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In this letter, we show that pore-scale diffusiophoresis of colloidal particles along local salt gradi-
ents manifests in the macroscopic dispersion of particles in a porous medium. Despite is transient
character, this microscopic phenomenon controls large-scale particle transport by altering their par-
titioning between transmitting and dead-end pores. It determines the distribution of residence and
arrival times in the medium. Depending on the diffusiophoretic mobility, particles can be mobi-
lized from or trapped in dead-end pores, which provides a means for the controlled manipulation of
particles in porous media.
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Diffusiophoresis (DP) [1] is the motion of microscopic
particles driven by local gradients of solute concentra-
tion that has been demonstrated both theoretically [2–
5] and experimentally [6–11] to be a powerful particle
manipulation tool. The physical mechanisms that drive
this complex physicochemical phenomenon can be bro-
ken down to two components: chemiphoresis that occurs
due the osmotic pressure gradient along the surface of a
charged particle (at the scale of the particle) and elec-
trophoresis arising due to the difference in the diffusivi-
ties between the cation and the anion in the electrolyte
solution [4]. The physics behind this phenomenon is well-
established [2, 3]. Despite the studies in relatively sim-
pler microfluidic setups that demonstrate particle focus-
ing [12], particle separation [13–16], particle banding [17],
particle trapping [11], etc., with the help of DP, its effect
on macroscopic transport within intricate and spatially
variable porous structures remains unexplored.

Flow and transport of dissolved solutes and suspended
particles through porous and confined media are ubiqui-
tous in natural and engineered systems [18]. Most ge-
ological and biological porous media share the common
feature of being spatially variable or heterogeneous. The
broad range of variability in pore size is known to in-
duce anomalous transport. Moreover, the diversity in
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shape of the constituent grains induces a rich flow or-
ganization that plays an important role in groundwater
contamination and remediation [19], enhanced hydrocar-
bon recovery [20], transport through river sediments [21]
and water filtration systems [13, 22]. The morphology of
a porous medium is often characterized by the presence
of cavities or dead-end pores (DEP), which represent the
part of the system that cannot host net fluid transfer,
resulting in stagnant flow [23–25]. These DEPs are con-
nected via a network of percolating channels or transmit-
ting pores (TP). Such DEP-TP structures characterize
biological tissues [26], soil [25] and filters [27] and lead to
anomalous transport of passive tracers [28]. To date, the
combined role of DP and the complexity of the porous
medium on particle transport remains elusive. Here, we
use detailed numerical pore-scale simulations and ana-
lytical modeling to elucidate how DP couples with the
medium structure to alter macroscopic particles trans-
port.

We study a fluid-saturated porous system where a par-
ticle suspension gets displaced by a continuously injected
salt solution. The velocity experienced by each trans-
ported particle results from advection in the flow field
u, which is controlled by the medium structure and im-
posed flow rate [29–31], and due to the diffusiophoretic
drift udp. In the thin Debye layer limit, for dilute solu-
tions with valence symmetric solutes (e.g., LiCl, NaCl),
the diffusiophoretic drift is proportional to the gradient
of the logarithm of the solute concentration

udp = Γp∇ ln s (1)
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FIG. 1. Hyper-uniform porous structure characterized by
DEPs and TPs. Computational domain with white spaces
indicating solid grains (bottom).

and the diffusiophoretic mobility Γp is approximately a
constant. Γp is determined by the size and surface charge
of the particle [2, 3]

Γp =
εkBT

νZe

{
Dζ − 2kBT

Ze
ln

[
1− tanh2

(
Zeζ

4kBT

)]}
,

where ε is the dielectric permittivity of the medium, ζ
is the particle zeta potential, ν is the kinematic viscos-
ity of the medium, kB is the Boltzmann constant, T is
the absolute temperature, Z is the valence of the con-
stituent ions of the solute, e is the proton charge and
D = (D+ −D−)/(D+ + D−) measures the difference in
diffusivity D+ of the cation and D− of the anion. The
logarithmic dependence of the particle velocity udp on
the solute concentration gradients ∇s allows for rapid
and efficient particle motion, even in low concentration
areas.

