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A CHARACTERIZATION OF CHAINS IN DIMENSION THREE

WOJCIECH KRYŃSKI AND OMID MAKHMALI

Abstract. Given a 3-dimensional (para-)CR structure, its family of chains define a 3-dimensional
path geometry. We provide necessary and sufficient conditions that determine whether a path geom-
etry in dimension three arises from chains of a CR or para-CR 3-manifold. We demonstrate how our
characterization can be verified computationally for a given 3-dimensional path geometry and discuss
a few examples.
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1. Introduction

Geometric structures on manifolds can give rise to distinguished set of curves whose behaviour
are of interest in a variety of problems. For example, geodesics in (pseudo-)Riemannian geometry
or in projective structures, conformal geodesics in conformal geometry, null-geodesics in pseudo-
Riemannian conformal geometry, and chains in CR structures or, more generally, in contact parabolic
geometries are some of the most well-known cases of such distinguished curves.

The main topic of interest in this article is distinguished curves in 3-dimensional CR and para-CR
structures. Such distinguished curves define 3-dimensional (generalized) path geometries. Recall that
a (generalized) path geometry is locally defined in terms of a set of paths on a manifold with the prop-
erty that along each direction in (an open subset of) the tangent space of each point of the manifold,
there passes a unique path in that family that is tangent to that direction. For instance, geodesics of
an affine connection on a manifold define a path geometry. Path geometries are a generalization of
projective structures in which the curves may not be geodesics of any affine connection or satisfy any
variational property. More generally, they may not be defined along every direction in each tangent
space but may only be defined for an open set of directions at each point.
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The class of distinguished curves that we study are referred to as chains and was originally defined
in [CM74] for CR structures. On any CR manifold chains are a canonical family of unparametrized
curves with the property that through each point and along each direction transverse to the contact
distribution at that point, there passes a unique chain. As a result, chains define a canonical gener-
alized path geometry on any CR manifold. Furthermore, for para-CR structures, defined as contact
manifold whose contact distribution has a splitting into two integrable Lagrangian distributions, it
can be shown, in a similar manner, that chains can be defined as well. As a result, any (2n + 1)-
dimensional CR and para-CR geometry defines a canonical (2n + 1)-dimensional path geometry via
its chains.

The objective of this paper is to give a set of invariant conditions for 3-dimensional path geometries
which are satisfied if and only if the 3-dimensional path geometry arises from chains of a CR or para-
CR geometry. Our invariant conditions are computationally verifiable, i.e. if a 3-dimensional path
geometry is presented either in terms of abstract structure equations or as a pair of second order
ODEs, these conditions can be computed by manipulations that involve roots of a binary quartic and
differentiation. The steps needed to verify the conditions are explained in detail within the proofs.

1.1. Outline of the article and main results. In § 2 we give a review of CR, para-CR, and
path geometry in dimension 3. The definition of a (generalized) path geometry on an n-dimensional
manifold M is given in terms of a foliation of (an open set of) the (2n− 1)-dimensional projectivized
tangent bundle ν : PTM → M by curves that intersect the fibers of PTM → M trivially. We recall
some basic facts about path geometries in any dimension including their local realizability in terms
of point equivalence classes of (systems of) 2nd order ODEs and a solution of their equivalence
problem in the form of a Cartan connection. An important feature of 3-dimensional path geometries
for us is that their fundamental invariants can be represented as a binary quadric T, referred to
as the torsion, and a binary quartic C, referred to as the curvature. As will be discussed in § 2.1, a
generalized 3-dimensional path geometry on a 3-manifold N is denoted by a triple (Q,X ,V ) where Q
is 5-dimensional, X ,V ⊂ TQ intersect trivially and have rank 1 and 2, respectively, their Lie bracket
spans TQ everywhere, V is integrable, and the local 3-dimensional leaf space of the foliation induced
by V on Q is an open set of N. We define CR and para-CR structures on a contact manifold in
terms of an integrable almost (para-)complex structure on the contact distribution that is compatible
with the Levi bracket. In 3-dimensional contact manifolds the integrability of such a structure is
automatic. We recall the solution of the equivalence problem of (para-)CR structures. In Remark
2.7 we will see that 3-dimensional para-CR structures are equivalent to (generalized) 2-dimensional
path geometries.

In § 3.1, using the Cartan geometries associated to (para-)CR structures, we give a Cartan geometric
description of their chains, following [ČŽ09]. We give a set of necessary conditions for a (generalized)
3-dimensional path geometry on N, i.e. a triple (Q,X ,V ), to arise from the chains of a (para-)CR
structure. In § 3.2 we describe the 3-dimensional path geometry of chains in these two geometries
in terms of the point equivalence class of pairs of second order ODEs. In particular, we discuss
the chains of the flat CR structure on the 3-sphere S3 ⊂ C2 and the flat para-CR geometry on the
projectivized tangent bundle of P2, denoted as PTP2, and the induced (para-)Kähler-Einstein metrics
on their respective space of chains, i.e. SU(2, 1)/U(1, 1) and SL(3,R)/GL(2,R).

In § 3.3 and § 3.4 we prove our invariant characterization of chains.

Theorem 1.1. A 3-dimensional path geometry (Q,X ,V ) arises from chains of a 3-dimensional
(para-)CR structure (N,J,C ) if and only if

(1) The binary quartic C has two distinct roots of multiplicity 2.
(2) A canonical 2-form ρ ∈ Ω2(Q) of rank 2, defined via normalizing C, is closed.
(3) The entries of the binary quadric T, pulled-back by the bundle inclusion ι : GD →֒ G defined

via normalizing C, have no dependency on the fibers of Q→ N where N := Q/V .
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It follows that in condition (1) if one root is non-real complex of multiplicity two, then the other
root has to be its complex conjugate, and the chains correspond to a CR structure. In the case of
two distinct real roots, the chains arise from a para-CR structure. Furthermore, Theorem 1.1 implies
that Q is an open subset of P(TN\C ) where C is a naturally induced contact distribution on the
3-manifold N equipped with a splitting. Theorem 1.1 will be proved in two parts. The para-CR part
is proved towards the end of § 3.3 and the CR part is proved at the end of § 3.4.

In condition (2) the canonical 2-form ρ on Q will be expressed in terms of the Cartan connection
of the 3D path geometry on the reduced structure bundle GD → Q, as given in Propositions 3.8 and
3.15. Such a closed 2-form is sometimes referred to as a quasi-symplectic 2-form which is the odd
dimensional analogue of a symplectic 2-form, i.e. a closed 2-form of maximal rank. In Remark 3.14
we give an alternative description of condition (3).

All three conditions in Theorem 1.1 are in principle straightforward to check for any 3D path
geometry expressed either as a pair of second order ODEs or in terms of abstract structure equations.
Moreover, we show that chains are in fact a sub-class of a larger class of 3-dimensional path geometries
characterized by the first two conditions in Theorem 1.1. This is the content of Theorem 3.11 in the
case of para-CR structures.

1.2. Conventions. Our consideration in this paper will be over smooth and real manifolds. Through-
out the article we always consider path geometry in the generalized sense and therefore will not use
the term “generalized” when talking about path geometries. When defining the leaf space of a folia-
tion we always restrict to sufficiently small open sets where the leaf space is smooth and Hausdorff.
Consequently, given an integrable distribution D on a manifold N, by abuse of notation, we denote
the leaf space of its induced foliation by N/D .

We will use the summation convention over repeated upper and lower indices. Given elements
v1, . . . , vk of a vector space, their span is denoted by 〈v1, . . . , vk〉. When dealing with differential
forms, the algebraic ideal generated by 1-forms α1, . . . , αk is denoted as {α1, . . . , αk}. Given a set of
1-forms α0, . . . , αn, β1, . . . , βn, the corresponding dual frame is denoted as ∂

∂α0 , · · · ∂
∂βn . On a principal

bundle G → Q with respect to which the 1-forms α0, . . . , αn, β1, . . . , βn give a basis for semi-basic
1-forms, we define the coframe derivatives of a function f : G → R as

f;i =
∂

∂αi ydf, f;ij =
∂

∂αj ydf;i, f;a = ∂
∂βa ydf, f;ab =

∂
∂βb ydf;a, f;ai =

∂
∂αi ydf;a, f;ia = ∂

∂βaydf;i

and similarly for higher orders, where 0 ≤ i, j ≤ n and 1 ≤ a, b ≤ n. Note that in case we reduce the
structure bundle of a geometric structure to a proper principal sub-bundle, by abuse of notation, we
suppress the pull-back and use the same notation as above for the coframe derivatives on the reduced
bundle.

Lastly, given two distributions D1 and D2, we denote by [D1,D2] their derived distribution, i.e. the
distribution whose sheaf of sections is Γ([D1,D2]) = Γ(D1)+Γ(D2)+[Γ(D1),Γ(D2)]. In the geometries
we consider, i.e. 3D path geometries, the existence of such derived distribution is always guaranteed;

see Definition 2.1. The sheaf of sections of
∧k(T ∗M) is denoted by Ωk(M).

2. A review of CR, para-CR, and path geometries

In this section we recall some of the well-known facts about path geometries, CR and para-CR
geometries in dimension three, and a solution for their equivalence problem.

2.1. Path geometries and systems of 2nd order ODEs. A path geometry on an (n + 1)-
dimensional manifold M is classically defined as a 2n-parameter family of paths with the property
that along each direction at any point of M, there passes a unique path in that family. Consequently,
the natural lift of the paths of a path geometry to the projectivized tangent bundle, PTM, results in
a foliation by curves which are transverse to the fibers PTxM. It is well-known that a path geometry
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on an (n + 1)-dimensional manifold can be locally defined in terms of a system of n second order
ODEs

(2.1) (zi)′′ = F i(t, z, z′), t ∈ R, z = (z1, . . . , zn), 1 ≤ i ≤ n,

defined up to point transformations, i.e.

t 7→ t̃ = t̃(t, z1, . . . , zn), zi 7→ z̃i = z̃i(t, z1, . . . , zn), 1 ≤ i ≤ n.

Given a path geometry, its straightforward to see how it defines a system of n 2nd order ODEs: let
(z0, . . . , zn) be local coordinates on V ⊂ M . In a sufficiently small open set U ⊂ PTM, the family
of paths can be parametrized as s 7→ γ(s) = (z0(s), . . . , zn(s)) for s ∈ (a, b) ⊂ R. Each path is
determined by the value of γ(s), and γ′(s) at s = s0 ∈ U, thus, taking another derivative, a system
of n + 1 2nd order ODEs of the form γ′′ = G(γ, γ′) is obtained for a function G : R2n+2 → Rn+1. If

U ⊂ PTM is sufficiently small, without loss of generality one can assume dz0

ds 6= 0 in U. Since the
paths are given up to reparametrization, one is able to eliminate s from the system γ′′ = G(γ, γ′). As
a result, one arrives at the system of ODEs (2.1) where t := z0.

