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Synchronization is an omnipresent collective phenomenon in nature and technology, whose understanding
is in particular for real-world systems still elusive. We study the synchronization transition in a phase
oscillator system with two nonvanishing Fourier-modes in the interaction function and hence going beyond
the Kuromoto paradigm. We show that the transition scenarios crucially depend on the interplay of the
two coupling-modes. We describe the multistability induced by the presence of a second coupling-mode. By
extending the collective coordinate approach, we describe the emergence of various states observed in the
transition from incoherence to coherence. Remarkably, our analysis suggests that in essence the two-mode
coupling gives rise to states that are characterized by two independent but interacting groups of oscillators. We
believe that these findings will stimulate future research on dynamical systems including complex interaction
functions beyond the Kuramoto-type.

Over the last decades, the studies on the col-
lective phenomenon of synchronization in com-
plex dynamical systems have improved our under-
standing on how different parts of a system can
work together seamlessly and efficiently. This is
crucial for many everyday systems such as com-
munication networks, power grids and even the
human brain. Without synchronization, these
systems can experience problems such as data
loss, blackouts and neurological disorders. By
studying synchronization, we can learn how to
design and improve these systems to make them
more stable and effective. By studying synchro-
nization, scientists and engineers can develop new
techniques to control and improve these systems,
leading to better efficiency, stability, and accu-
racy. In essence, the study of synchronization is
a key to unlocking the potential of complex sys-
tems and improving our lives. In order to gain
a better understanding of real-world dynamical
systems of interacting oscillators, studying real-
istic interaction functions has to be accessible by
existing mathematical methods. In this work, we
provide a next step into this direction and provide
detailed insights into the synchronization transi-
tion for systems of coupled phase oscillators with
a coupling beyond the Kuramoto-type.

I. INTRODUCTION

Dynamical networks of phase oscillators are a com-
monly used paradigm for studying the synchronization

a)rico.berner@physik.hu-berlin.de

patterns in systems of interacting agents1,2. System of
weakly interacting nonlinear oscillators can be gener-
ally reduced to a network of phase oscillators1,3–5 which
makes this class of models an even more important one
when it comes to the description of collective phenomena.
The importance of phase oscillator models and reduc-
tion techniques have been highlighted in various reviews
and books1,6,7. Recent studies also aim at increasing the
range of applicability of phase oscillator models by gener-
alizing the conditions under which reduction techniques
are valid8–12.

A famous representative of the class of phase oscilla-
tor models is the Kuramoto model where all oscillators
are coupled in the ”all-to-all” manner. Due to its sim-
ple form and mathematical tractability this model has
attracted much attention13,14. Over the last decades
several extensions of the Kuramoto model have gained
additional popularity through applications to real-world
problems1,15–17, including neuroscience7,18–21, physiolog-
ical models22,23 or power grids24–27. Moreover, the
Kuramoto model has been extended to study synchro-
nization on static17,28,29, temporal30 and adaptive net-
works31–38. Despite the simple structure, extended Ku-
ramoto models can exhibit many different dynamical
regimes such as solitary39–42 and chimera states43–47,
and sophisticated methods have been developed for their
analysis48.

The collective dynamics of coupled phase oscillator sys-
tems that meet certain requirements on the frequency
distribution and the coupling structure have been exten-
sively analyzed. For this dimensional reduction tech-
niques as the Watanabe-Strogatz theory49–52 and the
Ott-Antonson ansatz53 have been utilized. More re-
cently another method with relation to the Ott-Antonsen
approach has been developed based on a Galerkin ap-
proximation54,55. This so-called collective coordinate ap-
proach describes the synchronization or chaotic cluster
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dynamics in generalized Kuramoto systems. Different to
the other methods, the collective coordinate approach
can be applied with less restrictions, however, the accu-
racy of the approach depends on the proper choice of
an ansatz manifold. The collective coordinate approach
has been recently successfully applied to phase oscilla-
tor systems with multimodal frequency distributions56,
with complex coupling structure57–59, or with adaptive
coupling weights60.

Phase transitions play an important role in natural
sciences61 and are a commonly studied phenomenon in
systems of coupled heterogeneous oscillators. Complex
dynamical networks29,62 exhibit a plethora of nonequi-
librium phase transitions describing changes in collective
dynamics in response to variations in control parameters
such as interaction strength. In particular, transitions
between coherence and incoherence have attracted sig-
nificant attention17. Also here, the Kuramoto model13

has served as a test bed to study phase transitions in
networks of coupled oscillators. It is known that the Ku-
ramoto model exhibits either first or second-order phase
transitions from incoherence to full synchronization, de-
pending on the natural frequency distribution1,13,28,63–65.
Also the network structure66 or the weight distribu-
tions67 can have strong effects on the nature of the syn-
chronization transitions.

Even though Kuramoto-like models and the related
findings are fundamental for the research on complex dy-
namical networks, the majority of works is limited to
interaction functions consisting of a single mode. While
it has been shown that interaction functions with pure
higher-mode coupling can be treated similarly as their
first-mode counterparts68,69, the dynamics in the pres-
ence of a mixed-mode interaction function remains elu-
sive. It has been known that mixed-mode couplings
may play an important role in the dynamics of neu-
ronal systems18,70,71. The presence of multiple modes
can have a significant influence on the dynamics of such
systems72–76. In Refs. 77 and 78, Komarov and collab-
orators have found that an additional second mode in
the interaction function leads to the emergence of novel
steady states in heterogeneous systems. A recent study
on Kuramoto-Sakaguchi models of rotators, also called
models with inertia, has shown that additional Fourier-
modes in the interaction function may lead to tripod pat-
terns named cyclops states that govern the full system’s
dynamics79. The progress on the phase reduction be-
yond the weak coupling limit suggests that mixed-mode
couplings appear quite naturally in phase model ap-
proximations80–82. While synchronization transitions are
well studied for single-mode interaction functions, mixed-
mode interactions have been investigated only rarely83,84.

In this work, we study the synchronization transition
in a heterogeneous system of all-to-all coupled phase os-
cillators with a mixed-mode interaction function. In par-
ticular, we consider a interaction function consisting of
a first and second Fourier mode. The heterogeneity is
introduced by a uniform distribution of the oscillators

natural frequencies. Depending on the coupling parame-
ters, corresponding to the first or second mode, the sys-
tems undergo different transitions to synchrony. We de-
scribe two different scenarios of first-order transitions to
full synchrony where the first scenario features a cascade
of first-order transitions through coexisting two-cluster
phase-locked states while the other scenario shows a first-
order transition from an anti-phase phase-locked to an
in-phase synchronous state. In this work, we show that
the zoo of possible transition scenarios is increased by the
competing interplay of the first and second mode of the
interaction function leading to a plethora of two-cluster
phase locked states. Extending the scope of the collec-
tive coordinate approach, we derive analytic conditions
for the existence of the clustered phase-locked states ob-
served in the transition scenarios.

