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Fig. 1. Overview of the GENEA Challenge. We controlled the dataset, visualisation, and evaluation in order to compare different gesture-generation approaches
in a fair and systematic way. The dataset includes speech audio, time-aligned speech text transcription, and speaker identity as input modalities and 3D body
motion as the output modality. For the synthesised motion from the participating teams, video stimuli were rendered by a shared visualisation pipeline and
evaluated jointly in crowdsourced user studies.

This paper reports on the second GENEA Challenge to benchmark data-
driven automatic co-speech gesture generation. Participating teams used the
same speech and motion dataset to build gesture-generation systems. Motion
generated by all these systems was rendered to video using a standardised
visualisation pipeline and evaluated in several large, crowdsourced user
studies. Unlike when comparing different research papers, differences in
results are here only due to differences between methods, enabling direct
comparison between systems. The dataset was based on 18 hours of full-
body motion capture, including fingers, of different persons engaging in
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Authors’ addresses: Taras Kucherenko, tkucherenko@ea.com, SEED – Electronic Arts
(EA), Stockholm, Sweden; Pieter Wolfert, pieter.wolfert@donders.ru.nl, Radboud Uni-
versity, Nijmegen, The Netherlands and Ghent University – imec, Ghent, Belgium;
Youngwoo Yoon, youngwoo@etri.re.kr, Electronics and Telecommunications Research
Institute (ETRI), Daejeon, Republic of Korea; Carla Viegas, cviegas@andrew.cmu.edu,
Carnegie Mellon University, Pittsburgh, USA and NOVA University Lisbon, Lisbon,
Portugal; Teodor Nikolov, tnikolov@hotmail.com, Umeå University, Umeå, Sweden
and Motorica AB, Sweden; Mihail Tsakov, tsakovm@gmail.com, Umeå University,
Umeå, Sweden; Gustav Eje Henter, ghe@kth.se, KTH Royal Institute of Technology,
Stockholm, Sweden and Motorica AB, Sweden.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 0730-0301/2024/3-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

a dyadic conversation. Ten teams participated in the challenge across two
tiers: full-body and upper-body gesticulation. For each tier, we evaluated
both the human-likeness of the gesture motion and its appropriateness for
the specific speech signal. Our evaluations decouple human-likeness from
gesture appropriateness, which has been a difficult problem in the field.

The evaluation results show some synthetic gesture conditions being
rated as significantly more human-like than 3D human motion capture. To
the best of our knowledge, this has not been demonstrated before. On the
other hand, all synthetic motion is found to be vastly less appropriate for
the speech than the original motion-capture recordings. We also find that
conventional objective metrics do not correlate well with subjective human-
likeness ratings in this large evaluation. The one exception is the Fréchet
gesture distance (FGD), which achieves a Kendall’s tau rank correlation
of around −0.5. Based on the challenge results we formulate numerous
recommendations for system building and evaluation.

CCS Concepts: • Human-centered computing → Human computer
interaction (HCI); • Computing methodologies→ Animation.

Additional KeyWords and Phrases: animation, gesture generation, embodied
conversational agents, evaluation paradigms
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1 INTRODUCTION
This paper is concerned with systems for automatic generation of
nonverbal behaviour, and how these can be compared in a fair and
systematic way in order to advance the state-of-the-art. This is of
importance as nonverbal behaviour plays a key role in conveying a
message in human communication [McNeill 1992]. A large part of
nonverbal behaviour consists of so called co-speech gestures, spon-
taneous hand and body gestures that relate closely to the content
of the speech [Bergmann et al. 2011], and that have been shown
to improve understanding [Holler et al. 2018]. Embodied conver-
sational agents (ECAs) benefit from gesticulation, as it improves
interaction with social robots [Salem et al. 2011] and willingness to
cooperate with an ECA [Salem et al. 2013]. Knowledge of how and
when to gesture is also needed. This can for example be learnt from
interaction data; see, e.g., Jonell et al. [2020a].
Synthetic gestures used to be based on rule-based systems, e.g.,

Cassell et al. [2001]; Salvi et al. [2009]; see Wagner et al. [2014] for a
review. These are now being supplanted by data-driven approaches,
e.g., Bergmann and Kopp [2009]; Chiu et al. [2015]; Levine et al.
[2010], with recent work [Alexanderson et al. 2020; Kucherenko et al.
2020; Yoon et al. 2020, 2019] showing improvements in gesticulation
production for ECAs. For more in-depth reviews of recent data-
driven approaches see Liu et al. [2021]; Nyatsanga et al. [2023].
Unfortunately, results from different gesture-generation studies

are typically not directly comparable [Wolfert et al. 2022]. Studies
usually rely on different data sources to train their models. The visu-
alisations of their generated gestures often have different avatars and
production values, which can affect the perception of the gestures.
On top of this, studies make use of a variety of different methodo-
logies to evaluate the gestures. All these differences are, however,
external to the actual methods that drive the gesture generation.

In this paper, we report on the GENEA1 Challenge 2022. The aim
of the challenge is not to select the best team – it is not a contest,
nor a competition – but to be able to directly compare different ap-
proaches and outcomes. By providing a common dataset for building
gesture-generation systems, along with common evaluation stand-
ards and a shared visualisation procedure, we control for all other
sources of variation except the system-building itself. Our setup
is unique to the field of gesture generation, making it possible to
reliably assess and advance the state of the art, and to measure the
gap between it and natural co-speech gestures. Comparing different
methods and their performance also helps identify what matters
most in gesture generation, and where the bottlenecks are. In par-
ticular, the results make it abundantly clear that natural-looking
data-driven gesture motion is achievable today, but that synthetic
gestures are much less appropriate for the accompanying speech
than the natural motion-capture data is. The results also show that
most objective metrics are not informative about the perceived
human-likeness of the generated gestures.

Challenge participants benefit by working on the same problem
together with researchers interested in the same topic, strengthen-
ing the research community, and get an opportunity to compare
their systems to other competitive systems in a large and carefully-
executed joint evaluation. They also work on and contribute towards

1For “Generation and Evaluation of Non-verbal Behaviour for Embodied Agents”.

a standardised evaluation setup which encourages future bench-
marking and reproduction of results. Participants are required to
write down their methods, results and experience in a system paper
to be presented in conjunction with the challenge itself, giving them
a chance to publish their work at ACM ICMI, a leading conference
in the field. Our concrete contributions are:

(1) Four large-scale user studies that jointly evaluate a large
number of gesture-generation models on a common dataset
using a common 3D model and rendering method.

(2) A subjective evaluation that successfully disentangles motion
human-likeness from its appropriateness for the associated
speech.

(3) To the best of our knowledge, the first results that identify
synthetic gesture motion that surpasses the human-likeness
of good 3D motion-capture data.

(4) The first clear evidence that synthetic gestures are much less
appropriate for the specific speech than natural motion is,
even when controlling for the human-likeness of the motion.

(5) A validation study of many objective metrics for predicting
motion human-likeness, finding that all metrics except the
Fréchet gesture distance (FGD) are statistically indistinguish-
able from chance prediction.

(6) Providing open code and high-quality data in the spirit of
open source and reproducible research. This includes pre-
processed multimodal training, validation, and test datasets;
the standardised visualisation; submitted motion and video
stimuli; a large number of subjective responses from the stud-
ies; and evaluation and analysis code.

(7) Bringing researchers together in order to advance the state
of the art in gesture generation, and enabling future research
to compare and benchmark against systems and stimuli from
the challenge.

Materials derived from the challenge are publicly available at
youngwoo-yoon.github.io/GENEAchallenge2022.
This paper is an extension of a previously published conference

paper on the challenge [Yoon et al. 2022], adding more compre-
hensive information and analyses, experiments on objective metrics,
and a more in-depth discussion of challenge submissions, findings,
recommendations, and limitations. The remainder of this paper first
(in Sec. 2) briefly discusses current gesture-evaluation practices and
how challenges can help overcome their shortcomings. We then
describe the challenge task and dataset in Sec. 3, followed by a break-
down of the challenge tiers and participating teams in Sec. 4. Sec. 5
then reviews the approaches taken by different challenge entries.
In Sec. 6 we describe the design of the challenge evaluation, with
results of the various evaluations recounted in Sec. 7 and discussed
in Sec. 8. Each of these three sections detail both the core subjective
evaluation as well as the objective metrics we computed, in that
order. We round off by discussing challenge limitations (in Sec. 9)
and summarising its conclusions and implications (in Sec. 10).

2 RELATED WORK
2.1.1 Issues with prior evaluations and evaluation practices. Most
works that propose new gesture-generation methods incorporate
an evaluation to support the merits of their method. Human gesture
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perception is highly subjective, and there are currently no widely
accepted objective measures of gesture perception. Instead, human
assessment via careful user studies is the gold standard in the field.
However, previous subjective evaluations have several drawbacks,
as reviewed in Wolfert et al. [2022]. Some major issues are the
coverage of systems being compared and the scale of the studies.
Like in Alexanderson et al. [2020]; Kucherenko et al. [2021a, 2020];
Sadoughi and Busso [2019], proposed models are at most compared
to one or two prior approaches (often a highly similar baseline) or
possibly only to ablated versions of the same model. A large number
of studies do not compare their outcomes with other methods at all,
let alone other systems trained on the same data. This creates an
insular landscape where particular model families are only applied
to particular datasets, and never contrasted against one another.

As for scale, large evaluations are expensive, and studies may not
be able to recruit enough participants, thus leaving the differences
between many pairs of studied systems unresolved and not statistic-
ally significant (cf. Yoon et al. [2020, 2019]). Questionnaires, which
are one popular evaluation methodology (cf. Bergmann et al. [2010];
Ishi et al. [2018]; Ishii et al. [2018]; Salem et al. [2012]; Shimazu et al.
[2018]; Yoon et al. [2019]) demand a lot of time and cognitive effort
from test participants, and may be infeasible to scale up to bigger
studies. In addition, items used in questionnaires differ across studies
and the set of questions used is often not standardised. Evaluations
sometimes also fail to anchor system performance against natural
(“ground truth”) motion from test data held out from training (e.g.,
Ishii et al. [2018]; Le and Pelachaud [2012]; Salem et al. [2012]).
Studies also differ in the dataset they train on (e.g., Ishii et al.

[2018]; Le and Pelachaud [2012]; Salem et al. [2012]) and in how the
motion is visualised. For the latter, some prior work displays motion
through stick figures (e.g., Kucherenko et al. [2019]; Wolfert et al.
[2019]), or applies it to a physical agent (e.g., Ishi et al. [2018]; Salem
et al. [2012]). Neither of these may allow the same expressiveness
or range of motion as a 3D-rendered humanoid mesh avatar as seen
in, e.g., Alexanderson et al. [2020]; Kucherenko et al. [2020].

2.1.2 Benefits of challenges in other fields. Other fields have done
well using challenges to standardise evaluation techniques, establish
benchmarks, and track and evolve the state of the art. For example,
the Blizzard Challenges have since their inception in 2005 (see Black
and Tokuda [2005]) helped advance our sister field of text-to-speech
(TTS) technology and identified important trends in the specific
strengths and weaknesses of different speech-synthesis paradigms
[King 2014]. These challenges are defined by the use of common
data and evaluation, and their open participation to both academia
and industry. More specifically, participants are provided a common
dataset of speech audio and associated text transcriptions, which
they use to build a system that generates synthetic speech audio.
After the participants submit their systems, the resulting generated
speech is subsequently evaluated in a large, joint evaluation, the
results of which are provided to the teams. Submitted entries are
identified by anonymised labels in official Blizzard Challenge results,
but in practice the vast majority of teams identify which label repres-
ents their entry in their paper at the Blizzard Challenge Workshop
describing the system that they submitted. Data, evaluation stim-
uli, and subjective ratings remain available after these challenges,

and have been widely used both for benchmarking subsequent TTS
systems, e.g., Charfuelan and Steiner [2013]; Székely et al. [2012],
and in research on the perception of natural and artificial speech,
e.g., Govender et al. [2019]; Huang et al. [2022]; Mittag and Möller
[2020]; Möller et al. [2010]; Saratxaga et al. [2016]; Yoshimura et al.
[2016]. This has led to the development of new and novel methods,
driven by past results, and since participants had access to the same
data, significant advances have been made.
Challenges are also actively used in the computer-vision com-

munity, for instance for benchmarking purposes. Recent NTIRE
[Zhang et al. 2020] and CLIC [Toderici et al. 2020] challenges,
for example, compared systems for image compression and super-
resolution respectively, also incorporating subjective human assess-
ments similar to the challenge described in this paper (although
NTIRE used a MOS-like setup, which has been found to be less
efficient than the side-by-side evaluation methodology we employ
[Ribeiro et al. 2015]). This addresses the over-reliance on objective
metrics in computer-vision evaluation, which, just like in speech
quality and gesture generation, do not always align with human
perception. The GENEA Challenge is inspired by these successes of
challenges in other fields of study.
In 2020 we organised the first gesture-generation challenge, the

GENEA Challenge 2020 [Kucherenko et al. 2021b]. In addition to
being an exercise in benchmarking both new [Korzun et al. 2021;
Lu et al. 2021; Thangthai et al. 2021] and previously-published [Al-
exanderson et al. 2020; Kucherenko et al. 2019; Yoon et al. 2019]
gesture-generation methods, the results of that challenge have since
helped improve gesture-generation benchmarking in other ways
as well. Researchers have, for example, used the 2020 visualisation
[Teshima et al. 2022; Wang et al. 2021; Zhang et al. 2023], and the
objective [Bhattacharya et al. 2021] and subjective [Yoon et al. 2021]
evaluation methodologies, as a basis for future research. The data
has also been used to benchmark subsequent gesture-generation
models [Ferstl et al. 2021; Yazdian et al. 2022], and even for automatic
quality assessment [He 2022]. In this paper, we follow up on the 2020
challenge by reporting on the second gesture-generation challenge,
the GENEA Challenge 2022. This challenge expands the dataset,
the range of behaviour considered, and the number of participating
teams, and also improves the visualisation and the evaluation prac-
tises, in addition to considering objective metrics together with a
large subjective evaluation.

2.1.3 Objective metrics. Given that subjective evaluations are la-
bour intensive, time-consuming, and costly, a large number of differ-
ent objective metrics have been proposed as automated indicators
of gesture-generation performance. Some of these, such as the com-
monly used average position error (APE) andmean-squared position
error (MSE) [Nyatsanga et al. 2023; Wolfert et al. 2022], as well as
the “probability of correct keypoints” (PCK) and its extension to
semantic relevance gesture recall (SRGR) [Liu et al. 2022b], are used
to score the similarity of generated poses to a corresponding record-
ing of human motion. Alternatively, canonical correlation analysis
(CCA) can be used to quantify the linear (Pearson) correlations
between generated and reference poses [Bozkurt et al. 2015; Lu
et al. 2021; Sadoughi and Busso 2019]. These methods are likely to
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struggle with the stochastic, one-to-many nature of human gestures
(there is no single “correct” way to move), leading to high variance.

