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We derive optimal estimators for the two-, three-, and four-point correlators of statistically isotropic
scalar fields defined on the sphere, such as the Cosmic Microwave Background temperature fluctu-
ations, allowing for arbitrary (linear) masking and inpainting schemes. In each case, we give the
optimal unwindowed estimator (obtained via a maximum-likelihood prescription, with an associated
Fisher deconvolution matrix), and an idealized form, and pay close attention to their efficient
computation. For the trispectrum, we include both parity-even and parity-odd contributions, as
allowed by symmetry. The estimators can include arbitrary weighting of the data (and remain
unbiased), but are shown to be optimal in the limit of inverse-covariance weighting and Gaussian
statistics. The normalization of the estimators is computed via Monte Carlo methods, with the
rate-limiting steps (involving spherical harmonic transforms) scaling linearly with the number of
bins. An accompanying code package, PolyBin, implements these estimators in python, and we
demonstrate the estimators’ efficacy via a suite of validation tests.

I. INTRODUCTION

From statistical chemistry to cosmology, the physical sciences abound with examples of random fields. In many
instances, the particular realization of the field (i.e. its microstate) is not of physical relevance but the distribution
from which it is drawn (i.e. its macrostate) contains valuable information. For example, the precise positions of atoms
in a solid are rarely of use, but their distribution encodes the physical properties of the material; likewise, whilst we
care not about individual galaxy positions, their ensemble statistics can teach us about the primordial Universe. To
understand such systems, we therefore require robust ways of characterizing the statistical properties of random fields.
Perhaps the most well-known statistics are the correlation functions. These encode the correlations between the

(continuous or discrete) field at different points in space, and, if the system is sufficiently large, can be estimated via
spatial averaging. Mathematically, an N -point correlator of some field a takes the form [e.g. 1]

ζ(N)(x1, . . . ,xN ) = ⟨a(x1) · · · a(xN )⟩ , (1)

where {xi} are some positions of relevance, and ⟨ · ⟩ represents an ensemble average over realizations of a. The simplest
statistic is the two-point function (or, in Fourier-space, the power spectrum); this has been used to characterize
phenomena as diverse as cell biology, quantum chemistry, and astrophysics. Though this is sufficient for some
applications, the rich phenomenology of nature often leads us to consider also the higher-order correlators [e.g., 2–8].
In this work, we will focus on random fields defined on the two-sphere. We will further specialize to statistically

isotropic phenomena, i.e. those whose correlators are invariant under global rotations. Such fields can be conveniently
described by working in a spherical harmonic basis: efficient measurement of the harmonic-space correlators, or
polyspectra, will be the subject of the next thirty pages. Geophysics and cosmology provide a number of examples
of statistically isotropic fields: for example, the set of galaxies at some fixed distance from Earth naturally lies on a
spherical shell, and, by the Copernican principle, there are no special directions on large scales [e.g., 9, 10]. In the
cosmological case, polyspectra with N > 2 are of particular relevance, since they are predicted to vanish in the simplest
models of inflation (barring a number of secondary effects arising at late times) [11, 12], thus we will focus primarily
on the extraterrestrial case in this work. By measuring the cosmic bispectrum, trispectrum, and beyond, we can thus
probe primordial physics, which operates at energy scales vastly in excess of those encountered on Earth.

Measuring correlators beyond the power spectrum is, in general, a difficult task, with näıve estimation of an N -point
correlator scaling exponentially with N . For this reason, most cosmological analyses have opted not to measure the
full statistic, but to constrain a small number of parameters, corresponding to the amplitudes of specific physical
templates [e.g., 13–21]. Whilst this is useful for some studies, it does not facilitate general exploration of the statistic,
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nor probing physical effects whose forms are not a priori known [e.g., 22]. To this end, it is useful to also measure the
full spectra, projected onto some set of ℓ-space bins [e.g., 23, 24], or via some modal decomposition (which parametrize
the space using smooth mode functions rather than discrete bins) [e.g., 25–30].
A second complication arises from observational effects. Usually, one cannot measure the field at all points on the

sphere, thus the observed field is modulated by some mask (also known as a window function), W , depending on the
galactic plane, experimental limitations, bright stars, noise-dominated regions, et cetera. Conventional polyspectrum
estimators measure the correlators (known as pseudo-spectra) of the masked field W a rather than the true correlators
of a, which complicates their interpretation, particularly given that W is rarely isotropic. To robustly compare
measurement and model, one must either deconvolve the measurement (also taking into account spatially-varying
noise), or convolve the theory [e.g., 31, 32]. Both of these are complex for statistics beyond the power spectrum [e.g.,
30], leading to a number of analyses ignoring the window effects, with potentially dangerous consequences.

The above discussion motivates the development of robust and efficient estimators for binned polyspectra on the
two-sphere. To this end, we will build on a variety of tools developed throughout the last thirty years. First, efficient
estimation of (windowed) polyspectra has been considered in a number of works, including [e.g., 31–35] for the power
spectrum, [13, 14, 16, 19, 22–25, 30, 36–39] for the bispectrum and [26–29, 40–47] for the trispectrum, primarily for the
amplitudes of specific separable shapes. Other works have considered modal approaches to measuring the bispectrum
(often for the purpose of estimating specific non-separable templates) and higher-order statistics, and some works
have considered binned polyspectra directly [e.g., 22, 37]. Here, we opt to use bins rather than modal decompositions
for general interpretability (given that we are not concerned with individual models); the latter may provide a more
efficient compressed basis in practice however, though we caution that the various modes are not independent, even in
ideal scenarios, and, furthermore, it may be non-trivial to project the theory models onto the relevant basis.