In the next section, Sec. II, we introduce the model
considered throughout the study. Subsequently in
Sec. III, two very different transition scenarios depend-
ing on the form of the interaction function are described
an the numerically observed states are discussed. For
these states, we develop in Sec. IV existence conditions
based on the collective coordinate approach. All results
are summarized in the concluding Sec. VI.

II. COUPLED PHASE OSCILLATOR MODELS AND
MIXED-MODE COUPLING

We consider a heterogeneous system of N coupled
phase oscillators that can be generally written as

d

dt
φ = ω + F (φ), (1)

where φ = (φ1, . . . , φN )T , and each oscillator is rep-
resented by a dynamical variable φj(t) ∈ [0, 2π), j =
1, . . . , N . The oscillators possess their individual nat-
ural frequency ωi that are collected in the vector ω =
(ω1, . . . , ωN )T . Moreover, F = (f1(φ), . . . , fN (φ))T is
the interaction vector field with interaction functions fj
which are assumed to be 2π−periodic.

To measure the phase coherence, we define the mth
moment of the complex mean field, m ∈ N, as

Zm(φ) =
1

N

N∑
j=1

eimφj = Rm(φ)eiρm(φ), (2)

where i is the imaginary unit, Rm denotes the mth mo-
ment of the (Kuramoto-Daido) order parameter, and ρm
is the collective phase of the mth moment of the mean
field13,85.

Throughout this article, we assume that the interac-
tion functions are of the following form where we consider
only the first two modes of a Fourier expansion

fj(φ) =
K1

2
Z1e

−iφj +
K2

2
Z2e

−i2φj + c.c.,
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such that we finally arrive at the two-mode model

d

dt
φj = ωj +K1Im(Z1e

−iφj ) +K2Im(Z2e
−i2φj ) (3)

with coupling strengths to the first and second moded K1

and K2, respectively. Further, we assume that the natu-
ral frequencies ωj are drawn from a uniform distribution
with distribution density d(ω) = 1/2a for ω ∈ [−a, a]
with a ∈ R and d(ω) = 0 otherwise.

A solution of the phase oscillator system (1) is called
phase-locked state if

φj(t) = Ωt+ ϑj , i = 1, . . . , N, (4)

with collective frequency Ω ∈ R and fixed relative phases
ϑj ∈ [0, 2π) of the individual oscillators. A phase-locked
state can be characterized by the corresponding mth mo-
ments of the order parameter. We call a state an m-
synchronous state if Rm = 1 and an m-splay state86,
also called incoherent state87, if Rm = 0. States with
R1 = 1 and R2 = 1 are also called in-phase and antipodal
states in the literature35. These states are respectively
described by ϑj = 0 for all j = 1, . . . , N (in-phase) and
by two phase-clusters with ϑj = 0 for j = 1, . . . , N1 and
ϑj = π for j = N1 + 1, . . . , N with 1 ≤ N1 < N (antipo-
dal). Note the relation between the different moments of
the order parameter Rm(φ) = R1(mφ) and the fact that
the class of antipodal states includes in-phase states. We
further note that the in-phase state and the antipodal
state with N1 = N/2 solve system (3) in case of equal
frequencies, i.e., ωj = 0 and for any K1 and K2. For
heterogeneous frequencies, however, phase-locked states,
if they exist, will appear perturbed and hence the order
parameters will be only approximately R1,2 ≈ 1.

Despite the fact that distributed natural frequencies
disturb the appearance of in-phase and antipodal state,
they describe important classes of solution families in
the (K1,K2)-parameter spaces. The latter fact can be
seen as follows. Consider K2 (K1) as fixed and the limit
K1 → ∞ (K2 → ∞). Then equation determining the
steady states of (3) can be written as 0 = Im(Z1e

−iφj )
(0 = Im(Z2e

−i2φj )) where we used ωj/K1 → 0 and
K2/K1 → 0 (ωj/K2 → 0 and K1/K2 → 0) and hence
the in-phase (antipodal) states are solution in this limit.
Note that these two types of states give rise to two fam-
ilies of states for finite values of the coupling strengths
K1 or K2. Therefore, we call phase-locked states of in-
phase or antipodal-type if they belong the corresponding
families, i.e., φj = 0 +O(1/K) (K = K1 or K = K2) for
all i = 1, . . . , N , or φj = 0 + O(1/K2) for j = 1, . . . , N1

and φj = π +O(1/K2) for j = N1, . . . , N , respectively.
The limiting cases can be also seen via writing the state

state equation for (3) as

ωj
R

= −
(
R1K1

R
+
R2K2

R
cosφj

)
sinφj

with R =
√
K2

1R
2
1 +K2

2R
2
2 where we assumed that d(ω)

is symmetric in order to set ρ1 = ρ2 = 0, compare to [77].

If we consider the limiting cases K1 → ∞ and K2 →
∞, the latter equation reduces to 0 = sinφj and 0 =
cos(φj) sinφj , respectively.

In the following section, we show the results of a nu-
merical analysis. In order to characterize the dynamical
states, we make use of temporally averaged order param-
eters that are defined as:

〈Rm〉 =
1

T

∫ t0+T

t0

∣∣Zm(φ(t))
∣∣ dt. (5)

Here, the averaging time window T is considered to suffi-
ciently large and t0 is chosen sufficiently large to neglect
transient dynamics.

III. TRANSITION SCENARIOS BETWEEN
INCOHERENCE AND COHERENCE IN A TWO-MODE
MODEL

In the previous section, we have introduced the 2-mode
model and have already provided some approximations
for phase-locked states in the large coupling limits, i.e.,
either K1 → ∞ or K2 → ∞. In this section, we show
how the system dynamics changes depending on the cou-
pling strengths K1 and K2. In particular, we analyze
transitions between states with respect to K1 for two
different values of K2. The uniform natural frequency
distribution is considered to have its support on [−1, 1]
throughout the manuscript.

This work is concerned with the interaction of two
modes in the interaction function, we show for compari-
son the transition behavior of a system with only single
mode interaction function, i.e., K2 = 0. The results of
an adiabatic continuation in K1 are presented in Fig. 1.
For the sweep-up (sweep-down) continuation, we simu-
late system (3) for a fixed parameter value of K1 and
a given time interval, then increase (decrease) the value
with increment ∆K1 and start a new simulation where
the initial conditions are given by the final state of the
preceding simulation. The sweep-up is started from a
random initial condition while the sweep-down is started
from the final state of the final simulation of the sweep-
up.

In accordance with the literature88, we observe a sud-
den (first-order) transition from complete desynchroniza-
tion, i.e., incoherent state (Fig. 2c) to full synchroniza-
tion, i.e, coherent state (Fig. 2d) at the critical value
K1,c = 2/πd(0) where d(0) is the value of the distribution
density d at zero. The critical value of K1 determines the
point above which the incoherent state becomes linearly
unstable in the continuum limit (N → ∞)87. In case of
a uniform frequency distribution, this critical value also
coincides with the saddle-node bifurcation point for the
synchronous state88.

