undergoes a first-order
phase transition from incoherent to coherent state at a fi-

nite critical coupling value (Kf
1 ). However, for the back-

ward process, the system undergoes abrupt desynchro-

nization at a value (Kb
1), which is less than Kf

1 . Hence,
hysteresis is observed where the system stays in two dif-
ferent states depending on the initial configuration. The
derived self-consistency equations can also be used with
other extended-tailed distributions like the Gaussian dis-
tribution. In the backward process, there exists a discrep-
ancy between analytical and numerical values (Fig. 1b) as
also reported in [9]. This happens because the maximum
value of the K1 chosen for the simulations is 12, when the
system starts from a partially coherent state. Whereas,
the analytical solutions are for when the system starts
from a fully coherent state. Hence, a better fit between
analytical and numerical values for the backward process
can be obtained by increasing the maximum value of K1

in the simulation protocol. We point out that when m

and K2 values are both increased, Kf
1 shifts to the right

while Kb
1 shifts to the left, revealing a prolonged hystere-

sis region as illustrated in Fig. 1b.

A natural question would then be to address the depen-
dency of the forward and backward transition points on
m and K2. To analytically obtain the expression for

(Kf
1 ), we evaluate Eq. 10 in the limit r1 → 0+ (q → 0+).
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FIG. 2: (Color online) a) α(= 1/
√
qm)-β(= ω/q) parameter space. Different dynamical regimes are present in the θ̇

vs. θ phase space of Eq. 5. b) Synchronization profile r1 versus K1 for m = 1 and different values of K2 = 0 (orange
squares), 3 (blue triangles), and 5 (red circles). c) Synchronization profile for a fixed value of K2 = 2 and different
values of m = 3 (orange squares), 1 (blue triangles), and 0 (red circles). In both b) and c), the filled and hollow

symbols indicate the simulation results for the forward and backward cases, respectively. The dashed and continuous
curves represent the analytically calculated values for the forward and backward processes, respectively. d)

Backward transition points. The dashed curve represents the analytical predictions of Kb
1 for m = 0 and different

K2 (Kb
1 = 2

√
2K2 −K2 as derived in Section VIA for K2 ≥ 2). The scatter plots are the Kb

1 vs. K2 for different m
= 0, 1, 5, 10 obtained via numerical simulation.

As we take this limit, we see that β/α(= ω
√

m
q ) tends to

very high value as compared to α2/(β2+α4)(= qm
1+ω2m2 ).

This allows us to perform a Taylor series expansion
of ⟨cos(θ)⟩ for ϵ = α2/(β2 + α4) << 1 which gives,

⟨cos(θ)⟩ = −α2

2(β2+α4) + O(ϵ4) ≈ −mq
2(1+m2ω2) . However, in

the limit r1 → 0+, r2 → 0+ and the parameter α → ∞
implying that the limit of the integrals for the forward
and backward processes become the same as there ex-
ists no bistability region in the parameter space. Taking
θf,b = π

2 , dividing both sides of Eq. 10 by q, and eval-
uating the limit (at which the two equations in Eq. 10
decouple) we have,

1

Kf
1

=
π

2
g(0)−m

∫ ∞

0

1

1 +m2ω2
g(ω)dω.

After evaluating the integral and rearranging the terms,

we end up with Kf
1 = 2(m+1). We see that the forward

transition point is independent of K2 and purely depends
on m and, hence, matches the previously derived value

of the forward transition point in [7, 33]. Fig. 2b illus-
trates the effect of varying K2(0.0, 3.0, 5.0) for the case

of fixed m(= 1). As expected, Kf
1 remains the same for

all three cases, validating our analytical result. At this

Kf
1 (= 4), the magnitude of the first-order jump for fixed

m increases with the value ofK2. In Fig. 2c, we study the
effect of varying mass (0.0, 1.0, 3.0) for the case of fixed

K2(= 2.0). As inertia increases, Kf
1 shifts to higher val-

ues as predicted analytically. However, we note that the

analytically calculated values of Kf
1 do not match ex-

actly with numerical simulations owing to the finite size
effects. A detailed study has been done in [32].