Self-consistent treatment of the mask in higher-order polyspectra is a novel feature of this work: to achieve this, we
will use maximum-likelihood prescriptions, whereupon one first writes down the likelihood for the observed field (which
depends both on W and the statistical properties of a), then maximizes analytically to find an optimal estimator
for the statistic of interest. Such estimators are unbiased (i.e. their mean is not affected by the window) and avoid
the need to include the mask in the theory model. This approach has been previously considered for the power
spectrum [32, 48–53], as well as the two- and three-point statistics of three-dimensional fields [33, 54–58], but, to our
knowledge, ours is the first such treatment for higher-order spectra on the sphere. In this work, we will pay particular
attention to trispectra, which have been rarely measured directly. Unlike the lower-order correlators, these can be
decomposed into two pieces, which are even and odd under parity transformations: the latter has not been previously
measured in two-dimensional cosmology, and, in our accompanying work [59], we will use it to test the recent claims
of parity-violation in large scale structure [60–63]. Finally, we release public code alongside this manuscript which
implements all the above estimators (both in full generality, and a simplified form); we envisage that this will facilitate
robust analysis of general higher-order correlators in cosmology and beyond.

The remainder of this work is as follows. In §II we set out our definitions for the binned polyspectra, before giving
a general discussion of ideal estimators in §III. In §IV,V&VI, we derive estimators for the binned power spectrum,
bispectrum, and trispectrum, giving both the idealized form and the optimal unwindowed estimator in each case.
Finally, we verify the estimators numerically in §VII before concluding in §VIII. To guide the reader through this
(necessarily dense) paper, we indicate key equations with boxes, and summarize the relevant estimators at the end
of each section. Each estimator is implemented in the public code PolyBin: an extensive tutorial can be found on
GitHub.1

II. IDEAL BINNED POLYSPECTRA

We begin by defining our conventions for the fields and polyspectra used in this work, and present a number of
results used in the remainder of this work. In general, we will work with scalar fields defined on the two-sphere, such
as the atmospheric pressure on Earth or the CMB temperature fluctuations. A general zero-mean signal, labelled a(n̂)
can be expanded in spherical harmonics thus:

a(n̂) ≡
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(n̂) ⇔ aℓm =

∫
S2
dn̂ a(n̂)Y ∗

ℓm(n̂) (2)

1 GitHub.com/oliverphilcox/PolyBin
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where we will keep the summation limits and integration domains implicit henceforth. In many cases, we perform
noisy observations of this signal, yielding the observed field, ã, defined as

ã(n̂) ≡ W (n̂)a(n̂) + n(n̂) (3)

where W (n̂) is some deterministic window (or mask), defining how various regions of the sphere are observed and n(n̂)
is a stochastic noise field. In general, we will denote masked fields with a tilde. Note that we assume W and a to be
uncorrelated, such that ⟨Wa⟩ = ⟨W ⟩ ⟨a⟩ = 0; violation of this assumption will significantly complicate the estimators
[e.g., 64].

A. Ideal Correlators

The power spectrum, C, of the signal field can be written

⟨aℓ1m1
aℓ2m2

⟩ ≡ Cℓ1ℓ2
m1m2

→ (−1)m1δKℓ1ℓ2δ
K
m1(−m2)

Cℓ, (4)

where the angle brackets indicate an average over statistical realizations of the signal, and we have statistical isotropy
and homogeneity to obtain the second expression. Whilst this assumption is usually valid for the underlying signal, a,
realistic noise and masks are often anisotropic, thus the diagonal approximation cannot be used.

Similarly, the bispectrum, B, takes the form

⟨aℓ1m1aℓ2m2aℓ3m3⟩ ≡ Bℓ1ℓ2ℓ3
m1m2m3

→ Gℓ1ℓ2ℓ3
m1m2m3

bℓ1ℓ2ℓ3 , (5)

where the RHS holds under isotropic and homogeneous assumptions, as before, and we have defined the reduced
bispectrum bℓ1ℓ2ℓ3 . This is symmetric under any permutation of indices, and requires |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2. (5)
involves the Gaunt function, defined as the average over three spherical harmonics

Gℓ1ℓ2ℓ3
m1m2m3

≡
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

m1 m2 m3

)(
ℓ1 ℓ2 ℓ3

0 0 0

)
(6)

≡
∫

dn̂Yℓ1m1
(n̂)Yℓ2m2

(n̂)Yℓ3m3
(n̂),

where the 3× 2 matrices are Wigner 3j symbols. For an isotropic real scalar field, a, the bispectrum is parity-even,
and thus vanishes unless ℓ1 + ℓ2 + ℓ3 is even (which is enforced by the Gaunt integral).2

Finally, we can define a trispectrum, T , of a via

⟨aℓ1m1aℓ2m2aℓ3m3aℓ4m4⟩c ≡ T ℓ1ℓ2ℓ3ℓ4
m1m2m3m4

. (7)

where we take only the connected part of the correlator. In this case, the rotationally invariant decomposition is less
straightforward, since the reduced trispectrum cannot be fully described by four ℓ-modes: rather we must introduce
also a diagonal element, L. As discussed in [27], we can introduce the non-redundant function T ℓ1ℓ2

ℓ3ℓ4
(L), via

T ℓ1ℓ2ℓ3ℓ4
m1m2m3m4

→
∞∑

L=0

L∑
M=−L

(−1)M

(
ℓ1 ℓ2 L

m1 m2 −M

)(
ℓ3 ℓ4 L

m3 m4 M

)
T ℓ1ℓ2
ℓ3ℓ4

(L), (8)

summing over the diagonal, L, and its azimuthal component, and noting that M = m1 +m2 = −m3 −m4. This has a
number of non-trivial symmetries, in particular:

T ℓ2ℓ1
ℓ3ℓ4

(L) = (−1)ℓ1+ℓ2+LT ℓ1ℓ2
ℓ3ℓ4

(L), T ℓ3ℓ4
ℓ1ℓ2

(L) = T ℓ1ℓ2
ℓ3ℓ4

(L). (9)

For our purpose, it will be useful to introduce a new trispectrum, tℓ1ℓ2ℓ3ℓ4
, via the symmetric definition (similar to [37] for

the bispectrum):