In Figure 2, we show the results of an adiabatic con-
tinuation in K1 for nonvanishing values of K2. Some
snapshots of simulations are presented in Fig. 3 and 4 for
K2 = 1.2 and K2 = 2, respectively. For each state we
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FIG. 1. Adiabatic continuation in the coupling strength of
the first mode K1. In panels (a,b) we show the results of
an adiabatic continuation in K1 for the fixed value K2 = 0
where we plot the temporally averaged (see Eq. 5) first mo-
ment of the order parameter R1 in (a) and the second moment
R2 in (b). For the averaging, we discard the transient time.
In the figures, we show the results of the continuous sweep-
up (blue) and sweep-down (red) with step size ∆K1 = 0.1
starting and ending as indicated in the K1-axis. The direc-
tion of the sweeps are indicated by arrows. The gray dotted
line indicate the threshold 4/π beyond which the incoherent
state becomes linearly unstable in the continuum limit. The
black curve in (a) shows the analytic line of existence for
synchronous states from the collective coordinate approach
derived in Sec. IV, see Eq. (11), dashed and solid parts in-
dicate unstable and stable states, respectively. Snapshots of
states from the adiabatic continuation are presented in panels
(c) and (d). They show the phases and their corresponding
natural frequencies sorted with respect to an increasing order
of the natural frequencies. Panels (a) and (b) show results
for K1 = 0.5 and K1 = 2, respectively. Simulation details:
In all panels ωi are taken from the same uniform distribution
on [−1, 1], the simulation time is 400 time units of which 200
time units. are considered as transient time, for the continu-
ation an increment of ∆K1 = 0.1 is considered, K2 = 0 and
N = 1000.

show the phase distributing at the end of the simulation,
sorted in increasing order, along with the corresponding
natural frequencies sorted accordingly.

The sweep-up continuation for K2 = 1.2 presented in
Fig. 2(a,b) (blue line, increasing K1) shows the emer-
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FIG. 2. Adiabatic continuation in the coupling strength of the
first mode K1. In panels (a,b) and (c,d) we show the results of
an adiabatic continuation in K1 for the fixed values K2 = 1.2
and K2 = 2, respectively where we plot the temporally aver-
aged (see Eq. 5) first moment of the order parameter R1 in
(a,c) and the second moment R2 in (b,d). For the averaging,
we discard the transient time. In the figures, we show the re-
sults of the continuous sweep-up (blue) and sweep-down (red)
with step size ∆K1 = 0.1 starting and ending as indicated in
the K1-axis. The directions of the sweeps are indicated by
arrows. We provide blow-ups of the transition regions in pan-
els (a) and (c). The gray dotted line indicate the threshold
4/π beyond which the incoherent state becomes linearly un-
stable in the continuum limit. The black curve in (a) and
(c) shows the analytic line of existence for synchronous states
from the collective coordinate approach derived in Sec. IV, see
Eq. (11), dashed and solid parts indicate unstable and stable
states, respectively. All other parameters as in Fig. 1

gence of a phase-locked state at the beginning of the
sweep-up at K1 = −20. This state is characterized by an
almost vanishing average first order parameter R1 and an
average second order parameter R2 close to 1. Fig. 3(a),
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we provide a snapshot for this state showing that the set
of oscillators is split up into two groups that are related
by a phase shift π. We find further that the number of
oscillators in the two-cluster of antipodal-type are almost
equal (n1 ≈ 0.5). Looking at the corresponding natural
frequencies of the oscillators in each group, we observe a
splitting of the uniform distribution on [−1, 1] into two
uniform distributions on the same interval. With increas-
ing coupling strength K1 this two-cluster state persists
until close to K1 = 0 where the two-cluster disappears
and partial cluster states emerge. The partial cluster
states bifurcate with increasing coupling strength into a
cascade of two-cluster states. One of these two-cluster
states emerging in the cascade is shown in Fig. 3(b). We
note that the second cluster is much smaller than the
first cluster and also the corresponding natural frequen-
cies are uniformly distributed on an interval with tighter
bounds. During the cascade the size of the second clus-
ter as well as the size of the distributions interval de-
creases sequentially. Ultimately, the cascade ends in an
one-cluster phase-locked state with 〈R1,2〉 ≈ 1 that is
persistent for higher values of K1, see Fig.3(c).

0
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c d

i
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FIG. 3. Snapshots of states from the adiabatic continua-
tion shown in Fig. 2(a,b) with K2 = 1.2 for the sweep-up
and sweep-down at different values of K1. The panels show
the phases and their corresponding natural frequencies sorted
with respect to an increasing order of the phases. Panels (a)
and (b) show results from the sweep-up at K1 = −1 and
K1 = 1.5 and panels (c) and (d) show results from the sweep-
down at K1 = 3 and K1 = −1, respectively.

The down-sweep continuation starting with the last
state of the up-sweep at K1 = 10 is presented in
Fig. 2(a,b) (red line, decreasing K1). With decreasing
K1, we see that the one-cluster state can be observed even
in the coupling strength range where two-cluster states
are found during the sweep-up giving rise to the existence

of a multistable regime and the presence of hysteresis.
The blow-up in Fig. 2(a) shows that the one-cluster state
exists until K1 ≈ 0 and changes into state before forming
a two-cluster state very similar to the one found during
the sweep-up, see Fig-3(d). Note that distribution of the
natural frequencies is split up slightly differently for the
two-cluster states observed in the sweep-up than in the
sweep-down.

In Fig. 2(c,d), we analyze the transitions between the
collective states for another value of the coupling strength
K2 = 2. Here, in the beginning of the sweep-up, we ob-
serve a similar two-cluster state as in the previous case
for K2 = 1.2, see Fig. 4(a), however, with 〈R1〉 almost
exactly at 0. This state is very persistent and its form
does not change with increasing K1. Only at larger val-
ues of K1, this two-cluster state of antipodal-type loses
its stability which leads to an abrupt transition to one-
cluster phase-locked state, see Fig. 4(b) that stays for
higher values of K1. As in the example for K2 = 1.2,
we also observe hysteresis in the sweep-down. Moreover,
the one-cluster state exists for values of K1 even below 0.
The disappearance of the phase-locked one-cluster state
leads to a cascade of three-cluster states for decreasing
K1. In Fig.4(c,d), we show two snapshots representing
states from this cascade. Close to the bifurcation point
of the one-cluster state, the largest cluster of the emerged
three-cluster state is rather big compared to the oth-
ers, see Fig.4(c). With decreasing K1 the largest cluster
shrinks and its relative size tends to n1 = 0.5, see see
Fig.4(d). Further noteworthy, the distribution of natural
frequencies is split up into approximately three uniform
distributions each on a separate interval I1, I2, I3 such
that

⋃
i∈1,2,3 Ii = [−1, 1] and where the interval in the

middle ranging symmetrically from a negative to posi-
tive value belongs to the largest cluster. The cascade of
three-cluster states leads to a rather smooth transition
from a state with R1 ≈ 1 for K1 > 0 to a state with
R1 ≈ 0 for K1 → −∞.