To accommodate the stochastic nature of motion, statistics such
as the average magnitude of motion acceleration and jerk, and dis-
tances between motion speed histograms have been used to quantify
how similar generated motion is to the distribution of human mo-
tion [Kucherenko et al. 2021a]. More recent developments have
built on the Freéchet inception distance (FID) from image genera-
tion [Heusel et al. 2017] to propose new methods for comparing
gesture-motion distributions [Ahuja et al. 2020; Yoon et al. 2020].
These methods were later used by, e.g, Ahuja et al. [2022]; Ao et al.
[2022]; Liu et al. [2022b,a]. Beat consistency, which was first pro-
posed for dance motion [Li et al. 2021], has also been used to assess
gesture generation [Liu et al. 2022a]. However, few of these works
experimentally validate their metrics. In this paper, we use the many
conditions and ratings gathered in our user studies to compute and
validate five of the above objective metrics for gesture generation.

3 TASK AND DATA
The GENEA Challenge 2022 focused on data-driven automatic co-
speech gesture generation. Specifically, given a sequence 𝒔 of input
features that describe human speech – which could involve any
combination of an audio waveform, a time-aligned text transcription,
and a speaker ID – the task is to generate a corresponding sequence
𝒈̂ of 3D poses describing gesturemotion that an agent might perform
while uttering this speech (facial expression is not considered). To
enable direct comparison of different data-driven gesture-generation
methods, all methods evaluated in the challenge were trained on
the same gesture-speech dataset and their motion visualised using
the same virtual avatar and rendering pipeline. This is the same task
as in the 2020 challenge, whilst at the same time we changed the
dataset (as described below) and refined the evaluation (see Sec. 6).

3.1 Data
Compared to 2020, wewanted to expand the dataset to include finger
motion, lower-body motion, and material from multiple speakers
in dyadic interactions. The latter may provide more natural and
interesting gestures than the Trinity Speech-Gesture Dataset [Ferstl
and McDonnell 2018] used in 2020. We based our challenge on the
Talking With Hands 16.2M gesture dataset [Lee et al. 2019], which
comprises 50 hours of audio (captured by close-talking directional
microphones) and motion-capture recordings of several pairs of
people having a conversation freely on a variety of topics, recorded
in distinct takes each about 10 minutes long. At the time of the
challenge, this was likely the largest dataset of parallel speech and
3D motion (in joint-angle space) publicly available in the English
language. We removed parts of the dataset (46 out of 116 takes) that
lacked audio or had low motion-capture quality, especially for the
fingers. Note that despite the dataset being dyadic by design, the
challenge focused on generating one side of the conversation at a
time, without awareness of the interaction partner. The data from
the interaction partner in each dyad was typically also included in
the challenge material, but as a separate recording without provid-
ing links between the two. This was the case for both the gesture
synthesis and for the subsequent evaluation.

Fig. 2. Visualisations of the default skeletal pose of the data before and
after processing. On the left (blue) is the original skeletal pose, as found
in the Talking With Hands 16.2M dataset shared by Lee et al. [2019]. On
the right (orange) is the transformed skeletal pose (i.e., T-pose) used for the
GENEA Challenge 2022.

3.1.1 Speech audio and text. Speech data was shared with parti-
cipants as WAV audio with no additional processing beyond the
anonymisation applied by Lee et al. [2019], which replaced many
proper nouns with silence. We also provided text transcriptions of
the speech, in tab-separated value (TSV) files, and a metadata file
with unique anonymous labels for each speaker. The TSV files were
created by first applying Google Cloud automatic speech recogni-
tion to transcribe the audio recordings, followed by manual review
to correct recognition errors and add punctuation for all parts of
the dataset (training, validation, and test).

3.1.2 Motion data. Motion data was downsampled from 120 to 30
frames per second and further transformed in two ways:

First, we updated the default skeleton relative to which all motion
data is defined, away from what appeared to be a contorted and
arbitrary definition to a standard “T-pose”, as shown in Fig. 2. The
T-pose is an animation-industry standard wherein all joint rotation
values are described in relation to a T-shaped skeleton. This standard
is widely adopted by existing 3D digital content-creation software
like Blender and Maya. In fact, it is often the required 3D-skeleton
pose when transferring the motion of one character onto another
during animation re-targeting. Furthermore, the T-pose is expected
to have better mathematical properties due to its symmetry and
shape. In particular, the pose more closely resembles the poses found
in the motion-capture data. As a result of this, most of the joint
rotation values are expected to be closely distributed around zero.
Consequently, this would reduce the risk of phase wrapping and
gimbal locking across the skeleton, lending itself to smoother beha-
viour and interpolation in the Euler-angle space. This in turn leads
to data that is more numerically stable, making it more practical
for training machine-learning models. The data was recomputed
to match a T-pose using motion re-targeting inside MotionBuilder
(code and documentation are available2), retaining as much of the
original visual quality as possible, whilst ensuring that the data had
no discontinuities (e.g., at rotations near 180◦). We found that this
transformation substantially improved the output of the baseline
system UBA in Sec. 4.2.

2github.com/TeoNikolov/genea_visualizer/tree/master/scripts
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Second, we standardised the position and orientation of speakers
in all takes. Originally, each take would have the two speakers oc-
cupy two locations and face each other. We standardised this on a
per-take basis such that all speakers, on average, face the same direc-
tion, and occupy the same location. More technically, in a right-hand
𝑥𝑦𝑧 Cartesian coordinate system (𝑦-up, 𝑧-forward), each speaker is
on average positioned at world origin ([𝑥 = 0, 𝑦 = 0, 𝑧 = 0]), and on
average facing the positive 𝑧-axis (a directional vector [𝑥 = 0, 𝑦 = 0,
𝑧 = 1]). Averaging was done for each take separately after taking 250
equidistant samples of the hips position and orientation, and then
using linear-algebra operations to correct for the difference between
the original and the standardised values. This change was made
to streamline data visualisation and to remove potential confusion
due to different absolute positions and orientations across different
takes. The transformed motion data was shared with participants
in the Biovision Hierarchy (BVH) format.

3.1.3 Data splits. The challenge data was split into a training set
(18 h), a validation set (40 min), and a test set (40 min), with only
the training and validation sets initially shared with participat-
ing teams. The validation and test data each comprised 40 chunks
(contiguous excerpts approximately one minute long), to promote
generation methods that are stable over long segments of speech,
and was restricted to takes with finger-motion tracking for the
chosen speaker. Some recordings with finger-capture data were
excluded from consideration due to poor motion-capture quality,
based on visual inspection of a short sample from each recording.
The validation data was intended for internal benchmarking during
development, so participants were allowed to train their final submit-
ted models on both training and validation data if they wished. After
the challenge, all the data subsets were made publicly available at
zenodo.org/doi/10.5281/zenodo.6998230, and had been downloaded
over 500 times when this article went to press.

3.1.4 Usage rules. Teams were allowed to only train on a subset
of the data and were allowed to enhance the data they trained on
however they liked, for instance by manual annotation or by post-
processing the speech and the motion. They were also allowed to
make use of additional speech data (audio and text) from other
sources, and models derived from such data, e.g., BERT [Devlin
et al. 2018] and wav2vec [Baevski et al. 2020]. However, it was not
permitted to use any other motion data, nor any pre-trained motion
models, other than what the organisers provided for the challenge.
Otherwise, the result would be likely to strongly depend on how
much data each team can get access to (as has been the case in many
Blizzard Challenges in speech synthesis), which is not an interesting
scientific conclusion to replicate.

4 SETUP AND PARTICIPATION
The challenge began on May 16, 2022, when speech-motion training
data was released to participating teams. Test inputs (WAV, TSV,
and speaker ID, but no motion output) were released to the teams
on June 20, with teams required to submit BVH files with their
generated gesture motion for these inputs by June 27, in the same
format as that used by the challenge training data. Manual tweaking
of test inputs or the output motion was not allowed, since the idea

was to evaluate synthesis performance in an unattended setting.
As a precondition for participating in the evaluation, teams agreed
to submit a companion paper describing their system for review
and possible publication at the conference where the challenge took
place. Evaluations took place only after the generated motion was
submitted by all teams.

4.1 Tiers
The challenge evaluation was divided into two tiers, one for full-
body motion and one for upper-body motion only. Each tier had its
own reasons for being included. On the one hand, the data comprises
recorded full-body motion from conversational interactions. It can
furthermore be argued that human embodied conversation uses the
full body. Also, generating full-body behaviour seems like a harder
problem, since it represents a higher-dimensional probability distri-
bution which is more difficult to learn from a statistical perspective.
Therefore, if full-body generation is solved, restricted versions of
the problem can be expected to be solved as well. On the other
hand, it is debatable to what extent the motion of the lower body
whilst speaking constitutes co-speech gestures that depend on the
speech, over other aspects such as proxemics and stance in response
to the other parties in a conversation (which is data that was not
provided to challenge participants this time). As a result, including
lower-body motion may add unnecessary complexity to the gesture
generation problem, and act as a distraction when evaluating the
quality of generated gestures. Focusing on the upper body also is
more consistent with earlier evaluations of co-speech gesture gener-
ation, such as the GENEA Challenge 2020 [Kucherenko et al. 2021b].
Because it is not clear which perspective to apply, our evaluation
included one tier each for full-body and upper-body motion. Teams
could enter motion into either tier, or into both, but could only make
one submission per tier. Teams that entered into both tiers were
allowed to submit different motion (BVH files) to each tier, if they
wished. Both tiers used the same training data but differed in which
parts of the avatar that were allowed to move, and in the camera
angle used for the video stimuli in the evaluation, as follows:
Full-body tier In this tier, the entire virtual character was free

to move, including moving around in space relative to the
fixed camera. Motion was visualised from an angle facing
the character that showed most of the legs, but not where
the feet touched the ground. This perspective was chosen to
show as much as possible of the character, whilst obscuring
foot penetration or foot sliding artefacts from view, since
these artefacts arguably do not relate to co-speech gestures,
yet they may influence ratings if visible. An example of this
camera perspective can be seen in Fig. 3a.

Upper-body tier In this tier, the virtual character used a fixed
position and a fixed pose from the hips down, with only
the upper body free to move. Motion was visualised from
a camera angle facing the character, cropped slightly below
the hips, such that the hands always should remain in view.
Any motion of the lower-body joints in submitted BVH files
was ignored by the visualisation. This camera perspective is
shown in Fig. 3b.
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Table 1. Conditions participating in the evaluation. Conditions are ordered based on their median human-likeness scores from higher to lower (see Table 3);
this is why the previously published baselines appear near the bottom of the list, but not at the very end. The following abbreviations were used: AR for
“Auto-regression”, CNN for “Convolutional Neural Network”, RNN for “Recurrent Neural Network”, SA for “Neural self-attention” (e.g., Transformers), GANs for
“Generative adversarial networks or adversarial loss terms”, VAEs for “Variational auto-encoders”,MGs for “Motion graphs”, Frame-wise for “Generating output
frame-by-frame”, Stoch. output for “Stochastic output” (different output possible even if the inputs are the same), and Smoothed for “Smoothing was applied”.

Per-tier Inputs used Hands Techniques used Frame- Stoch. Smoo-
Baseline or team name label Aud. Text Sp. ID fixed AR RNNs SA VAEs Other wise output thed

GestureMaster [Zhou et al.] FSA USQ ✓ ✓ ✓ Hand-crafted rules, MGs ✓

Forgerons [Ghorbani et al.] FSC USO ✓ ✓ ✓ ✓ ✓ ✓ ✓

DeepMotion [Lu and Feng] FSI USJ ✓ ✓ ✓ ✓ ✓ ✓ CNNs ✓ ✓

DSI [Saleh] FSF ✓ ✓ ✓ ✓

UEA Digital Humans [Windle et al.] FSG USM ✓ ✓ ✓ ✓ ✓

ReprGesture [Yang et al.] USN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ CNNs, GANs ✓

IVI Lab [Chang et al.] FSH USK ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FineMotion [Korzun et al.] FSD ✓ ✓ ✓ ✓ ✓ ✓

Murple AI lab (no paper submitted) Not revealed ✓ ✓ ✓ Normalising flows ✓ ✓

Text-only baseline FBT UBT ✓ ✓ ✓ ✓ ✓ ✓

Audio-only baseline UBA ✓ ✓ ✓ ✓

TransGesture [Kaneko et al.] USL ✓ ✓ ✓ ✓ ✓ ✓

4.2 Baselines and participating teams
The challenge evaluation featured three types of motion sources:
natural motion capture from the speakers in the database, baseline
systems based on open code, and submissions by teams participating
in the challenge. We call each source of motion in a tier a condition
(not a “system”, since not all conditions represent motion synthes-
ised by an artificial system). Each condition was assigned a unique
three-letter label or condition ID, where the first character signifies
the tier, with F for the full-body tier and U for the upper-body tier.

Natural motion was labelled FNA in the full-body tier and UNA
in the upper-body tier (NA for “natural”). These conditions can
be seen as a top line, and surpassing their performance essentially
means outperforming the dataset itself, subject to limitations due to
the motion capture and visualisation (discussed in Secs. 8.1 and 9).
The natural top line can be contrasted against the two baseline

systems included in the challenge, which represent previously pub-
lished gesture-generation methods that have been adapted to run
on the 2022 challenge training data. The systems were selected with
the requirements to be (1) open-sourced and well documented, and
that (2) their authors were available to adapt the methods to the new
data and also help challenge organisers and participants, should any
issues arise. Unfortunately, none of the top-performing models from
the previous challenge satisfied both conditions, whereas the two
2020 baselines did. Adapting these baselines to the present challenge
provides continuity with the previous iteration of the challenge and
helps track the progress of the field. The two baselines were thus:
Text-based baseline (FBT/UBT) This motion was generated by

the gesture-synthesis approach from Yoon et al. [2019] (which
takes text transcriptions with word-level timestamps as the
input) but adapted to joint rotations. A neural sequence-to-
sequence architecture is used, where an encoder processes
a sequence of speech words and a decoder outputs a se-
quence of human poses. Motion from this baseline used a
fixed lower body but was included in both tiers, as conditions
FBT and UBT (B for “baseline” and T for “text”). The code is

publicly available online at github.com/youngwoo-yoon/Co-
Speech_Gesture_Generation.