⟨aℓ1m1
aℓ2m2

aℓ3m3
aℓ4m4

⟩c ≡ T ℓ1ℓ2ℓ3ℓ4
m1m2m3m4

→
∞∑

L=0

L∑
M=−L

(−1)Mw
L(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

tℓ1ℓ2ℓ3ℓ4
(L) + 23 perms, (10)

2 For anisotropic signals, such as galactic dust, non-zero parity-odd bispectra can exist. To compute these, one can use a modified definition
of the reduced bispectrum, as discussed in [22, 37].
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summing over twenty-four permutations of {ℓ1, ℓ2, ℓ3, ℓ4}. This involves a new weighting function, akin to the Gaunt
function:

wLM
ℓ1ℓ2m1m2

≡
√

(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

(
ℓ1 ℓ2 L

m1 m2 M

)(
ℓ1 ℓ2 L

−1 −1 2

)
(11)

≡
∫

dn̂+1Yℓ1m1
(n̂)+1Yℓ2m2

(n̂)−2YLM (n̂),

which we have written as an integral over three spin-weighted spherical harmonics, sYℓm(n̂), in the final line. Note
that this is symmetric under interchange of (ℓ1,m1) and (ℓ2,m2). The reason for the spin-weighting adopted in w will
be explained in §VIA1.
The reduced trispectrum obeys the symmetries

tℓ2ℓ1ℓ3ℓ4
(L) = tℓ1ℓ2ℓ3ℓ4

(L), tℓ3ℓ4ℓ1ℓ2
(L) = tℓ1ℓ2ℓ3ℓ4

(L); (12)

to fully specify the trispectrum, we thus require only values with ℓ1 ≤ ℓ2, ℓ3 ≤ ℓ4, ℓ3 ≤ ℓ1 and, if ℓ1 = ℓ3, ℓ2 ≤ ℓ4. The
diagonal, L, satisfies the triangle conditions |ℓ1 − ℓ2| ≤ L ≤ ℓ1 + ℓ2 and |ℓ3 − ℓ4| ≤ L ≤ ℓ3 + ℓ4, due to the 3j symbols.
Finally, under conjugation and parity-inversion, the trispectrum satisfies[

tℓ1ℓ2ℓ3ℓ4
(L)
]∗

= (−1)ℓ1+ℓ2+ℓ3+ℓ4tℓ1ℓ2ℓ3ℓ4
(L), P

[
tℓ1ℓ2ℓ3ℓ4

(L)
]
= (−1)ℓ1+ℓ2+ℓ3+ℓ4tℓ1ℓ2ℓ3ℓ4

(L), (13)

respectively; as such, trispectra with even (odd) ℓ1+ℓ2+ℓ3+ℓ4 are parity-even (parity-odd) and purely real (imaginary).

B. Binning

In this work, we will focus on computing polyspectra in some set of ℓ-bins, whose formulation we now turn to. An
alternative approach would be to project the spectra onto some type of modal decomposition [e.g., 26–28, 30, 37]. Our
approach has the benefit that the output spectra can be directly compared to theory, in the limit of narrow bins (see
[31] for techniques going beyond this limit). To include binning, we introduce the (arbitrary) binning function Θℓ(b),
which is usually defined to be unity if ℓ is in bin b and zero else. For the (isotropic and homogeneous) power spectrum,
this leads to the definition

⟨aℓ1m1
aℓ2m2

⟩ ≈ (−1)m1δKℓ1ℓ2δ
K
m1(−m2)

∑
b

Θℓ1(b)C(b), (14)

where C(b) are the binned quantities we shall construct estimators for.3

The binned bispectrum, b(b), is similarly defined

⟨aℓ1m1
aℓ2m2

aℓ3m3
⟩ ≈ Gℓ1ℓ2ℓ3

m1m2m3

∑
b1b2b3

b(b)

∆3(b)
[Θℓ1(b1)Θℓ2(b2)Θℓ3(b3) + 5 perms.] , (15)

where b ≡ {b1, b2, b3} and the permutations are in {ℓ1, ℓ2, ℓ3}. To avoid double counting, we restrict the summation to
b1 ≤ b2 ≤ b3 (giving rise to the permutations), and introduce a permutation factor

∆3(b) ≡


6 b1 = b2 = b3
2 b1 = b2 ̸= b3 or b1 ̸= b2 = b3
1 else.

(16)

This ensures that, in the limit of thin bins, b(b) is equal to the bispectrum evaluated at the bin centers. Note that we
can incorporate squeezed triangles into this formalism by allowing a larger ℓmax for ℓ2 and ℓ3 (equivalently b2 and b3)
than ℓ1.

3 Strictly C(b) is related to a sum over the ℓ-bins rather than being the value at the bin-center. The approximation of (14) is valid for
slowly varying Cℓ and suitably narrow bins. Since our focus here is principally on higher-point functions, this is appropriate here.
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Finally, we can define the binned trispectrum, t(b, B), by analogy with (10):

⟨aℓ1m1
aℓ2m2

aℓ3m3
aℓ4m4

⟩c ≈
∑
LM

(−1)Mw
L(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

∑
b,B

t(b, B)

∆4(b)
ΘL(B)

× [Θℓ1(b1)Θℓ2(b2)Θℓ3(b3)Θℓ4(b4) + 7 perms.] + (2 ↔ 3) + (2 ↔ 4),

(17)

summing over the following permutations of {1, 2, 3, 4} ≡ {b1, b2, b3, b4}:

{1, 2, 3, 4}, {1, 2, 4, 3}, {2, 1, 3, 4}, {2, 1, 4, 3}, (18)

{3, 4, 1, 2}, {3, 4, 2, 1}, {4, 3, 1, 2}, {4, 3, 2, 1},

due to the symmetry properties given in (12). Here, the trispectrum is defined for all b ≡ {b1, b2, b3, b4} encompassing
the external {ℓ1, ℓ2, ℓ3, ℓ4} legs and B describing the diagonal L. We sum over all b1 ≤ b2, b3 ≤ b4, b1 ≤ b3 and, if
b3 = b1, b2 ≥ b4, i.e. over all independent bins, noting additionally that {b1, b2, B} and {b3, b4, B} must satisfy triangle
conditions.4 If we wish to include squeezed and doubly-squeezed tetrahedra, we simply extend the ℓ ranges to use
a larger ℓmax for ℓ2, ℓ4 and L (due to the triangle conditions), or, if our focus is collapsed tetrahedra, we can use a
smaller ℓmax for L. To avoid double-counting, we introduce the degeneracy factor

∆4(b) =



8 b1 = b2 = b3 = b4
4 b1 = b2 and b3 = b4
2 b1 = b2 or b3 = b4
2 b1 = b3 and b2 = b4
1 else,

(19)

which is simply the number of distinct appearances of each term in the above sum over permutations. Finally, we note
that we can impose that the trispectrum is parity-even (parity-odd) by adding a factor [1± (−1)ℓ1234 ]/2 to (17).