We consider a porous system characterized by DEPs
of different size connected to a network of TPs, similar
to the one used in ref. [28]. The computational domain
is shown in figure 1. The mean flow is driven from left
to right with the flow rate U . The medium is statis-
tically homogeneous with a mean pore-size λ = 30µm
and porosity φ = 0.39. The dual feature of this medium
is characterized by TPs, and DEPs leading to stagnant
flow. While solutes typically diffuse and dissipate gradi-
ents within pores over time scales shorter than the time
τL = L/U needed to elute a pore-volume, the junctures
of TPs and DEPs serve as excellent candidates to retain
gradients of solute concentration, which in turn trigger
DP.

In the low Reynolds number limit, the fluid-solute-
particle dynamics are governed by the Stokes equation
for fluid flow, and the advection-diffusion equations for
the solute and particle transport [5]

0 =
1

ρ

(
−∇p+ µ∇2u

)
, (2a)

∇ · u = 0, (2b)

∂s

∂t
+∇ · (us) = Ds∇2s, (2c)

∂c

∂t
+∇ · (u + udp)c = Dp∇2c, (2d)

where u is the two-dimensional velocity field, p is the
pressure, s is the solute concentration and c is the par-
ticle concentration, µ is the dynamic viscosity of the
fluid and ρ its density. Ds and Dp are the diffusion
coefficient of solute and particles, respectively. Typi-
cally, solutes diffuse much faster than particles such that
Ds � Dp. Solute and particle transport can be charac-
terized by the respective Péclet numbers, Pes = Uλ/Ds

and Pep = Uλ/Dp, which compare the characteristic dif-
fusion time scales τDs = λ2/Ds and τDp = λ2/Dp to the
advection time τv = λ/U over the mean pore length. The
diffusiophoretic particle velocity udp is given by Eq.(1).
The medium is initially saturated with particles and so-
lute with initial concentrations ci and si, respectively.
At time t > 0, a sharp front of solute at concentration
sH � si is injected such that the ratio χ = si/sH � 1.
This solute front induces a dynamic and heterogeneous
solute concentration gradient that drives DP. The govern-
ing equations (2) are solved numerically for the pore ge-
ometry detailed above. The numerical setup is described
in [32].

Figure 2 shows the temporal evolution of the particle
concentration field without DP (Γp = 0), and for diffu-
siophoretic trapping (Γp < 0), and extraction (Γp > 0).
In the absence of DP, majority of the particles get dis-
persed through the TPs leaving behind a small fraction
of particles that accumulate within the DEPs, where the
flow is stagnant, organized in convection rolls [28]. The
only mechanism through which these localized particles
can escape into the TPs is diffusion, the times scale of
which is typically orders of magnitude larger than τL.

The injection of a sharp front of solute at a higher
concentration results in local gradients of solute concen-
tration that drive DP within the DEPs. For Γp < 0, that
is, when particles migrate from high to low solute con-
centrations, DP leads to the trapping of particles inside
the DEPs, as shown in figure 2(a).

When Γp > 0, DP leads to particle mobilization out of
the DEPs because the particles move towards the higher
solute concentration zones in the TPs. This is seen in
the particle distributions shown in Figure 2(c), where
the particles within the DEPs rapidly escape the DEPs
and leave the domain from the right outlet. Figure 3
shows the time evolution of the solute concentration at a
point within a DEP close to the bottom of the DEP. The
increase or decrease of concentration due to DP occurs
on the time scale τDs

, which here is smaller than τDp
by

a factor of 103. Thus, the action of DP on mass trans-
fer between TPs and DEPs is limited to relatively short
initial times.
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t ∼ 35τv t ∼ 70τv t ∼ 210τv t ∼ 665τv

(a)Particle trapping Γp < 0

(b)No DP Γp = 0

(c)Particle extraction Γp > 0

FIG. 2. Temporal evolution of the dimensionless particle distributions c/ci for (a) trapping, (b) no-DP, and (c) extraction
cases. The concentration scale is logarithmic between 10−5 (light) and 10 (dark). White spaces indicate solid grains.