IV. COLLECTIVE COORDINATE APPROACH FOR
CLUSTERED STATES

As described in section II, in case of multi-mode cou-
pling only little is known on the transition to coherence,
in particular, if the coupling strengths K1 and K2 are of
the same order. This lack of knowledge is basically due
to the fact that well established methods such as the Ott-
Antonsen theory are not applicable. In order to overcome
some of these issues and to provide analytic insights into
the phase-locked states found in the previous section we
make use of the collective coordinate approach54. The
collective coordinate approach has shown to be related
to the Ott-Antonsen approach for an infinite number of
phase oscillators58,89. Beyond this, the method provides
very good approximation for coherent states where other
methods fail, e.g. for systems with a complex network
structure57, on sparse networks59 or with adaptive cou-
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FIG. 4. Snapshots of states from the adiabatic continuation
shown in Fig. 2(c,d) with K2 = 2 for the sweep-up and sweep-
down at different values of K1. The panels show the phases
and their corresponding natural frequencies sorted with re-
spect to an increasing order of the phases. Panels (a) and (b)
show results from the sweep-up at K1 = −10 and K1 = 4
and panels (c) and (d) show results from the sweep-down at
K1 = −1.5 and K1 = −10, respectively.

pling weights60.

A. General collective coordinate approach

In the following sections, we use the collective coor-
dinate approach in order to describe the emergence of
phase-locked state while it has been used for partially
locked states as well56,89. In this section, we introduce
the main methodology that is then adapted for the pur-
poses shown in the subsequent sections.

For doing so, we consider a general ansatz function φ̂
with which we approximate the dynamics of each oscil-

lator as φi(t) = φ̂i(α(t);ωi). The function φ̂i is called
shape function where the shape depends on the M func-
tions α(t) = (α1(t), . . . , αM (t)) called the collective co-
ordinates, and the natural frequencies of the phase os-
cillators ωi. Here one might consider a one-dimensional
vector α(t) at any time as done in Ref. 54. In case of
a phase-locked state this assumption is reasonable since
the state of all phases is determined by knowing the state
of a single reference phase. However, as discussed in the
subsequent sections, for mixed-mode interaction the sin-
gle collective coordinate assumption might be not suffi-
cient. By using the collective coordinate approach, we
consequently assume that the solution of the dynamical
system of coupled phase oscillators (1) stays close to an
M dimensional manifold whose shape depends on the fre-

quency distribution. In order to obtain a quantitatively
good approximation the choice of the ansatz function is
crucial.

In case of a single mode coupling, i.e., K1 = 0 or

K2 = 0, a linear ansatz of the form φ̂i = α(t)ωi can
be motivated by linearizing the general solution for φ∗i
of 0 = ωi + K1R1 sin(ρ1 − φ∗i ) if K2 = 0 or of 0 =
ωi+K2R2 sin(ρ2−2φ∗i ) if K1 = 0, see89. In case of nonva-
nishing coupling strengths, the shape function might be
chosen differently e.g. to account for multiple clusters.
We discuss such approaches in the following sections.

Once a shape function has been fixed, the dynamics
on the submanifold described by this function has to be
determined. For this, we consider the error εi made by
reducing the full system to the submanifold

εi =

M∑
m=1

α̇m
∂φ̂i
∂αm

− φ̇i(φ̂i(α(t);ωi))

where φ̇i is determined by model (3). To minimize the
error we impose the condition that ε = (ε1, . . . , εN )T

is orthogonal to the tangent space of the submanifold

spanned by the vectors dφ̂/dαm. Using the Euclidean
scalar product, the condition〈

ε,
dφ̂

dαm

〉
= 0 (6)

for m = 1, . . . ,M yield equations of motion for the col-
lective coordinates αm(t) of the form

α̇m = gm(α(t);ω) (7)

where gm results from solving (6). In the following, we
derive the reduced equation for clustered phase-locked
states in different collective coordinates. We note at this
point that the collective coordinate approach uses prior
knowledge of the system’s dynamics in order to provide a
reasonable approximation. Further, for a given collective
coordinate ansatz there might be solutions to the reduced
equations that do not properly or at all approximate the
actual system’s behavior.

B. Approximation of phase-locked states of in-phase-type

For the the type of phase-locked states that could be re-
garded as a perturbation from the in-phase synchronous
state, i.e., phase-locked state of the in-phase-type, we
make use of a linear ansatz for the collective coordinate
approach. Therefore, let the shape function by given as89

φ̂i(t) = α(t)ωi (8)

for which the error results in

εi = α̇
dφ̂i
dα
− ωi −K1Im(Z1e

−iφ̂i)−K2Im(Z2e
−i2φ̂i)

(9)
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with

Zm =
1

N

N∑
j=1

eimα(t)ωi

for m = 1, 2. Using this ansatz we can reduce the N -
dimensional two-mode model (3) to an one-dimensional
ordinary differential equation for α(t) by minimizing the
error ε as outlined in the section above. Using the con-

dition (6) and noting that dφ̂i
dα = ωi, we can arrive at

the desired evolution equation for a finite size system in
terms of the collective coordinate α,

α̇ = 1 +
K1

Σω

1

N2

N∑
i=1

ωi

N∑
j=1

sinα[ωj − ωi]

+
K2

Σω

1

N2

N∑
i=1

ωi

N∑
j=1

sinα[2ωj − 2ωi] (10)

where Σω = 1
N

∑N
j=1 ω

2
j denotes the estimate of the vari-

ance of the given set of natural frequencies. Consider-
ing the limit N → ∞, with limN→∞Σω = σω being
the variance for the uniform frequency distribution with
d(ω) = 0.5 on the interval [−1, 1], we arrive at

α̇ = 1 +
sinα

α

(
K1

σω

[
α cosα− sinα

α2

])
+

sinα cosα

α

(
K2

σω

[
α− sinα(cosα+ 2α sinα)

2α2

])
. (11)

Note that the order parameter (2) in the continuum lim-
its becomes

Rm =

∣∣∣∣∣
∫ 1

−1

eimαω

2
dω

∣∣∣∣∣ =
sinmα

mα
. (12)

To illustrate how the steady states for Eq. (11) behave,
we plot the right hand side g(α) of Eq. (11) in for three
different values of K1 in Fig. 10. In Fig. 10, we observe
that depending on the value of K1 Eq. (11) give rise to
two or no steady states corresponding to the roots of
g(α). While continuously varying the coupling constant
a pair of steady states may emerge in a saddle-node bifur-
cation. The stability of each steady state is determined
by the derivative of g(α) at its roots and yields always
one stable and one unstable state.