Conversely, starting with an equivalence class of system of n 2nd order ODEs under point trans-
formations (2.1), the system defines a codimension n submanifold E ⊂ J2(R,Rn) of the 2-jet space
of n functions of 1 variable. Pulling-back the canonical contact system on J2(R,Rn) to E , one can
identify E with J1(R,Rn) which is additionally foliated by contact curves, i.e. the solution curves of
the ODE system. Locally, the fibration J1(R,Rn) → J0(R,Rn) ∼= Rn+1 can be identified as an open
subset of the projectivized tangent bundle PTM → M for an (n + 1)-dimensional manifold M and
the solution curves project to a 2n-parameter family of paths on M. However, for arbitrary ODE
systems it may happen that no path is tangent to some directions at some points of M.

In fact, there are many instances of path geometries that do not fit the classical description since
the paths are only defined for an open set of directions. Thus, in order to study path geometries
one is led to work with a generalized notion of such structures as defined below, which is sometimes
referred to as generalized path geometry. However, in this article since path geometries for us are
always defined in this generalized sense we will not use the term generalized.

Definition 2.1. An (n + 1)-dimensional path geometry is given by a triple (Q,X ,V ) where Q
is a (2n + 1)-dimensional manifold equipped with a pair of distributions (X ,V ) of rank 1 and n,
respectively, which intersect trivially and satisfy [V ,V ] = V and [X ,V ] = TQ. The (n + 1)-
dimensional local leaf space of the foliation induced by V , denoted as M = Q/V , is said to be
equipped with the path geometry (Q,X ,V ).

The rank (n + 1) distribution C spanned by X and V induces a multi-contact structure on Q,
i.e., one can write C = ker{α1, . . . , αn} for some 1-forms α0, αa, βb, such that X = ker{αa, βb}na,b=1,

V = ker{α0, . . . , αn} and

(2.2) dαi ≡ α0 ∧ βi mod {α1, . . . , αn},
for all 1 ≤ i ≤ n. Path geometry on surfaces corresponds to n = 1 in which case C is a contact
distribution on a 3-manifold N. As a result, 2-dimensional path geometries have several unique
features that do not extend to higher dimensional path geometries; see Remark 2.7.

One can easily check that Definition 2.1 is satisfied for a classical path geometry on an (n + 1)-
dimensional manifold by letting Q = PTM and V be the vertical tangent space of the fibration
PTM → M and X be the line field tangent to the natural lift of the path on M to PTM. In terms
of the system of second order ODEs (2.1) one has

(2.3) X = span
{

D
dt

}

where D
dt := ∂t +

n
∑

i=1

pi∂zi +

n
∑

i=1

F i∂pi ,

and
V = span{∂p1 , . . . , ∂pn},
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where pi’s are fiber coordinates for an affine chart of PTM . The vector field D
dt spanning X is often

called the total derivative vector field.
As was mentioned before not all geometries arising from Definition 2.1 are classical path geometries.

However, restricting to sufficiently small open sets U ⊂ Q in Definition 2.1, U can be realized as an
open set of PTM for the (n+1)-dimensional manifold M which is the leaf space of V . Consequently,
X foliates U ⊂ PTM by curves that are transverse to the fibers of PTM →M. We refer the reader
to [Bry97, Section 2] for more about path geometry on surfaces and [ČS09, Section 4.4.2,4.4.4] in
higher dimensions.

Two path geometries (Qi,Xi,Vi), i = 1, 2 are called equivalent if there exists a diffeomorphism
f : Q1 → Q2 such that f∗(X1) = X2 and f∗(V1) = V2.

To determine when two path geometries are locally equivalent, we provide a solution to the equiv-
alence problem of path geometries using the notion of a Cartan geometry and Cartan connection as
defined below.

Definition 2.2. Let G be a Lie group and P ⊂ G a Lie subgroup with Lie algebras g and p ⊂ g,
respectively. A Cartan geometry of type (G,P ) on Q, denoted as (G → Q,ψ), is a right principal
P -bundle τ : G → Q equipped with a Cartan connection ψ ∈ Ω1(G, g), i.e. a g-valued 1-form on G
satisfying

(1) ψ is P -equivariant, i.e. r∗gψ = Adg−1 ◦ ψ for all g ∈ P.
(2) ψz : TzG → g is a linear isomorphism for all z ∈ G.
(3) ψ maps fundamental vector fields to their generators, i.e. ψ(ζX) = X for any X ∈ p where

ζX(z) := d
dt t=0rexp(tX)(z).

The 2-form Ψ ∈ Ω2(G, g) defined as

Ψ(X,Y ) = dψ(X,Y ) + [ψ(X), ψ(Y )] for X,Y ∈ Γ(TG),
is called the Cartan curvature and is P -equivariant and semi-basic with respect to the fibration G → Q.

The following solution of the equivalence problem for path geometries is due to Grossman and Fels
[Gro00, Fel95].

Theorem 2.3. Every path geometry (Q2n+1,X ,V ), as in Definition 2.1, defines Cartan geometry
(G → Q,ψ) of type (PSL(n+2,R), P12) where P12 ⊂ PSL(n+2,R) is the parabolic subgroup preserving
the flag of a line and a 2-plane in Rn+3. Assume that the distributions X and V are the projection
of the distributions ker{αi, βi}ni=1 and ker{αi}ni=0, respectively. When n ≥ 2, the Cartan connection
and its curvature can be expressed as

(2.4) ψ =







−ψi
i − ψ0

0 µ0 µj

α0 ψ0
0 νj

αi βi ψi
j






and Ψ := dψ + ψ∧ ψ =







0 M0 Mj

0 Ψ0
0 Vj

0 Bi Ψi
j






,

where 1 ≤ i, j ≤ n and

Bi = T i
jα

0 ∧ αj + 1
2T

i
jkα

j ∧ αk, and Ψi
j = Ci

jklα
k ∧ βl + 1

2T
i
jklα

k ∧ αl + T i
j0kα

0 ∧ αk.

The fundamental invariants of a path geometry are the torsion, T = (T i
j )1≤i,j≤n, and the curvature,

C = (Ci
jkl)1≤i,j,k,l≤n, satisfying

(2.5) T i
i = 0, Ci

jkl = Ci
(jkl), Ci

ijk = 0.

Remark 2.4. We point out that unlike in equation (2.2), the 1-forms in Theorem 2.3 are defined on
the principal bundle G rather than the manifold Q. If it is clear from the context that one needs to
take a section s : Q → G and consider s∗ψ, we will not make a distinction between 1-forms defined
on G or Q.
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If (t, zi) and (t, zi, pi) are local jet coordinates on R×Rn = J0(R,Rn) and J1(R,Rn), respectively,
then, in terms of the system of ODEs (2.1), one obtains

(2.6) T i
j = F i

j − 1
2δ

i
jF

k
k , Ci

jkl = F i
jkl − 3

4F
r
r(jkδ

i
l)

where 1 ≤ i, j, k, l ≤ n and

(2.7) F i
j = −∂zjF i + 1

2
D
dt(∂pjF

i)− 1
4∂pkF

i∂pjF
k, F i

jkl = ∂pj∂pk∂plF
i, D

dt = ∂t + pi∂zi + F i∂pi .

Cartan’s solution of the equivalence problem for path geometries on surfaces is treated in the next
section since 2-dimensional path geometries coincide with 3-dimensional para-CR structures.

Here we are interested in path geometries on 3-dimensional manifolds, i.e. Q in Definition 2.1 is
5-dimensional, which correspond to point equivalence class of pairs of 2nd order ODEs. The following
proposition whose proof is straightforward and therefore skipped, will be important for us.

Proposition 2.5. In three-dimensional path geometries the fundamental invariants T and C in Theo-
rem 2.3, as GL2(R)-modules, can be represented as a binary quadric and a binary quartic, respectively,
given by

(2.8)
T = s∗(A0(β

1)2 + 2A1β
1β2 +A2(β

2)2)⊗ V ⊗X−2,

C = s∗(W0(β
1)4 + 4W1(β

1)3(β2) + 6W2(β
1)2(β2)2 + 4W3(β

1)(β2)3 +W4(β
2)4)⊗ V ⊗X−1

where s : Q → G is a section, T ∈ Γ(Sym2(V ∗)⊗∧2
V ⊗ X −2), C ∈ Γ(Sym4(V ∗)⊗∧2

V ⊗ X −1),

X := ∂
∂s∗α0 ∈ Γ(X ), V := ∂

∂s∗β1 ∧ ∂
∂s∗β2 ∈ Γ(

∧2
V ),

A0 = T 2
1 , A1 = T 2

2 , A2 = −T 1
2 ,

W0 = C2
111, W1 = C2

211, W2 = C2
221, W3 = C2

222, W4 = −C1
222,

and ( ∂
∂s∗α0 ,

∂
∂s∗α1 ,

∂
∂s∗α2 ,

∂
∂s∗β1 ,

∂
∂s∗β2 ) denote the vector fields dual to the coframe s∗(α0, α1, α2, β1, β2)

in the Cartan connection (2.4). Moreover, Q is equipped with a degenerate conformal structure given
by [s∗h] ⊂ Sym2(T ∗Q) where

(2.9) h := α1β2 − α2β1 ∈ Γ(Sym2(T ∗G)).

In what follows, we will need the Bianchi identities among the entries of the C and T given by

(2.10)

dW0 ≡4W0ψ
1
1 + 4W1ψ

2
1 , dW1 ≡W0ψ

1
2 + (3ψ1

1 + ψ2
2)W1 + 3W2ψ

2
1

dW2 ≡2W1ψ
1
2 + (2ψ1

1 + 2ψ2
2)W2 + 2W3ψ

2
1 , dW3 ≡ 3W2ψ

1
2 + (ψ1

1 + 3ψ2
2)W3 +W4ψ

2
1

dW4 ≡4W3ψ
1
2 + 4W4ψ

2
2 , dA0 ≡ (4ψ0

0 + 3ψ1
1 + ψ2

2)A0 + 2A1ψ
2
1

dA1 ≡A0ψ
1
2 + (4ψ0

0 + 2ψ1
1 + 2ψ2

2)A1 +A2ψ
2
1 , dA2 ≡ 2A1ψ

1
2 + (4ψ0

0 + ψ1
1 + 3ψ2

2)A2.

modulo {α0, α1, α2, β1, β2}. Using Theorems 2.3 and 2.9, it follows that two path geometries (Qi,Xi,Vi),
i = 1, 2 are locally equivalent if and only if for their respective Cartan geometries (Gi → Qi, ψi) there
is a bundle diffeomorphism f : G1 → G2 such that f∗ψ2 = ψ1.

Furthermore, if the fundamental invariants vanish, i.e. C = T = 0, then the Cartan curvature is
zero and the Cartan connection satisfies the Maurer-Cartan equations of sl(n + 2,R) and hence the
path geometry is locally equivalent to the canonical one on Pn+1 whose paths are projective lines. If
C = 0, then the path geometry defines a projective structure on the (n+1)-dimensional leaf space of
V , denoted by M. If T = 0, then the 2n-dimensional leaf space of X , i.e. the solution space of the
corresponding system of ODEs, is endowed with a so-called β-integrable Segré structure when n ≥ 2.