A fairly good analytical approximation for Kb
1, as also

pointed out in [32], would be to obtain the minimum
value of K1 along the non-trivial branch of the backward
self-consistent curve. The simulation results in Fig. 1b
and Fig. 2b and 2c are seen to back up this observation
for our model. However, obtaining a clean analytical
expression for the same by calculating dK1

dr1
= 0 is not

possible because of the complexity of the integrand of
the drift oscillator contribution in r2. Alternatively, we
resort to simulation results to decipher the dependency of
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Kb
1 on m and K2. From Fig. 2b, it can be seen that for

the backward process, the coherent branch persists till
increasingly smaller values of K1 with an increase in the
K2 value, after which the system undergoes an abrupt
transition to the incoherent state. Hence, it is clear that
an increase in K2 leads to a decrease in Kb

1. To study
the effect of mass on Kb

1, we fix K2 and vary m as in
Fig. 2c. It is observed that the backward branches for
fixed K2(=2) and different m values merge for high K1

values and get separated for low K1 values. As there is
an influence of m on the nature of the curve for low K1

values, this indicates the possibility of dependency of Kb
1

on m.

It was shown in [32] that for the pure dyadic case (K2 =
0), Kb

1 decreases with an increase in m and plateaus
out for high m values. In Fig. 2d, we address how this
changes with the introduction of finite K2. The Kb

1 ob-
tained via simulation (performed for N = 103 number of
nodes) for values of K2 ranging from 0 to 10 and different
values of m(0,1,5,10) are plotted. We see that for small
values of K2 and finite inertia, an increase in the values
in m leads to a decrease in Kb

1. However, we point out
that for higher values of K2, the effect of m on Kb

1 be-
comes less pronounced, and desynchronization happens
at the same value irrespective of mass. An analytical pre-
diction of Kb

1 becomes possible following this observation
by considering the m = 0 case. We derive self-consistent
equations for this case in Section VIA and obtainKb

1 as a
function ofK2 (K

b
1 = 2

√
2K2−K2 forK2 ≥ 2) by finding

the minimum value of K1 in the self-consistency curve.
These analytically calculated Kb

1 values for the m = 0
case are represented by the dashed line in Fig. 2d. It can
be clearly observed that for higher values of K2(≥ 2), the
analytical predictions of Kb

1 match closely with the ones
obtained via simulation for different masses.

V. CONCLUSION AND DISCUSSION

In this article, we have put forward a generalized analyt-
ical framework to study the steady-state behavior of cou-
pled oscillator systems with inertia interacting via higher-
order interactions. The analytical predictions, backed
up by numerical simulation, show a prolonged hysteretic
first-order phase transition to an (in)coherent state. We
show that the forward transition point increases linearly
with m and is independent of K2. Meanwhile, the back-
ward transition point decreases with K2 and is indepen-
dent of m for high K2 values.

We also highlight here the analytical challenges emanat-
ing from combining both the inertia and higher-order in-
teraction terms in the Kuramoto model. For the cou-
pled Kuramoto oscillator model, two widespread analyt-
ical techniques are the self-consistency method and the
Ott-Antonsen (OA) approach to studying the synchro-
nization profile of the entire system. OA dimensional-
ity reduction method provides a very easy way to ob-

tain the time evolution form of r1, solving which yields a
complete description of bifurcations leading to synchro-
nization. While the OA approach was successfully ex-
tended for the Kuramoto model with higher-order inter-
actions, for the second-order Kuramoto models, the den-
sity function containing phase term also depends on ve-
locity, posing restrictions on practicing the OA method.
Hence, the Kuramoto model with inertia has been ana-
lytically solved using the self-consistency method. The
challenge in this method is first finding the limit of in-
tegration in the self-consistent equation by finding an
approximate frequency bound for the oscillators, which
are in the locked state as a function of external param-
eters and the order parameter. Further, the drifting os-
cillators also contribute to the overall coherence, which
needs to be accounted for, unlike in the first-order Ku-
ramoto model, where it is zero. Here, we have employed
the self-consistency method to predict the steady-state
behavior of the Kuramoto oscillators having both inertia
and higher-order terms.