In order to explore the solutions of Eq. (11) further,
Fig. 5 shows the values of the order parameter R1 for
each steady state depending on the coupling constants
K1 and K2.

In section III, we have shown transition scenarios for
the cases K2 = 1.2 and K2 = 2. In Figure 2(a,c), the
steady states for these two values of K2 are displayed.
We observe that for increasing value of K2 the bifurcation
lines extend towards the negative values of the coupling
constant K1 which agrees with the analytical findings.

FIG. 5. Order parameter R1 (Eq. (12)) corresponding to all
steady state of Eq. (11) depending on the coupling constants
K1 and K2. The blue and red shading of the surface corre-
spond to stable and unstable states, respectively, with respect
to Eq. (11)

C. Approximation of phase-locked states of antipodal-type

Besides the emergence of in-phase-type phase-locked
solution, we have also observed the appearance of another
type, namely the antipodal-type, see Sec. III. To describe
approximately their existence in the framework of the
collective coordinate approach, we consider two groups of
oscillators φ1

i and φ2
i with sizes N1 and N2, respectively,

where N1 +N2 = N . We assume that both groups evolve
in coherence, however, with intergroup phase shift of π.
Hence, for the collective coordinates we use

φ̂1
i = α(t)ω1

i ,

φ̂2
i = α(t)ω2

i + π.

Using the same approach as in the section before, we de-
rive the dynamical equations for the collective coordinate
α(t). For brevity, we first introduce the following order
parameters for each group µ = 1, 2 as

Zm = n1Z
1
m + (1− n1)Z1

m,

with nµ = Nµ/N and

Zµm =
1

Nµ

Nµ∑
j=1

eimφµj .

We find that the error vector ε = (ε1, ε2) also splits
up into two parts corresponding to the two groups. For
the error we find

εµk = α̇ωµk − ω
µ
k −K1Im

{
Z1e

−i(αωµk+ψµ)
}

−K2Im
{
Z2e

−2i(αωµk+ψµ)
}
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By again minimizing the error to reduce the synchro-
nization problem (6), we arrive at the following evolution
equation in terms of the collective coordinate α,

α̇ = 1 +
1

Σω

2∑
µ=1

nµ
Nµ

Nµ∑
j=1

ωµj

[
K1Im

{
Z1e

−i
(
αωµj +ψµ

)}

+K2Im

{
Z2e

−2i
(
αωµj +ψµ

)}]
(13)

with ψ1 = 0 and ψ2 = π, and Σω = n1Σ1
ω + n2Σ2

ω be-
ing the estimates for the variance of the frequency dis-
tribution of the full set of oscillators and for the vari-
ance within the two individual clusters. Taking the limit
Nµ →∞ for all µ, and hence N →∞, we have

α̇ = 1 +
1

σω

[
K1Im

{
Z1I1(α)

}
+K2Im

{
Z2I2(α)

}]
(14)

where we define the resulting integrals as Im = n1I
1
m +

n2I
2
m with m = 1, 2 and

Iµm(α) =

∫
dµ(ω)ωe−im(αω+ψµ) dω (15)

with dµ(ω) denoting the distribution densities of the nat-
ural frequencies within the µth cluster, see App. B for
details on the explicit form of the continuum equations
and their derivation.

In order to examine the derived approximations for the
phase-locked states of antipodal-type, we plot solutions
of Eq. 14 for three different configuration observed in
the synchronization transition shown in Fig. 3. In Fig-
ure 6 the synchronization transition and the phase-locked
states of antipodal-type for three different values of K1

are displayed. In the following, we analyze their emer-
gence. As described in Sec. III, the number of oscillators
in the first cluster N1 increases with increasing K1. For
each of the selected values of K1, we perform a sweep-up
and sweep-down analysis starting each protocol with the
antipodal-type states found in the synchronization tran-
sition. For the latter states, the natural frequencies are
shown in Fig. 6(b-d) sorted by the phase of the oscillators.
Taking the different values for N1 of the three phase-
locked states into account, we can show the steady state
solutions of Eq. 14 alongside the results of the sweeping
protocols. We observe that the states are well approxi-
mated by the collective coordinate approach for a wide
range of coupling strengths K1. Furthermore, their emer-
gence for increasing values of K1 is well described by the
fold point of the solution curves to Eq. 14 (dashed lines).
This is very similar to what we have already described
for the phase-locked states of in-phase-type in Sec. IV B.

The disappearance of the antipodal-type states for in-
creasing K1 is, however, not well captured by the collec-
tive coordinate ansatz. As we will see, the stability of the

a

b c d

FIG. 6. Top panel: Sweep-up (red) and sweep-down (blue) for
K2 = 1.2 with step size ∆K1 = 0.1 on the interval [−20, 10],
along with its analytical solution (lightest green line). Also
shown are various sweep-downs (dark blue) that begin at cer-
tain target K1 values compared against their analytical so-
lutions for the target values of K1 = 1.5, K1 = 1.9, and
K1 = 2.0 (darkest green, progressively lighter as target K1

increases). Bottom panel: The corresponding natural fre-
quency distributions for K1 = 1.5, K1 = 1.9, and K1 = 2.0,
respectively (left to right).

approximated solutions is not explaining the disappear-
ance of the antipodal-type states. In fact, a closer numer-
ical analysis (results not shown) reveals that the smaller
cluster breaks up as K1 increases. Moreover, close to
the disappearance of the antipodal-type state the rela-
tion between the phase and the natural frequencies can
not be described by a single collective coordinate (scaling
factor) anymore but rather two scalings are necessary. In
order to accurately describe the disappearance, we gen-
eralize the collective coordinate ansatz as shown in the
subsequent section.

Another phase-locked states of antipodal-type could be
observed for negative values of the coupling strength K1

in Fig. 3(a), see also Fig. 2(a). Here, the distribution
of the natural frequencies within each of the antipodal
clusters is very different from the uniform distribution.
Therefore, we use the form of the reduced equation for a
finite frequency distribution (13) in order to approximate
the existence of this state. We further note that different
to the antipodal-type states discussed before, the sizes
of the clusters are almost equal and the average natural
frequency of each cluster is different to zero. In Figure 7,
we show the result of the sweep-up from Fig. 3 together
with the curve of solutions to Eq. 13. Here, the collective
coordinate ansatz approximates well the almost equally
sized antipodal-type cluster. Also here this state disap-
pears in a fold bifurcation.
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FIG. 7. The negative branch analytical solution (purple) com-
pared with the sweep-up (blue) for K2 = 1.2 for continuous
K1 with step size ∆K1 = 0.1.