Audio-based baseline (UBA) This motion was generated by the
Audio2Repr2Pose motion-synthesis approach of Kucherenko
et al. [2019], which only takes speech audio into account
when generating output, adapted to joint rotations. This
model uses a chain of two neural networks: one maps from
speech to pose representation and another decodes the rep-
resentation to a pose, generating motion frame-by-frame by
sliding a window over the speech input. Motion from this
baseline was only included in the upper-body tier, as condi-
tionUBA (A for “audio”). The code is publicly available online
at github.com/genea-workshop/Speech_driven_gesture_ gen-
eration_with_autoencoder.

Source code for replicating the two baselines was available to parti-
cipating teams during the challenge.

Separate from top lines and baselines, a total of 10 teams particip-
ated in the GENEA evaluation, with 8 entries (a.k.a. submissions) to
the full-body tier and 8 entries to the upper-body tier. Together with
test-set mocap and the baselines, this makes a total of 10 conditions
in the full-body tier and 11 in the upper-body tier. Submissions were
labelled with the prefix FS and US (S for “submission”) depending on
the tier, followed by a single character to distinguish between differ-
ent submissions in the same tier. In particular, challenge entries to
the full-body tier were labelled FSA–FSI, and entries to the upper-
body tier were labelled USJ–USQ. Condition FSE was withdrawn
before the evaluation. These labels are anonymous and have no
relationship to team identities, but teams were free to reveal their
label(s) in papers describing their systems, if they wished.
Table 1 lists the baselines and participating teams, with basic

information about their respective approaches and references to
their system-description papers. All teams but one published a paper
about their system, and all of the published papers chose to reveal
the label(s) of their submitted systems. We have therefore included
that label information in Table 1.
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5 METHODS USED BY CHALLENGE ENTRIES
Based on the publications referenced in Table 1, we now review the
technical approaches taken by the different teams this challenge,
and (in Sec. 5.2) contrast them against the five 2020 challenge entries.
Note that we do not discuss the Murple AI Lab submission, since
that team did not submit a system-description paper.

5.1 Motion-generation approaches in 2022
Most of the teams proposed neural network-based methods for gen-
erating pose sequences. The RNN and Transformer architectures
were the most common choices, which effectively led to smaller
architectural differences between the systems. The GestureMaster
team was unique among the teams in utilising motion matching
[Büttner and Clavet 2015], which involves extracting and combining
snippets of motion based on the training dataset, for their approach.
Using ChoreoMaster [Chen et al. 2021] for dance as a starting point,
they present a motion graph-based matching method for optimally
selecting and combining gesture motion clips into a sequence, based
on three criteria: rhythm, style, and the transition between consecut-
ive clips [Zhou et al. 2022]. To generate the target style embeddings,
they fed speech audio into a trained StyleGestures [Alexanderson
et al. 2020] system.

The other approaches that employed neural networks presented
various variations on input-feature context encoding and output-
feature decoding for gesture generation.

To begin with, several approaches made use of custom represent-
ation learning for the different modalities. In particular, both the
DeepMotion [Lu and Feng 2022] and ReprGesture teams [Yang et al.
2022] created pre-trained modality representations for their submis-
sions. DeepMotion used a VQ-VAE to map motion data into a dis-
crete space, whilst the ReprGesture team performed both modality-
invariant and modality-specific representation learning, combin-
ing the two types of features for gesture generation. In a related
move, the Forgerons team [Ghorbani et al. 2022] introduced a style-
encoding component to learn to encode the style of an input motion.
Two submissions used sequence-to-sequence models with vari-

ants of neural attention mechanisms. The TransGesture submission
[Kaneko et al. 2022] employed RNN-Transducers that only make use
of past information during synthesis, meaning that the approach
can be applied to streaming audio with no algorithmic latency. The
IVI Lab submission [Chang et al. 2022] was based on the Tacotron 2
text-to-speech architecture [Shen et al. 2018], but modified to use
locally constrained attention when synchronising the motion with
the input speech audio.

The DSI submission [Saleh 2022], similar to earlier work in autore-
gressive gesture-generation [Kucherenko et al. 2020], employed
curriculum learning to reduce the error accumulation inherent in
autoregressive generation.

Finally, two teams focussed onmodifying the decoder. The FineMo-
tion team [Korzun et al. 2022] proposed a linear layer-based decoder
utilising the previous frame and speech context as input, instead of
an RNN-based decoder, to improve motion stability between frames.
The UEA Digital Humans submission [Windle et al. 2022] made use
of a combination of decoders, where each individual decoder would
generate parts of the resulting pose (face, upper-body, and hands).

In the next few subsections, we delve deeper into the represent-
ation and processing of the input and output data performed by
various teams, seeing that these aspects can have a major impact
on the results produced by data-driven synthesis methods. In Sec.
8.4.2 – after reporting on the challenge results – we draw lessons
from the system performance in relation to these aspects.

5.1.1 Input modalities and their representation. As shown in Table 1,
all submissions from participating teams used speech audio input,
with some additionally employing speech text. Strictly speaking,
speech text is not independent from speech audio, since speech au-
dio carries all the information provided by the speech text. (Indeed,
the text was derived by transcribing the audio recordings.) How-
ever, speech audio exposes rhythmic and paralinguistic information,
whereas speech text offers a more direct representation of speech
lexical content. This makes these different representations suitable
for different tasks relevant to gesture generation [Kucherenko et al.
2022]. Hence, it is reasonable for a submission to utilise both audio
and text. Additionally, to enable systems to capture individual differ-
ences in gesturing behaviour, a few teams made use of the provided
speaker ID information as input.

For speech audio, most teams (4 out of 9) relied on mel-frequency
cepstrum coefficient (MFCC) features [Davis and Mermelstein 1980].
Some used pre-trained off-the-shelf foundation models to represent
the input modality. In particular, the ReprGesture submission used
WavLM [Chen et al. 2022] and the UEA submission used PASE+
[Ravanelli et al. 2020] for encoding the audio input. Among the sub-
missions that used speech text as an input, most employed FastText
to provide word embeddings [Bojanowski et al. 2017]. Four teams
used speaker ID as input. Some used one-hot vectors of speaker ID
as input features [Chang et al. 2022; Windle et al. 2022], whilst the
Forgerons submission [Ghorbani et al. 2022] implemented methods
for style control based on a given motion exemplar.

5.1.2 Output motion representation. For the challenge evaluation,
teams had to generate BVH files, the same format as used to dis-
tribute the dataset. Poses in these BVH files are represented by
root-node positions and Euler angles for joint rotations. Due to
discontinuities in Euler angles representations [Zhou et al. 2019],
no team trained their neural networks to output Euler angles dir-
ectly. Instead, the IVI Lab [Chang et al. 2022] and the TransGesture
[Kaneko et al. 2022] submissions used exponential map representa-
tions for the output motion [Grassia 1998], whereas the DeepMotion
[Lu and Feng 2022] and the UEA [Windle et al. 2022] submissions
used a 6-dimensional representation [Zhou et al. 2019]. The DSI
[Saleh 2022] and the ReprGesture [Yang et al. 2022] teams utilised
rotation matrices, whilst the FineMotion [Korzun et al. 2022] team
used an axis-angle representation. The Forgerons team [Ghorbani
et al. 2022] employed a 2-axis rotation matrix [Zhang et al. 2018]
to represent joint rotations and used a mixture of joint position,
rotation, positional velocity, and rotational velocity as the output
data of the gesture synthesis model.

5.1.3 Pre- and post-processing. One popular strategy for training
data pre-processing was to exclude segments where the charac-
ter was not speaking, which in theory would make some methods
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produce better co-speech gesture models, as argued by the Deep-
Motion [Lu and Feng 2022] and Forgerons [Ghorbani et al. 2022]
submissions. The ReprGesture team [Yang et al. 2022] decided to use
data from only one speaker in the training set due to the potential
interference caused by style diversity among speakers.
The most common post-processing technique among the sub-

missions was to apply smoothing to the raw output motion. For
systems that generate poses frame by frame, applying a smoothing
filter often helps reduce visual artefacts in case of discontinuous,
jerky, or jittery motion in the original model output.

5.2 Motion-generation approaches in 2020
For the first GENEA Challenge [Kucherenko et al. 2021b], in 2020,
five teams (Alexanderson [2020]; Korzun et al. [2021]; Lu et al. [2021];
Pang et al. [2020]; Thangthai et al. [2021]) submitted entries to the
crowd-sourced evaluation. There are some key differences between
the systems that were entered into the first challenge and the more
recent challenge. Some of these differences were due to the chal-
lenges setup. All submissions the first challenge only supported
gesture generation for one individual, since the dataset of that chal-
lenge only was sourced from one single person. In addition, the first
challenge only considered upper-body motion.

All submissions to the first challenge used speech audio as input,
represented using MFCCs, with some teams also making use of the
provided text transcriptions. The three submissions that made use
of text transcripts used learnt embeddings like BERT [Devlin et al.
2018] and GloVe [Pennington et al. 2014] to extract and represent
information from the text. As for the output poses, three teams used
3D joint rotations as the output features for the model to learn, with
two teams instead relying on an exponential map representation.
Two approaches relied on autoregressive architectures [Alexander-
son 2020; Pang et al. 2020], whilst the other either relied on RNNs
[Korzun et al. 2021] or an autoencoder [Lu et al. 2021; Thangthai
et al. 2021]. Importantly, unlike 2022, none of the 2020 entries used
motion graphs for output generation.

We will return to the different approaches taken by participating
teams in 2020 and 2022 in Sec. 8.4, and relate the approaches to the
outcomes of the respective challenges, after having reported on the
2022 challenge evaluation and its results.

6 EVALUATION
We conducted a large-scale, crowdsourced, joint evaluation of ges-
ture motion from the 10 full-body conditions and 11 upper-body
conditions (listed in Table 1) in parallel using a within-subject design
(i.e., every rater was exposed to and evaluated all conditions in each
tier). The systems were evaluated in terms of the human-likeness
of the gesture motion itself, as well as the appropriateness (a.k.a.
specificity) of the gestures for the given input speech. The cent-
ral difference from other gesture-generation evaluations is that all
systems in our evaluation used the same motion data, the same visu-
alisation/embodiment, and were rated together using the same eval-
uation methodology; only the motion-generation systems differed
between the different entries that were compared. This allows the
performance of systems to be compared directly, and the design
aspects that influence performance can be traced more efficiently

than in most previous publications. The subjective evaluation used
an entirely crowdsourced approach, with attention checks used to
exclude participants that were not paying attention, as detailed in
Sec. 6.5. The remainder of this section describes the experiments
we performed. Results of the subjective evaluation are subsequently
presented in Sec. 7 and discussed in Sec. 8.

Although the aim of the challenge is to quantify how natural and
appropriate motion appears to human observers, we have also seized
the opportunity to compute a number of objective metrics of motion
quality on the motion materials in the evaluation. The design of
that experiment is described in Sec. 6.6, with results reported in Sec.
7.4 and discussed in Sec. 8.3. We see this primarily as an evaluation
of the metrics themselves, and not as an evaluation of the different
conditions in the challenge.

6.1 Subjective evaluation design philosophy
For each tier, two different aspects of the generated gestures were
evaluated (with one study per aspect and tier):
Human-likeness Whether the motion of the virtual character

visually looks like the motion of a real human, controlling for
the effect of the speech. We sometimes use “motion quality”
as a synonym for this.

Appropriateness (a.k.a. “specificity”) Whether the motion of the
virtual character is appropriate for the given speech, con-
trolling for the human-likeness of the motion.

Human-likeness is thus a unimodal and unconditional quality meas-
ure (it only depends on the output motion), whereas speech ap-
propriateness is multimodal and conditional on the speech. The
former assesses system output quality whilst the latter assesses how
well the output of the system relates to its input, disregarding the
intrinsic quality of the output as much as possible. A deeper motiva-
tion for separating conditional and unconditional evaluation follows,
with more details about the two different evaluations provided in
Sections 6.3 and 6.4 further below.

6.1.1 Why separate conditional and unconditional performancemeas-
ures? The complementarity of conditional and unconditional per-
formance measures has long been recognised in other fields, and our
decision to perform both unconditional (unimodal) and conditional
(multimodal) subjective evaluations reflects a widespread distinction
seen in both objective as well as subjective evaluation of synthesis
methods in general. In image generation from text prompts, the
Fréchet inception distance (FID) [Heusel et al. 2017] is a widely used
unconditional metric of synthesis quality. It does not take the input
text into account at all, and would not notice disconnects between
the input and output modalities, such as if the prompt “elephant”
were to generate an image of an ant and vice versa. In contrast,
multimodal CLIP embeddings [Radford et al. 2021] can assess the
extent to which a synthetic image matches its corresponding text
prompt, regardless of visual quality.

Similarly, our sister field of text-to-speech distinguishes between
the concepts of quality (or naturalness) and intelligibility, which are
closely related to our respective constructs of human-likeness and
appropriateness. Speech quality is usually assessed in a unimodal
fashion (only involving audio), as reflected by evaluation standards
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such as ITU-T P.800 [International Telecommunication Union, Tele-
communication Standardisation Sector 1996], whereas the most rig-
orous intelligibility evaluations are multimodal, in that they require
audio to be transcribed to text (cf. King [2014]). Speech-synthesis
literature also provides good support for the meaningfulness of sep-
arating the two aspects: signal quality can be high even if speech
is unintelligible, as demonstrated by the unconditional, “babbling”
WaveNet system in van den Oord et al. [2016], whereas rule-based
speech synthesisers can achieve ceiling intelligibility even if their
naturalness is poor [Malisz et al. 2019; Winters and Pisoni 2004]. A
review of ten years of text-to-speech challenges found that differ-
ent technical approaches on average performed better on different
measures (conditional vs. unconditional) and worse on others [King
2014], even though these trends were not obvious from individual
years due to the large variation among challenge submissions.
More generally, the roles of conditional and unconditional per-

formance measures, and their interplay with each other, was form-
alised in a domain-agnostic context by Blau and Michaeli [2018] as
the perception-distortion trade-off.

6.1.2 Motion aspects deliberately not evaluated. Although an in-
teresting question for a multispeaker dataset, we did not attempt
to evaluate the appropriateness/specificity of the gesture motion
style to different individuals in the database, since the data is too
imbalanced to allow such an evaluation. Additionally, even though
the speech and motion in the challenge comes from joint full-body
motion capture of dyadic interactions with separate close-talking
microphones for each speaker, the challenge only considered gener-
ating one side of the conversation, without awareness of the other
party in the interaction (neither for the synthesis, nor for the evalu-
ation), in order to reduce problem complexity.