Note that when n = 2 and T = 0, then the induced β-integrable Segré structure on the leaf space
of X , is a 4-dimensional self-dual conformal structure of neutral signature which is defined by the
conformal class of the bilinear form h in Proposition 2.5. In this case C gives the binary quartic
representation of the self-dual Weyl curvature of this conformal structure.
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2.2. CR and para-CR 3-manifolds. In this section we recall the definition of CR and para-CR
structures in dimension three and give a solution of their local equivalence problem. We will point out
that para-CR structures in dimension 3 are equivalent to path geometries on surfaces and therefore
can be described as the point equivalence class of scalar 2nd order ODEs.

Recall that an almost complex structure on a distribution D ⊂ TN with even rank is an endo-
morphism J−1 : D → D such that (J−1)

2 = −Id where Id : D → D is the identity map. An almost
para-complex structure on D is defined by a linear map J1 : D → D such that (J1)

2 = Id with
the property that its ±1-eigenspaces have the same rank. As a result, we denote an almost (para-
)complex structure by Jε : D → D such that (Jε)

2 = εId where ε is -1 and 1 for almost complex
and para-complex structures, respectively. An almost (para-)complex structure is called integrable
if its ±√

ε-eigenspaces are involutive as distributions in Kε ⊗ D where Kε := R[
√
ε], i.e. K1 = R

and K−1 = C. Note that if D has rank 2 then an almost (para-)complex structure on D is always
integrable.

Definition 2.6. A non-degenerate (para-)CR structure of hypersurface type on a (2n+1)-dimensional
manifold N is given by a contact distribution C ⊂ TN with an integrable almost (para-)complex
structure Jε : C → C such that L(JεX,JεY ) = −εL(X,Y ) where Lx : (X,Y ) → [X,Y ]x/Cx ∈ TxN/
Cx for X,Y ∈ Γ(TN) is the Levi bracket.

Identifying TN/C at each point x ∈ N with R, the map Lx corresponds to the imaginary part of
a (para-)Hermitian inner product whose signature is (p, q), p+ q = n when ε = −1 and is (n, n) when
ε = 1. The induced action of Jε on KεC := Kε ⊗ C results in the splitting KεC = Hε ⊕ H̄ε, where
Hε and H̄ε are (para-)holomorphic and anti-(para-)holomorphic sub-bundles of KεC for the (para-
)complex structure defined by Jε, respectively. Note that as a result of the compatibility condition,
in the para-CR case both H and H̄ are null with respect to the induced inner product on K1C

∼= C .
Furthermore, by the compatibility condition in Definition 2.6 in the para-CR case, it follows that
in the splitting C = H ⊕ H̄ the integrable distributions H and H̄ are Lagrangian with respect
to the induced symplectic structure on C . As a result, a para-CR structure is also referred to as
an integrable contact Legendrian/Lagrangian structure (see [ČŽ09, DMT20] for more information.)
As was mentioned above, the case of contact 3-manifolds is special since any almost (para-)complex
structure on their contact distribution is automatically integrable.

Two (para-)CR structures, denoted as (N,C , Jε) and (Ñ , C̃ , J̃ε) are equivalent if there is a dif-

feomorphism F : N → Ñ whose pushforward F∗ : TN → TÑ and its extension to Kε ⊗ TN satisfy

F∗C = C̃ and F∗Hε = H̃ε and F∗H̄ε = ˜̄
Hε. Note that when ε = −1, the condition F∗H̄ε = ˜̄

Hε is
redundant. Similarly, one can define local equivalence of two (para-)CR structures at two points by
finding such a diffeomorphism in sufficiently small neighborhoods of those points.

Remark 2.7. Setting n = 1 in Definition 2.6, one obtains that a 3-dimensional para-CR structure
is given by a splitting C = D1 ⊕ D2 where D1 and D2 are rank one distributions. Furthermore, by
Definitions 2.1 it follows that a 2-dimensional (generalized) path geometry is defined by a contact
3-manifold whose contact distribution has a splitting into two line fields. Thus, the definition of
3-dimensional para-CR structures coincides with 2-dimensional path geometries. As a result, by our
discussion in § 2.1 one can describe a 3-dimensional para-CR structure as the point equivalence class
of a scalar 2nd order ODE, i.e. z′′ = F (x, z, z′). In the case of 3-dimensional CR structures, when
we want to give a parametric expression we will consider induced CR structures on hypersurfaces
N ⊂ C2. In this case, in some local coordinate system, one can describe N ⊂ C2 locally as a graph
ℑ(w) = G(z, z̄,ℜ(w)) where (w, z) are local coordinates for C2. Such parametric descriptions of CR
and para-CR structures will be used in § 3.2.

Restricting to 3-dimensional CR structures, the following theorem of Cartan gives a solution of the
equivalence problem in terms of a Cartan geometry. We refer the reader to [Jac90, Bry04, ČS09] for
more background on the geometry of CR structures.
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Theorem 2.8 (Cartan [Car32, Car33]). A 3-dimensional CR structure is a Cartan geometry (P →
N,φ) of type (SU(2, 1), P ) where P is the stabilizer of a null line in C3. Expressing the Cartan
connection as

(2.11) φ =





−φ0 − 1
3 iφ1 iθ iθ0

ω̄ 2
3 iφ1 −iθ̄

iω0 ω φ0 − 1
3 iφ1



 , ω = ω1 + iω2, θ = θ1 + iθ2.

which is su(2, 1)-valued with respect to the Hermitian form H in three variables

H(Z) = Z3Z̄1 − Z2Z̄2 + Z1Z̄3, Z = (Z1, Z2, Z3) ∈ C3,

the Cartan curvature is given by

(2.12) Φ = dφ+ φ∧ φ =





0 Rω0 ∧ ω i(Sω0 ∧ ω + S̄ω0 ∧ ω̄)
0 0 R̄ω0 ∧ ω̄
0 0 0



 , R = R1 + iR2, S = S1 + iS2.

for two complex-valued functions R and S on P. The structure function R is defined up to a complex
scale on N and its vanishing implies Φ = 0 and that the CR structure is locally equivalent to the
hyperquadric ℑ(w) = 1

4zz̄ in C2 where (z, w) are local coordinates on C2.

In some literature the structure function R is referred to as the fundamental invariant since it is
defined up to a scale on N and its vanishing implies flatness. Another choice of fundamental invariant
is given in Remark 2.10 which is invariantly defined on N. Note that the 3-dimensional hyperquadric
in C2, locally characterized by R = 0, is a graph of the compact quadric z0z̄2 − z1z̄1 + z2z̄0 = 0 in
CP2 where [z0 : z1 : z2] are homogeneous coordinates using which C2 is identified as [1: z1 : z2]. It can
be shown, e.g. see [Jac90, Section 2.2], that it is CR equivalent to the 3-sphere S3 ⊂ C2 given by
ww̄ + zz̄ = 1.

Cartan’s solution of the equivalence problem for 3-dimensional para-CR structures is as follows,
in which, using Remark 2.7, we denote a 3D para-CR structure by (N,D1,D2) for two line fields
D1,D2 ⊂ TN such that D1 ⊕ D2 is the contact distribution.

Theorem 2.9 (Cartan [Car24]). Given a 3D para-CR structure (N,D1,D2) it defines a Cartan
geometry (π : P → N,φ) of type (SL(3,R), P12) where P12 is the subgroup of upper diagonal matrices
and

(2.13) φ =







−φii θ2 θ0

ω1 φ11 θ1

ω0 ω2 φ22






.

in which D1 = π∗{ω0, ω2}⊥,D2 = π∗{ω0, ω1}⊥. The Cartan curvature is given by

(2.14) Φ = dφ+ φ∧ φ =





0 P1ω
0 ∧ ω1 P2ω

0 ∧ ω1 +Q2ω
0 ∧ ω2

0 0 Q1ω
0 ∧ ω2

0 0 0





for some functions P1, P2, Q1, Q2 on P. The structure functions P1 and Q1 are defined up to scales
on N whose vanishing implies Φ = 0 and that the para-CR structure is locally equivalent to the flat
model on the projectivized tangent bundle P(TP2) with its flat path geometry defined by the lift of
projective lines on P2, locally described by the scalar ODE z′′ = 0.

More explicitly, since by Remark 2.7 3D para-CR geometries correspond to point equivalence class
of scalar 2nd order ODEs, given a scalar ODE

z′′ = F (t, z, z′),

one obtains

P1 =
D2

dt2Fz′z′ − 4D
dtFzz′ − Fz′

D
dtFz′z′ + 4Fz′Fzz′ − 3FzFz′z′ + 6Fzz, Q1 = Fz′z′z′z′ .
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Remark 2.10. The fundamental invariant of a 3D CR structure can be represented asR = s∗(RR̄(ω0)4) ∈
Γ((C ⊥)4) for any section s : N → P. Unlike R, which is well-defined up to a scale, R is a well-defined
absolute invariant and its vanishing implies flatness of the CR structure. Similarly, in para-CR 3-
manifolds (N,D1,D2), one obtains that R = s∗(P1Q1(ω

0)4) is an absolute invariant. However, in
para-CR 3-manifolds the vanishing of R is necessary but not sufficient for flatness. More precisely,
if R = 0, then either P1 = 0 or Q1 = 0. If Q1 = 0, then Q2 = 0 and the 2-dimensional leaf
space M = N/D2 is equipped with a projective structure on M for which the absolute invariant
P = s∗(P1ω

1 + P2ω
0) ⊗ (s∗ω0 ∧ ω1) for any section s : M → P, constitute the only fundamental

invariant. Similarly, if P1 = 0, then P2 = 0 and the 2-dimensional leaf space T = N/D1 is equipped
with a projective structure for which Q = s∗(Q1ω

2 +Q2ω
0)⊗ (s∗ω0 ∧ ω2), for any section s : T → P,

is the only fundamental invariant. Thus, flatness of a 3D para-CR structure is equivalent to the
vanishing of the relative invariants P1 and Q1. Alternatively, it is equivalent to the vanishing of the
absolute invariant R, on N, and the subsequent vanishing of P and Q on M and T, respectively.

Lastly we recall the notion of orientability for path geometries, following [Bry97, Section 2]. In
dimension two a path geometry (N,D1,D2) is said to be oriented if the leaves of D1 and D2 can
be endowed with a continuous choice of orientation. This is equivalent to the existence of two
non-vanishing vector fields vi ∈ Γ(Di) on N. A 1-form α is called Di-positive if its pull-back to
each leaf of Di is positive with respect to a pre-assigned orientation. As a result, by the naturally
induced co-orientation on the contact distribution due to the relation dω0 ≡ ω1 ∧ ω2 mod {ω0},
having Di-positive 1-forms ω1 and ω2 determines an orientation on N. Since by definition the fibers
of N → M = N/D2 and N → T = N/D1 are connected, it is straightforward to show that an
oriented path geometry determines an orientation on the leaf spaces of D1 and D2. Similarly, one
can define oriented path geometries (Q,X ,V ) in higher dimensions by assigning a continuous choice
of orientation to the leaves of X and V which imply the existence of a nonvanishing vector field
spanning X and a nonvanishing section of

∧n(V ). As in the case of surfaces, via the multi-contact
structure, one obtains an orientation on the leaf space of the foliation induced by V .