To understand how DP controls the macroscopic fate of
the suspended particles, we first estimate the fraction α of
particles that are trapped in or mobilized from the DEPs
in the initial phase. To this end, we consider a single DEP
connected to a TP [32]. For this geometry, we can derive

the solute concentration profile in the DEP, and thus
obtain explicit expressions for the diffusiophoretic drift
udp. Combining the latter with conservation of particle
flux at the interface between TP and DEP, we obtain the
following expression for α as a function of Γ∗p = Γp/Uλ

α = α0

[
1− Γ∗p(1− χ)Pes

]
+H(−Γ∗p)

{
2Γ∗p

2(1− χ)2PesPep`
∗
0

π
ln

[
2Γ∗p(1− χ)Pep`

∗
0

2Γ∗p(1− χ)Pep`∗0 − π

]}
, (3)

where H(·) is the Heaviside step function, and α0 the
initial fraction of particles in the DEPs in the absence
of DP (Γp = 0). The dimensionless length `∗0 denotes
a characteristic diffusion scale at the interface between
TP and DEP. It is inversely proportional to the parti-
cle Péclet number, `∗0 ∼ 1/Pep. We set in the following
`∗0 = β/Pep with β a number of the order of one. Expres-
sion (3) predicts that the particles are depleted from the
DEPs for Γ∗p ≥ 1/(1− χ)Pes. Furthermore, for strongly
negative diffusiophoretic mobility, the rate at which par-
ticles are transferred to the interface is eventually smaller
than the diffusiophoretic drift. Thus, by taking the limit
of Γ∗p → −∞ in Eq. (3), we find that α asymptotes

toward

α∞ = α0

(
1 +

πPes
β

)
. (4)

The trapped particle fraction increases linearly with Pes
because the solute gradients and thus the diffusiophoretic
drift increase with increasing Pes.

Figure 4 shows the distribution of arrival times of par-
ticles at the outlet. Similar to Ref. [28], we observe two
transport regimes. At times of the order of τL, particles
at the outlet are produced by advection and dispersion
from the TPs. For times t � τL, the arrival time dis-
tribution deviates from the exponential decay predicted
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FIG. 3. Temporal evolution of dimensionless particle con-
centration (c/ci) at an arbitrary point (indicated by grey)
within a DEP shown in the inset for Γ∗p = −1 (blue, trap-
ping), Γ∗p = 0 (black, no DP), and Γ∗p = 0.4 (red, extraction).
The particle concentrations shown in the inset are displayed in
a logarithmic scale and range from 10−6 (light) to 10 (dark).

under the classical dispersion framework and displays a
power law tail. This is caused by the particles that are
initially trapped within the DEPs. For Γp < 0, an in-
creasing fraction of particles is trapped in the DEP, which
manifests in a stronger tail than without DP. For Γp > 0,
particles are extracted from the DEP at initial times, and
thus the tail is weaker than for Γp ≤ 0.

The arrival time distribution can be modeled as the
superposition of the residence time distributions in the
TPs and DEPs [28]

F (t) = (1− α)F0(t) + α

∫ ∞

0

dτ
g(t/τ)

τ
fD(τ), (5)

respectively. Note that α is the fraction of trapped par-
ticles after the short initial phase, which can be approx-
imated by expression (3). We assume that transport in
the TP can be characterized by the mean flow velocity
and a hydrodynamic dispersion coefficient. Thus, F0(t)
is given by the superposition of inverse Gaussian distri-
butions as,

F0(t) =
1

L

L∫

0

dx
x exp[−(x− ut)2/(4Dht)]√

4πDht3
. (6)

As we see in Figure 4, this approximation is able to cap-
ture the early arrival times, but underestimates the ar-
rival time distribution at intermediate times. This can be
traced back to the velocity variability between pores [31].
The residence time distribution within the DEPs is ex-
pressed in terms of a Gamma-distribution g(t′) of dimen-
sionless residence times τ ′ = τ/τDp

in a single DEP and
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FIG. 4. (Top panel) Arrival time distribution F (t) at the out-
let for (blue circles) Γ∗p = −1, (black triangles) 0 and (orange
circles) 0.4. The solid lines denote the travel-time model in
Eq. (5). (Bottom panel) Particle fraction α in the DEP from
the (symbols) numerical data, and (solid line) the analytical
expression (3) for `∗0 = 0.65/Pep.