III. MASKED DATA & MINIMUM-VARIANCE ESTIMATORS

We now turn to the problem of estimating the binned polyspectrum coefficients discussed in §II from the observed
masked data. For this purpose, we will first consider the non-ideal correlators, for which it is useful to work in
map-space, rather than harmonic-space. These results may then be used to derive optimal estimators, by maximizing
an weakly non-Gaussian likelihood.

A. Non-Ideal Correlators

When working with observational data, we may no longer assume rotational symmetry, since the weights, W
(encoding the response of the map to the underlying field a ) and the noise, n, can be inhomogeneous. In this case, the
results of §II do not apply. Working in map-space, the two-point correlator of the observed field can be instead written:

C̃ij ≡
〈
ã(n̂i)ã(n̂j)

〉
, (20)

where i, j index points on the sky (such as healpix pixels).5 From the definition of the masked field (3), this can be
written in terms of the unmasked two-point function, Cij ≡

〈
a(n̂i)a(n̂j)

〉
and the noise Nij ≡

〈
n(n̂i)n(n̂j)

〉
:

C̃ij = W (n̂i)CijW (n̂j) + Nij =
∑
ℓm

B2
ℓCℓ

[
W (n̂i)Yℓm(n̂i)

] [
W (n̂j)Y ∗

ℓm(n̂j)
]
+ Nij , (21)

where we have expanded the true correlator, which is rotationally invariant, in terms of (4) and additionally included
an (isotropic) beam Bℓ. When working with discrete data (such as maps in HealPix format), we can additionally
include a pixel window function in Bℓ (via Bℓ → wℓBℓ for window wℓ), to remove the leading dependence on Nside.

4 For the parity-odd trispectrum, we can additionally drop bins satisfying b1 = b3 and b2 = b4, which evaluate to zero.
5 Throughout this work, we will used serif fonts to denote map-space correlators, e.g., B, sans-serif to denote harmonic correlators, e.g., B,
and lower case for reduced spectra, e.g., b. Latin indices i, j, k, . . . will always denote summation over spatial points. Tildes are added to
indicate masked fields.
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The utility of (21) is that the windowed correlator is expressed in terms of the quantity we wish to estimate, Cℓ

(neglecting binning for now). This is further simplified if one assumes the same window for data and noise: in this
case, the masks simply pre- and post-multiply the correlator. In general, the map-level correlator is an Npix ×Npix

matrix which is difficult if not impossible to compute explicitly: however, its action on a map can be straightforwardly
defined. We will discuss this in §IVC.
The non-ideal three- and four-point correlators take similar forms:

B̃ijk ≡
〈
ã(n̂i)ã(n̂j)ã(n̂k)

〉
, T̃ijkl ≡

〈
ã(n̂i)ã(n̂j)ã(n̂k)ã(n̂l)

〉
(22)

As before, these can be straightforwardly written in terms of the map-space ideal correlators (Bijk and Tijkl), and,
via the results of §IIA, the binned quantities we wish to measure. Furthermore, whilst they are high-dimensional
objects (rank 3- and 4-tensors), their action on maps will prove straightforward, due to the internal symmetries in the
unwindowed correlators.

B. Optimal Estimators

Optimal estimators for the binned polyspectra can be derived by maximizing the likelihood of the observed map
ã(n̂). Assuming weak non-Gaussianity, this is given by an Edgeworth expansion in terms of the map-space correlators
[e.g., 65]:

L[ã] ∝ exp

[
−1

2
hiC̃

ijhj

]{
1 +

1

3!
B̃ijkHijk +

1

4!
T̃ijklHijkl + · · ·

}
, (23)

where we sum over all repeated indices, such that αiβ
i ≡

∫
dn̂α(n̂)β(n̂). Here, we have defined the Wiener-filtered

map, h(n̂) ≡
[
C̃−1ã

]
(n̂) (recalling that C̃ contains both signal and noise, and (for now) assuming it to be invertible),

as well as the (map-space) Hermite polynomials

Hijk ≡ hihjhk − (hiC̃
−1
jk + 2 perms.) (24)

Hijkl ≡ hihjhkhl − (hihjC̃
−1
kl + 5 perms.) + (C̃−1

ij C̃−1
kl + 2 perms.).

In (23), all cosmology dependence appears through the map-space correlators, C̃, B̃, T̃, which can be related to their
binned coefficients, C(b), b(b), t(b, L) using the results of §II. To see this, let us consider some binned quantity x(b)

arising only in the N > 2-point correlator, X̃i1···iN . An estimator for x(b) can be obtained by maximizing logL[ã](x),
yielding

x̂(b) ∝ 1

N !

∂X̃i1···iN

∂x(b)
Hi1···iN , (25)

working in the limit of small x. The normalization factor (which is, in general, a matrix), can be derived by requiring
that the estimator is unbiased, i.e. E[x̂(b)] = x(b) for expectation operator E. We will refer to its inverse as the
Fisher matrix, defined as

FN (b,b′) =
1

N !