3. Chains

In this section we review known facts about chains and derive necessary conditions for a 3-
dimensional path geometry to be defined by chains. We describe such path geometries in terms
of their corresponding point equivalence class of pairs of second order ODEs. In the last two subsec-
tions we prove Theorem 1.1.

3.1. Chains in dimension 3. In the description of a CR structure in terms of a Cartan geometry
(P → N,φ), as given in Theorem 2.8, consider the grading of su(2, 1) that corresponds to the parabolic
subgroup P, which is a contact grading, i.e.

su(2, 1) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where, in terms of (2.11), ω0 ∈ g−2, ω, ω̄ ∈ g−1, φ1, φ2 ∈ g0, θ, θ̄ ∈ g1, and θ0 ∈ g2. Now we can define
chains as follows.

Definition 3.1. Let (N,C , J) be a 3-dimensional CR structure with Cartan geometric data (P →
N,φ). Taking any element X ∈ g−2, a chain on N is a curve that is the projection of an integral
curve of the vector field φ−1(X) ∈ Γ(TP) via the projection τ : P → N.

In [ČŽ09] the path geometry of CR chains was studied using this Cartan geometric description,
which we recall briefly in the case of dimension three. Firstly, one starts by describing the set of
transverse directions to the contact distribution. Let S ⊂ P be the stabilizer of the line l ⊂ su(2, 1)
spanned by an element of g−2. It follows that s = g0 ⊕ g2 ⊂ p = g0 ⊕ g1 ⊕ g2 where s and p are the
Lie algebras of S and P, respectively. Moreover, it is straightforward to see that the P -orbit of l,
denoted as P · l ⊂ su(2, 1)/p, is the set of all lines in su(2, 1)/p that are not contained in g−1/p where
g−1 := g−1 ⊕ g0 ⊕ g1 ⊕ g2 and P ×P g−1/p is the contact distribution C ⊂ TN. Thus, the bundle of



Kryński and Makhmali 10

directions that are transverse to the contact distribution, i.e. Q := P(TN\C ), can be identified with
P/S := P ×P P/S. Viewing the Cartan connection φ ∈ Ω1(P, su(2, 1)) as a connection on Q, it gives

TQ ∼= P ×S (su(2, 1)/s).

Using the above identification, it follows that the induced path geometry (Q,X ,V ) is give by X =
ν∗(φ

−1(g−2)) and V = ν∗(φ
−1(g1)) where ν : P → Q is the projection.

The relation between CR structures and the path geometry of their chains is studied via the so-
called extension functor in [ČŽ09]. In the following proposition we state some necessary conditions
for the path geometry of chains via an appropriate reduction, avoiding the notion of an extension
functor.

Proposition 3.2. Given a CR structure (N,C , J) with corresponding Cartan geometry (P → N,φ),
let (Q,X ,V ) be the path geometry of its chains with corresponding Cartan geometry (G → Q,ψ).
Then, via the natural bundle map ι : P → G, one has

(3.1) ι∗ψ =













−φ0 −θ0 −θ2 θ1

ω0 φ0 ω2 −ω1

ω1 θ1 0 φ1

ω2 θ2 −φ1 0













,

where φ is given as (2.11). Moreover, it follows that the fundamental invariants restricted to P are
given by

(3.2) TP =
(

−R1(θ1)
2 +R1(θ2)

2 + 2R2θ1θ2
)

⊗ V ⊗X−2, CP = 3
(

(θ1)
2 + (θ2)

2
)2 ⊗ V ⊗X−1

where TP and CP are defined as (2.8) using sections ι ◦ s : Q → G and s : Q → P. Moreover the
2-form

(3.3) ρ = s∗(ω1 ∧ θ1 + ω2 ∧ θ2) ∈ Ω2(Q)

is well-defined and closed. The characteristic curves of ρ coincide with chains of the CR structure.

Proof. Using the fact that X = ν∗(φ
−1(g−2)) and V = ν∗(φ

−1(g1)), and the form of the Cartan
connection φ in (2.11), it is a matter of straightforward computation to show ι∗ψ and φ are related
as in (3.1). Using the Cartan curvature Φ in (2.12) and the definition of T and C, it is a matter of
straightforward to obtain (3.2). Lastly, it is elementary to show that ρ is invariant under the action of
the fibers P → Q and is closed using the structure equations (2.11). The characteristic curves of ρ are
defined as the integral curves of the line field l ⊂ TQ satisfying ly ρ = 0. Using the expression (3.3),
it follows that l = 〈 ∂

∂t∗ω0 〉, for any section t : Q→ P, which implies that l is the tangent direction to
chains. �

Now we consider 3D para-CR geometries. By Remark 2.7, they are defined in terms of a contact
3-manifold with the property that the contact distribution has a splitting. Similar to the case of CR
structures, para-CR structures are equipped with a set of distinguished curves called chains.

To define chains in this case, recall that the Lie algebra sl(3,R) in which, by Theorem 2.9, the
Cartan connection φ of a 3D para-CR geometry takes value has a contact grading

sl(3,R) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where g−2, g2 have rank 1 and g−1, g1, g0 have rank 2.
As a result the family of chains can be defined exactly as in Definition 3.1. Similarly, it can be shown

that chains of a 3D para-CR geometry (N,D1,D2) define a 3-dimensional path geometry (Q,X ,V )
where N = Q/V . The paths of the induced path geometry on N are defined for all directions that
are transverse to the contact distribution C = D1 ⊕ D2 ⊂ TN. In other words, the 5-manifold
Q = P(TN\C ) is foliated by the natural lift of chains. Now we state a proposition analogous to
Proposition 3.2 which gives necessary conditions for a 3D path geometry to arise from chains of a
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para-CR geometry via an appropriate reduction. We skip the proof as it is as straightforward as that
of Proposition 3.2.

Proposition 3.3. Given a 3D para-CR geometry (N,D1,D2) with corresponding Cartan geometry
(P → N,φ), let (Q,X ,V ) be the path geometry of its chains with corresponding Cartan geometry
(G → Q,ψ). Then, via the natural bundle map ι : P → G, one has

(3.4) ι∗ψ =













−φ22 − 1
2φ

1
1 θ0

1
2θ2

1
2θ1

ω0 φ22 +
1
2φ

1
1

1
2ω

2 −1
2ω

1

ω1 θ1
3
2φ

1
1 0

ω2 −θ2 0 −3
2φ

1
1













,

where φ is given as (2.13). Moreover, it follows that the fundamental invariants T and C restricted
to P are given by

(3.5) TP =
(

P1(θ1)
2 +Q1(θ2)

2
)

⊗ V ⊗X−2, CP = 6(θ1)
2(θ2)

2 ⊗ V ⊗X−1

where TP and CP are defined as (2.8) using sections ι ◦ s : Q → G and s : Q → P. Moreover the
2-form

(3.6) ρ = s∗(ω1 ∧ θ2 − ω2 ∧ θ1) ∈ Ω2(Q)

is well-defined and closed. The characteristic curves of ρ coincide with chains of the CR structure.

By Proposition 3.2 and Proposition 3.3 if a 3D path geometry arises from chains of a para-CR or
CR structure, then there is a distinguished coframe in which the torsion and curvature can be put in
the form (3.5) and (3.2), respectively.

Remark 3.4. The torsion TP , as expressed in Proposition 3.2 and 3.3, can be related to the absolute
invariant R, as defined in Remark 2.10, via R = s∗(∆TP

(ω0)4) for any section s : N → P, where
∆TP

is the discriminant of the quadratic polynomial given by TP .

Remark 3.5. In the language of [MS23], the 2-form ρ in Proposition 3.2 and Proposition 3.3 induces
a compatible quasi-symplectic structure on Q, i.e. ρ∧ ρ 6= 0 and dρ = 0 with the property that
the fibers of Q → N are isotropic and the tangent directions to the paths, 〈 ∂

∂ω0 〉, coincide with its
characteristic direction.

3.2. Corresponding pairs of 2nd order ODEs. In this section we use the fact that chains are
the characteristics of the 2-form ρ in Proposition 3.2 and Proposition 3.3 to associate a pair of second
order ODEs to their corresponding 3D path geometry. Using the derived ODEs, we give an explicit
description of the induced geometric structure on the space of chains for flat (para-)CR structures.

3.2.1. Derivation of ODEs. By Remark 2.7, a 3D para-CR geometry is locally given by the point
equivalence class of a scalar ODE y′′ = F (z, y, y′). As was discussed in § 2.1, the hypersurface E ⊂
J2(R,R) defined by the ODE, can be identified with J1(R,R). The contact distribution of J1(R,R)
thus inherits a splitting C = D1⊕D2 where D2 is the vertical tangent bundle to J1(R,R) → J0(R,R)
and D1 is the tangent direction to the solution curves of the ODE. Let (x, y) and (x, y, p) be local
coordinates for J0(R,R) and J1(R,R), respectively. A choice of adapted coframe on N for the path
geometry is given by

s∗ω0 = dy − pdx, s∗ω1 = dx, s∗ω2 = dp− F (x, y, p)dx,

where s : J1(R,R) → P is a section of the principal bundle of the 3D para-CR geometry. It is a matter
of standard calculation, e.g. see [Gar89], to find all the entries of s∗φ. In particular, one obtains

(3.7)
s∗θ1 =

1
6Fppp(dy − pdx),

s∗θ2 =
(

1
6

D
dx(pFpp)− 2

3
D
dxFp +

2
3Fxp + Fy

)

dx+ (23Fyp − 1
6

D
dxFpp)dy +

1
2Fppdp.
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where D
dx = ∂x + p∂y + F∂p is the total derivative (2.3). To introduce a coordinate system on

Q := P(TN\C ), which we identified with P/S in § 3.1, we shall first parametrize the fibers of P → N
which are the upper triangular matrices P12 ⊂ SL(3,R). Writing P12 = P0 ⋉ P+ where P0 is the
reductive subgroup, referred to as the structure group, and P+ is the nilpotent normal subgroup, one
obtains

P0 =







A ∈ SL(3,R) A =





1
a1a2

0 0

0 a1 0
0 0 a2











, P+ =







B ∈ SL(3,R) B =





1 b2
1
2b1b2 + b0

0 1 b1
0 0 1











Thus, the variables (x, y, p, a1, a2, b0, b1, b2) give a local coordinate system for P. By the discription
of S and that Q ∼= P/S, it follows that Q can be identified with the slice a1 = a2 = 1 and b0 = 0.