D. Generalized two-cluster approach for phase-locked
states of antipodal-type

In this section, we generalize the collective coordinate
ansatz from the previous section in order to describe
antipodal-type phase-locked states where two collective
scaling factors α1 and α2 are necessary. We use the
ansatz

φ̂1
i = α1(t)ω1

i , (16)

φ̂2
i = α2(t)ω2

i + π. (17)

Following the general procedure described in Sec. IV and
minimizing the error made by considering the reduced
phase space, we arrive at

α̇µ = 1 +
1

Σµω

nµ
Nµ

Nµ∑
j=1

ωµj

[
K1Im

{
Z1e

−i
(
αωµj +ψµ

)}

+K2Im

{
Z2e

−2i
(
αωµj +ψµ

)}]
(18)

where ψ1 = 0, ψ2 = π and Σµω is the estimate for the
variance of the frequency distribution within the two indi-
vidual clusters. The derivation of Eq. (18) follows analo-
gously to the cases described in the previous two sections
and we spare further details for the sake of brevity.

By using the reduced equations (18), we can determine
the existence of antipodal-type phase-locked states where
each cluster possess a different phase scaling. In Fig. 8,
we show the numerical as well as analytical results for
the existence of antipodal-type cluster states found in
the transition displayed in Fig. 3. It is seen that the
generalized collective coordinate approach in Eq. (16),

K
1

a

b

FIG. 8. The sweep-up and sweep-down (black lines) for
K2 = 1.2 with step size ∆K1 = 0.1 along with the analytical
solutions for Eq. (18) (blue lines). Pictured are the sweep-up
and downs that begin at certain phase-locked antipodal-type
states found in Fig. 2(a,b) for the values (a) K1 = 1.5 and
(b) K1 = 2. The corresponding natural frequency distribu-
tions for K1 = 1.5 and K1 = 2.0 are displayed in Fig. 6(b,d),
respectively.

describes the emergence and disappearance of antipodal-
type states depending on the values of K1 very well. In
fact, the antipodal-type cluster states emerge and disap-
pear in saddle node bifurcations.

An exhaustive analysis of the solutions of Eqs. 18 is be-
yond the scope of this work. We note that the complex
solution curves displayed in Fig. 8 have to be considered
as projections from two variables (α1, α2) to one variable
R1. In fact, the crossing of the line in R1 depending on
the parameter K1 with itself would not appear in the
larger (α1, α2) space. Therefore, the visible crossings do
not indicate bifurcation points for the steady state solu-
tions. Moreover, it is worth to mention that we have re-
stricted our attention to states that are either of in-phase
or antipodal-type. Two-cluster states where the clusters
have a another phase difference than π could be analyzed
by e.g. considering an even more general collective coor-

dinate ansatz such as φ̂1
i = α1(t)ω1

i , φ̂
2
i = α2(t)ω2

i + ψ(t)
where ψ(t) serve as an additional dynamical variable.
Also, more than two clusters could be considered as they
are shown in Fig. 4(c,d) and Fig. 2(d).

E. Approximations for the transverse stability of the one
and two cluster states

In the sections IV B–IV D, we have derived condi-
tions for the existence of synchronous states of in-phase
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and antipodal-type. Such states had been discussed in
Refs. 77 and 78 by using a self-consistency approach in
the continuum limit, and existence results had been de-
rived. However, as remarked in Refs. 77 and 78, their
approach is not capable of deriving stability conditions of
the states transversally to the reduced subsystem. With
the collective coordinate approach, we are in the fortu-
nate position that this ansatz allows for an approxima-
tion of the stability of synchronous states. In particular,
we consider a solution α of the collective coordinate de-
scription as stable if (i) α is stable with respect to the
system Eq. (3) reduced to the sub-manifold described by
the collective coordinates, i.e., Eq. (7), and (ii) the ap-

proximation φ̂ of the synchronized state is stable in the
full model Eq. (3), see also 59.

In order to derive some simple approximations for the
stability of the synchronous states, we linearize the dy-
namical system (3) around the approximated solution

φ̂(α,ω) which results in

˙δφ = J(α,ω)δφ (19)

where J denotes the Jacobian matrix with entries given
by

Jij =
K1

N
cos(φ̂j − φ̂i) + 2

K2

N
cos 2(φ̂j − φ̂i) (20)

Jii = −

 1

N

N∑
j=1,j 6=i

K1 cos(φ̂j − φ̂i) + 2K2 cos 2(φ̂j − φ̂i)

 .

(21)

For the synchronous states of in-phase-type, we con-

sider the (zeroth order) approximation φ̂j− φ̂i ≈ 0 which

results in Jij = 1
N (K1+2K2) and Jii = −N−1

N (K1+2K2)
(i 6= j). For this Jacobian matrix the eigenvalues are
given by λ0 = 0 and λ1 = −(K1 + 2K2) (multiplicity of
N − 1). Hence, in this approximation the in-phase-type
synchronous state is stable if it is stable with respect to
the reduced equation (11) (or (10)) and if K1 +2K2 > 0.

For the synchronous states of antipodal-type, we have
to divide the set of oscillators into two groups of size
N1 and N2 labeled with µ = 1, 2 and may consider the

(zeroth order) approximation φ̂µj − φ̂
µ
i ≈ 0 and φ̂2

j − φ̂1
i ≈

0. Assuming this, the Jacobian also splits up into four
blocks Jµνij , i.e.,

J =

(
J11 j121̂1,2

j211̂2,1 J22

)

with Jµµii = −Nµ−1
N (K1 + 2K2)− Nν

N (2K2 −K1), Jµµij =
1
N (K1+2K2), jµν = 1

N (2K2−K1) and 1̂µν being a matrix
of size Nµ × Nν (ν 6= µ, i 6= j) with all entries being 1.
According to Lemma A.2 in 90, the eigenvalues of J are
given by λ1

1 = −(2n1−1)K1−2K2 (multiplicity N1−1),
λ1

1 = (2n1 − 1)K1 − 2K2 (multiplicity N2 − 1), λ0,1 =
0, λ0,2 = K1 − 2K2. Hence, in this approximation the

antipodal-type synchronous state is stable if it is stable
with respect to the reduced equation (14) (or (13)) and
if −2K2

2n1−1 < K1 < 2K2 ≤ 2K2

2n1−1 since n1 ≥ 1/2 without
loss of generality.

In the following section, we wrap up our findings by
looking at the transition scenarios for various values of
K2. We further show the implications of the stability
analysis for the transitions observed.

V. SYNCHRONIZATION TRANSITIONS IN THE
(K1,K2) PLANE

In section III, we have discussed the transitions for an
increasing coupling strength K1 and two specific values
of the coupling strength K2. In this section, we show the
transitions for a wide range of K2.