6.2 Stimuli
6.2.1 Speech-segment selection. The test set was deliberately made
large to make it difficult to overfit to specific speech being evaluated.
Like the GENEA Challenge 2020 and the Blizzard Challenges, not all
test-set motion was included in the subjective evaluation. From the
40 test-set chunks we selected 48 short segments of test speech and
corresponding test motion to be used in the subjective evaluations,
based on the following criteria:

(1) Segments should be around 8 to 10 seconds long, and ideally
not shorter than 6 seconds.

(2) The character should only be speaking, not passively listening,
in the segments. (No turn-taking, but backchannels from the
interlocutor were OK.)

(3) Segments should not contain any parts where Lee et al. [2019]
had replaced the speech by silence for anonymisation.

(4) Segments should be more or less complete phrases, starting
at the start of a word and ending at the end of a word, and
not end on a “cliffhanger”.

(5) The end of a segment should leave some margin until the
chunk ends, to allow excerpting a longer segment if needed
when creating mismatched stimuli as described in Sec. 6.4.2.

(6) Finally, recordedmotion capture in the segments (i.e., the FNA
motion) should not contain any significant artefacts such as

whole-body vibration or hands flicking open and closed due
to poor finger tracking.

The last item does not imply that the motion capture was perfect
or completely natural for all segments in the evaluation, since the
finger-tracking quality throughout the database does not allow our
evaluations to reach that standard. It merely means that the level of
finger-tracking quality in the stimuli was consistent with the better
parts of the source material from Lee et al. [2019].

The 48 segments we selected were between 5.6 and 12.1 seconds
in duration (average 9.5 seconds). Audio was loudness normalised
to −23 dB LUFS following EBU R128 [European Broadcasting Union
2020] to maintain a consistent listening volume in the user studies.

6.2.2 Visualisation. We used the same virtual avatar (shown in Fig.
3) in all rendered videos during the challenge and the evaluation.
The avatar had 56 joints (full body including fingers). Since the
speech and motion presented to our test takers was sourced from
multiple people, the avatar was designed to be a gender-neutral
humanoid figure without the hallmarks of any particular individual.
Instead of a fully realistic body shape and textures, a simplified
design resembling a social robot was used. As the challenge did not
encompass the generation of gaze information, lip motion, or facial
expression, eyes and mouth were omitted from the avatar, to help
evaluators instead focus on the motion of the rest of the body. The
avatar is of sufficiently high polygon count so that its surface was
shaded smoothly. All teams had access to the official visualisation
and rendering pipeline during the system-building phase, in the
form of code, a portable Docker container, and a web server to which
BVH files could be submitted to be rendered as video. Participants
could send a 30-fps BVH file to the visualisation server, and these
files would then be processed as quickly as possible into videos visu-
alising the motion on the avatar. The visualisation server code has
been open sourced (see github.com/TeoNikolov/genea_visualizer).
The code was available to the participants during the challenge, and
they were free to use it to host their own servers if they wished.
The final rendered stimuli used a resolution of 1440×1080.

6.3 Human-likeness evaluation
The human-likeness evaluation of the GENEAChallenge 2022 closely
followed the human-likeness evaluation in the GENEA Challenge
2020 [Kucherenko et al. 2021b]. Specifically, the evaluation was
based on the HEMVIP (Human Evaluation of Multiple Videos in
Parallel) methodology [Jonell et al. 2021], in which multiple mo-
tion examples (video stimuli) are presented on the same page (a.k.a.
screen) and the subject is asked to provide a rating for each one
before continuing. All stimulus videos on the same page corres-
pond to the same speech segment but different conditions. This
property of the HEMVIP method brings two advantages, namely
(1) that any given study participant is always rating sets of stimuli
for which the speech is the same and only the condition differs,
which should make the numerical ratings and the relative condition
ordering more consistent, and (2) differences in rating between the
different conditions can be analysed using pairwise statistical tests,
which helps control for variation between different subjects and
different input speech segments (as seen in the results in Sec. 7.1).
For a detailed explanation of the evaluation interface we refer the
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(a) Human-likeness interface (HEMVIP) and full-body video (b) Appropriateness interface and upper-body videos

Fig. 3. Screenshots of the evaluation interfaces used in the studies, also showing the camera perspectives used by the two different tiers.

reader to Jonell et al. [2021], which introduced and validated the
evaluation paradigm for gesture-motion stimuli. Code is provided
at github.com/jonepatr/hemvip/tree/genea2022/.

6.3.1 Evaluation design. Each evaluation page asked participants
“How human-like does the gesture motion appear?” and presented
eight video stimuli to be rated on a scale from 0 (worst) to 100
(best) by adjusting an individual GUI slider for each video. An ex-
ample of the evaluation interface can be seen in Fig. 3a. Note that by
design only one video is visible at any given time; each play button
corresponds to a distinct video stimulus, which is displayed when
that button is clicked. Like in Jonell et al. [2021]; Kucherenko et al.
[2021b], the 100-point rating scale was anchored by dividing it into
successive 20-point intervals with labels (from best to worst) “Ex-
cellent”, “Good”, “Fair”, “Poor”, and “Bad”. These labels were based
on those associated with the 5-point scale described in the Mean
Opinion Score ITU-T P.800 standard [International Telecommunic-
ation Union, Telecommunication Standardisation Sector 1996] for
audio quality evaluation.

6.3.2 Motivation for the use of unimodal stimuli. Although the
videos on any given page in these human-likeness evaluations all
corresponded to the same speech input and had the same length,
the videos presented to participants were unimodal (motion-only),
in that they were completely silent and did not include any audio.
This ensures that ratings can only depend on the motion seen in
the videos, and not on motion appropriateness for the speech, since
raters did not have any access to any speech information.
Minimising the influence of speech is important when rating

the intrinsic human-likeness of gesture motion, since speech and
gesture perception are linked, to the extent that the same motion

(possessing the same intrinsic human-likeness) may be perceived
differently depending on what audio it is presented with. A classic
example of this link is the McGurk effect [McGurk and MacDonald
1976], where the perceived identity of speech phonemes in a fixed
audio stimulus changes if paired with video of specific facial articu-
lation. This effect also extends to gesture perception [Bosker and
Peeters 2021]. Conscious and unconscious human biases further-
more mean that raters may give lower or higher scores based on
their perception of speaker traits such as likeability, gender, social
status, etc. (e.g., Babel and Russell [2015]; Montgomery and Zhang
[2018]), which would increase estimator variance and reduce stat-
istical resolution. Removing speech content and only presenting
the motion on a neutral avatar avoids these issues. More explicitly,
Jonell et al. [2020a] found that including speech audio in a study of
motion mimicry in annotated reference stimuli led to confounding,
since subjects based their responses on speech semantic content
rather than the relevant non-verbal interactions in the video modal-
ity. Consequently, our evaluation is unimodal and the task given to
the raters is not conditional on the speech.

6.3.3 Evaluation procedure. The test was preceded by a screen with
instructions, which the participants would read. Then, each subject
completed one training page showing a fixed set of videos with
different motion, to familiarise participants with the task and what
the stimuli would look like, before starting the study in earnest.
The training phase was followed by 10 pages of ratings for the
evaluation. Responses given on the training page were not included
in the analysis. The evaluation was balanced such that each segment
appeared on pages 1 through 10 with approximately equal frequency
across all participants (segment order), and each condition was
associated with each slider with approximately equal frequency
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across all pages (condition order). For any given participant and
study, each of the 10 pages would use a different speech segment.
Every page in the evaluation contained one stimulus video from
condition FNA/UNA. This was used to help calibrate evaluators’
ratings and keep them consistent throughout the test. Since motion-
capture data projected onto a virtual character may not necessarily
be perceived as perfectly natural, there was no requirement to rate
the best motion as 100. After completing the rating pages, but before
submitting the study, participants filled in a short questionnaire to
gather broad, anonymous demographic information, the results of
which are presented in Sec. 6.5.

6.4 Appropriateness evaluation
The appropriateness evaluation was designed to assess the link
between the gesture motion and the input speech, separate from
the intrinsic human-likeness of the motion. It is thus inexorably
multimodal, with user assessments of motion conditional on speech
information provided to them.

In the previous GENEAChallenge, appropriateness was evaluated
using a HEMVIP-based rating study very similar to that for human-
likeness, except that speech audio was included in the videos. In an
attempt to control for the effect of motion quality in that evaluation,
test takers were asked to ignore the motion quality and only rate
the appropriateness of the motion for the speech [Kucherenko et al.
2021b]. Unfortunately, that evaluation was not altogether successful,
since their mismatched condition M – which paired natural motion
segments with unrelated speech segments, intended as a bottom
line – attained the second-highest appropriateness rating, above all
synthetic systems. This suggests a significant interaction between
the perceived human-likeness of a motion segment and its perceived
appropriateness for speech. That interaction acted as a confounder
in their study, with the result that all submissions ranked below
natural-looking motion unrelated to the speech, despite the latter
being intended as a bottom line in terms of appropriateness.

6.4.1 Evaluation design. For the GENEA Challenge 2022, we de-
cided to evaluate motion appropriateness for speech in a different
way. Our design goal for this challenge was to assess appropriate-
ness whilst controlling for the human-likeness of the motion in an
effective way. To do so, we took the idea of motion mismatching
like in Jonell et al. [2020a] (which studied facial motion rather than
hand and body gestures) and used it within every condition, and
not just for the recorded motion-capture data FNA/UNA.

On each page, subjects were presented with a pair of videos con-
taining the same speech audio. Both videos contained motion from
the same source – i.e., the same condition – and were thus expected
to have similar motion quality and motion characteristics (at least
on average), but one was matched to the speech audio and the other
mismatched, belonging to unrelated speech. Whether the left or the
right video was mismatched was randomised. Subjects were then
asked to “Please indicate which character’s motion best matches
the speech, both in terms of rhythm and intonation and in terms of
meaning.” In response, they could choose the character on the left,
on the right, or indicate that the two were equally well matched
(“They are equal”, also referred to as equal or a tie). We asked for
preferences rather than ratings since there is evidence [Wolfert et al.

2021] that this is more efficient in pairwise comparisons like these. A
screenshot of the evaluation interface used for the appropriateness
studies is presented in Fig. 3b.
The extent to which test-takers prefer the character with the

matched motion reveals how specific the gesture motion is to the
given speech: random motion will result in a 50–50 split, whereas
conditions whose motion is more specifically appropriate to the
input speech are expected to elicit a higher relative preference for
the matched motion. In this type of evaluation, condition M (the
mismatched condition) from the 2020 challenge will perform at
chance rate, rather than being tied for second highest as in 2020.
Rebol et al. [2021] used a similar methodology with preference

tests to quantify the correlation (essentially, the appropriateness)
between generated hand and body gestures and their associated
speech, which we were not aware of until after conducting our
challenge. However, they asked a different question of the users,
did not quantify the appropriateness of real human motion, used
data from monocular video rather than 3D motion capture (leading
to noticeably lower data quality), and only used the approach to
evaluate a single gesture-generation method.

Since speech audio has to be present in our appropriateness eval-
uation stimuli, test-taker perception may be subject to the human
biases discussed in Sec. 6.3.2. However, the fact that the speech
information (and the avatar used) is the exact same on both sides
in every pairwise video presentation in the preference test should
serve to control for the effect of these biases on user responses.

6.4.2 Evaluation procedure. Concretely, we created the mismatched
stimuli by taking the 48 existing speech and motion segments selec-
ted for our evaluations, and permuting the motion in between them
such that no motion segment ever remained in its original place.
Eachmotion segment thus featured twice in the pairwise study: once
with matched speech, and once with mismatched speech, where
the corresponding matched stimulus would use another motion
segment from the same source condition. As the 48 different seg-
ments did not all have the same length, a longer or shorter segment
of motion generally had to be excerpted from the motion chunks
(original or generated), so as to match the new speech duration.
This was done by moving the endpoint of the mismatched motion
segment such that the resulting motion duration exactly matched
that of the new speech audio. The starting point of the mismatched
motion video was never changed, and was thus always the same as
in the respective matched stimulus video (i.e., corresponding to the
start of a phrase).

After an instruction page and a training page, each subject evalu-
ated 40 pages with one pair of videos each. This means that subjects
watched 80 videos total in each study, the same number of videos
as was evaluated in the human-likeness studies (ignoring the train-
ing pages in all cases). Each study was balanced such that each
speech segment, condition, and order of the two videos appeared
approximately equally many times.

6.5 Test takers and attention checks
It has recently been found that crowdsourced evaluations are not
significantly different from in-lab evaluations in terms of results and
consistency [Jonell et al. 2020b]. The challenge therefore adopted
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Table 2. Demographics of test takers from the four user studies. Gender “F” stands for “female”, “M” for “male”, and “X” for “prefer not not say”.

Total number Country of residence Gender Age (years)
Study Tier of test takers AUS CAN IE NZ UK USA F M X mean ± std. dev.

Human-likeness Full body 121 2 2 3 0 110 4 60 60 1 38 ± 12
Upper body 150 1 0 4 0 134 11 74 75 1 40 ± 13

Appropriateness Full body 247 3 13 10 2 211 8 137 107 3 38 ± 14
Upper body 304 2 10 1 0 256 35 127 173 4 38 ± 13

an entirely crowdsourced approach, as opposed to, for example, the
Blizzard Challenge, which has used a mixed approach. Attention
checks were used to exclude participants that were not paying
attention. Test takers (a.k.a. subjects) were recruited through the
crowdsourcing platform Prolific. We used Prolific’s built-in pre-
screening tools to restrict the pool of test-takers in two ways: (1)
subjects were required to reside in any of six English-speaking
countries, namely Australia, Canada, Ireland, New Zealand, the
United Kingdom, and the USA, and (2) subjects were required to
have English as their first language.

We conducted four user studies, two for human-likeness and two
for appropriateness. A subject could take one or more studies, but
could only participate in each study at most once, and could not use
a phone or tablet to take the test.
Each study incorporated four attention checks per person, to

make sure that subjects were paying attention to the task and re-
move insincere test-takers. For the human-likeness studies, these
attention checks took the form of a text message “Attention! You
must rate this video NN” superimposed on the video. “NN” would
be a number from 5 to 95, and the subject had to set the corres-
ponding slider to the requested value, plus or minus 3, to pass that
attention check. Which sliders on which pages that were used for
attention checks was uniformly random, except that no page had
more than one attention check, and the natural motion (condition
FNA and UNA) was never replaced by an attention check. For the
appropriateness studies, the attention checks either displayed a brief
text message over the gesticulating character, reading “Attention!
Please report this video as broken”, or they temporarily replaced the
audio with a synthetic voice speaking the same message. Subjects
were exposed to two attention checks of each kind. To pass the
attention check, participants had to click a button marked “Report
as broken” seen in Fig. 3b, forwarding them to the next pair of
videos in the evaluation. Since reporting a video as broken avoids
having to give a response, it can in theory be used to quickly skip
through the test. To help prevent this, we implemented the button
such that it becomes clickable after a 5-second delay, after the page
is loaded. However, as this does not fully prevent skipping through
the test, subjects who used that button more than three times on
pages without attention checks were also removed without pay. In
all studies, the attention-check messages did not appear until a few
seconds into each attention-check video, so that participants who
only watched the first seconds would be unlikely to pass the checks.