We have presented the results for triadic interactions;
however, extending our analysis to other powers of
higher-order interactions is easy, as long as the sinusoidal
coupling function contains θi term only. For example,
the detailed analysis of quartic interactions is presented
in Section VIB. Further, developing the self-consistent
method for other choices of higher-order coupling func-
tions, such as sin(θj+θk−2θi) [34, 35] along with pairwise
coupling proves to be complicated because of the exis-
tence of higher order harmonics in the mean-field equa-
tion; however, the self-consistency approach can work for
this form of the coupling in the absence of pairwise cou-
pling (pure triadic case) which we have explored in Sec-
tion VIC. An immediate future direction of our work
would be to extend our analysis to diluted simplicial com-
plexes, which can provide fundamental insights into the
dynamics of various real-world complex systems such as
power grids.
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VI. APPENDIX

A. Derivation for m = 0

This section elaborates on the self-consistency analysis
and the derivation for the forward and backward tran-
sition points for m = 0. In this case, a change from a
smooth (second-order) transition to synchronization to
an abrupt (first-order) one, along with hysteresis, is ob-
served with an increase in the K2 value. The occurrence
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of hysteresis can be accounted for by the shift of the
backward transition point to lower K1 values with an in-
crease in K2. Note that the results for the first-order
Kuramoto model with higher-order interactions were re-
ported in [24] using the Ott-Antonsen dimensionality re-
duction method. Here, we derive the closed-form solu-
tion for the bifurcation curve using the self-consistency
method.

The dynamical equation for our model takes the following
form.

θ̇i = ωi+
K1

N

N∑
j=1

sin(θj−θi)+
K2

N2

N∑
j=1

N∑
k=1

sin(2θj−θk−θi)

(A-1)
Following the same procedure as in the article, the mean-
field equation in the rotating frame is obtained as θ̇i =
ωi−q sin(θi), where q = r1(K1+K2r2). All the oscillators
with intrinsic frequency |ωi| ≤ q go to the fixed point
state, while others are in a drift state. Unlike in the finite-
inertia case, here the limit of the integrals for forward
and backward cases become the same (θf = θb = π

2 ),
enabling us to study the system in full generality. In the
thermodynamic limit, the locked oscillator contribution
has the same form as derived in the article,

rlp = q

∫ π/2

−π/2
cos(θ) cos(pθ)g(q sin(θ))dθ, (A-2)

which upon integrating for p ∈ {1, 2} gives us,

rl1 =

√
q2 + 1− 1

q
,

rl2 =
2

πq2
[
(q2 + 2) tan−1(q)− 2q

]
.

(A-3)

The contribution of drifting oscillators to the global order
parameter, however, has the following expression,

rdp =

∫
|ω|>q

∫ π

−π
eipθρd(θ, ω)g(ω)dωdθ,

rdp =

∫
|ω|>q

∫ π

−π
eipθ

√
ω2 − q2

2π|ω − q sin(θ)|
g(ω)dωdθ.

The expression for the density of the drifting oscillators
is derived by noting that ρd(θ, ω) ∝ 1/|θ̇| = c/|ω −
q sin(θ)|, where c is the normalization constant such
that

∫ π
−π ρd(θ, ω)dθ = 1. The value of rd1 is zero since

ρd(θ + π,−ω) = ρd(θ, ω) and g(−ω) = g(ω). Mean-
while, in rd2 , only the imaginary term is zero, since
ρd(−θ,−ω) = ρd(θ, ω) and g(−ω) = g(ω) while the real
part is not zero. Since the integrand is even, we can
evaluate the integral as follows:

0 2 4 6
K1
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0.2

0.4

0.6

0.8

r 1

K2 = 0
K2 = 3
K2 = 6
K2 = 9

FIG. A-1: Synchronization profile of Eq. A-1, for and
K2 = 0 (cyan), 3 (green), 6 (red), and 9 (yellow). The
circles represent simulation results for the forward and
backward cases, while the continuous line represents the

analytically predicted values.

rd2 = 2

∫ ∞

q

[∫ π

−π
cos(2θ)

√
ω2 − q2

2π(ω − q sin(θ))
dθ

]
g(ω)dω,

= 2

∫ ∞

q

[
2ω

q2

(√
ω2 − q2 − ω

)
+ 1

]
g(ω)dω,

= − 2

πq2
(
(q2 + 2) tan−1(q)− 2q

)
+

2 + q2 − 2
√
q2 + 1

q2
.