Now we lift the adapted coframe on N to Q. In order to do so, we recall the transformation of the
Cartan connection along the fibers of P → N to be

(3.8) φ(z) → φ(rgz) = g−1φ(z)g + g−1dg,

where z ∈ P and g ∈ P12. SinceQ is identified with a1 = a2 = 1, b0 = 0, then g can be written as g = B
where B ∈ P+ as parametrized above. Using the section t : Q→ P given by a1 = a2 = 0, b0 = 0, and
the expressions of s∗θ1 and s∗θ2, an adapted coframe on Q is given by

s∗ω0 → t∗ω0 = dy − pdx,

s∗ω1 → t∗ω1 = dx− b1(dy − pdx),

s∗ω2 → t∗ω2 = dp− F (x, y, p)dx− b2(dy − pdx),

s∗θ1 → t∗θ1 = db1 + z11dx+ z12dy + z13dp,

s∗θ2 → t∗θ2 = db2 + z21dx+ z22dy + z23dp,

for functions zij on Q determined via (3.8).
Now we can explicitly find the quasi-symplectic 2-form ρ on Q to be

(3.9)

ρ = t∗(ω1 ∧ θ2 − ω2 ∧ θ1)

= −dp∧ db1 − 1
6Fpppdp∧ dy + (b2b1 +

1
2Fpp + b1Fp − 1

6pFppp)dx∧ dp+ (b1p+ 1)dx∧ db2

+ (pb2 + F )dx∧ db1 + (−1
6Fxpp +

2
3Fyp + b1Fy − 1

6pFypp)dx∧ dy − b1dy ∧ db2 − b2dy ∧ db1

It is straightforward to find a characteristic vector field for ρ, i.e. X ∈ Γ(TQ) such that Xy ρ = 0. It

follows that X = 〈∂x + pb1+1
b1

∂y +
Fb1−b2

b1
∂p +B1∂b1 +B2∂b2〉 for two functions B1 and B2. In order to

get a pair of ODEs, we use coordinate manipulation to make X look like a total derivative (2.3). We
take x to be the independent variable of the pair of ODEs and introduce the following new variables

(3.10) Y = pb1+1
b1

, P = Fb1−b2
b1

.

Expressing ρ in the new coordinate system (x, y, p, Y, P ) to find a characteristic vector field X, one
obtains X = 〈∂x + Y ∂y + P∂p +G1∂Y +G2∂P 〉 for two functions G1, G2 on Q. Replacing Y with y′

and P with p′ in G1 and G2, the pair of second order ODEs that corresponds to the characteristic
curves of ρ is given by

(3.11)

y′′ =F + Fp∆+ 1
2Fpp∆

2 + 1
6Fppp∆

3

p′′ = 2
∆(p′ − F )2 + Fp(3p

′ − 2F ) + Fx + pFy +
(

Fpp(p
′ − F ) + 2Fy

)

∆

+ 1
6

(

Fppp(p
′ − 2F )− Fxpp + 4Fyp − pFypp)

)

∆2

where ∆ = y′ − p. In particular, the pair of second order ODEs for the chains of the flat 3D para-CR
geometry, which corresponds to F = 0 in (3.11), is given by

(3.12) y′′ = 0, p′′ =
2(p′)2

p− y′
.
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The pair of ODEs (3.11) was obtained in [BW22] via a different approach. It is known that chains
of a 3D para-CR geometry can be defined as the projection of null geodesics of the corresponding
Fefferman conformal structure which has signature (2,2). In [BW22] the authors used the lifted
coframe to derive the equation of null geodesics for the correponding Fefferman conformal structure
in order to parametrize the chains. The reason that the pair of ODEs obtained from either approaches
agree is due to that fact that a (para-)CR structure is, in particular, a symmetry reduction of its
corresponding Fefferman conformal structure by a null conformal Killing field. As is shown in [MS23],
in a symmetry reduction the null geodesics of the conformal structure define a variational orthopath
geometry on the leaf space of the infinitesimal symmetry. The paths of a variational orthopath
structure are characteristic curves of a quasi-symplectic structure. In our case the leaf space is
a (para-)CR manifold and the paths of the orthopath geometry are the chains since they are the
projection of the null geodesics of a Fefferman conformal structure. Thus, to express the system
of ODE for chains one can either express null geodesics and project them or directly compute the
characteristic curves of the orthopath geometry of chains.

Remark 3.6. Instead of x, one can take y or p as the independent variable when deriving a pair
of ODEs that corresponds to chains. This would result in a pair of ODEs that is point equivalent
to (3.11). Note that the pair of ODEs (3.12) has 8-dimensional algebra of infinitesimal symmetries
which is isomorphic to sl(3,R). It can be solved explicitly. Using the second ODE, y′ can be solved
algebraically. Substituting in the second ODE, one obtains the 3rd order ODE

(3.13) p′′′ =
3(p′′)2

2p′
,

which is one of the two submaximal 3rd order ODEs under point transformations [God08, Section
4.2]. This third order ODE is a re-expression of the vanishing of the Schwarzian derivative of p(x). Its
algebra of infinitesimal symmetries is o(2, 2) and has vanishing Wünschmann invariant and Cartan
invariant which implies that it induces a non-flat Einstein-Weyl structure on its solution space (see
[Tod00] for a discussion on Einstein-Weyl geometry and [Kry22] for the variational properties of
(3.13).) Since the Weyl 1-form is closed, such Einstein-Weyl structures locally define 3-dimensional
Lorentzian metrics up to homothety. In fact, they are the homothety class of the Lorentzian metric of
negative sectional curvature on SO(2, 2)/SO(2, 1) ∼= H2,1. Lastly, we point out that the relation above
between a pair of second order ODEs arising as chains and a scalar third order ODE remains valid if
the initial 3D para-CR geometry is defined by an ODE of the form y′′ = F (x, y′) i.e. if the 3D para-CR
geometry has an infinitesimal symmetry. Note that any infinitesimal symmetry of a CR structure is
almost everywhere transverse to the contact distribution. More precisely, if F = F (x, y′) then using
the second ODE in (3.11) one can find y′ as a function of x, p, p′, p′′. Subsequently, replacing in the
first ODE in (3.11) one obtains a third order ODE in p(x). This relation between a pair of second
order ODEs and a scalar third order ODE, also appears in [DW20, Section 6] using constructions that
are in general different from chains unless the 3D para-CR geometry is flat. Unlike the construction
in [DW20, Section 6], we do not expect that 3rd order ODEs obtained in this fashion from pairs of
ODEs defined by the chains of a non-flat scalar ODE y′′ = F (x, y′) to correspond to an Einstein-Weyl
structure.

Now we would like to derive the pair of 2nd order ODEs corresponding to chains of the 3D CR
structure induced on a hypersurfaces N ⊂ C2. Following Remark 2.7, we describe N ⊂ C2 as a graph
ℑ(w) = G(z, z̄,ℜ(w)) where (w, z) are local coordinates for C2. Changing to real coordinates, we
write z = x+ iy and w = p + iq. Then the graph is given by q = F (x, y, p). One obtains an adapted
coframe on N by noticing that the holomorphic contact directions are given by the Lewy operator
l = ∂z + B(x, y, p)∂w and should satisfy lyd(q − F (x, y, p)) = 0. Thus, by restricting to N, one has

B|N =
iFy−Fx

i+Fp
. As a result, since H = 〈l〉, it follows that an adapted coframe on N, corresponding
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to a section s : N → P, is given by

(3.14) s∗ω0 = 1
C

(

dp+ 2
FxFp−Fy

F 2
p+1

dx+ 2
FyFp+Fx

F 2
p+1

dy
)

, s∗ω1 = dx, s∗ω2 = −dy,

where

C =
(2FxFp−F 2

pFy−3Fy)Fxp+(2FyFp+F 2
pFx+3Fx)Fyp−2(F 2

x+F 2
y )Fpp−(F 2

p+1)(Fxx+Fyy)

(F 2
p+1)2 .

We refer the reader to [Jac90, Chapter 6] for more detail. Similar to the case of 3D para-CR ge-
ometries, one can find the explicit form of s∗θ1 and s∗θ2, however, unlike (3.7), the expressions are
extremely long and will not be provided here. Repeating what we did for 3D para-CR geometries,
one needs to lift the adapted coframe (3.14) on N to Q. As a result, knowing P = P0⋉P+, we restrict
to P0 = Id and we parametrize the nilpotent part, P+ ⊂ P as

P+ =







B ∈ SU(2, 1) B =





1 i(b1 + ib2)
1
2(b

2
1 + b22) + ib0

0 1 −i(b1 − ib2)
0 0 1











.

Since one has Q ∼= P/S, it follows that Q can be identified by setting P0 = Id and b0 = 0. Thus,
(x, y, p, b1, b2) give a local coordinate system on Q. Lifting s∗ωi’s, s∗θ1 and s

∗θ2 to Q via the prescribed
section t : Q → P can be carried out identically as in the para-CR case. This allows one to compute
the quasi-symplectic 2-form ρ = t∗(ω1 ∧ θ1+ω

2 ∧ θ2) and find its characteristic direction X = 〈X〉 by
solving Xy ρ = 0. To putX in the form of a total derivative one needs to carry out a change of variable
analogous to (3.10) although the expressions involved are much longer. This will consequently give
the desired pair of ODEs.

Since the resulting pair of ODEs for chains of a general CR manifold, locally given as q = F (x, y, p),
cannot be written here for an arbitrary F due to its length, we consider two simple cases. To describe
the flat CR structure on the 3-sphere S3 ⊂ C2 we use the fact that it is equivalent to the hyperquadric
Q3 ⊂ C2; see the discussion following Theorem 2.8. Thus, putting F (x, y, p) = 1

4 (x
2+y2), the resulting

pair of ODEs for its chains is found to be

(3.15) y′′ =
((y′)2 + 1)2

y′x+ p′ − y
, p′′ =

((y′)2 + 1)(p′y′ − yy′ − x)

y′x+ p′ − y

where x is taken as the independent variable. This pair of ODEs is torsion-free and has 8-dimensional
algebra of infinitesimal symmetries isomorphic to su(2, 1). Using the first ODE, p′ can be solved
algebraically. Substituting in the second ODE, one obtains the 3rd order ODE

(3.16) y′′′ =
3y′(y′′)2

1 + (y′)2
,

which, together with (3.13), are the only two submaximal 3rd order ODEs under point transformations
[God08, Section 4.2]. Its algebra of infinitesimal symmetries is o(3, 1) and has vanishingWünschmann
invariant and Cartan invariant, and, thus, induces a non-flat Einstein-Weyl structure on its solution
space. Since its Weyl 1-form is closed, it is locally determined by a Lorentzian metric up to homothety.
In fact, it is the homothety class of the Lorentzian metric of positive sectional curvature on SO(3, 1)/
SO(2, 1) ∼= S2,1.

More generally, it turns out that if the graph of a CR structure can be put in the form ℑ(w) =
G(z, z̄), i.e. the CR structure has an infinitesimal symmetry, then the same construction mentioned
in Remark 3.6 goes through. In other words, one can associate a third order ODE to the pair of
second order ODEs defined by the chains of CR structures with an infinitesimal symmetry. We do
not have an invariant description or characterization of this construction. Moreover, as in the case
of CR structures, any infinitesimal symmetry of a para-CR structure is almost everywhere transverse
to the contact distribution.