Subjects who failed two or more attention checks were removed
from the respective study without being paid, since Prolific’s policies
do not allow rejecting a subject on the basis of a single failed at-
tention check. Only the subjects who failed zero or one attention

check for a study have been included in our analyses below. Re-
sponses to videos used for attention checks were not included in our
analyses. Right before submitting their results, subjects also filled
in a short questionnaire to gather broad, anonymous demographic
information about the population taking the test.

A design goal of the human-likeness studies was that every com-
bination of two distinct conditions should appear on the pages
approximately equally often, and at least 600 times (not counting
FNA/UNA, which appeared on every page). To meet this goal, we re-
cruited 121 test takers that successfully passed the attention checks
and completed the full-body study, and 150 test takers that did the
same for the upper-body study. Of these, all passed all attention
checks, except for one subject in the upper-body study, who failed
one attention check. Since the upper-body study compared 11 condi-
tions instead of only 10, it required more raters to reach the desired
number of ratings pairs. Table 2 provides demographic details of all
subjects in the user studies.
For the appropriateness studies, our design goal was for each

condition to receive as many responses per condition as the number
of ratings that each condition (aside from FNA/UNA) received in the
corresponding human-likeness evaluation. This works out to 880
responses per condition in the full-body studies and 990 responses
per condition in the upper-body studies. Because a subject in these
studies provided half as many responses as in a human-likeness
study (40 vs. 80), the appropriateness studies needed to recruit
approximately twice as many test takers. In the end, 247 test takers
successfully passed the attention checks in the full-body study, while
304 passed the attention checks in the upper-body study. All of these
passed all attention checks, except for 10 participants in the full-body
study and 14 participants in the upper-body study, who each failed
one attention check. Demographic details are provided in Table 2.
Each subject in a study contributed 36 ratings to the analyses after
removing attention checks, unless they had to skip a page in the
rare case of a video failing to load (which occurred approximately
1.6 times per 1000 videos presented).

Test takers were remunerated 6 GBP for each successfully com-
pleted human-likeness study. Since the median completion time was
28 minutes each, this corresponds to a median compensation just
above 12 GBP per hour. Similarly, the appropriateness studies took a
median of 24 or 25 minutes to complete, and earned a reward of 5.5
GBP each, amounting to around 13 GBP per hour. These compensa-
tion levels all exceed the UK national living wage and also exceeds
the highest living wage quoted by the Living Wage Foundation in
the UK at the time of the evaluation. All numbers are as measured
by Prolific, which uses the median rather than the mean for these
calculations to prevent extreme completion times from skewing the
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data. Response data from the evaluation, together with statistical
analysis code, is provided at doi.org/10.5281/zenodo.6939888.

6.6 Objective metrics
The main goal of the GENEA challenge is to compare human sub-
jective impressions of the outputs of different gesture-generation
systems. We therefore discourage using the results of automated
performance metrics as indicators of the perceptual impressions
of different systems. However, since subjective evaluation is costly
and time-consuming, it would be beneficial for the field to identify
meaningful objective evaluation methods, especially for use dur-
ing system development. As a step in this direction we therefore
considered five objective measures previously used to evaluate co-
speech gestures, namely average jerk, average acceleration, distance
between gesture speed (i.e., absolute velocity) histograms, canonical
correlation analysis, and the Fréchet distance between motion fea-
ture distributions. We computed these metrics for each condition in
each tier using the complete test sequences, i.e., not only on the mo-
tion segments featured in the subjective evaluation. Details on each
metric are provided below. The code for the numerical evaluations
has been made publicly available to enhance reproducibility.3
To compare and validate these metrics against our subjective

evaluation, we provide results on the rank correlations between
subjective and objective metrics in Sec. 7.4.

6.6.1 Average acceleration and jerk. The third time derivative of the
joint positions is called jerk and can be defined mathematically as
jerk(𝒙) = 𝒙′′′ (𝑡). The average value of the absolute magnitude of
the jerk is commonly used to quantify motion smoothness [Kucher-
enko et al. 2019; Morasso 1981; Uno et al. 1989]. We report average
values of absolute jerk (defined using finite differences) averaged
across all test motion segments. A perfectly natural system should
have average jerk very similar to natural motion.
We also evaluated the same measure, but computed using the

absolute value of the acceleration acc.(𝑥) = 𝑥 ′′ (𝑡) instead of the jerk.
Again, we expect natural-looking motion to have similar average
acceleration as in the reference data.

6.6.2 Comparing speed histograms. The distance between speed
histograms has also been used to evaluate gesture quality [Kucher-
enko et al. 2019, 2020], since well-trained models should produce
motion with similar properties to that of the actor it was trained
on. In particular, it should have a similar motion-speed profile for
any given joint. This metric is based on the assumption that syn-
thesised motion should follow a speed distribution similar to the
motion-capture data. To evaluate this similarity we calculate speed-
distribution histograms for all systems and compare them to the
speed distribution of natural motion (condition N) by computing
the Hellinger distance [Nikulin 2001],

𝐻 (𝒉(1) , 𝒉(2) ) =
√︄
1 −

∑︁
𝑖

√︃
ℎ
(1)
𝑖

· ℎ (2)
𝑖

, (1)

between the histograms 𝒉(1) and 𝒉(2) . Lower distance is better.
For both of the objective evaluations above the motion was first

converted from joint angles to 3D coordinates.
3See github.com/genea-workshop/genea_numerical_evaluations.

6.6.3 Canonical correlation analysis. Canonical correlation analysis
(CCA) [Thompson 1984] is a form of linear subspace analysis, and
involves the projection of two sets of vectors (here the generated
poses and those from FNA/UNA) onto a joint subspace. CCA has
been used to evaluate gesture-generation models in previous work
[Bozkurt et al. 2015; Lu et al. 2021; Sadoughi and Busso 2019].
The goal of CCA is to find a sequence of linear transformations

of each variable set, such that the Pearson correlation between the
transformed variables is maximised. This correlation is what we use
as a similarity measure, and we report it as global CCA values in
our results. A high value is considered better.

6.6.4 Fréchet gesture distance. Recent work by Yoon et al. [2020]
proposed the Fréchet gesture distance (FGD) to quantify the quality
of generated gestures. This metric is based on the FID metric used
in image-generation studies [Heusel et al. 2017] and can be written

FGD(𝑿 , 𝑿̂ ) = | |𝝁𝑟 − 𝝁𝑔 | |2 + tr(𝚺𝑟 + 𝚺𝑔 − 2(𝚺𝑟𝚺𝑔)1/2). (2)

Here, 𝝁𝑟 and 𝚺𝑟 are the first and second moments of the latent-
feature distribution𝒁𝑟 of the humanmotion-capture data𝑿 , whereas
𝝁𝑔 and 𝚺𝑔 are the first and second moments of the latent-feature
distribution 𝒁𝑔 of the generated gestures 𝑿̂ . 𝒁𝑟 and 𝒁𝑔 were ex-
tracted by the same feature extractor, which was obtained as the
encoder part of a motion-reconstructing autoencoder. We used a
CNN-based autoencoder trained on the challenge dataset following
the implementation in Yoon et al. [2020]. Lower values are better.

6.6.5 System ranking comparison. A good objective metric might
help in evaluating the performance of a system, especially when
such a metric correlates with a subjective measure. To get more
insight into whether the objective metrics in our study may be
used as a proxy for subjective evaluation results, we calculated the
correlation between the ranking of the conditions onmedian human-
likeness, and the result on the objective metrics listed above. For
this, we used Kendall’s 𝜏 rank correlation coefficient, and associated
statistical tests [Kendall 1970].
Of the objective metrics we studied, only CCA compares out-

put poses directly to the corresponding reference motion-capture
poses. All other metrics are invariant to permutation, in the sense
that changing the order of the different sequences (mismatching
them with other speech/reference motion) will not change the value.
They thus cannot measure appropriateness, which is why we only
consider how those metrics correlate with human-likeness scores.

7 RESULTS
The results of the challenge are significant and thought provoking. It
is the first time that we find a system generating 3D gesture motion
that exceeds the source data in terms of human-likeness, whilst
simultaneously laying bare the extent of the gap between natural
and synthetic gesture motion in terms of their appropriateness for
speech. We furthermore find that all objective metrics except for the
FGD correlate so poorly with subjective human-likeness scores as
to be statistically indistinguishable from chance correlation. More
detail is provided in the sections below, first reporting the results
of the subjective evaluation and thereafter the objective metrics.
Discussion of the various findings is reserved for Sec. 8.
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Table 3. Summary statistics of responses from all user studies, with 95% confidence intervals. “M.” stands for “matched” and “Mism.” for “mismatched”.
“Percent matched” identifies how often subjects preferred matched over mismatched motion. Human-likeness values are between 0 and 100; higher is better.

(a) Full-body

Median Appropriateness
human- Num. responses Percent matched

ID likeness M. Tie Mism. (splitting ties)

FNA 70 ∈ [69, 71] 590 138 163 74.0 ∈ [70.9, 76.9]
FBT 27.5 ∈ [25, 30] 278 362 250 51.6 ∈ [48.2, 55.0]
FSA 71 ∈ [70, 73] 393 216 269 57.1 ∈ [53.7, 60.4]
FSB 30 ∈ [28, 31] 397 163 330 53.8 ∈ [50.4, 57.1]
FSC 53 ∈ [51, 55] 347 237 295 53.0 ∈ [49.5, 56.3]
FSD 34 ∈ [32, 36] 329 256 302 51.5 ∈ [48.1, 54.9]
FSF 38 ∈ [35, 40] 388 130 359 51.7 ∈ [48.2, 55.1]
FSG 38 ∈ [35, 40] 406 184 319 54.8 ∈ [51.4, 58.1]
FSH 36 ∈ [33, 38] 445 166 262 60.5 ∈ [57.1, 63.8]
FSI 46 ∈ [45, 48] 403 178 312 55.1 ∈ [51.7, 58.4]

(b) Upper-body

Median Appropriateness
human- Num. responses Percent matched

ID likeness M. Tie Mism. (splitting ties)

UNA 63 ∈ [61, 65] 691 107 189 75.4 ∈ [72.5, 78.1]
UBA 33 ∈ [31, 34] 424 264 303 56.1 ∈ [52.9, 59.3]
UBT 36 ∈ [34, 39] 341 367 287 52.7 ∈ [49.5, 55.9]
USJ 53 ∈ [52, 55] 461 164 365 54.8 ∈ [51.6, 58.0]
USK 41 ∈ [40, 44] 454 185 353 55.1 ∈ [51.9, 58.3]
USL 22 ∈ [20, 25] 282 548 159 56.2 ∈ [53.0, 59.4]
USM 41 ∈ [40, 42] 503 175 328 58.7 ∈ [55.5, 61.8]
USN 44 ∈ [41, 45] 443 190 352 54.6 ∈ [51.4, 57.8]
USO 48 ∈ [47, 50] 439 209 335 55.3 ∈ [52.1, 58.5]
USP 29.5 ∈ [28, 31] 440 180 376 53.2 ∈ [50.0, 56.4]
USQ 69 ∈ [68, 70] 504 182 310 59.7 ∈ [56.6, 62.9]

7.1 Analysis and results of human-likeness studies
Each test taker in the human-likeness studies contributed 76 rat-
ings to the analyses after removing attention checks, giving a total
of 9,196 ratings for the full-body study and 11,400 ratings for the
upper-body study. The results are visualised in Fig. 4, with sum-
mary statistics (sample median and sample mean) for the ratings
of all conditions in each of the two human-likeness studies given
in the first half of Table 3, together with 95% confidence intervals
for the true median. These confidence intervals were computed us-
ing order statistics, leveraging the binomial distribution cdf, while
those for the mean used a Gaussian assumption (i.e., using Student’s
𝑡-distribution cdf, rounded outward to ensure sufficient coverage);
see Hahn and Meeker [1991]. We note that statistics regarding the
mean should be interpreted with caution, since responses should be
seen as ordinal rather than numerical, and it is therefore improper
from a perceptual perspective to perform averaging on the ratings.

The distributions in Fig. 4 are seen to be quite broad. This is com-
mon in evaluations like HEMVIP [Jonell et al. 2021], since the range
of the responses not only reflects differences between conditions,
but also extraneous variation, e.g., between stimuli, in individual
preferences, and in how critical different raters are in their judge-
ments. In contrast, the plotted confidence intervals are seen to be
quite narrow, since the statistical analysis can mitigate the effects
of much of this variation.

Despite the wide range of the distributions, the fact that the con-
ditions were rated in parallel on each page enables using pairwise
statistical tests to factor out many of the above sources of vari-
ation. To analyse the significance of differences in median rating
between different conditions, we applied two-sided pairwise Wil-
coxon signed-rank tests to all unordered pairs of distinct conditions
in each study. (This is the same methodology as in the GENEA
Challenge 2020 [Kucherenko et al. 2021b].) This closely follows the
analysis methodology used throughout recent Blizzard Challenges
and, unlike Student’s 𝑡-test (which assumes that rating differences
follow a Gaussian distribution), this analysis is valid also for or-
dinal response scales, like those we have here. For each condition

pair, only cases where both conditions appeared on the same page
and were assigned valid ratings were included in the analysis of
significant differences. (Recall that not all conditions were rated on
all pages due to the limited number of sliders and the presence of
attention checks.) This meant that every statistical significance test
was based on at least 615 pairs of valid ratings in the full-body study,
and 603 pairs of valid ratings in the upper-body study. Because
this analysis is based on pairwise statistical tests, it can potentially
resolve differences between conditions that are smaller than the
width of the confidence intervals for the median in Fig. 4, since those
confidence intervals are inflated by variation that the statistical test
controls for. The 𝑝-values computed in the significance tests were
adjusted for multiple comparisons on a per-study basis using the
Holm-Bonferroni method [Holm 1979], which is uniformly more
powerful than conventional Bonferroni correction at keeping the
family-wise error rate (FWER), often referred to as alpha-level, at
or below 𝛼 = 0.05
Our statistical analysis found all but 5 out of 45 condition pairs

to be significantly different in the full-body study and all but 2 out
of 55 condition pairs to be significantly different in the upper-body
study, all at the level 𝛼 = 0.05 after Holm-Bonferroni correction. The
significant differences we identified in the two studies are visualised
in Fig. 5 which uses the same condition order as the box plot and
shows which conditions were found to be rated significantly above
or below which other conditions.