the distribution fD of characteristic diffusion times τDp
,

given below [28]

g(t′) =
t′−2/3 exp(−t′)

Γ(1/3)
, (7)

while fD is obtained from the distribution fΛ of aspect
ratios Λ through the map Λ→ τDp

= (λΛ)2/Dp.
Figure 4 shows the numerically estimated particle frac-

tions versus the dimensionless diffusiophoretic mobility,
and the analytical expression (3) for β = 0.65. The an-
alytical model describes the full dependence of α on Γp

for both extraction from and trapping in DEPs, and thus
seems to capture the controls of DP on the macro-scale
dispersion of particles.

In conclusion, the microscopic interactions between DP
and flow and transport through porous media impact the
macroscopic fate of particles. Depending on the diffusio-
phoretic mobility Γp, DP may promote trapping within
or it may lead to particle mobilization from the DEPs.
This can be exploited for preferential particle deposition
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or removal. DP is a short-term phenomenon that per-
sists as long as the solute gradients are not dissipated
by diffusion, which is characterized by the time scale
τDs = λ2/Ds and is typically smaller than the charac-
teristic advection time across the medium i.e. τDs � τL.
However, despite its short timespan, DP has a signifi-
cant impact on macroscopic transport, by reorganizing
the partitioning of particles between the DEPs and TPs,
which is quantified by the fraction α.

Our results suggest that DP provides an efficient way
of controlling particle transport through porous media in
a reversible manner by changing the direction of the so-
lute gradient. Moreover, the existence of DEPs is quite
common in natural geological and biological porous me-
dia, and serve as excellent candidates for retaining mi-
croscopic gradients of solute concentration for relatively
large times. This opens new avenues for developing tech-

nological solutions to various problems of socio-economic
relevance such as groundwater remediation, enhanced oil
recovery, water-filtration systems, targeted drug delivery
and microfluidics for biomedical applications.
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I. NUMERICAL SIMULATIONS

The computational domain is shown in figure 1 in the main text. The mean flow is from left to right. This medium
is statistically homogeneous such that the distribution of the pore-size is narrow with a strong peak close to mean
pore-size λ = 30µm. It exhibits complex pore network interspersed among disordered solid grains with a porosity
φ = 0.39. The domain is initially saturated with solute at a lower concentration (si =0.1mM) and particles. A sharp
front of solute at a higher concentration (sH =10mM) is then injected such that the ratio χ = si/sH = 0.01. The
governing equations (Eq.(2) in the article) are subjected to no slip and no penetration flow at the solid surfaces,
uniform flow with an average fluid speed U at the left inlet and constant pressure at the right outlet. For the solute
concentration, we use constant flux at the inlet and no flux boundary condition everywhere else whereas, for the
particle concentration, we impose a conservative form of no flux boundary condition, where the sum of diffusive
and advective fluxes is zero. As an initial condition, we assume initially no flow u = 0, p = 0 and impose solute
concentration si = 0.1mM and particle concentration ci = 0.1mM. The numerical model has been validated for a
simpler micro-channel geometry [1] as well as for the hyper-uniform porous medium considered here by approximating
the case without DP with Ref. [2]. We use COMSOL Multiphysics® based on finite element for performing the pore-
scale simulations [3]. For the physical parameters we use the following values (closest to realistic ones): µ = 10−3Pa.s,
ρ = 103kg/m3, Ds = 7 × 103µm2/s, Dp = 7µm2/s and U = 175µm/s. This yields a characteristic advection time
of τv = 0.17 s, the salt diffusion time τDs

= 0.12 s, the particle diffusion time τDp
= 128 s, and the Péclet numbers

Pes = Uλ/Ds = 0.75 based on the solute and Pep = Uλ/Dp = 750 based on the particles. Particle concentrations at
the outlet for different mobilities Γp are shown in figure 1.