The pair of ODEs for the chains of a CR structure that is not locally equivalent to the flat model
becomes cumbersome to write. As an example, taking F (x, y, p) = 1

6y
3, the pair of ODEs for its
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chains are given by

y′′ = 16(y′)4y6+22(y′)2y6+12p′(y′)2y4−2(p′)2(y′)2y2+5y6+15p′y4−5(p′)2y2+(p′)3

16y5(p′−y2)
,

p′′ = (8(y′)2y4+15y4+10p′y2−(p′)2)y′

8y3
.

Following our discussion above on chains of CR structures with an infinitesimal symmetry and 3rd
order ODEs, in the above pair of ODEs p′ can be solved algebraically from the first ODE. Replacing
the expression for p′ into the second ODE gives a 3rd order ODE in y(x). It would be interesting to
give a geometrically invariant description of this correspondence.

Remark 3.7. The Lie algebras sl(3,R) and su(2, 1) are real forms of sl(3,C). Thus, over C flat para-
CR and CR structures are locally equivalent. As a result, the path geometry of their chains over C

are equivalent. In other words, the pairs of ODEs (3.15) and (3.12) define the same equivalence class
under complex-valued point transformations. To express the complex-valued point transformation
that relates these two pairs of ODEs, we denote the (x, y, p) variables in pair of ODEs (3.12) with
tildes. Then the point transformation on J0(C,C2) that sends the pair of ODEs (3.15) to (3.12) is

(3.17) (x̃, ỹ, p̃) = (x− iy, 12(x
2 + y2) + ip, x+ iy).

Moreover, using this point transformation the submaximal 3rd order ODEs (3.16) and (3.13) are also
equivalent over C. The point transformation that relates the submaximal 3rd order ODEs above was
found in [KT23, Remark 6.3] in the larger context of submaximal systems of 3rd order ODEs.

3.2.2. Space of chains. Now we would like to briefly describe the induced geometry on the space of
chains for the flat para-CR geometry on PTP2, or equivalently, the flat path geometry on P2. In § 3.1
chains were defined as the integral curves of φ−1(X) for any X ∈ g−2 and Q = P/S. Since for the flat
path geometry on P2 one has P = SL(3,R), the space of its chains is Z := Q/exp(g−2) ∼= SL(3,R)/
GL(2,R) which can be identified with P2 × (P2)∗\N, where N is the 3-manifold defined by pairs of
incident points (a, b) ∈ P2 × (P2)∗. The reader may see [BW22, Section 4.1] for more detail.

When the path geometry is flat there is a naturally induced self-dual para-Kähler-Einstein metric
on Z which has been thoroughly studied and is sometimes referred to as the para-Fubini-Study metric
or the dancing metric; see [DW20, BMN22]. Moreover, as can be seen in Proposition 3.2, the torsion
of 3D path geometries arising from chains of para-CR geometries is zero if and only if the para-CR
geometry is flat. Using the twistor correspondence between torsion-free 3D path geometries and self-
dual conformal structures [Gro00], it follows that Z carries a canonical conformal structure of neutral
signature if and only if the underlying para-CR geometry is flat.

In order to express the induced para-Kähler-Einstein metric on Z, we would like to use the pair of
ODEs (3.12) in the following way. Let (x, y, p) and (x, y, p, Y, P ) be a coordinate system on J0(R,R2)
and J1(R,R2) with x as the independent variable. Following [DFK15, KM21], the space of solutions
of the point equivalence class of a pair of 2nd order ODEs can be identified with a hypersurface
x = const. Given a pair of torsion-free 2nd order ODEs y′′ = F (x, y, p, y′, p′) and p′′ = G(x, y, p, y′, p′),
the induced conformal structure on its solutions space is given by [η1η4 − η2η3] where

(3.18) η1 = dY − 1
2(FY dy + FP dp), η2 = dP − 1

2(GY dy +GP dp), η3 = dy, η4 = dp,

pulled-back to x = const. Using the expressions above, setting y′ = Y and p′ = P in (3.12) and
adapting the coframe further to the para-complex structure, one obtains that an adapted coframe is
given by

(3.19) η1 = dY, η2 = 1
∆4 (−∆PdY +∆2dP −P 2dy+2∆Pdp), η3 = dy, η4 = 1

∆3 (−Pdy+∆dp)

where ∆ = Y −p. In this adapted coframe the pseudo-Riemannian Einstein metric and the symplectic
2-form for the para-Kähler-Einstein structure are η1η4 − η2η3 and η1 ∧ η4 + η2 ∧ η3. The integrable
rank 2 null distributions corresponding to the so-called para-holomorphic and anti-para-holomorphic
distributions are ker{η1, η3} and ker{η2, η4}.
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Similar to our discussion above on the para-Kähler-Einstein metric on the space of flat 3D para-
CR chains, the space of chains on the 3-sphere S3 ⊂ C2 is the homogeneous space SU(2, 1)/U(1, 1),
which can be identified with the complement of the a closed ball in CP2. As is clear from Proposition
3.2, the path geometry of chains of a CR structure is torsion-free if and only if the CR structure if
flat. The induced structure on the space of chains for the flat CR structure on S3 is the indefinite
Fubini-Study metric. Mimicking the derivation in of the coframe (3.19), an adapted coframe for this
Kähler-Einstein metric is given by

η1 = 1
∆dY − Y

∆2dP − Y (Y 2+3)
2∆2 dy+ (1+Y 2)2

2∆3 dp, η2 = 1
∆2 (dP − 3Y 2+1

2 dy), η3 = dy− Y
∆dp, η4 = 1

∆dp

where ∆ = P − y. With respect to this coframe, the pseudo-Riemannian Einstein metric and the
symplectic 2-form for the Kähler-Einstein structure are given by η1η4 − η2η3 and η1 ∧ η4 + η2 ∧ η3.
The holomorphic and anti-holomorphic sub-bundles of the complexified tangent bundle are ker{η1 +
iη2, η3 + iη4} and ker{η1 − iη2, η3 − iη4}, respectively.
3.3. Characterization of chains: para-CR 3-manifolds. In this section we present a way of
determining whether a 3D path geometry arises as the chains of a para-CR geometry. We first
note that by (3.5), a necessary condition for such 3D path geometries is that the curvature C has
two distinct real roots of multiplicity 2. We use the following proposition in order to describe our
characterization.

Proposition 3.8. Given a 3D path geometry (Q,X ,V ) with associated Cartan geometry (G → Q,ψ),
where ψ is given as (2.4), if the curvature C has 2 distinct real roots of multiplicity 2, then there is
a principal B-subbundle ι : GDr →֒ G, where B ⊂ GL(2,R) is the Borel subgroup, over which

ι∗W0 = ι∗W1 = ι∗W3 = ι∗W4 = 0, ι∗W2 = ±1,

and the components of ι∗ψ, as given in (2.4), satisfy

ι∗ψ1
2 ≡0 mod {ι∗α0, ι∗α2, ι∗β2},

ι∗ψ2
1 ≡0 mod {ι∗α0, ι∗α1, ι∗β1},

ι∗ψ2
2 ≡− ι∗ψ1

1 mod {ι∗α0, ι∗α1, ι∗α2, ι∗β1, ι∗β2}
ι∗ν1, ι

∗µ1, ι
∗ν2, ι

∗µ2 ≡0 mod {ι∗α0, ι∗α1, ι∗α2, ι∗β1, ι∗β2}.
The 2-form

(3.20) ρ = α1 ∧ β2 + α2 ∧ β1 ∈ Ω2(GDr)

defines an invariant 2-form on Q.

Proof. The proof is done via a standard application of Cartan’s reduction procedure in the following
way. Recall that a 3D path geometry is a Cartan geometry of type (PSL(4,R), P ) where P = P0⋉P+

is the stabilizer of a flag of a line inside a plane in R4, P0 = R∗ ×GL(2,R) is the reductive subgroup
of P, referred to as the structure group, and P+ is the nilpotent normal subgroup of P . As was
mentioned before, the curvature of a 3D path geometry, C, can be presented as the quartic (2.8)
with an induced GL(2,R)-action by the structure group. Parametrically, the structure group P0 is a
block-diagonal matrix expressed as

(3.21) P0 =

{

A ∈ PSL(4,R) A = diag( 1
a00 det(H) , a00,H),H =

(

a11 a12
a21 a22

)}

and one has

(3.22) P+ =







B ∈ PSL(4,R) B =





1 p0 p1 +
1
2p0q1 p2 +

1
2p0q2

0 1 q1 q2
02×1 02×1 Id2×2











.

Since it is assumed that C has two distinct real roots, using the action of GL(2,R), it is possible to
translate the real roots to 0 and ∞. More explicitly, for a choice of trivialization of G, let C(u) =
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Σ4
i=0

(

4

i

)

Wi(u)(β
1)4−i(β2)i be the curvature at u ∈ G. Using the right action of the fibers, for g ∈ P

and u ∈ G the equivariant transformation of the Cartan connection and Cartan curvature under the
gauge transformation implies

ψ(u) → ψ(rgu) = g−1ψ(u)g + g−1dg, Ψ(u) → Ψ(rgu) = g−1Ψ(u)g.

Consequently, using the group parameters in (3.21) and (3.22) to express g ∈ P , it is straightforward
to obtain

(3.23)
W0(g

−1u) =W0(u)a
4
11 + 4W1(u)a

3
11a21 + 6W2(u)a

2
11a

2
21 + 4W3(u)a11a

3
21 +W4(u)a

4
21,

W4(g
−1u) =W0(u)a

4
12 + 4W1(u)a

3
12a22 + 6W2(u)a

2
12a

2
22 + 4W3(u)a12a

3
22 +W4(u)a

4
22.

Take g ∈ P such that a11 = a22 = 1. Since C(u) has two distinct real roots, by (3.23), group
parameters a12 and a21 can be chosen so that at w = g−1u ∈ G one has W0(w) = W4(w) = 0. Since
both roots have multiplicity two and are distinct, it follows thatW1(w) =W3(w) = 0 andW2(w) 6= 0.

As a result, one can define a sub-bundle ι1 : G(1) →֒ G characterized by

(3.24) G(1) = {u ∈ G W0(u) =W1(u) =W3(u) =W4(u) = 0} .
By our discussion above, the bundle G(1) → Q is a principal P (1)-bundle where P (1) = (R∗)3 ⋉ P+

and (R∗)3 ⊂ P0 is the Cartan subgroup, given by setting a12 = a21 = 0 in (3.21). As a result, one
obtains that ι∗1C = 6W2(β

1)2(β2)2, where by abuse of notation we have suppressed ι∗1 on the right

hand side. Moreover, the pull-back of the Bianchi identities for dW3 and dW1, given in (2.10), to G(1)

gives ι∗1ψ
2
1 ≡ 0 and ι∗1ψ

1
2 ≡ 0 modulo {ι∗1α0, ι∗1α

1, ι∗1α
2, ι∗1β

1, ι∗1β
2}. Suppressing ι∗1, one can write

(3.25) ψ1
2 = A1

2iα
i +B1

2aβ
a, ψ2

1 = A2
1iα

i +B2
1aβ

a,

for some functions Aa
bi and B

a
bc on G(1).