7.2 Analysis and results of appropriateness studies
We gathered a total of 8,867 responses for the full-body study and
10,910 responses from the upper-body study that were included in
the analysis. Every condition received at least 873 responses in the
full-body study and 983 in the upper-body study. Raw response
statistics for all conditions in each of the two studies are shown in
the second half of Table 3, together with 95% Clopper-Pearson con-
fidence intervals for the fraction of time that the matched video was
preferred over the mismatched, after dividing ties equally between
the two groups (rounding up in case of non-integer counts). The
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Fig. 4. Box plots visualising the ratings distribution in the human-likeness studies. Red bars are medians and yellow diamonds are means, each with a 0.05
confidence interval and a Gaussian assumption for the means. Box edges are at 25 and 75 percentiles, while whiskers cover 95% of all ratings for each condition.
Conditions are ordered descending by sample median for each tier.
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Fig. 5. Significant differences in human-likeness. White means the condition listed on the 𝑦-axis rated significantly above the condition on the 𝑥-axis, black
means the opposite (𝑦 rated below 𝑥 ), and grey means no statistically significant difference at level 𝛼 = 0.05 after Holm-Bonferroni correction. Conditions use
the same order as the corresponding subfigure in Figure 4.
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Fig. 6. Bar plots visualising the response distribution in the appropriateness studies. The blue bar (bottom) represents responses where subjects preferred the
matched motion, the light grey bar (middle) represents tied (“They are equal”) responses, and the red bar (top) represents responses preferring mismatched
motion, with the height of each bar being proportional to the fraction of responses in each category. The black horizontal lines bisecting the light grey
bars represent the proportion of matched responses after splitting ties, each with a 0.05 confidence interval. The dotted black line indicates chance-level
performance. Conditions are ordered by descending preference for matched motion after splitting ties.
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Fig. 7. Joint visualisation of the evaluation results for each tier. Box widths show 95% confidence intervals for the median human-likeness rating and box
heights show 95% confidence intervals for the preference for matched motion in percent, indicating appropriateness.

confidence intervals were rounded outward to ensure sufficient
coverage. The response distributions in the two studies are further
visualised through bar plots in Fig. 6, whilst Fig. 7 visualises the
results of the entire challenge in a single coordinate system per tier.

Unlike the human-likeness studies, the responses in the appropri-
ateness studies are restricted to three categories and do not neces-
sarily come in pairs for statistical testing in the same way as for the
parallel sliders in HEMVIP. A different method for identifying signi-
ficant differences therefore needs to be adopted. We used Barnard’s
test [Barnard 1945] to identify statistically significant differences at
the level 𝛼 = 0.05 between all pairs of distinct conditions, applying
the Holm-Bonferroni method [Holm 1979] to correct for multiple
comparisons as before. (Here and forthwith, we only consider the
relative preference in the sample after dividing ties equally.) Barn-
ard’s test is considered more appropriate than Fisher’s exact test
for a product of two independent binomial distributions [Lydersen
et al. 2009], as here.

Our statistical analysis found 13 of 45 condition pairs to be signi-
ficantly different in the full-body study and 10 out of 55 condition
pairs to be significantly different in the upper-body study. Specific-
ally, FNA/UNA were significantly more appropriate for the specific
speech signal compared to all other, synthetic conditions. In addi-
tion, FSH was significantly more appropriate than FBT, FSC, FSD,
and FSF in the full-body study. As before, the significant differences
we identified in the two studies are visualised in Fig. 5 which uses
the same condition order as the box plot and shows which condi-
tions were found to be rated significantly above or below which
other conditions. No other pairwise differences were statistically
significant in either study.
Instead of comparing the appropriateness of different synthesis

approaches against one another, one may instead compare to a ran-
dom baseline (50/50 performance), and test if the observed effect
size is statistically significantly different from zero. We can assess
this at the 0.05 level by checking whether or not the confidence
interval on the effect size overlaps with chance performance. From
this perspective, FNA, FSA, FSB, FSG, FSH, FSI are significantly more

appropriate than chance in the full-body study, and all conditions ex-
cept UBT are more appropriate than chance in the upper-body study.
Unlike other significance tests in the subjective evaluation, these
assessments do not include a correction for multiple comparisons.

7.3 User comments
As part of the post-evaluation questionnaire, we asked study par-
ticipants to comment on the user studies, including positive and
negative aspects they perceived. 97% of the respondents in the user
studies responded positively on whether the compensation was
adequate. Additionally, they often commented positively on how
interesting and engaging the study was.
We also asked participants regarding any negative aspects of

the study. Here, 15% of the participants answered that they found
repetitiveness a negative aspect of the study. Some users pointed at
the lack of a proper human face on the humanoid, and suggested
incorporating that in future work. Others commented on the lack
of real conversation, and proposed to have the humanoid be part
of an actual conversation. All responses to these questions can be
found in our data release.

7.4 Objective evaluation results
The values of the objective metrics we computed are listed in Table 4.
For each number in the table, we also calculated howmuch it differed
from the corresponding value for the reference system (FNA/UNA),
and then computed the rank correlation between the absolute value
of these differences and the median human-likeness scores from
the subjective evaluation. The idea is that systems exhibiting values
closer to FNA/UNA should appear more human-like. The resulting
rank correlations and 𝑝-values can be found in Table 5. For median
human-likeness, we only found a statistically significant (𝑝 < 0.05)
rank correlation with FGD, for both the full and upper-body tier
(Kendall’s 𝜏 = −0.49 and −0.51, respectively). The negative sign is
expected, since a smaller difference from FNA/UNA should be associ-
ated with better-looking motion and higher human-likeness scores.
Fig. 8 visually compares the subjective human-likeness ratings and
objective metric results.
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Table 4. Objective evaluation results. The word “acceleration” has been abbreviated to “accel.”; ± shows the standard deviation per sequence. The best two or
three numbers in each column, i.e., those closest to the numbers from the held-out motion-capture data (FNA/UNA, first row of values), are bold. Except for
FNA/UNA, conditions (rows) are ordered by decreasing median human-likeness rating. Numbers have generally been rounded to three significant digits.

(a) Full-body

Average Average Global Hellinger FGD
Condition jerk accel. CCA distance

FNA 31300 ± 6590 798 ± 208 1 0 0

FSA 14600 ± 2970 668 ± 161 0.849 0.041 3.18
FSC 5130 ± 2120 332 ± 129 0.818 0.125 16.4
FSI 7370 ± 1710 345 ± 98 0.789 0.111 4.87
FSF 22600 ± 6240 666 ± 223 0.916 0.195 7.49
FSG 5560 ± 2380 282 ± 127 0.992 0.060 10.1
FSH 8630 ± 2440 313 ± 92 0.968 0.104 4.02
FSD 8690 ± 8320 405 ± 257 0.886 0.132 43.4
FSB 27200 ± 4680 628 ± 116 0.782 0.050 16.3
FBT 3510 ± 1090 177 ± 56 0.738 0.267 28.6

(b) Upper-body

Average Average Global Hellinger FGD
Condition jerk accel. CCA distance

UNA 33000 ± 7030 842 ± 222 1 0 0

USQ 15400 ± 3190 710 ± 173 0.685 0.043 2.84
USJ 8280 ± 1460 375 ± 81 0.640 0.197 4.83
USO 5450 ± 2260 353 ± 138 0.812 0.129 16.4
USN 7510 ± 3400 384 ± 127 0.789 0.092 194
USK 8180 ± 2450 311 ± 99 0.962 0.137 15.5
USM 6840 ± 3200 385 ± 172 0.991 0.039 2.17
UBT 3760 ± 1170 190 ± 60 0.707 0.248 18.2
UBA 18000 ± 14900 513 ± 326 0.964 0.244 17.0
USP 28500 ± 4960 661 ± 123 0.769 0.051 18.0
USL 7730 ± 5420 258 ± 157 0.849 0.306 28.4

Table 5. Rank correlations (Kendall’s 𝜏 ) between the “error” in the objective metrics (how much each objective value differed from the reference FNA/UNA)
and median human-likeness scores (here abbreviated “Hum.”) or – only for CCA – the preference for matched motion after splitting ties (abbreviated “App.”). A
strong predictor of human scores will exhibit a 𝜏-value close to negative unity combined with a low 𝑝-value.

(a) Full-body

Metric Average Average Global Hellinger FGD
jerk accel. CCA distance

Versus Hum. Hum. Hum. App. Hum. Hum.

𝜏 −0.09 −0.36 −0.36 −0.38 −0.36 −0.49
𝑝-value 0.72 0.15 0.16 0.15 0.15 0.048

(b) Upper-body

Metric Average Average Global Hellinger FGD
jerk accel. CCA distance

Versus Hum. Hum. Hum. App. Hum. Hum.

𝜏 −0.11 −0.26 0.11 −0.49 −0.40 −0.51
𝑝-value 0.64 0.27 0.64 0.041 0.085 0.029

CCA is the only metric we computed that can indicate appro-
priateness, since it directly compares each generated sequence to
the corresponding reference motion-capture poses. We therefore
computed its rank correlations with the appropriateness data as
well. Here we found a statistically significant effect (𝜏 = −0.49) for
the upper-body tier, but not for the full body.

8 DISCUSSION
We now discuss our results and how they may be interpreted, first
for human-likeness (in Sec. 8.1), then for appropriateness (in Sec.
8.2), and then for the objective metrics (in Sec. 8.3). We connect our
discussion of each part to the other evaluations we performed and
to previous literature. Based on our findings, we then formulate a
number of take-home messages regarding what matters most in
gesture generation (in Sec. 8.4) and give examples of how materials
from the challenge can be used by the field (in Sec. 8.5).

8.1 Discussion of human-likeness results
Generating convincing human-like gestures is a difficult problem,
and nearly all conditions rated significantly below natural motion
capture. However, each tier contains an entry which is rated signific-
antly above the motion from the motion-capture recordings in terms
of human-likeness. This is a leap forwards compared to GENEA
2020, and we believe it represents a motion quality not before seen

in large-scale evaluations. Although there has been work, specific-
ally Rebol et al. [2021], that reported a proposed motion-generation
method as being statistically not significantly different from natural
motion, they only evaluated a single method and their study was
not based on motion-capture data but on 3D pose estimation from
monocular video. We think that that choice of data source restric-
ted the motion quality of their natural-motion condition to be less
convincing (and thus easier to surpass) than our reference-motion
conditions FNA/UNA. Furthermore, all differences between natural
and synthetic conditions are significant in our study.

8.1.1 Interpreting the high scores of FSA and USQ. Despite Zhou
et al. [2022] (conditions FSA and USQ) being rated above the cor-
responding natural reference motion, we caution that this does not
mean that the motion is “superhuman”, or even completely human-
like – indeed, the median rating is much below 100, which would
constitute “completely human-like” as per the instructions to test
takers. What the result means is rather that the visualised motion
in the majority of cases was perceived as more human-like than the
motion-capture data used for FNA/UNA in the subjective evaluation.
In making this distinction, it is important to keep in mind that our
human-likeness evaluation is constrained by several factors. Most
notably, the nominally natural motion is constrained by our ability
to accurately capture the entire range of human motion, especially
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Fig. 8. Scatterplots comparing objective metrics and human-likeness ratings. The first row is for the full-body tier and the second row is for the upper-body
tier. The 𝑥-axis shows the absolute magnitude of the difference between the objective value for each system and the corresponding value for the reference
motion FNA/UNA, with the scale reversed such that the systems most similar to the reference are on the right. Regression lines (from the Theil-Sen regressor
[Sen 1968; Theil 1992], which is robust to outliers) are also shown. The last plot in the second row is for FGD but with a narrower 𝑥-axis range for a better view.

the fingers, using the technology we used. Finger motion capture is
very difficult, and dataset limitations meant that the finger motion
could not be chosen so as to look completely natural in all test seg-
ments evaluated, potentially degrading the ratings of FNA/UNA as
a result. An artificial system might have its training data cleaned
of problematic instances, so as to prevent it from generating such
motion, giving it an edge over FNA/UNA. This is in fact what was
done for systems FSA and USQ, which only used selected training-
data segments, manually chosen to have high motion quality, in
generating their output gestures [Zhou et al. 2022].
Our ability to visualise human characters and their motion also

plays a role in our findings. The use of a deliberately neutral 3D
avatar lacking potentially distracting human features such as gaze
and lip motion significantly reduces the bandwidth of the commu-
nication channel to the user, which lowers the threshold for what
needs to be achieved in order to match human motion ratings in
the evaluation. If the challenge had involved generating additional
modalities such as gaze and facial expression, the shortcomings of
artificial systems may have become more clear, at the expense of
increased complexity when running and taking part in the challenge.

8.1.2 On the differences between the two tiers. There are fewer signi-
ficant differences in the full-body evaluation than in the upper-body

evaluation, perhaps meaning that full-body motion is more difficult
to rate consistently. Although the difference is not substantial, we
would naively expect the opposite, due to the correction for multiple
comparisons being more conservative in the upper-body evaluation.
There are many possible explanations for this finding, beyond the
fact that the different teams did not all participate in both tiers.
For example, our finding is consistent with an interpretation that
full-body motion is a more difficult machine-learning problem, for
instance due to increased dimensionality of the output space and
the increased number of behaviours that need to be learnt. This
could explain why the best entry in the upper-body evaluation more
clearly outperformed UNA, compared to the margin between the
best entry in the full-body evaluation and FNA.

Another possible explanation for the same result is that the pro-
cess of imposing full-body motion from a walking and talking hu-
man onto an avatar with a fixed lower body may not always yield
completely natural results, and could sometimes give rise to in-
congruous motion. This could also explain the wider span (greater
interquartile range) of ratings of UNA compared to FNA. Future
GENEA challenges intend to only consider full-body motion.
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8.2 Discussion of appropriateness results
We find the results of the appropriateness evaluation both thought-
provoking and revealing about the state of the field. To begin with,
the greatest relative preference, a 75% preference for matched mo-
tion, was observed for natural motion capture, i.e., FNA/UNA. This
+25% effect size over the 50/50 bottom line validates that our meth-
odology can well identify when gestures are appropriate for the
speech and is about half the theoretical maximum value of +50% (a
100/0 split). A +25% effect size should be considered a good result,
since previous studies that have incorporated mismatched stim-
uli, e.g., Jonell et al. [2020a]; Rebol et al. [2021], have found that
they sometimes are difficult for participants to distinguish from
matched ones, especially if they – like here – both correspond to
segments where the character is speaking (and do not, say, match
audio of active speaking with a segment of motion corresponding
to the character listening without speaking; cf. Wolfert et al. [2023]).
Furthermore, both matched and mismatched motion stimuli here
have their starting points aligned to the start of a phrase in the
speech, meaning that the motion in the stimulus videos might ini-
tially be more similar to each other than if the mismatched motion
had been excerpted completely at random and not aligned to the
start of phrase boundaries. It is therefore not surprising to find that
the preference for matched motion over mismatched motion is not
larger for FNA/UNA.