∂X̃i1···iN

∂x(b)
C̃−1
i1j1

· · · C̃−1
iN jN

∂X̃j1···jN

∂x(b′)
, (26)

where we note that all disconnected terms cancel in the expectation of the Hermite tensor Hi1···iN .
The estimator has the following properties:

• Unbiased: This follows from the definition of the Fisher matrix, which ensures E[x̂(b)] = x(b). One caveat
should be noted: this assumes that the polyspectrum is completely characterized by the set of measured bins

{x(b)} (which generically include noise contributions), i.e. that X̃i1···iN =
∑

b x(b)
(
∂X̃i1···iN /∂x(b)

)
. Violations

of this can occur if there is contribution from modes outside the binning range or unaccounted-for leakage between
polyspectra of different parity. For ideal polyspectrum estimators with N ≤ 3, the Fisher matrix is diagonal, so
such effects may be neglected; in the general case, one can ameliorate this by constructing the estimator using a
slightly larger range of bins than desired in the output data-product, and, if necessary, accounting for leakage
between states of different parity (cf. §VIB).
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• Window-Free: Since we consistently include window functions in the X̃ definitions and take derivatives with
respect to the true binned correlators, x(b), the measurements are not biased by the window function, i.e. the
estimators take into account the response of the map to the underlying signal. This lies in contrast to the
pseudo-spectra measured by direct polyspectrum estimators, and occurs due to the appearance of the mask in
the estimator, and the form of the normalization matrix.

• Optimal: Since (25) has been derived using maximum-likelihood techniques, it is optimal in the small-correlator
limit. As such, the covariance is given by F−1

N .6

• Efficiency As shown below, the estimator numerators scale at most linearly with the total number of bins in
the statistic, Nbin. When computed using Monte Carlo methods, the rate-determining step in computation of
the Fisher matrix is also linear in the number of bins.

Whilst the above estimators have significant formal utility, in practice, it will prove useful to consider estimators
with a more general choice of weighting, due to the difficulties obtaining accurate noise covariances, Nij , and inverting
the covariance C̃ij . In the below, we will consider a more general choice of weighting to enable efficient computation,
defining h(n̂) = S−1ã instead of C̃−1ã, where S−1, is some weighting matrix that is not required to be symmetric or
invertible. For example, one may wish to project out contaminated areas of a map, which, a priori, has a uniform
weight; in this case, S−1 would excise regions of the map, and thus be non-invertible, whilst W could be set to the
identity operator. Arbitrary linear operations (such as linear inpainting, cf. [35]) can also be included in S−1, as
appropriate to the task in question.

Replacing C̃−1 with S−1 in (25)& (26) we obtain an estimator which is always unbiased, and minimum variance in

the limit of S−1 → C̃−1. In the Gaussian regime, the covariance for general (not necessarily invertible) S−1 is given by

covN (b,b′) = F−1
N [S−1]FN [S−1C̃ S−T]F−T

N [S−1], (27)

where FN [M] as the Fisher matrix with weighting M (which may be asymmetric); if S−1 is invertible, the degree of

suboptimality is second order in (S− C̃) [36], and, if not, an optimal estimator is obtained if S−1 = S−1C̃ S−T. In the
remainder of this work, we consider how such estimators can be efficiently computed.

IV. OPTIMAL POWER SPECTRUM ESTIMATION

With the above formalism in place, we may now proceed to derive the optimal estimator for the binned full-sky
power spectra, C(b), analogous to [32, 33, 66]. This is derived in a slightly different manner to the bispectrum and
trispectrum estimators discussed below (though ends up taking the same functional form), since the two-point function
appears both in the Gaussian likelihood of (23), and in the Wiener filtering. Our estimators can be shown to be
equivalent to those of the master formalism in certain limits [31] (in particular a uniform mask W , and a weighting
scheme of the form [S−1v](n̂) = s(n̂)v(n̂), for some filter s, possibly with incomplete support).
Taking derivatives with respect to C(b) (dropping all non-Gaussian correlators) gives

∂ logL[ã]

∂C(b)
=

1

2

∂C̃ij

∂C(b)
hihj −

1

2
Tr

[
C̃−1 ∂C̃

∂C(b)

]
(28)

∂2 logL[ã]

∂C(b)∂C(b′)
= −

[
∂C̃

∂C(b)
C̃−1 ∂C̃

∂C(b)

]ij
hihj +

1

2
Tr

[
C̃−1 ∂C̃

∂C(b)
C̃−1 ∂C̃

∂C(b′)

]
,

noting that C̃−1
,α = −C̃−1C̃,αC̃

−1. To derive the optimal estimator, we expand the likelihood to second order around

some fiducial spectrum C(b), and maximize with respect to the true spectrum C(b), yielding

Ĉ(b) = C(b) +
1

2

∑
b′

F−1
2,opt(b, b

′)
∂C̃ij

∂C(b′)

[
hihj − C̃−1

ij

]
, (29)

6 This is strictly true only for real-valued x(b). Later, we will find that the trispectrum contains an imaginary piece, for which the
covariance is −F−1

4 . As long as we always take the imaginary part of any such quantities, the above logic holds.
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defining

F2,opt(b, b
′) =

1

2
Tr

[
C̃−1 ∂C̃

∂C(b)
C̃−1 ∂C̃

∂C(b′)

]
, (30)

and evaluating all quantities at the fiducial spectrum C. Our final estimator is formed by replacing C̃−1 by some
generic weighting S−1 (which, as above, need not be symmetric or invertible), and noting that the first and last terms
in (29) differ only by the noise correlation function, Nij . This gives

Ĉ(b) =
1

2

∑
b′

F−1
2 (b, b′)

[
∂C̃ij

∂C(b′)
hihj − Tr

(
∂C̃

∂C(b′)
S−1NS−T

)]
, F2(b, b

′) =
1

2
Tr

[
S−T ∂C̃

∂C(b)
S−1 ∂C̃

∂C(b′)

]
, (31)

where h ≡ S−1ã and S−T is the transpose of S−1. The second term in Ĉ(b) subtracts off the estimator bias induced by

noise in the data; for the remainder of this work, we will absorb this into Ĉ(b), and drop this term. Notably, F2(b, b
′) is

only symmetric if S−1 = S−T (which does not hold if the filtering projects out modes). This is the minimum variance

estimator in the limit of a Gaussian likelihood, C(b) → Ctrue(b), and S−1 → C̃−1 (or S−1 → S−1C̃ S−1 in general).