Figure 9 shows the results of an adiabatic sweep-up and
sweep-down continuation analysis for different values of
K2. We observe the presence of asynchronous dynam-
ics for low values of K1 and K2 (yellow shaded region).
The boundaries of this region are well described by the
analytical stability result for incoherent states. Beyond
the boundaries the dynamical system settles to different
phase-locked states. Many of them are the described in
the previous sections. In particular, for K2 > 0 the tran-
sition scenarios are very similar to those described before
in Sec. III. Moreover, the multistability induced by the
interplay of the two modes in the interaction function is
also present in a wide range of parameters. Note that the
multistability shown in the present analysis depends on
the coupling strength K1 which is the parameter that is
changed during the adiabatic continuation. We further
acknowledge that the abrupt (first-order) transition to
full synchronization for an increasing coupling strength
K1, as described Ref. 63, can be found for values K2 > 0
up to almost the stability boundary 2/πd(0) ≈ 1.27.

Additionally, we note that the approximated stabil-
ity boundaries for phase-locked states of in-phase and
antipodal-type are qualitatively very good. More pre-
cisely, the conditions describe the maximal extension
of the regions in which the corresponding states could
be found. The differences to the numerically observed
boundaries can be accounted, on the one hand, to the fact

that the assumption φ̂µj − φ̂
µ
j ≈ 0 becomes bad close the

saddle node bifurcation (drop in in the value of R1, see
Fig. 2). On the other hand, the stability condition does
not imply existence and hence the line of saddle-node
bifurcations not necessarily coincides with the stability
boundary, see Secs. IV B–IV D for the existence results.

For coupling strengths K2 < 0, the transition sce-
narios change. In fact, we observe a sudden transition
between asynchrony to synchrony close to the stabil-
ity boundary for the incoherent state. As in the case
K2 > 2/πd(0), there are no direct transitions to full syn-
chrony but again to phase-locked states that eventually
turn into synchronous states of in-phase-type for very
large K1. Remarkably, these transition scenarios show
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FIG. 9. Up- and down-sweep for the first mode coupling
strength K1 for different values of the second mode coupling
strength K2 with step size ∆K1 = 0.1 and ∆K2 = 0.1. The
gray scale shading represents the averaged values of the first
(panels a,c) and second (panels b,d) order parameter R1 and
R2, respectively. The yellow shaded areas indicate that the
observed states are asynchronous, i.e. at least one average

frequency Ωi = 1/T
∫ t0+T

t0
φ̇i(t) dt is different from all the

others, where the threshold to measure the difference is set to
0.01. For parameter values below the dotted red line, the in-
coherent states are stable, i.e., K1,2 ≤ 2/πd(0). The blue line
shows the boundary between regions where the synchronous
state of in-phase-type is unstable (parameters in the lower
left corner) or stable (parameters in the upper right corner).
Similarly, the blue dashed line shows the boundary between
regions where all synchronous states of antipodal-type are un-
stable (parameters in the upper left corner) or at least one
state is stable (parameters in the lower right corner), see also
Sec. IV E for the stability results. Procedure and all other
parameters as in Fig. 2.

no hysteresis, compare e.g. the up- and down-sweep pro-
tocols shown in Fig. 9a,c. Moreover, the phase-locked
states observed in the transition still show a separation
into approximately two groups with a phase shift of π
in their collective phases of the first moment. However,
the structure within the groups can be very different and
even further split up into more groups. Due to this addi-
tional complexity in the transition, we skip any further
detailed analysis.

VI. CONCLUSIONS

In this work, we have studied the synchronization tran-
sition in a phase oscillator system with a two-mode inter-
action function. We have shown that the transition sce-
narios crucially depend on the interplay of the two con-
sidered modes. Using adiabatic continuation protocols,
we have described parameter regimes with a high degree
of multistability of phase-locked states of in-phase and
antipodal-type. The multistable states, in addition to
giving rise to hysteresis, allow for a cascade of first-order
transitions to synchrony, similar single-step transition re-
cently found for adaptive dynamical networks60.

In order to describe the existence of the multiple phase-
locked states, we have extended the collective coordinate
approach54 to system with multi-mode interaction. Us-
ing our extended approach, we are able to characterize
the emergence of the observed states through saddle-node
bifurcations and approximate their regions of existence
very well.

In essence of our theoretical analysis, we have shown
that the interplay of two modes may lead to the emer-
gence of two independent groups of oscillators whose
interaction determine the final dynamical states. This
property of the systems has been particularly important
to describe the disappearance of certain phase-locked
states of antipodal-type where two independent collec-
tive coordinates had to be used for a proper analysis.
In comparison to single-mode interaction functions, the
emergence of two independently interacting groups rep-
resents the higher degree of dynamical complexity due to
two modes in the interaction function.

Phase oscillator models are a commonly used paradigm
to study synchronization phenomena in systems of cou-
pled oscillators2. In particular, phase reduction tech-
niques have shown that interacting dynamcial systems
which are close to a Hopf bifurcation can be well de-
scribed by phase oscillator models5. However, the in-
teraction function of these phase oscillator models might
have a complicated form and is generally different from
the standard Kuramoto-type single-mode coupling. Ad-
ditionally, in works on the phase reduction beyond the
weak coupling limit, mixed-mode couplings appear quite
naturally in the phase model approximations80–82. In
this work, we have shown, in which way the interplay of
different modes in the interaction function lead to more
complex dynamical scenarios. Hence, our analysis pro-
vides a perspective for future research on dynamical sys-
tems including complex interaction functions beyond the
Kuramoto-type.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are
available within the article.
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Appendix A: Derivation of collective coordinate
approximation for states of in-phase-type

In this section, we derive the equation of motion for
the collective coordinate approximation for states of in-
phase-type. As given in Eq. (9), the error function reads

εi = α̇
dφ̂i
dα
− ωi −

K1,1

N

N∑
j=1

sinα[ωj − ωi]

− K1,2

N

N∑
j=1

sin 2α[ωj − ωi]

Now using the condition that 〈ε, dφ̂dα 〉 = 0, and noting

that dφ̂i
dα = ωi, we obtain

0 = 〈ε, dθ
dα
〉 = α̇〈dφ̂

dα
,
dφ̂

dα
〉 − 〈dφ̂

dα
,
dφ̂

dα
〉

− K1

N

N∑
i,j=1

sinα[ωj − ωi]
dφ̂i
dα

− K2

N

N∑
i,j=1

sin 2α[ωj − ωi]
dφ̂i
dα

This equation yields

α̇ = 1 +
K1

Σω

1

N2

N∑
i=1

ωi

N∑
j=1

sinα[ωj − ωi]

+
K2

Σω

1

N2

N∑
i=1

ωi

N∑
j=1

sinα[2ωj − 2ωi] (A1)

where Σω = 1
N

∑N
j=1 ω

2
j . Considering a uniform distri-

bution of natural frequencies on the interval [−1, 1] with
the distribution density d(ω) = 0.5 and taking the con-
tinuum limit as N →∞ we obtain