(A-4)

Using the self-consistency condition (rp = rlp + rdp) and
Eq. A-3, Eq. A-4 we arrive at a set of self-consistent equa-
tions which when solved give us the analytical predictions
of the steady state behavior,

r1 =

√
q2 + 1− 1

q
, (A-5a)

r2 =
2 + q2 − 2

√
q2 + 1

q2
, (A-5b)

where q = r1(K1 + r2K2). Solving Eq. A-5 gives us the
relation r2 = r21, which, when plugged back into Eq. A-
5a leads to the closed form solution for the bifurcation
curve,

K1 =
2

1− r21
− r21K2. (A-6)

We point out that this equation matches with the one
obtained by [24] using the OA method.
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Fig. A-1 presents analytical and simulation results for
multiple values of triadic coupling strength K2. As pre-
dicted by our analysis, the forward synchronization tran-

sition happens at Kf
1 = 2, while the backward transi-

tion point shifts to lower values of K1 as K2 increases.
From Fig. A-1, we notice that the minima of the self-
consistency curve fairly well approximates the backward
de-synchronization point. To this end, setting dK1

dr1
= 0,

we obtain rb1 =

√
1−

√
2
K2

for K2 ≥ 2. Plugging the

form of rb1 back into Eq. A-6 gives Kb
1 = 2

√
2K2 − K2.

This is used in Fig. 2d in the article.

B. Extension to quartic interactions

This section explains how the self-consistency analysis
presented in the article can be easily extended to include
quartic interactions. We add a quartic interaction term
to our model as proposed in [24]. In our study, we find a
good agreement between the analytical predictions of our
self-consistency analysis and the simulation results. The
detailed analysis of the impact of quartic interactions on
the dynamics is out of the scope of this discussion. The

dynamical equation for our model is given as follows:

mθ̈i =− θ̇i + ωi +
K1

N

N∑
j=1

sin(θj − θi)

+
K2

N2

N∑
j=1

N∑
k=1

sin(2θj − θk − θi)

+
K3

N3

N∑
j=1

N∑
k=1

N∑
l=1

sin(θj + θk − θl − θi).

(B-1)

Upon using the definition of the generalized order param-
eter as defined in the article, we can convert the above
equation into a mean-field form as,

mθ̈i = −θ̇i + ωi +K1r1 sin(ψ1 − θi)

+K2r1r2 sin(ψ2 − ψ1 − θi) +K3r
3
1 sin(ψ1 − θi).

By moving to the rotating frame, we set ψ1 and ψ2 as
zero, which gives mθ̈i = −θ̇i + ωi − q sin(θi), where q =
r1(K1 + K2r2 + K3r

2
1) is the overall coupling constant.

We proceed exactly, as in the article, to arrive at the self-
consistency equations defining the steady-state behavior
of the model.

r1 = 2q

∫ θf,b

0

cos2(θ)g(q sin(θ))dθ + 2

∫ ∞

ωf,b

ω

√
m

q

[√
ω2
m

q
− qm

1 + ω2m2
− ω

√
m

q

]
g(ω)dω, (B-2a)

r2 = 2q

∫ θf,b

0

cos(θ) cos(2θ)g(q sin(θ))dθ+

2

∫ ∞

ωf,b

[
ω2m2 − 1

ω2m2 + 1

] [
2ω

q

(
ω2m2 + 1
√
qm

)(√
ω2
m

q
− qm

1 + ω2m2
− ω

√
m

q

)
− 1

]
g(ω)dω.

(B-2b)

Fig. B-1 plots r1 as a function of K1 for different com-
binations of K2 and K3, and we see that the analytical
predictions match the numerical simulation results.