In line with expectations, no system has a relative preference for
matched motion below 50%, which is the theoretical bottom line,
attained by a system whose motion has no relation to the speech.
However, the synthetic conditions are all far behind natural human
motion in terms of appropriateness. The measured effect sizes over
the 50/50 bottom line range from +10% and down to 1.5% for all these
conditions, compared to +25% for FNA/UNA, and all differences
compared to FNA/UNA are highly statistically significant. This is a
very substantial gap, and it is clear that generating meaningful and
appropriate gestures is still far from a solved problem.
One other interesting trend is that a few conditions with relat-

ively poor human-likeness, specifically FBT, UBT, and USL, show
a noticeably larger fraction of tied responses, compared to other
conditions. We hypothesise that this could be due to underarticu-
lated motion, noting that a hypothetical, extremely underarticulated
system that does not move at all should receive the response “They
are equal” all the time. This hypothesis is consistent with the fact
that these conditions all had the three lowest average acceleration
values in Table 4, indicating little motion overall.

8.2.1 Comparison to the human-likeness studies. Compared to the
results for the human-likeness studies, we did not find as many
differences between the submissions in terms of appropriateness.
We can envision four factors that could contribute to this, which
we list below, along with thoughts regarding potential mitigations:

• Responses are confined to much fewer categories, meaning
that each response provides less information in an information-
theoretic sense. This could potentially be addressed by having
test-takers complement their response with an indication of
the strength of their preference. We recommend that future
developments in evaluation consider using a preference scale

with more response options, e.g., five or seven possible re-
sponses. After the subjective evaluations described in this
article concluded, such a scale was subsequently implemented
by Mehta et al. [2023] and Kucherenko et al. [2023].

• Unlike the HEMVIP-based human-likeness studies, the re-
sponses to the appropriateness studies were not analysed us-
ing pairwise statistical tests to control for variation between
subjects and stimuli. This might have led to reduced resolv-
ing power. It might be possible to improve on the statistical
analysis using, e.g., statistical models that account for the
effects of different test takers and different videos, or by chan-
ging the study setup to allow for pairwise statistical testing.
One can furthermore gather more responses per condition,
which we recommend in case the same statistical analysis
methodology is used.

• Assessing appropriateness may be a more difficult task for
humans than assessing human-likeness (where test takers
assessed only motion in isolation, without any associated
speech audio), meaning that there is more random variation
in the responses relative to the human-likeness studies. In a
signal-to-noise analogy, this means that the noise is higher.
Mitigating this would probably require changing the eval-
uation and its task. For example, differences might become
more obvious if segments were mismatched completely ran-
domly, such that speech sometimes would be paired with
motion from a segment where the character is not actively
speaking, and vice versa (see Wolfert et al. [2023]), although
doing so would essentially change the type of appropriateness
that is being assessed.

• It may simply be that current artificial systems struggle to
generate motion that is particularly appropriate to any spe-
cific input speech. In other words, in a signal-to-noise analogy,
the signal is weaker. Consequently, there is less of a difference
to be uncovered in the first place.

Although all of these factors may contribute to the results we ob-
serve, the big gap in effect size between natural motion capture
and synthetic motion, and the fact that FNA/UNA were very signi-
ficantly better than all other conditions, shows that our methodo-
logy is sufficiently accurate to clearly resolve important differences
between conditions. Coupled with the finding that FSA/USQ were
significantly differently better than FNA/UNA when instead rating
human-likeness, it is clear that our evaluations have managed to
tap into and estimate different aspects of motion.

8.2.2 Analysis of stimulus-level correlation between performance
measures. To quantify the degree of decoupling between the human-
likeness ratings and appropriateness assessments, we ran a nu-
merical analysis of the correlation at the stimulus (motion seg-
ment/excerpt) level. For each motion segment from the human-
likeness study, we computed its (arithmetic) mean human-likeness
rating, along with how often that motion segment was chosen as
the more appropriate motion example when presented in the appro-
priateness study – regardless of whether it was the segment that
matched the speech audio or not. Tied responses were split equally
between both stimuli in the pair.
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(b) Upper-body

Fig. 9. Scatterplots illustrating the correlation between the rated mean human-likeness of a motion segment and how often that segment was selected by
users in the appropriateness user study as being the more appropriate one – regardless of whether it was shown as the matched or mismatched motion.
Each point represents a unique motion segment. Pearson correlation analyses reveal positive correlations of 0.26 (𝑝-value < 0.01) and 0.32 (𝑝-value < 0.01) for
full-body and upper-body motion tiers, respectively.

Scatterplots visualising the resulting data for the two tiers of the
challenge can be found in Fig. 9. Computing the Pearson correlation
between the two quantities in the scatterplots (rated human likeness
vs. empirical user preference in the appropriateness study) yielded
a correlation of 0.26 (𝑝-value <0.01) and 0.32 (𝑝-value <0.01) for full-
body and upper-body motion, respectively. The correlation analyses
thus find that a higher mean human-likeness rating is on average
associated with an greater probability of a segment being selected
by users in the appropriateness study, regardless of whether or not
it matched the speech.
However, although statistically significant, correlations were

of moderate strength. To further control for the effect of human-
likeness in the mismatching paradigm, we propose that future stud-
ies may (1) explicitly ask test takers to ignore visual motion quality
in making their judgements (similar to the question formulation
used in 2020 [Kucherenko et al. 2021b]), and/or (2) may choose to
set up studies such that the matched and mismatched segments in
each presented pairing have similar mean human-likeness ratings.

8.2.3 Comparison to other gesture-appropriateness assessments. The
distribution of the three different responses across the different con-
ditions in Fig. 6 is similar to that seen in the mismatching study
reported in Jonell et al. [2020a], which used a similar methodology.
On the other hand, we see fewer statistical differences compared
to the appropriateness study in GENEA 2020 [Kucherenko et al.
2021b], which asked participants to rate the appropriateness of the
stimuli on an absolute scale using HEMVIP. However, the ratings
in that study were strongly biased towards conditions with high
human-likeness, as discussed in Sec. 6.4. This is evidenced by the fact
that mismatched natural motion (M) scored second best in terms
of appropriateness there. In the new appropriateness evaluation
paradigm, M would perform at chance rate by definition. Further-
more, in a segment-level re-analysis analogous to those in Sec. 8.2.2,
the Pearson correlation between the 2020 mean human-likeness and
mean appropriateness ratings is 0.51, which is both significantly
different from zero (𝑝-value < 0.01) and numerically about twice as

large as the correlations between human-likeness and appropriate-
ness judgements in the 2022 evaluations. The reduced correlation in
2022 indicates that responses in the latest appropriateness studies
are markedly less confounded by segment human-likeness, as was
our goal. In effect, we traded the high-resolution, high-bias method
from GENEA 2020 for a reduced-resolution, lower-bias method.
In addition to controlling for the effect of motion quality, our

method for assessing appropriateness only requires comparing a
system to itself. We believe this feature may enable direct compar-
ison between different studies on the same data, without having
to include the various other synthetic baseline conditions in the
new user study. Seeing that creating appropriate baseline systems is
one of the sticking points both for carrying out research and for its
subsequent assessment in peer review, this can be a major simplific-
ation compared to parallel methodologies like HEMVIP [Jonell et al.
2021] that involve simultaneously comparing and evaluating many
different conditions against each other. Since responses in those
studies are affected by what other videos are shown on the same
page, their results thus cannot be directly compared unless stimuli
or implementations of previous synthetic baseline conditions are
included in the new study. Our recommendation for future research
that uses the same methodology as this paper is to report effect size
and 𝛼 = 0.05 Clopper-Pearson confidence intervals similar to Table
3, to enable easy and accurate comparison between studies.

8.3 Discussion of objective metrics
The values of each of the six objective metrics in Table 4 span a wide
range. From the acceleration and jerk values, we can observe that
some systems, e.g., the text-based baselines from Yoon et al. [2019],
exhibit much less movement than others. Unfortunately, most ob-
jective metrics are not well aligned with subjective human-likeness
scores. In the full-body tier, one of the least human-like systems,
FSB, received some of the best scores in terms of average absolute
jerk, acceleration, and Hellinger distance. At the same time, one of
the most human-like systems, FSC, is not in the top three according
to any of the objective metrics used. In the upper-body tier, one of
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the least human-like systems, USP, was in the top three systems
according to average jerk, acceleration, and Hellinger distance while
one of the most human-like systems, USO, is not in the top three
according to any of the objective metrics. The rank correlations
in Table 5 make these observations more precise, by showing that
most correlations are not statistically significantly different from
zero. The one exception is the FGD. Although the correlations we
found there are moderate (around −0.5) and system USN shows an
outlying value, this metric might have some potential as an objective
evaluation metric useful for faster evaluation in the development
phase, although it is not clear how well it will resolve smaller dif-
ferences between systems. Further development and validation of
objective metrics would benefit the research community, as exem-
plified by a recent study that improved the FGD and generalised it
to non-human motion [Maiorca et al. 2023].
As for speech appropriateness, only the CCA metric takes refer-

ence motion into account and thus has any possibility to measure
this aspect. (None of the studied metrics explicitly considers inform-
ation from the speech itself.) The CCA results are not clear-cut, but
nonetheless somewhat encouraging, seeing that the systems with
the best appropriateness (namely FSH, USQ, and USM) also exhibit
some of the highest CCA values, of 0.96 and above, and we found a
statistically significant correlation for one of the tiers.
All in all, we want to emphasise that objective evaluation of

generated gestures is still an open problem. Subjective evaluation,
as used by this challenge, remains the gold standard for comparing
gesture-generation models [Wolfert et al. 2022], and none of the
objective evaluation metrics can replace subjective user studies.

8.4 Take-home messages
In this section we combine salient points from our findings with
information that the teams provided about their challenge entries,
in order to see what we can learn about what aspects matters most
in gesture-generation methods, data processing, and evaluation.

8.4.1 What have we learnt about the gesture-generation problem?
The challenge results – with some entries performing very well
in human-likeness, but none coming close to human-level appro-
priateness – indicate that generating random generic gesturing
movements is much easier than tailoring gestures to fit the speech
well. This could be due to the fact that there is a strong correlation
between consecutive frames of movement, whilst the correlation
between speech and gestures is relatively weak. One simple argu-
ment that the latter correlation is weak is that the same speech
may be accompanied by different gestures, and the same gesture
conversely may accompany different speech audio clips. Further-
more, fastText [Bojanowski et al. 2017], the most commonly used
text representation among challenge entries, embeds each word
individually regardless of context, and is far from the state of the art
in language modelling and text representation; cf. Wang et al. [2019].
(Indeed, it is arguably weaker than some of the text representations
used in 2020 and referenced in Sec. 5.2.) This likely impeded the
ability of the models to learn semantically appropriate gestures.

8.4.2 What have we learnt about successful gesture-generation meth-
ods? Sec. 5 provides an overview of the submitted systems, and

Table 1 lists all submissions with their corresponding system prop-
erties, sorting them according to their human-likeness scores. We
can note that all systems except the text-based baseline used audio
as an input modality, fewer systems used text, and even fewer used
speaker IDs. There seems to be no clear indication that using any
given combination of modalities necessarily gives better results than
others, as some systems using only audio are on the top and others
on the bottom of the list. However, the fact that so many of them
did use audio input suggests a perception among teams that taking
audio into account is important. This is reinforced by the finding
that BT, the only system exclusively based on text, did not perform
well in the subjective evaluations.

When it comes to the techniques used, RNNs were the most
popular choice and used almost by all the systems, followed closely
by auto-regression. Again, for most of these there seems to be no
strong indication that certain choices are necessarily better than
others. This is not unexpected, given the many aspects and ways in
which challenge submissions differ, all of which are likely to have
affected the results in different ways. Even by aggregating results
across multiple challenges, associating outcomes with individual
design decisions remains difficult; cf. King [2014].
Our main and clear observation is that the state-of-the-art in

human-likeness is not to use deep learning for everything (or at
least not to generate the gesture poses), seeing that the most human-
like system, GestureMaster, is based on motion graphs [Arikan and
Forsyth 2002; Kovar et al. 2002; Lee et al. 2002] and a library of care-
fully selected high-quality motion segments. For methods that used
deep learning to generate output poses (i.e., all other submissions),
the two approaches demonstrating the greatest human-likeness in
both tiers relied on probabilistic approaches (VAEs or VQ-VAEs) with
stochastic output generation. This resembles the state of the previ-
ous challenge, where the entry with the greatest human-likeness
[Alexanderson 2020] was based on pose sequences sampled from
an autoregressive normalising flow, although the difference to the
most human-like non-probabilistic submission [Korzun et al. 2021]
was not statistically significant at the more stringent 𝛼 = 0.01 level
[Kucherenko et al. 2021b].
Although perhaps initially surprising, the strong showing from

a playback-based method echoes the long dominance of concaten-
ative (i.e., exemplar-based) systems in terms of speech-synthesis
naturalness [King 2014]. Furthermore, the use of motion graphs also
resembles the prevailing approach to achieving high visual quality
in 3D rendering, which is to combine small constituent images (bit-
maps) as textures on a mesh; pure machine-learning approaches
to rendering have taken a very long time to become competitive
in terms of graphical quality [Mildenhall et al. 2021]. In general, it
appears that – unless one has the methods and data needed to build
an exceptionally strong deep generative model – an approach based
on concatenating shards of real-world observations is instead the
better path to achieving convincing results. In such an approach, it
is feasible to ensure that all individual units hold high quality (they
may for example be taken wholesale from the real world, making
them completely natural by definition), leaving only the task of
joining them together with minimal artefacts.
However, it is not only the best submissions that have gotten

better in the recent challenge. The baselines from the 2020 challenge
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Fig. 10. The number of person hours different responding teams reported
spending on the GENEA Challenge 2022, sorted in ascending order.

both performed relatively poorly in terms of human-likeness in 2022.
Together, these findings offer evidence that the quality of gestures
in the challenge as a whole is increasing, which may indicate that
gesture-generation methodologies in general are getting better.