II. ANALYTICAL MODEL

We construct a one-dimensional model to quantify the dependence of the initial fraction of particles α within the
DEPs on the DP mobility Γp (see figure 2). To this end, we assume that particle transport in the DEP at short times
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FIG. 1. Numerical simulations. Arrival time distribution at the outlet for different diffusiophoretic mobilities Γp/λU ranging
from -1.6, -1, -0.5, -0.01 (shades of blue, trapping) to 0 (black, no DP) to 0.02, 0.4, 0.8 (shades of red, extraction). Solid curves
correspond to numerical simulations while dotted curves correspond to the one-dimensional travel-time model obtained using
different fraction α of particles initially available within the DEPs.

is dominated by the diffusiophoretic drift such that

∂c

∂t
+

∂

∂x
udpc = 0. (1)

The total mass of particles in the DEP is given by

mdp = w

`p∫

0

dxc, (2)

where w is the pore-width. Since the only flux of particles toward or from the DEP is across the DEP-TP junction,
the temporal variability of the mass of particles in the DEP is equal to the mass flux at x = 0 and controlled by DP.
Spatial integration of Eq. (1) according to Eq. (2) gives

∂mdp

∂t
= wudp(x = 0, t)c(x = 0, t), (3)

where we used that there is no flux across the boundary at x = `p. Thus, the added or extracted mass is given by

mdp = mi + w

∞∫

0

dtudp(x = 0, t)c(x = 0, t). (4)

In the following, we first determine the diffusiophoretic drift, then we deal with the cases of extraction (Γp > 0) and
addition of particles (Γp < 0) separately.
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FIG. 2. Illustration of the one-dimensional analytical model. A single DEP of length `p is connected to a (vertical) TP with a
width of λ. The solute concentration within the DEP is illustrated by the red line, the blue line denotes the profile of udp. At
short times, the diffusiophoretic drift is strongly localized at the interface between TP and DEP.

A. Diffusiophoretic drift

We focus here on estimating the drift udp. The Péclet number for salt is so low that we can assume that diffusion
dominates in the DEP. Thus, to obtain the salt concentration s, we solve the diffusion equation

∂s

∂t
−Ds

∂2s

∂x2
= 0. (5)

We consider the boundary conditions s = sH at x = 0 and ∂s/∂x = 0 at x = L. The initial condition is s(x, t = 0) = si.
In Laplace space we obtain the exact solution

s∗(x, σ) =
si
σ

+
(sH − si)

σ

cosh[(1− x/`p)√στDs
]

cosh(
√
στDs

)
, (6)

where τDs = `2p/Ds and σ is the Laplace variable. The Laplace transform is defined in [4].
The Laplace transform of the diffusiophoretic velocity at x = 0 is then given by

u∗dp(x = 0, σ) = −Γp(1− χ)
tanh(

√
στDs

)√
σDs

, (7)

where we defined χ = si/sH . The integral of the drift from t = 0 to ∞ is given by

∞∫

0

dtudp(x = 0, t) = u∗dp(x = 0, σ = 0) = −Γp(1− χ)`p
Ds

. (8)

This expression is used directly to estimate the total mass of trapped particles for the extraction case, as argued
below. For for the trapping case, however, the full time dependence of udp(, 0, t) is required as can be seen from
Eq. (4). Thus, we approximate the salt concentration profile in the DEP by the solution for a semi-infinite domain,

sa(x, t) = si + (sH − si)erfc(x/
√

4Dst), (9)
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where the superscript a denotes approximation. Using this expression, the diffusiophoretic drift is given by

uadp(x, t) = −Γp(sH − si)
exp (−x2/4Dst)

s(x, t)
√
πDst

. (10)

The drift at x = 0 then is given by

uadp(x = 0, t) = −Γp(1− χ)√
πDst

, (11)

where we used that s(x = 0, t) = sH . For times larger than τDs
= `2p/Ds, the salt gradient decays exponentially fast

with time. Thus, the time integral over the drift can be written as

∞∫

0

dtudp(x = 0, t) =

τDsa∫

0

dtuadp(x = 0, t) = −
√

4

πa

Γp(1− χ)`p√
Ds

. (12)

In order to match the exact expression (8), we set a = π/4 and use the following the approximation

uadp(x = 0, t) = −Γp(1− χ)√
4πDst

H(τDs
π − t), (13)

where H(t) denotes the Heaviside step function.