C. Derivation for the sin(θj + θk − 2θi) model

In this section, we present the self-consistency analysis
for the Kuramoto model with inertia involving purely
triadic interactions via the sin(θj + θk − 2θi) coupling
function. Research on the dynamics of Kuramoto os-
cillators coupled via the said sinusoidal function (θ̇i =

ωi +
K2

N2

∑N
j=1

∑N
k=1 sin(θj + θk − 2θi)) [35] has shown

the presence of cluster formation and a continuum of
abrupt de-synchronization transitions based on initial
conditions. Crucially, no synchronization transition has
been reported for this model. Surprisingly, our studies re-

port that inertia has no effect on the synchronization pro-
file of this system. We infer that considering purely tri-
adic interactions removes the distinction between inertia-
less and finite-inertia cases. The dynamical equations for
this model are given as:

mθ̈i = ωi − θ̇i +
K2

N2

N∑
j=1

N∑
k=1

sin(θj + θk − 2θi). (C-1)

Using the definition of the generalized order parameter,
we write Eq. C-1 in the mean-field format as,

mθ̈i = ωi − θ̇i +K2r
2
1 sin(2ψ1 − 2θi). (C-2)

Upon simulating the dynamics of this equation, we ob-
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FIG. B-1: Synchronization profiles for the Kuramoto model with inertia involving quartic interactions with m = 1
and different combinations of K2 and K3 values. The red circles and blue squares represent the simulation results

for the forward and backward cases of Eq. B-1 for N = 1000 nodes, respectively. Whereas the dashed and
continuous curves are the analytical predictions from B-2 for the forward and backward cases.

serve that analogous to the studies reported in [35],
there exists no forward synchronization in the system
rather, a sequence of de-synchronization transitions is
observed based on the asymmetry in the initial condi-
tions. Thus, we focus the analytical derivation only on
the de-synchronization profiles.

Dropping the subscript i, by going to a suitable ro-
tating frame, we set ψ = 0, which gives us mθ̈ =
ω − θ̇ −K2r

2
1 sin(2θ), where the probability distribution

g(ω) is unimodal and symmetric about the mean zero.
To study the steady-state behavior, we invoke a time

transformation as τ =

√
K2r21
m t, which gives:

θ̈ = β − αθ̇ − sin(2θ), (C-3)

where β = ω
K2r21

and α = 1√
K2r21m

. The parameter

space of Eq. C-3 is qualitatively similar to that of the
model considered in the article. The quantitative differ-
ences between the two are as follows: (i) For each β such
that |β| ≤ 1, we now have two stable fixed points given
by θ∗1 = 1

2 sin
−1 β, and θ∗2 = 1

2 sin
−1 β + π separated

by two saddles. (ii) The separatrix equation is given

by θ(t) = sin−1 tanh(
√
2t), θ̇(t) =

√
2 1
cosh(

√
2t)

. Using

this equation of separatrix and implementing Melnikov’s
method [30], the equation for homoclinic bifurcation can

be obtained as β = 2
√
2

π α. Thus, as seen in Fig. C-1

1. if |β| > 1, the system goes to a limit cycle;

2. if |β| ≤ 2
√
2

π α, the system goes to a stable fixed
point state, where the choice of the fixed point de-
pends upon the initial conditions.

3. Finally, if 2
√
2

π α < |β| < 1, we now have a tri-stable
state with the simultaneous presence of one stable
limit cycle and two stable fixed points.

In terms of ω, K2, and r1, it means that for a particular
K2 and corresponding steady-state value of r1, the oscil-
lators with |ω| > K2r

2
1 become drifting oscillators. The

oscillators with |ω| ≤ 2
√
2

π

√
K2r21
m contribute to the forma-

tion of two diametrically opposite clusters of locked oscil-

lators. Finally the oscillators with 2
√
2

π

√
K2r21
m < |ω| ≤ 1

are in the tri-stable stable region. However, as we will
deal only with the system de-synchronization profile, the
oscillators in the tri-stable region will also go to their re-
spective fixed points and contribute to cluster formation.

The next step is to calculate the locked and drifting
oscillator contribution to the order parameter. First,
let us calculate the contribution from the locked oscil-
lators. To account for the two clusters of locked os-
cillators, we introduce a variable η(ω) ∈ [0, 1]. The
values of η(ω) and 1 − η(ω) are the probabilities that
an oscillator with intrinsic frequency ω will go to the

FIG. B-1: Synchronization profiles for the Kuramoto model with inertia involving quartic interactions with m = 1
and different combinations of K2 and K3 values. The red circles and blue squares represent the simulation results

for the forward and backward cases of Eq. B-1 for N = 1000 nodes, respectively. Whereas the dashed and
continuous curves are the analytical predictions from B-2 for the forward and backward cases.

serve that analogous to the studies reported in [35],
there exists no forward synchronization in the system
rather, a sequence of de-synchronization transitions is
observed based on the asymmetry in the initial condi-
tions. Thus, we focus the analytical derivation only on
the de-synchronization profiles.