8.4.3 What have we learnt about gesture-data processing? Fig. 10
shows how much time different teams spent on their submissions.
We can see a very high variation, with some teams spending between
40 and 60 person hours whilst some others spent 800 hours or more.
The two teams who spent 800 or more hours on their submissions
reported devoting a large amount of time on data pre-processing,
which other teams did not. One of the former teams is the top-
performing team in terms of gesture human-likeness scores. This
suggests that spending time on data preparation is likely to pay off in
better model performance, which is consistent with trends from the
Blizzard Challenges in text-to-speech, where top teams often spend
significant resources on manual data acquisition and processing.
Data processing tasks included cropping the recordings into shorter
segments, annotating those short segments for, e.g., motion quality,
and similar. Some teams found it important to remove segments
where the character was listening rather than talking, since the
character exhibits little gesture motion in these segments, which can
make deterministic gesture-generation approaches regress towards
the mean pose and thus produce less vivid movement.

There were variations in how challenge teams represented audio
and motion in their entries, but we did not find strong evidence that
certain representations were better than others. Systems that used
modern, learnt audio representations such as WavLM [Chen et al.
2022] and PASE+ [Ravanelli et al. 2020] (not seen in the 2020 chal-
lenge) did not show superior performance compared to systems that
used conventional MFCC audio features. For motion, submissions
likewise exhibited a more diverse set of representation approaches
than what was seen in 2020. In this challenge, there was a weak
finding that systems using motion representations based on rotation
matrices, including 6D representations [Zhou et al. 2019] or 2-axis ro-
tation matrices [Zhang et al. 2018], obtained better human-likeness
scores than systems that used exponential maps [Grassia 1998] of

axis-angle representations. However, this finding is not conclusive
due to the small number of examples and the multitude of factors
affecting system performance, and might simply reflect the fact that
systems with less time put into their development were more likely
to use the data pipeline and motion representation of the provided
baseline code, which used exponential map representations.
Another important aspect when it comes to the data is post-

processing, such as hip-centering or smoothing (cf. Kucherenko
et al. [2021a]), of the output motion. As seen in Table 1, most of the
systems (good and bad performance alike) applied motion smooth-
ing in some form. This suggests that they found smoothing to be
beneficial for gesture generation, although the user studies do not
allow us to make a statistical conclusion about the importance of
smoothing the output motion.

Finally, modelling the motion of the fingers or having them fixed
emerged as another important decision. Roughly half of the systems
in the evaluation used fixed fingers. Some of these systems achieved
good performance whilst others did not. This does not allow us to
make strong statistical conclusions about the importance of mod-
elling fingers. However, we may surmise that finger motion may
be especially difficult to make natural, otherwise all teams would
presumably have included finger motion in their submissions.

8.4.4 What have we learnt about evaluating gesture generation?
Previous work shows it is not easy to disentangle perceived human-
likeness from appropriateness as more human-like systems are often
ranked as more appropriate [Kucherenko et al. 2021b]. In this chal-
lenge we made a concerted effort to disentangle these two aspects.
Specifically, we (1) muted the audio during the human-likeness eval-
uation, to remove any influence speech may exert on perceived ap-
propriateness (cf. Jonell et al. [2020a]), and (2) compared each model
with a mismatched version of itself (having similar human-likeness),
to control for the effect of human-likeness when evaluating ap-
propriateness. This effort paid off, seeing that different conditions
performed best on the two performance measures, with differences
being statistically significant, whilst simultaneously ensuring that
a speech-independent system (like condition M in 2020) no longer
can score better than chance. However, improving the statistical
resolution of the evaluation procedure would be beneficial.

8.5 How materials from the challenge can be used
We believe the materials released together with the challenge have
many benefits for gesture-generation research. To illustrate this, we
provide a list of possible use cases, often with references to prior
work similarly that re-used resources from the previous GENEA
Challenge (from 2020) in a similar manner. One may, for instance. . .

• Benchmark/compare new models to the state of the art using
our public data and existing motion or video stimuli, like
Ferstl et al. [2021]; Yazdian et al. [2022] did with previous
open stimuli.

• Evaluate models using our open-sourced code for the evalu-
ation interface and analyses, similar to the re-use of HEMVIP
code from Jonell et al. [2021] by Wolfert et al. [2021].

• Use our questions and evaluation structure for evaluating
new proposed methods, similar to how Teshima et al. [2022]
re-used previous evaluation designs.
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• Use our public visualisation avatar and/or code to simplify
development and obtain more standardised and comparable
visuals, as done by Alexanderson et al. [2023], and similar
to prior re-use of the GENEA Challenge 2020 open upper-
body visualisation in Mehta et al. [2023]; Saund and Marsella
[2021]; Teshima et al. [2022]; Wang et al. [2021]; Zhang et al.
[2023].

• Evaluate new models objectively using the same metrics that
showed the most promise here, similar to how Ahuja et al.
[2022]; Liang et al. [2022]; Ye et al. [2022] re-used metrics and
sometimes code from Ahuja et al. [2020]; Yoon et al. [2020].

• Use our large dataset of subjective evaluation responses to
build and/or validate new automatic quality-assessment meth-
ods, similar to He [2022], or perform in-depth analyses of
human preferences using the individual response data, per-
haps linking these to the time taken by study participants,
their questionnaire responses, etc.

• Use our materials and those released by participating teams
to probe reproducibility in the field.

9 LIMITATIONS
Despite being a large evaluation with many conditions and raters,
there are inevitable limitations to the challenge and its results, im-
posed by scope, systems, data, visualisation, and evaluation choices.
We discuss some of these limitations below.

9.1.1 Scope and scale. The ten teams participating in the 2022 chal-
lenge do not represent the full spectrum of all gesture-generation
approaches available today. Although ten teams (plus the top line
and baselines) are more systems than considered in any other joint
comparison of gesture-generation systems we are aware of, it is still
not large enough to, e.g., make strong conclusions regarding which
system architectures to prefer. We hope to attract more teams to
participate in the challenge in future years.

9.1.2 Data. Motion capture is a remarkable technology, but does
not yet perfectly capture every aspect of human pose and figure.
There are hardware issues such as calibration, and software chal-
lenges in estimating poses of diverse humanoid skeletons whilst
dealing with problems like reflective marker displacements, occlu-
sion, and markers in close proximity. Together, these issues may
lead to problems with the data, commonly seen as artefacts in the
produced motions (e.g., twitching or unnatural bone rotations), es-
pecially in the fingers. Although we have worked to exclude low-
quality parts of the data and process it to make it more amenable to
deep learning, some artefacts still remain. We suspect that this is an
important reason why generated motion could surpass the notion-
ally natural motion capture in terms of human-likeness. More, and
more high-quality, motion data might allow for generating better
gesture motion and constitute a stronger top line.
Some useful information is also missing from the current data.

On the verbal side, this includes speech information removed for
anonymisation. On the non-verbal side, one prominent missing
aspect is facial data, which is an important communication channel
but was not recorded in the current dataset. Neither was body form,
such as muscle mass, body fat, skin, nor how these deform when

muscles flex and extend, since the data has abstracted the humanoid
form down to only a skeletal hierarchy. Future challenges should
maintain awareness of new datasets being published, and their data
quality and modalities captured. One modality worth investigating
further is face motion, as it may help systems learn more appropriate
gestures that relate to facial expressions and emotions.

9.1.3 Visualisation. The gesture visualisation used in the challenge
has several limitations. Some are dictated by the data, and some are
deliberate choices to, e.g., reduce complexity. The result is a virtual
character that, whilst representative of typical gesture-generation
visualisations, lacks both skin deformations and many human com-
munication channels, such as gaze, facial expression, and lip motion.
Whilst the absence of such features can help focus attention on
the body motion currently being studied, it does also lead to a less
human-like character appearance overall. Our evaluation also delib-
erately obscured some aspects of motion, e.g., by cropping the view
so as to not show potential foot sliding and (for the upper-body tier)
fixing the legs of the virtual character, which is innately unnatural.
Future challenges should consider incorporating additional commu-
nication channels, e.g., facial features on a 3D mesh, to improve the
realism of the virtual characters and their gestures.
Aside from limitations on what agent behaviours are visualised

and how, the interlocutor from the recorded conversations is missing
entirely in both modelling and visualisation. This was a deliberate
choice to not increase the complexity of the challenge too much,
but the absence of such information prevents us from assessing
interlocutor-dependent aspects of motion such as proxemics and
behavioural alignment. (We deliberately excluded turn taking, back
channels, and listening behaviour from the subjective evaluation,
since these are likely to look odd without seeing both sides of the
conversation.) Future challenges may opt to include information
about both conversation parties in the evaluation, so that study
participants can be interlocutor-aware in their responses. However,
any increases in complexity, whether due to adding additional inputs
or output modalities, should be performed one step at a time, so
that it is more clear which findings relate to which aspect of the
complex problem that is gesture generation.

9.1.4 Evaluation. Our core evaluation only sought to quantify two
performance measures, namely subjective human-likeness and per-
ceived appropriateness for the given speech. Aspects such as ges-
ture diversity, or generation speed and latency, were not measured.
Furthermore, we only studied the overall appropriateness of the ges-
tures for the speech, but there is value in evaluating appropriateness
with respect to the speech rhythm and speech meaning separately,
since these are distinct aspects. We hope to consider doing that in
future challenges, for example by performing two user studies, each
focused on a separate type of appropriateness: semantic appropriate-
ness and rhythmic/temporal appropriateness. A further extension
would be to break this down into individual gesture categories, e.g.,
beat, iconic, deictic, and metaphoric gestures.
There are also many other kinds of appropriateness that can be

assessed, e.g., appropriateness for the given speaker, and for the
interlocutor behaviour as discussed above. (See the discussion of
grounding in Nyatsanga et al. [2023] for a more extensive list.) None
of these were considered in the present challenge, either due to
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dataset limitations or to keep the complexity to a manageable level.
A difficult but important long-term goal is to pursue a more “ecolo-
gically valid” evaluation, to eventually compare different gesture-
generation methods in human interaction, similar to He et al. [2022].

10 CONCLUSIONS AND IMPLICATIONS
We have hosted the GENEA Challenge 2022 to compare many dif-
ferent gesture-generation methods and assess the state of the art in
data-driven co-speech gesture generation for full-body and upper-
body avatars. The central design goals of the challengewere (1) to en-
able direct comparison between many different gesture-generation
methods whilst controlling for factors of variation external to the
model, namely data, embodiment, and evaluation methodology, and
(2) to disentangle the effects of motion human-likeness and motion
appropriateness in the evaluations.
Our evaluation results show that, with the right approach, syn-

thetic motion can attain human-likeness ratings equal or better
than the underlying motion-capture data. This is a big step for-
ward, although most systems did not come close to this level of
performance. The results also suggest that the field is advancing
measurably, since most submissions performed significantly better
than the previously published baseline methods. However, using
a careful evaluation paradigm, we find that synthetic gestures are
much less appropriate for the speech than human gestures, also
when controlling for differences in human-likeness. We are thus
only at the beginning of the road when it comes to generating co-
speech motion that is appropriate for the specific speech. Finally,
most objective metrics we computed did not exhibit any statistically
significant correlations with our subjective human-likeness ratings,
with the Fréchet gesture distance being the lone exception to the
rule. Objective metrics should thus only be used with great caution.

10.1 Implications
The challenge findings have implications for both research and
practice. We summarise our perspectives below.

10.1.1 Implications for practical systems. If you are building a gesture-
generation system andwant to reach top-of-the-line human-likeness,
you should currently consider using “playback-based” methods like
motion graphs [Arikan and Forsyth 2002; Kovar et al. 2002; Lee
et al. 2002] as demonstrated by GestureMaster [Zhou et al. 2022]
to generate the pose sequences, instead of relying solely on deep
learning to go all the way from input features to motion. Playback-
based systems need less data, and the quality of the motion material
is then a higher priority than database size, in contrast to current
deep-learning trends. Machine learning is still useful for deciding
which gestures to generate (e.g., which motion clips to concatenate).
In all cases, it appears important to spend time on data processing.

10.1.2 Implications for research and evaluation. We believe the chal-
lenge adds value to the research community in several ways. A lot
can doubtlessly be learnt from the system-description papers by the
participating teams. The materials we release from the challenge
(e.g., time-aligned splits of audio, text, and gesture data; visualisation;
code; and evaluation stimuli and responses) have broad utility for

future research, system building, and benchmarking in gesture gen-
eration, similar to the community uptake of the resources from the
GENEA Challenge 2020. Furthermore, the methodology we demon-
strate for assessing motion appropriateness for speech is much more
accurate at controlling for the effect of subjective motion quality and
does not involve subjects making any direct comparisons between
videos generated by different conditions, which is beneficial for
efficient benchmarking against previous publications (see Secs. 8.2.1
and 8.2.2 for further details and recommendations).

10.1.3 Implications for future developments in the field. Based on
the fact that one condition in each tier managed to achieve excellent
human-likeness, we expect that, in the medium-term future, gesture-
generation systems (at least ones based on motion playback) should
be able to advance to more consistently match, or possibly even
exceed, motion capture in terms of human-likeness. Systems that
generate poses directly from deep learning are likely to improve
in human-likeness as well, as larger datasets with more accurate
motion become available (e.g., Liu et al. [2022b]). This would be sim-
ilar to recent developments in verbal behaviour generation, where
neural language models [Brown et al. 2020] and speech synthes-
isers [Li et al. 2019; Shen et al. 2018] trained on large datasets are
approaching the text and speech produced by humans in terms
of surface quality (but not necessarily appropriateness). Gesture
generation may be lagging behind due to the relative scarcity of
high-quality 3D motion data, compared to text and audio, since ac-
curate motion estimation frommonocular in-the-wild video remains
a challenging problem.
As the above evolution runs its course, we believe that research

into appropriate rather than human-like motion is poised to become
the new frontier in gesture generation. There is already evidence that
existing deep-learning methods in principle can predict what spe-
cific properties are appropriate for each individual gesture instance
to be generated, even for the hard case of semantically motivated,
communicative gestures from speech [Ao et al. 2022; Kucherenko
et al. 2021c, 2022]. We also believe that there is great potential for de-
vising better objective metrics, using challenge materials to validate
these, and that the adoption of meaningful and validated objective
metrics may further accelerate progress in the field.

10.1.4 Implications for future challenges. We think that future chal-
lenges should study more difficult scenarios that are farther from
being solved, for example full-body motion in dyadic interaction.
That can also provide interesting opportunities for exploring other
types of appropriateness, e.g., with respect to the interlocutor stance
and behaviour, as studied in Jonell et al. [2020a]; Woo [2021]. Gener-
ating interlocutor-aware full-body gestures was therefore a focus of
the GENEA Challenge 2023 Kucherenko et al. [2023]. This should be
coupled with further method development to obtain methodologies
for conducting and analysing appropriateness tests with increased
resolving power whilst still controlling for motion human-likeness.
In general, challenges like the one described here can play an im-
portant part in identifying key factors for generating convincing
co-speech gestures in practice, and help drive and validate future
progress towards endowing embodied agents with natural and ap-
propriate gesture motion.
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