B. Extraction of particles

In the case Γp > 0, particles are extracted from the DEP. The particle concentration at x = 0, that is, at the
interface with the TP is set equal to c(x = 0, t) = ci, the resident particle concentration. Thus, we obtain by
integration of Eq. (3) for the added particle mass

mdp = mi + ciw

∞∫

0

dtudp(x = 0, t) = mi + ciwu
∗
dp(x = 0, σ = 0) = mi −

miΓp(1− χ)

Ds
, (14)

where mi = ciw`p is the initial particle mass and χ = si/sH . Note that we used expression (8) to arrive at this result.
If α0 is the fraction of particle mass inside the DEP without DP, then the fraction α of particles after DP is

α = α0
mdp

mi
. (15)

Using Eq. (14) and setting `p = λ, we obtain

α = α0

[
1− Γ∗pPes(1− χ)

]
, (16)

where Γ∗p = Γp/λU is the dimensionless form of the diffusiophoretic mobility and Pes = λU/Ds is the salt Péclet
number.

C. Trapping of particles

In the case Γp < 0, particles are trapped from the TP into the DEP. In order to determine c(x = 0, t), we consider
the balance of fluxes across the interface. For x < 0, that is within the TP, the particle flux transverse to the flow
direction is due to diffusion. For x > 0, that is, in the DEP the particle flux is dominated by the diffusiophoretic
drift. Thus, we can write

−Dp
c(x = 0, t)− ci

`0
= udp(x = 0, t)c(x = 0, t), (17)

where `0 is the concentration gradient scale. We assume that the particle concentration in the flow past the interface
between TP and DEP is constant and equal to the initial concentration ci. We estimate `0 as the length scale at
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FIG. 3. Data for the dependence of α on Γ∗p (symbols) and the analytical model (solid line) for Pes = 0.75, Pep = 750 and
`∗0 = 0.65/Pep.

which the diffusive flux transverse to the flow direction toward the interface is of the same order as the advective flux
past the interface, that is,

Uci ∼ Dp
ci
`0
. (18)

From this relation, we obtain the estimate

`0 ∼
Dp

U
=

`p
Pep

. (19)

That is, particles within the layer of thickness `0 are available for trapping in the DEP.
From (17), we obtain for c0(t) ≡ c(x = 0, t)

c0(t) =
ci

1 + u0(t)`0
Dp

, (20)

where we set u0(t) = udp(x = 0, t). Inserting (20) into (4) gives

mdp = mi + w

∞∫

0

dtu0(t)
ci

1 + u0(t)`0
Dp

. (21)

Note that here use the approximation (13) for u0(t) to derive an analytical expression for mdp.
Inserting expression (13) into the right side of Eq. (21) gives

mdp = mi + w

τDsπ/4∫

0

dt
Γ̂p(1− χ)√

πDst

ci

1 +
Γ̂p(1−χ)`0√
πDstDp

. (22)

where we set Γ̂p = −Γp. We can further write

mdp = mi + wci

τDsπ/4∫

0

dt
Γ̂p(1− χ)

√
πDst+

Γ̂p(1−χ)`0
Dp

. (23)
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Integration of the latter gives

mdp = mi + w`pci

{
Γ̂p(1− χ)

Ds
+

2Γ̂2
p(1− χ)2`0

πDsDp`p
ln

[
2Γ̂p(1− χ)

2Γ̂p(1− χ) + πDp`p/`0

]}
(24)

Thus, we obtain for α

α = α0

{
1 +

Γ̂p(1− χ)

Ds
+

2Γ̂2
p(1− χ)2`0

πDsDp`p
ln

[
2Γ̂p(1− χ)

2Γ̂p(1− χ) + πDp`p/`0

]}
(25)

We set `p = λ and define the dimensionless diffusiophoretic mobility and the dimensionless diffusion layer scale as

Γ∗p = − Γ̂p
λU

, `∗0 =
`0
λ
∼ 1/Pep. (26)

Thus, we can write expression (26) in dimensionless form as

α = α0

{
1− Γ∗p(1− χ)Pes +

2Γ∗p
2(1− χ)2PesPep`

∗
0

π
ln

[
2Γ∗p(1− χ)Pep`

∗
0

2Γ∗p(1− χ)Pep`∗0 − π

]}
. (27)
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