Since the curvature C has to have two distinct real roots, it follows that W2 6= 0 on G(1). The
action of P (1) on W2 is given by

(3.26) W2(g
−1u) = a211a

2
22W2(u).

Thus, depending on the sign of W2, one can normalize it to ±1. From now on we assume W2 > 0
since the case W2 < 0 can be treated identically. See Remark 3.13 for the difference of outcome in
these two cases. Define a sub-bundle ι2 : G(2) →֒ G(1) as

(3.27) G(2) =
{

u ∈ G(1) W2(u) = 1
}

.

It follows that G(2) → Q is a principal P (2)-bundle where P (2) = (R∗)2 ⋉ P+ and (R∗)2 ⊂ P0 is given

by a12 = a21 = 0 and a22 = 1/a11 in (3.21). Using the Bianchi identities (2.10), via pull-back to G(2),
one obtains

(3.28) ψ2
2 = −ψ1

1 +A2
2iα

i +B2
2aβ

a

for functions A2
2i and B

2
2a on G(2).

The pull-back of the Cartan connection ψ to G(1) and G(2) is no longer equivariant under the
action of the fibers P (1) and P (2), respectively. Nevertheless, the pull-back of ψ to them defines a
trivialization of the tangent bundle TG(2), i.e. a so-called {e}-structure. It is straightforward to find
the action of the fibers on the quantities Aa

bk and Ba
bc. In particular, using the parametrization in

(3.22), an action by g ∈ P (2) gives

(3.29)

B1
21(g

−1u) = 1
a11a00

B1
21(u) + q2

B2
12(g

−1u) =a11
a00
B2

12(u) + q1

A1
21(g

−1u) =
a2
00

a2
11

q1A
1
20(u) +

a00
a11
A1

21(u)− 1
a11a00

p0B
1
21(u)− 1

2p0q2 + p2

A2
12(g

−1u) =a200a
2
11q2A

2
10(u) + a00a11A

2
12(u)− a11

a00
p0B

2
12(u)− 1

2p0q1 + p1
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Infinitesimally, these actions correspond to Bianchi identities

(3.30)

dB1
21 ≡− (ψ0

0 + ψ1
1)B

1
21 + ν2

dB2
12 ≡− (ψ0

0 − ψ1
1)B

2
12 + ν1

dA1
21 ≡ν1A1

20 + (ψ0
0 − ψ1

1)A
1
21 −B1

21µ0 + µ2

dA2
12 ≡ν2A2

10 + (ψ0
0 + ψ1

1)A
2
12 −B2

12µ0 + µ1

modulo {α0, α1, α2, β1, β2}. As a result, the sub-bundle ι3 : G(3) →֒ G(2) given by

(3.31) G(3) = {u ∈ G(2) B1
21(u) = B2

12(u) = A1
21(u) = A2

12(u) = 0}
is well-defined as a principal B-bundle where B ∼= (R∗)2 ⋉ R ⊂ GL(2,R) is the Borel subgroup. In
terms of parametrizations (3.21) and (3.22) for P = P0 ⋉ P+, one can express B ⊂ P as a22 = 1/a11
and a12 = a21 = p1 = p2 = q1 = q2 = 0.

In the differential relations (3.30), the pull-back for the first two equations to G(3) imply ν1, ν2
vanish mod {αi, βa}. Consequently, the last two relations imply µ1 and µ2 vanish mod {αi, βa}. The
reduction of µ1, µ2, ν1, ν2 on G(3), together with the pull-back of (3.25) and (3.28) to G(3) finishes the

proof of the first part, where ι := ι1 ◦ ι2 ◦ ι3 and GDr := G(3).
Lastly, one can check that ρ in (3.37) is well-defined on GDr and is invariant under the action of

the fibers of GDr → Q. Thus, it defines an invariant 2-form on Q. �

Remark 3.9. A basic invariant of a binary quartic, such as the curvature C, acted on by GL(2,R), is
its root type. Motivated by the Petrov classification of the self-dual and anti-self-dual Weyl curvature
of a Lorentzian conformal structure, one finds 10 possible algebraic types for the quartic C in our
setting depending on the multiplicity and reality of the root. Motivated by the symbols used for
Petrov types, when a quartic has two distinct real roots of multiplicity two its algebraic type is
denoted by Dr, hence we denote the reduced 8-dimensional bundle in this case by GDr .

Remark 3.10. In the proof of Proposition 3.8 it was not necessary to know the explicit group actions
as given in (3.23), (3.26), and (3.29). We provided the explicit form in order to clarify the reduction
procedure. In order to carry out such reductions it suffices to have the infinitesimal form of the group
action on invariants which, as mentioned above, on G and G(2) are given by the Bianchi identities
(2.10), and (3.29), respectively. We refer the reader to [Gar89] for a discussion on the relation
between explicit group action and its infinitesimal form and also for the notion of an {e}-structure
in the context of Cartan’s method of equivalence, which appeared in the proof above.

Before proving the main theorem in the para-CR case, we prove the following intermediate theorem
which identifies a natural class of 3D path geometries that contains chains as a proper subclass.

Theorem 3.11. Let (G → Q,ψ) be the Cartan geometry associated with a 3D path geometry
(Q,X ,V ) satisfying the following conditions:

(1) The quartic C has two distinct real roots of multiplicity 2.
(2) The invariantly defined 2-form ρ = α1 ∧ β2+α2 ∧ β1 ∈ Ω2(Q) from Proposition 3.8 is closed.

Then the Pfaffian systems I2 := {α0, α1} and I1 = {α0, α2} are integrable and the 3D leaf space of
{α0, α1, α2}, denoted by N, is equipped with a para-CR structure. The projection of each path on Q to
N is transverse to the contact distribution kerα0 ⊂ TN. The invariants P1 and Q1 of such para-CR
geometries (N,D1,D2) depend on the 4th jet of torsion entries A0 and A2 of the 3D path geometry,
respectively.

Proof. By Proposition 3.8, from condition (1) one obtains a sub-bundle ι : GDr →֒ G which is a
principal B-bundle GDr → Q.

By Proposition 3.8, the condition dρ = 0 is invariant and implies the vanishing conditions

A1 = A1
20 = A2

10 = A2
20 = A2

21 = A2
22 = B2

21 = B2
22 = 0,
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for the functions Ai
jk and Ba

bi on GDr defined in (3.25) and (3.28). In particular, by (3.28), one has

ψ2
2 = −ψ1

1. Checking the differential consequences of this vanishing condition is a matter of tedious
computation which yields

(3.32)
ψ1
2 = 0, ψ2

1 = 0, ψ2
2 = −ψ1

1 , ν1 =
1
2α

2, ν2 = −1
2α

1,

µ1 = −1
2β

2 − 1
4A0;22α

2 − 1
4A0;2α

0, µ2 =
1
2β

1 + 1
4A2;11α

1 + 1
4A2;1α

0.

where the pull-back ι∗ is suppressed. We refer the reader to § 1.2 for the definition of some of the
coefficients appearing in (3.32), i.e. first and second coframe derivatives of A0 and A2. Note that the
relations A0;22 = −A2;11 and A0;21 = A2;21 = 0 follow from dρ = 0.

Using the relations (3.32) to compute the Cartan curvature Ψ for the 3D path geometry on GDr ,
it follows that on GDr one has

(3.33)

dα0 =− 2ψ0
0 ∧ α0 + α1 ∧ α2,

dα1 =(−ψ0
0 − ψ1

1)∧ α1 − β1 ∧ α0,

dα2 =(−ψ0
0 + ψ1

1)∧ α2 − β2 ∧ α0.

Thus, the Pfaffian systems I2 := {α0, α1} and I1 := {α0, α2} are integrable. Moreover, by (3.33),
the leaf space of {α0, α1, α2} denoted by N, defines a 3D para-CR geometry on M with contact
distribution kerα0 = D1 ⊕ D2 where D1 := ker I1 = 〈 ∂

∂α1 〉 and D2 := ker I2 = 〈 ∂
∂α2 〉. Furthermore,

using the quotient map ν : Q → N, it is clear that the tangent line to paths on Q, i.e. 〈 ∂
∂α0 〉, are

mapped to lines that are transverse to the contact distribution via ν∗.
More precisely, it follows that the Cartan geometry for the 3D para-CR geometry on N is given

by (GDr → N,φ) where

(3.34) φ =





1
6A0;22α

0 − ψ0
0 − 1

3ψ
1
1 B20α

0 − β2 µ0 +B0iα
i

α1 − 1
12A0;22α

0 + 2
3ψ

1
1 B10α

0 +B11α
1 + β1

α0 α2 − 1
12A0;22α

0 + ψ0
0 − 1

3ψ
1
1





in which

B10 =
7
36A2;112 − 1

9A2;121, B11 = −1
4A0;22, B20 =

7
36A0;221 − 1

9A0;212,

B02 =
5
36A2;112 +

1
36A2;121, B01 =

1
36A0;212 − 1

9A0;221, B00 =
7
36A0;2212 − 1

9A0;2122.

Consequently, the invariants P1 and Q1 for such path geometries are given by

(3.35) P1 =
7
36A0;2211 − 1

9A0;2121 +A0, Q1 =
7
36A2;1122 − 1

9A2;1212 +A2

�

Remark 3.12. The 3D path geometry obtained in Theorem 3.11 is an example of variational orthopath
structures defined in [MS23]. This is due to the fact that in the path geometry (Q,X ,V ) the
conformal class of the bundle metric [s∗β1 ◦ s∗β2] ⊂ Sym2(V ∗) is well-defined for any section s : Q →
GDr and the 2-form ρ is a compatible quasi-symplectic 2-form, i.e. ρ∧ ρ 6= 0,dρ = 0, the paths are
characteristic curves of ρ, and the fibers of Q → N are isotropic. It is shown in [MS23] that the
paths of such structures are the extremal curves of a class of non-degenerate first order Lagrangians.
Using Cartan-Kähler analysis, one can find the local generality of real analytic 3D path geometries
satisfying the conditions in Theorem 3.11. It turns out that their local generality is 3 functions of 3
variables.

Remark 3.13. The sign of W2 determines the orientation induced on the 3D para-CR geometry
(N,D1,D2) from the 3D path geometry (Q,X ,V ) where Di = τ∗〈 ∂

∂αi 〉. More precisely, before

normalizing W2 to ±1, one has dα0 ≡ W2α
1 ∧ α2 mod {α0}. Thus, when W2 > 0 it follows that α1

and α2 are D1-positive and D2-positive, respectively, and α
0 is positive with respect to the induced

co-orientation on the contact distribution C = D1 ⊕D2, as we recalled at the end of § 2.2. Similarly,
it follows that when W2 < 0 then dα0 in (3.33) changes to dα0 ≡ −α1 ∧ α2 modulo {α0}. Thus,
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the descent from the 3D path geometry to the 3D para-CR geometry, as described above, induces
a negative co-orientation. In [ČŽ09, Corollary 4.4] the relation between the sign of W2 and the
orientation induced on the 3D para-CR geometry is described by the fact that chain preserving contact
diffeomorphisms induce an automorphism or an anti-automorphism of the underlying structure, which
in our case is either a 3D para-CR or CR structure.