Dropping the subscript i, by going to a suitable ro-
tating frame, we set ψ = 0, which gives us mθ̈ =
ω − θ̇ −K2r

2
1 sin(2θ), where the probability distribution

g(ω) is unimodal and symmetric about the mean zero.
To study the steady-state behavior, we invoke a time

transformation as τ =

√
K2r21
m t, which gives:

θ̈ = β − αθ̇ − sin(2θ), (C-3)

where β = ω
K2r21

and α = 1√
K2r21m

. The parameter

space of Eq. C-3 is qualitatively similar to that of the
model considered in the article. The quantitative differ-
ences between the two are as follows: (i) For each β such
that |β| ≤ 1, we now have two stable fixed points given
by θ∗1 = 1

2 sin
−1 β, and θ∗2 = 1

2 sin
−1 β + π separated

by two saddles. (ii) The separatrix equation is given

by θ(t) = sin−1 tanh(
√
2t), θ̇(t) =

√
2 1
cosh(

√
2t)

. Using

this equation of separatrix and implementing Melnikov’s
method [30], the equation for homoclinic bifurcation can

be obtained as β = 2
√
2

π α. Thus, as seen in Fig. C-1

1. if |β| > 1, the system goes to a limit cycle;

2. if |β| ≤ 2
√
2

π α, the system goes to a stable fixed
point state, where the choice of the fixed point de-
pends upon the initial conditions.

3. Finally, if 2
√
2

π α < |β| < 1, we now have a tri-stable
state with the simultaneous presence of one stable
limit cycle and two stable fixed points.

In terms of ω, K2, and r1, it means that for a particular
K2 and corresponding steady-state value of r1, the oscil-
lators with |ω| > K2r

2
1 become drifting oscillators. The

oscillators with |ω| ≤ 2
√
2

π

√
K2r21
m contribute to the forma-

tion of two diametrically opposite clusters of locked oscil-

lators. Finally the oscillators with 2
√
2

π

√
K2r21
m < |ω| ≤ 1

are in the tri-stable stable region. However, as we will
deal only with the system de-synchronization profile, the
oscillators in the tri-stable region will also go to their re-
spective fixed points and contribute to cluster formation.

The next step is to calculate the locked and drifting
oscillator contribution to the order parameter. First,
let us calculate the contribution from the locked oscil-
lators. To account for the two clusters of locked os-
cillators, we introduce a variable η(ω) ∈ [0, 1]. The
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FIG. C-1: The parameter space for Eq. C-3
representing the limit-cycle, tristable, and fixed-point
regimes, respectively. The line at β = 1 represents the
saddle-node bifurcation in the system. On the boundary
of the tri-stable and fixed-point regimes, the scatter plot
indicates the actual homoclinic bifurcation curve while
the dotted line is the approximation obtained using

Melnikov’s method (β = 2
√
2

π α).

values of η(ω) and 1 − η(ω) are the probabilities that
an oscillator with intrinsic frequency ω will go to the
fixed points θ∗1 = 1

2 sin
−1 β and θ∗2 = 1

2 sin
−1 β + π, re-

spectively. For simplicity, we consider only symmetric

cases of the function η(ω), such that η(ω) = η(−ω).
The contribution of locked oscillators is then given by

rl1 =
∫K2r

2
1

−K2r21
[(1 − η(ω))eiθ(ω)+π + η(ω)eiθ(ω)]g(ω)dω. As

eiθ(ω)+π = −eiθ(ω) and sin(−x) = − sin(x), we have:

rl1 =

∫ K2r
2
1

−K2r21

(2η(ω)− 1) cos θ(ω)g(ω)dω. (C-4)

Next, let us consider the contribution of the drifting oscil-
lators to the order parameter. Let ρd(θ, ω) be the density
of drifting oscillators which satisfies

∫ π
−π ρd(θ, ω)dθ = 1.