A. Idealized Form

Let us consider (31) in the idealized limit, i.e. without a mask or beam and assuming isotropic noise (absorbed into
the binned spectrum). Here, the relevant correlator derivative becomes

∂Cij

∂C(b)
=
∑
ℓm

Θℓ(b)Yℓm(n̂i)Y ∗
ℓm(n̂j), (32)

moving to harmonic-space and using the binned power spectrum definition (14). The Wiener-filtered field can be
simply written as hℓm = S−1

ℓ aℓm (assuming S to be diagonal in harmonic space), thus, following a little algebra, we
obtain the estimator

Ĉideal(b) =
1

2
F−1

2,ideal(b)
∑
ℓm

Θℓ(b)
|aℓm|2

S2
ℓ

, F2,ideal(b) =
1

2

∑
ℓ

Θℓ(b)
2ℓ+ 1

S2
ℓ

. (33)

This is just the conventional binned power spectrum estimator (summing over all ℓ,m allowed by the binning function),
albeit including a Wiener-filter weighting. In this case, the normalization is diagonal in the bins, i.e. each measurement
is independent. Computation of (33) requires one harmonic transform (to define aℓm), then a simple sum over {ℓ,m}:
the latter process scales as O(Nbin) for Nbin bins in {b}.

B. General Form

In the presence of a mask, we instead simplify (31) by inserting the following two-point function derivative:

∂C̃ij

∂C(b)
=
∑
ℓm

B2
ℓΘℓ(b)

[
W (n̂i)Yℓm(n̂i)

] [
W (n̂j)Y ∗

ℓm(n̂j)
]
, (34)

cf. (21). The estimator numerator can be written

Ĉ(b) ∝ 1

2

∑
ℓm

B2
ℓΘℓ(b)[Wh]ℓm[Wh]∗ℓm, (35)

where [Wh]ℓm is the harmonic-space representation of W (n̂)h(n̂) ≡ W (n̂)
[
S−1ã

]
(n̂). This is straightforward to

compute by a direct harmonic-space sum, and scales as O(Nbin), as before (with only one invocation of S−1 required).
The Fisher matrix of (31) is more difficult to compute due to the trace, and formally requires O(N2

pix) operation.

One option to compute it is to note that, if the estimator is optimal, it is equal to the covariance of the C̃(b) numerator.
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As such, one could compute this quantity for a number of Monte Carlo simulations and form the covariance empirically.
However, this is slow to converge (since we require the inverse Fisher matrix), and only exact if S−1 is the true inverse
covariance.
To form a practically implementable estimator, we can instead rewrite the Fisher matrix as an expectation over

some Gaussian random field (GRF) u, as in [36, 54, 55]. This corresponds to writing

F2(b, b
′) =

1

2

〈(
∂C̃

∂C(b)
S−1u

)T

S−1

(
∂C̃

∂C(b′)
U−1u

)〉
u

(36)

or, more simply,

F2(b, b
′) =

1

2

〈
QT

2 [S
−1u](b) × WS−1W × Q2[U

−1u](b′)
〉
u
, (37)

where U is the (arbitrary, but invertible) covariance of u, and given that
〈
U−1uuT

〉
u
is just the identity matrix, is

equivalent to the Fisher matrix given in (31). In the second line, we have defined a filtered map, Q2:

Q2[x](n̂
i; b) ≡ B ·

∂Cij

∂C(b)
[Wx](n̂j) ⇔ Q2,ℓm[x](b) = B2

ℓΘℓ(b)[Wx]ℓm, (38)

where the second (harmonic-space) definition holds due to (34), and the first derivative includes the (optionally
pixel-windowed) beam (unlike in §IVA). Similar definitions will be used for the higher-order polyspectra. Thus, to
form the Fisher matrix, one must compute the Q2 filters on a set of NGRF GRFs, u, transform them to map-space,
and combine them with a WS−1W weighting. Each realization is symmetric only if S−1 = U−1 and S−1 = S−T; the
average over realizations requires only the latter condition. This can be straightforwardly achieved using repeated
spherical harmonic transforms. Notably, it does not require any O(N2

pix) operations to implement. In practice, we will

find that O(100) GRFs is sufficient for the above calculation, and adds an extra variance to the power spectrum at the
O(1 +N−1

GRF) level. This is much more efficient than the Monte Carlo covariance estimation method discussed above.
Computationally it involves two processes: computation of Nbin WQ2 and S−1WQ2 maps, and a summation over all
such pairs. The first operation scales as O(Nbin) (involving Nbin S−1 operations), whilst the second is quadratic in
Nbin. Usually, the first dominates (since each term requires several harmonic transforms, depending on the form of
S−1), resulting in a linear computational scaling (in the limit of large memory).

C. Choice of S−1 and U

To implement the general estimator described above, we must specify: (a) the mask, W , (b) the weighting matrix
S−1, which downweights low signal-to-noise or troublesome regions, and (c) the Fisher GRF covariance U. The first is
usually the simplest: this is the linear response of the data d to the underlying field a, which, for a full-sky map (or an
inpainted version thereof), is often unity. For cut-sky data, this indicates which regions are observed and is often a
binary mask, albeit with some additional smoothing. A variety of additional phenomena can be included here, such as
pixel weights and discreteness effects.