α̇ = 1 +
K1,1

σ2
ω

∫ 1

−1

ω

4

∫ 1

−1

sinα[η − ω] dη dω

+
K1,2

σ2
ω

∫ 1

−1

ω

4

∫ 1

−1

sin 2α[η − ω] dη, dω

where we denote limN→∞ Σω = σω.
After evaluating the integrals, we finally obtain

α̇ = 1 +
sinα

α

(
K1

σω

[
α cosα− sinα

α2

])

+
sinα cosα

α

(
K2

σω

[
α− sinα(cosα+ 2α sinα)

2α2

])
,

where σω = 1/3 for the given frequency distribution, see
also Eq. (11). Figure 10 display the function g(α) on the
right hand side of Eq. (11) depending on the coupling
strengths K1 and K2. Note that crossings of the colored
lines with the black line (g(α) = 0) correspond to steady
states of the reduced equations.

b

a

FIG. 10. Plots for the function g(α) on the right-hand side
of Eq. (11). Panel (a) displays the function depending on K1

for K1 = 0 (red), K1 = 0.5 (yellow), K1 = 1 (blue) and fixed
K2 = 1.2. Panel (b) displays the function depending on K2

for K2 = 0.2 (red), K2 = 1.2 (yellow), K2 = 2 (blue) and
fixed K1 = 1.

Appendix B: Derivation of collective coordinate
approximation for states of antipodal-type

For states of antipodal-type, let us derive the two clus-
ter solution. Recall the error which reads

εµi = α̇ωµi − ω
µ
i −K1Im

{
Z1e

−i(αµωµi +ψµ)
}

−K2Im
{
Z2e

−2i(αµωµi +ψµ)
}

where we consider the general collective coordinate

ansatz φ̂µi = αωµi + ψµ for ψµ ∈ [0, 2π), µ = 1, 2 and

k = 1, . . . , Nµ. Taking 〈ε, dφ̂
dα 〉 = 0, we obtain

α̇ = 1 +
1

Σω

2∑
µ=1

nµ
Nµ

Nµ∑
j=1

ωµj

[
K1Im

{
Z1e

−i
(
αωµj +ψµ

)}

+K2Im

{
Z2e

−2i
(
αωµj +ψµ

)}]

with

Σω =
1

N

2∑
µ=1

Nµ∑
j=1

(
ωµj

)2

.

Taking the limit Nµ → ∞ for all µ and consequently
N →∞, we get

1

Nµ

Nµ∑
j=1

ωµjK1Im

{
Z1e

−i
(
αωµj +ψµ

)}

→ K1Im

{
Z1

∫
dµ(ω)ωe−i(αω+ψµ) dω

}
and similarly for the K2 term with dµ(ω) being the distri-
bution densities of natural frequencies of the µth cluster.
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Thus it can be seen that the equation becomes

α̇ = 1 +
1

σω

η∑
µ=1

nµ

[
K1Im

{
Z1I

µ
1

}
+K2Im

{
Z2I

µ
2

}]
where Iµm are defined as in Eqs. (15) and Σω → σω as
N →∞.

In agreement with the observations described in
Sec. III, we assume that the natural frequencies within
each cluster µ = 1, 2 are uniformly distributed on an in-
terval [aµ1 , a

µ
2 ]. For the distribution densities, we assume

dµ(ω) = 1
2∆µ on the interval [aµ1 , a

µ
2 ] for aµ1 , a

µ
2 ∈ R and

dµ(ω) = 0 everywhere else, where we define ∆µ =
aµ2−a

µ
1

2

and ω̄µ =
aµ1 +aµ2

2 . Then for two clusters with ψ1 = 0 and

ψ2 = π the order parameter can be written as

Zm = n1Z
1
m + (1− n1)Z2

m.

For the individual order parameters of the cluster Zµm,
we can derive the following integrals:

Zµm =

∫ aµ2

aµ1

dµ(ω)eim(αω+ψµ) dω

=
eim(αω̄µ+ψµ)

2∆µ

∫ ∆µ

−∆µ

eimαω dω

=
eim(αω̄µ+ψµ)

mα∆µ
sin(mα∆µ)

Here, we use the transformation ω → ω−ω̄µ in the second
line. We finally obtain

Zµm =
(−1)m(µ−1)eimαω̄µ

mα∆µ
sin (mα∆µ).

For the integrals Iµm = n1I
1
m + (1 − n1)I2

m we proceed
analogously. Using the transformation ω → ω − ω̄µ, we
find

Imµ =
(−1)m(µ−1)e−imαω̄µ

2∆µ

∫ ∆µ

−∆µ

ωe−i(αωµ) dω + ω̄µ(Zµm)∗.

where the asterisk denotes the complex conjugate. Ap-
plying integration by parts, we finally obtain

Iµm = Îµm + ω̄µ(Zµm)∗

with

Îµm = (−1)m(µ−1)ie−imαω̄µmα∆µ cos(mα∆µ)− sin(mα∆µ)

m2α2∆µ
.

For the variance, we obtain

σω =
n1((∆1)2 + 2(ω̄1)2) + (1− n1)((∆2)2 + 2(ω̄2)2)

3
=

1

3
.
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action, Chaos 19, 043104 (2009).

52I. Stewart: Phase oscillators with sinusoidal coupling interpreted
in terms of projective geometry, Int. J. Bifurc. Chaos 21, 1795
(2011).

53E. Ott and T. M. Antonsen: Low dimensional behavior of large
systems of globally coupled oscillators, Chaos 18, 037113 (2008).

54G. A. Gottwald: Model reduction for networks of coupled oscil-
lators, Chaos 25, 053111 (2015).

55L. D. Smith and G. A. Gottwald: Model reduction for the col-
lective dynamics of globally coupled oscillators: From finite net-
works to the thermodynamic limit , Chaos 30, 093107 (2020).

56L. D. Smith and G. A. Gottwald: Chaos in networks of cou-
pled oscillators with multimodal natural frequency distributions,
Chaos 29, 093127 (2020).

57E. J. Hancock and G. A. Gottwald: Model reduction for kuramoto
models with complex topologies, Phys. Rev. E 98, 012307 (2018).

58W. Yue, L. D. Smith, and G. A. Gottwald: Model reduction for
the kuramoto-sakaguchi model: The importance of nonentrained
rogue oscillators, Phys. Rev. E 101, 062213 (2020).

59L. D. Smith and G. A. Gottwald: Mesoscopic model reduction
for the collective dynamics of sparse coupled oscillator networks,
Chaos 31, 073116 (2021).

60J. Fialkowski, S. Yanchuk, I. M. Sokolov, E. Schöll, G. A.
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ized splay states in phase oscillator networks, Chaos 31, 073128
(2021).

87S. H. Strogatz and R. E. Mirollo: Stability of incoherence in a
population of coupled oscillators, J. Stat. Phys. 63, 613 (1991).
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