The continuity equation for the conservation of the num-
ber of oscillators gives ρd(θ, ω) = c/θ̇(θ, ω). An ex-

pression for θ̇ can be obtained by following an analo-
gous method as in the article by considering θ̇ = A0 +
A1 cos(2θ) +B1 sin(2θ). By substituting this in Eq. C-3,

the expression for θ̇ can be obtained as:

θ̇(ω, θ) =
β

α
+

2βα

α4 + 4β2
cos(2θ)− β3

α4 + 4β2
sin(2θ).

(C-5)
Eq. C-5 can be simplified by considering h0 = β/α and
eih2

h1
= 2h0+ iα, which gives θ̇ = h0+h1 cos(2θ+h2). By

integrating over the normalization condition of ρd(θ, ω),

we get c =
√
h20 − h21/2π, which gives the following equa-

tion for the density of drifting oscillators:

ρd(θ, ω) =

∣∣∣∣∣∣∣
1

2π

√
ω2m

K2r21
− K2r21m

1 + 4m2ω2
× 1

ω
√
m√

K2r21
+
√

K2r21m
1+4m2ω2 cos(2θ(ω) + tan−1( 1

2mω ))

∣∣∣∣∣∣∣ , (C-6)

rd1 =

∫
|ω|>K2r21

∫ 0

−π
[eiθ(ω)ρd(θ, ω) + ei(θ(ω)+π)ρd(θ + π, ω)]g(ω)dθdω. (C-7)

From Eq. C-6, we notice that ρd(θ + π, ω) = ρd(θ, ω).
Thus, the contribution of drifting oscillators to order pa-
rameter rd1 =

∫
|ω|>K2r21

∫ π
−π e

iθ(ω)ρd(θ, ω)g(ω)dθdω can

be simplified as Eq. C-7

As ei(θ(ω)+π) = −eiθ(ω), we get rd1 = 0. Therefore, from
Eq. C-4 and the self consistency condition (r1 = rl1+r

d
1),

we get

r1 =

∫ K2r
2
1

−K2r21

(2η(ω)− 1) cos θ(ω)g(ω)dω. (C-8)

We now compare the results obtained by simulating
Eq. C-2 with the analytical values predicted by the Eq. C-

8 in Fig. C-2. For simplicity, we consider η(ω) to be a
constant function with respect to ω. While simulating
for a given value of η, we consider the initial phase of the
oscillators as 0 with probability η and π with probabil-
ity (1 − η). With these initial conditions, we start from
K2 = Kmax = 16, and then adiabatically decrease K2

till Kmin = 0. At each K2, we integrate Eq. C-2 using
the RK4 algorithm and calculate the value of r1 and r2
by averaging over all the iterations after removing the
transients.

We note that due to the vanishing of the drift term, the
form of the bifurcation curve Eq. C-8 is the same as well
for the m = 0 case. Fig. C-2 also shows that the r1 and
r2 graphs are almost identical for the finite mass and the
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FIG. C-2: The top panel displays the r1 versus K2 behaviour for Eq. C-2 for a) m = 0, b) m = 1, and c) m = 3
respectively. The violet, yellow, and green curves represent the de-synchronization profiles for η equal to 1, 0.9, and
0.8, respectively. For each case, the continuous curve represents the analytically obtained values. The bottom panel
displays the simulation-obtained values for the Daido order parameter (r2) for the corresponding cases (d) m = 0, e)

m = 1, and f) m = 3).

that the r2 values are higher than the r1 values, indi-
cating that a two-cluster state is present in the system,
which is the expected outcome.

A more generalized approach to further this study would
be to incorporate pair-wise interactions along with the
triadic ones to give a model like:

mθ̈i = ωi − θ̇i +
K1

N

N∑
j=1

sin(θj − θi)

+
K2

N2

N∑
j=1

N∑
k=1

sin(θj + θk − 2θi)

(C-9)

which in the mean-field format and rotating frame, with
ψ1 set to zero, reads as mθ̈i = ωi − θ̇i − K1r1 sin(θi) −
K2r

2
1 sin(2θi). However, the simultaneous presence of the

first and second-order harmonics of the sinusoidal term
makes it complicated to analytically study the parameter
space of Eq. C-9.
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