The optimal choice for the weighting operator S−1 is the inverse data covariance C̃−1. In realistic scenarios, this is
neither diagonal in map- nor harmonic-space, and is thus difficult to invert (though may be possible via approaches such
as [67], which supplement the map with additional uncorrelated noise). A simpler choice may be use a diagonal-in-ℓ
approximation of the covariance to define S−1 (equal to 1/Sℓ in harmonic-space). Often, one may wish to downweight
or remove specific regions of the map in the analysis before applying such a weight; this can be achieved by first
removing areas of the map with some projection matrix Π, e.g.,[

S−1v
]
(n̂) =

∑
ℓm

Yℓm(n̂)
[Πv]ℓm
Sℓ

, (39)

for arbitrary map v, where [x]ℓm is the harmonic transform of x. If Π is not of full-rank, S−1 is not invertible.7 One
may additionally wish to ‘inpaint’ the map, by filling in small holes with the mean of the surrounding pixels [35]. Since

7 Notably, there is a degeneracy between the mask W and the weighting S−1: multiplying the data by some invertible function f(n̂) sends
W → fW , resulting in the same estimator if S−1 → f−1S−1f−1. Note that this also affects the noise correlator also.
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this is a linear operation it can be included within S−1, and fully accounted for in the normalization (noting that the
below estimators require only the action of S−1 on maps v, rather than the explicit form of S).

If we wish to use optimal weights, however, some progress can be made using conjugate gradient descent methods.
In this framework, we compute the action of the inverse matrix, C̃−1, on some map α(n̂), using only applications of
the uninverted matrix on maps β(n̂). These can be computed thus (for arbitrary β):

[C̃β](n̂i) = W (n̂i)Cij [Wβ](n̂j) + [Nβ] (n̂i) = W (n̂i)
[
B2

ℓCℓ[Wβ]ℓm
]
(n̂i) + [Nβ] (n̂i), (40)

where we have written C̃ in harmonic space to obtain the second quantity via (21), and (as above) denoted forward-

and backward harmonic transforms by [· · · ]ℓm and [· · · ](n̂) respectively. To apply C̃ to a map, our approach is thus:
(1) multiply the map by W in map-space, (2) transform to harmonic-space and multiply by B2

ℓCℓ, (3) transform to
map-space and multiply by W (n̂), (4) add on the noise term (which is straightforward if it is diagonal in map-space).
Given the above mapping, and an appropriate pre-conditioner (such as the diagonal harmonic-space covariance), we may

form C̃−1α iteratively for any given map α. We caution that conjugate-gradient-descent inversion is computationally
expensive procedure (involving two harmonic transforms per iteration), and we require at least (Nbins +2) applications
of the inverse map for the full estimator (one for h, one for S−1u, and one for each bin in the Fisher matrix). In
practice, therefore, we will primarily use a diagonal approximation in this work. Notably, this does not bias any results,
but will lead to a slight loss of optimality.
Finally, some care is warranted regarding our choice of the Monte Carlo maps u, and their covariance U. Ideally,

we require maps that are easy to simulate, i.e. GRFs. This also simplifies the interpretation, since no higher-point
correlators need to be removed (which will be relevant for the bispectrum and beyond). We further require the maps
to have a precisely known and simply invertible covariance. The convergence of the Monte Carlo estimates is fastest if
U−1 is close to the weighting matrix S−1; in this work, we will fix U−1 = S−1, assuming a diagonal form for both.

V. OPTIMAL BISPECTRUM ESTIMATION

We now turn to the window-free bispectrum. As shown in §III, the general estimator for the binned bispectrum
takes the form:

b̂(b) =
1

3!

∑
b′

F−1
3 (b,b′)

∂B̃ijk

∂b(b)

[
hihjhk − (hi ⟨hjhk⟩+ 2 perms.)

]
, F3(b,b

′) =
1

3!

∂B̃ijk

∂b(b)
S−1
il S−1

jmS−1
kn

∂B̃lmn

∂b(b′)
(41)

for h ≡ S−1ã, which is optimal in the limit of weak non-Gaussianity, and S−1 → C̃−1. In the above, we sum over all
bins with b1 ≤ b2 ≤ b3, and note that the numerator contains both a three- and one-field term. The latter does not
affect the mean, but ensures optimality on large scales, and takes a slightly different form from the Hermite tensor
definitions (24) since we have introduced a generic weighting S−1. This bears similarities to the estimators of [e.g.,
13, 14, 19, 23, 24, 26, 36], but now includes full treatment of masks and weights, and incorporates arbitrary ℓ-space
binning. We discuss its practical implementation below.

A. Idealized Form

Assuming rotational invariance, a unit beam, and a trivial mask, (41) can be simplified by first rewriting the
numerator in harmonic space

b̂ideal(b) ∝
1

3!

∑
ℓimi

∂Bℓ1ℓ2ℓ3
(−m1)(−m2)(−m3)

∂b(b)

[
hℓ1m1hℓ2m2hℓ3m3 − (hℓ1m1 ⟨hℓ2m2hℓ3m3⟩+ 2 perms.)

]
, (42)

summing over all ℓi and mi with i ∈ {1, 2, 3}. Inserting the relation between the ideal harmonic-space bispectrum and
the binned form b(b) given in (15) yields

b̂ideal(b) ∝ 1

6∆3(b)

∑
ℓimi

Gℓ1ℓ2ℓ3
m1m2m3

[Θℓ1(b1)Θℓ2(b2)Θℓ3(b3) + 5 perms.] (43)

×
[
hℓ1m1hℓ2m2hℓ3m3 − (hℓ1m1 ⟨hℓ2m2hℓ3m3⟩+ 2 perms.)