Note that by (3.35), 3D path geometries in Theorem 3.11 do not satisfy the necessary condition
(3.5) relating the torsion entries of the 3D path geometry to P1 and Q1. It turns out that adding
this necessary condition to conditions (1) and (2) in Theorem 3.11 is also sufficient for a 3D path
geometry to arise as chains of a para-CR geometry.

Proof of Theorem 1.1: the para-CR case. As was discussed in § 3.1, conditions (1) and (2) are neces-
sary conditions for a 3D path geometry to arise as chains. Furthermore, if the initial path geometry
corresponds to the chains of the resulting para-CR structure then by Proposition 3.3 the necessary
condition (3.5) has to hold on GD := GDr as well which implies that, restricted to GD, the torsion
entries A0 and A2 need to be well-defined up to scale on N, i.e.

dA0,dA2 ≡ 0 mod {α0, α1, α2, ψ0
0 , ψ

1
1}.

Using (3.32) and (3.34), condition (3) implies

ι∗ψ =













−ψ0
0 µ0 −1

2β
2 1

2β
1

α0 ψ0
0

1
2α

2 −1
2α

1

α1 β1 ψ1
1 0

α2 β2 0 −ψ1
1













, φ =







−ψ0
0 − 1

3ψ
1
1 −β2 µ0

α1 2
3ψ

1
1 β1

α0 α2 ψ0
0 − 1

3ψ
1
1






.

where (GD → N,φ) is the Cartan geometry for the 3D para-CR geometry induced by ι∗ψ and, by
(3.35), it follows that the invariants P1 and Q1 are ι∗A0 and ι∗A2, respectively. We recall that, as
was explained in § 1.2, in our notation condition (3) can be expressed as A0;2 = A2;1 = 0. This is
due to the fact that conditions A0;1 = A2;2 = 0 already follow from conditions (1) and (2) and are
satisfied for 3D path geometries in Theorem 3.11.

Furthermore, the resulting Cartan connection φ uniquely determines ι∗ψ which coincides with
what is obtained via the extension functor from chains of the 3D para-CR geometry (GD → N,φ) as
discussed in § 3.1. Thus, conditions (1),(2),(3) provide necessary and sufficient conditions for a 3D
path geometry to arise as chains of a 3D para-CR geometry. �

Remark 3.14. Given a pair of second order ODEs, checking conditions (1),(2) and (3) only involves
finding roots of a quartic, linear algebra and differentiation and can be verified straightforwardly.
Note that the line fields spanned by the vector fields ∂

∂α1 ,
∂

∂α2

∂
∂β1 ,

∂
∂β2 are well-defined on GDr and,

therefore, condition (3) is easy to verify. Equivalently, using Remark 3.4, condition (3) can be given
as expressing the absolute CR invariant R in terms of ∆TP

and checking that it is invariant with
respect to the action of B, i.e. the fibers of GD → N. Also, in the proof above we changed the
subscript Dr, which reflects the root type according to Remark 3.9, to D so that it is consistent with
the statement of Theorem 1.1.

Lastly, we point out that the curvature of path geometries in dimensions larger than 3 cannot be
represented as a binary polynomial. Nevertheless, one can find a replacement for condition (1) in
Theorem 1.1 for the curvature of path geometries defined by chains of higher dimensional (para-)CR
structures. However, condition (3) is never true for chains of non-flat (para-)CR structures in higher
dimensions.

3.4. Characterization of chains: CR 3-manifolds. In this section we use the same strategy as
in the previous section to characterize the path geometry of CR chains in dimension three. We start
by an analogue of Proposition 3.8 in the CR setting.
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Proposition 3.15. Given a 3D path geometry (Q,X ,V ) with associated Cartan geometry (G →
Q,ψ), where ψ is given as (2.4), if the curvature C has a non-real complex root of multiplicity 2, then
there is a principal B-subbundle ι : GDc →֒ G, where B ⊂ U(1, 1) is the Borel subgroup, over which

ι∗W1 = ι∗W3 = 0, ι∗W2 =
1
3 ι

∗W0 =
1
3 ι

∗W4 = ±1,

and the components of ι∗ψ, as given in (2.4), satisfy

(3.36)

ι∗ψ2
1 ≡− ι∗ψ1

2 mod {ι∗α0, ι∗α1, ι∗α2, ι∗β1, ι∗β2},
ι∗ψ1

1 ≡0 mod {ι∗α0, ι∗α2, ι∗β2},
ι∗ψ2

2 ≡0 mod {ι∗α0, ι∗α1, ι∗β1},
ι∗ν1, ι

∗µ1, ι
∗ν2, ι

∗µ2 ≡0 mod {ι∗α0, ι∗α1, ι∗α2, ι∗β1, ι∗β2}.
The 2-form

(3.37) ρ = α1 ∧ β1 + α2 ∧ β2 ∈ Ω2(GDc)

defines an invariant 2-form on Q.

Proof. Since the proof is similar to that of Proposition 3.8, we only highlight the differences. Since
the binary quartic C (2.8) has a non-real complex root of multiplicity two, it can be put in the form

C = (A(β1)2 + 2Bβ1β2 + C(β2)2)2 ⊗ V ⊗X−1,

where B2 − AC < 0 for some functions A,B,C on G. Relating A,B,C to Wi’s and using the
parametrization of P0 in (3.21), one can obtain the induced group action on A− C and B to be

A(u)− C(u) → A(rgu)− C(rgu) = Aa211 −Aa212 + 2Ba11a21 − 2Ba12a22 + Ca221 − Ca222,

B(u) → B(rgu) = Aa11a12 +Ba11a22 +Ba12a21 + Ca21a22.

Using the above relations, it is straightforward to find a set of group parameters at which A−C and
B vanish. For instance, since with respect to the initial coframe the condition AC > 0 has to hold in

order for B2−AC < 0 to be satisfied, for the real-valued parameters a21 = a22 = 1, a11 = −B+
√
AC−B2

A

and a12 = −B−
√
AC−B2

A
, one obtains that A−C and B vanish. Note that for such values det(aij) 6= 0

remains valid. Thus, one can always find a choice of coframe with respect to which A(rgu) = C(rgu)
and B(rgu) = 0, which gives W1(rgu) = W3(rgu) = 0 and W0(rgu) = W4(rgu) = 3W2(rgu). As a
result, if a 3D path geometry has a non-real complex root of multiplicity two, then one can define a
sub-bundle ι1 : G(1) →֒ G characterized by

G(1) = {u ∈ G W1(u) =W3(u) = 0,W0(u) =W4(u) = 3W2(u)} .
By our discussion above, G(1) → Q is a principal P (1)-bundle where P (1) = (R∗×CO(2))⋉P+. More
explicitly, using the group action relations above, the stabilizer of B = 0, A− C = 0 is given by

A(a11a12 + a21a22) = 0, A(a211 − a212 + a221 − a222) = 0,

which as a subgroup of the structure group is R∗×CO(2) ⊂ P0. Thus, we can write a11 = a22 = a cos(b)

and a12 = −a21 = a sin(b). Similarly to Proposition 3.8, the action of P (1) on W2 is given by

W2(u) →W2(rgu) = a4W2(u).

Hence we can define a sub-bundle ι2 : G(2) →֒ G(1) defined as G(2) := {u ∈ G(1) W2(u) = ±1}, as
we did in (3.27), which in this case is a principal P (2)-bundle where P (2) = (R∗ × SO(2)) ⋉ P+. We
assume W2 > 0, and refer to Remark 3.13 when W2 < 0. Pulling-back the Bianchi identities (2.10)

to G(2), it follows that the reduced entries of ψ in (2.4) are

ι∗12ψ
1
2 + ι∗12ψ

2
1 , ι

∗
12ψ

1
1, ι

∗
12ψ

2
2 ≡ 0 mod ι∗12{α0, α1, α2, β1, β2},

where ι12 = ι1 ◦ ι2 : G(2) →֒ G. For the third reduction, we proceed similarly to Proposition 3.8, by

considering the induced action of P (2) on A1
11, B

1
11, A

2
22 and B2

22 where ι∗12ψ
j
k = Aj

kiα
i + Bj

kaβ
a. It
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is straightforward to follow the analogous step in the proof of Proposition 3.8 and show that the
sub-bundle ι3 : G(3) → G(2) defined as

G(3) =
{

u ∈ G(2) A1
11(u) = A2

22(u) = B1
11(u) = B2

22(u) = 0
}

,

is a principal B-bundle where B ⊂ U(1, 1) is the Borel subgroup. Consequently, via pull-back by ι∗

where ι := ι1 ◦ ι2 ◦ ι3 : G(3) → G, the relations (3.36) can be similarly shown to hold on GDc := G(3).
Checking that the 2-form ρ is invariant under the action ofB is also straightforward and is skipped. �

Similar to the notation GDr explained in Remark 3.9, the subscript Dc for the principal bundle GDc

denotes the assumption that the quartic C has a repeated non-real complex root of multiplicity two.
One can prove a statement similar to Theorem 3.11 by modifying conditions (1) and (2) to the

setting of Proposition 3.15, e.g. a non-real complex root of multiplicity two . We leave that to the
interested reader and directly prove Theorem 1.1 when C has a non-real complex root of multiplicity
two.

Proof of Theorem 1.1: the CR case. Using Proposition 3.15, the proof whenC has a non-real complex
root of multiplicity two is almost identical to the one given in § 3.3 wherein C has two real roots.
Following the same steps as in the para-CR case, one needs to find the vanishing quantities in the {e}-
structure on GD := GDc in Proposition 3.15 that result from dρ = 0 together with their differential
consequences. Consequently, using the inclusion ι : GD →֒ G, it follows that the 3D leaf space of
{α0, α1, α2}, i.e. N = Q/V , is equipped with a CR structure (GD → N,φ). However, as in Theorem
3.11, in general the torsion of the path geometry TGD

and the fundamental invariant of the resulting
CR structure R = R1 + iR2 are not related as in Proposition (3.2), or, equivalently, as in Remark
3.4. As in the para-CR case, this necessary condition between TGD

and R is satisfied if and only if
the coefficients of TGD

have no dependency on the fibers of GD → N. Conversely, using Proposition
3.2, one knows that chains of any 3D CR geometry defines such path geometries. �

Remark 3.16. In [Gra87, ČG10] characterizations for conformal structures arising from Fefferman’s
construction [Fef76] for CR structures were given. The null geodesics of such conformal structures
project to chains of the underlying CR structures. As mentioned in Remark 3.14, unlike these
characterizations, our characterization of the path geometry of chains are computationally verifiable
and only holds in dimension three.
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[Car32] E. Cartan. Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II.

Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1(4):333–354, 1932. 8



A characterization of chains in dimension three 23
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