]
,
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where G is the Gaunt factor. Assuming a diagonal choice for S−1, the one-field terms require ℓ2 = ℓ3, and thus, by the
triangle conditions ℓ1 = 0 (or permutations thereof); in the ideal limit, they may thus be dropped.
To implement (43) one could perform the ℓ,m summation directly, though this has O(ℓ6max) complexity. A more

efficient scheme (first considered in [13]), is to rewrite the Gaunt factor as a spherical harmonic integral using (6): this
separates the three (ℓi,mi) terms, yielding

b̂ideal(b) ∝ 1

∆3(b)

∑
ℓimi

∫
dn̂Yℓ1m1

(n̂)Yℓ2m2
(n̂)Yℓ3m3

(n̂)Θℓ1(b1)Θℓ2(b2)Θℓ3(b3)hℓ1m1
hℓ2m2

hℓ3m3
(44)

additionally absorbing the permutation symmetries and dropping a factor of (−1)ℓ1+ℓ2+ℓ3 , noting that statistically
isotropic temperature correlators must be are parity-even. Defining fields

H ideal
b [x](n̂) =

∑
ℓm

Θℓ(b)
xℓm

Sℓ
Yℓm(n̂) ⇔ H ideal

b,ℓm [x] = Θℓ(b)
xℓm

Sℓ
, (45)

this can be written

b̂ideal(b) ∝
1

∆3(b)

∫
dn̂H ideal

b1 [a](n̂)H ideal
b2 [a](n̂)H ideal

b3 [a](n̂) . (46)

This is efficient to compute, requiring just one harmonic transform per choice of b, and a summation for each choice of
b; as such, the leading scaling is O(Nℓ), recalling that Nℓ is the number of one-dimensional ℓ-bins.

For the Fisher matrix, working in harmonic-space for diagonal S−1, we can write

F3,ideal(b,b
′) =

1

6

∑
ℓimi

∂Bℓ1ℓ2ℓ3
(−m1)(−m2)(−m3)

∂b(b)
S−1
ℓ1

S−1
ℓ2

S−1
ℓ3

∂Bℓ1ℓ2ℓ3
m1m2m3

∂b(b′)
. (47)

Inserting the binned definition, we will have a sum over two Gaunt factors, which evaluates to

∑
m1m2m3

[
Gℓ1ℓ2ℓ3
m1m2m3

]2
=

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

0 0 0

)2

, (48)

and a sum over permutations of binning functions, which evaluates to

Θℓ1(b1)Θℓ2(b2)Θℓ3(b3) [Θℓ1(b
′
1)Θℓ2(b

′
2)Θℓ3(b

′
3) + 5 perms.] = ∆3(b)δ

K
bb′ , (49)

recalling that bins are ordered and non-overlapping, such that Θℓ(b)Θℓ(b
′) = δKbb′ . Just as for the power spectrum, the

Fisher matrix is diagonal in b, and can be evaluate as a triple sum over ℓi, which has O(ℓ3max) complexity.
Collecting results the ideal bispectrum estimator becomes

b̂ideal(b) =
1

∆3(b)
F−1

3,ideal(b)

∫
dn̂H ideal

b1 (n̂)H ideal
b2 (n̂)H ideal

b3 (n̂)

F3,ideal(b) =
1

∆3(b)

∑
ℓ1ℓ2ℓ3

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

Θℓ1(b1)

Sℓ1

Θℓ2(b2)

Sℓ2

Θℓ3(b3)

Sℓ3

(
ℓ1 ℓ2 ℓ3

0 0 0

)2

,

(50)

where H ideal is defined in (45) and the Fisher matrix is equal to the estimator variance if Sℓ = Cℓ.

B. General Form

1. Numerator

The general estimator can be derived in a similar manner to the ideal case. Working in harmonic-space, the
numerator is akin to (42), but includes window functions (due to the B̃ correlator):

b̂(b) ∝ 1

3!

∑
ℓimi

∂Bℓ1ℓ2ℓ3
(−m1)(−m2)(−m3)

∂b(b)

[
[Wh]ℓ1m1 [Wh]ℓ2m2 [Wh]ℓ3m3 − ([Wh]ℓ1m1 ⟨[Wh]ℓ2m2 [Wh]ℓ3m3⟩+ 2 perms.)

]
,(51)
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where the derivative includes the beam, Bℓ1Bℓ2Bℓ3 . Inserting the bispectrum derivative and rewriting the Gaunt factor
as an integral, the three-field term takes a similar form to before:

b̂(3)(b) ∝ 1

∆3(b)

∫
dn̂Hb1 [a](n̂)Hb2 [a](n̂)Hb3 [a](n̂), (52)

where H is now defined as

Hb[x](n̂) =
∑
ℓm

[WS−1x]ℓmBℓΘℓ(b)Yℓm(n̂) ⇔ Hb,ℓm[x] = [WS−1x]ℓmBℓΘℓ(b). (53)

In the presence of a mask, the one-field term is non-trivial, but can be computed via a Monte Carlo average. Defining
a set of fields {α} with covariance C̃α, we can write

b̂(1)(b) = − 1

∆3(b)

∫
dn̂Hb1 [a](n̂) ⟨Hb2 [α](n̂)Hb3 [α](n̂)⟩α + 2 perms., (54)

where the average is taken over the random fields. For the estimator to be optimal, C̃α should be equal to the data
covariance C̃; however, given that ⟨a⟩ = 0, the estimator does not become biased if this condition is not satisfied.
This is in contrast with the trispectrum estimators of §VI, which require accurate random simulations to remove the
disconnected contributions. This has the same computational scalings as the ideal numerator (linear in Nℓ), but with
runtime additionally proportional to the number of MC simulations, NMC.

2. Fisher Matrix

In the non-ideal case, the Fisher matrix is difficult to compute analytically. As for the power spectrum (§IVB), we
can use a Monte Carlo procedure, first writing the covariance in real-space:

F3(b,b
′) =

1

6

∂B̃ijk

∂b(b)
S−1
il S−1

jmS−1
kn

∂B̃lmn

∂b(b′)
(55)

=
1

12

∂B̃ijk

∂b(b)
S−1
il S−1

jj′S
−1
kk′

[
Uj′m′

Uk′n′
+ Uj′n′

Uk′m′
]
U−1
m′mU−1

n′n

∂B̃lmn

∂b(b′)
,

inserting two copies of the identity matrix in the second line, for arbitrary invertible matrix U. As for the power
spectrum, this is symmetric only if S−1 = S−T. The Fisher matrix can be evaluated by introducing a set of GRFs {u}
with covariance U, noting that the quantity inside the square brackets is equal to

〈
uj′uk′

um′
un′
〉
−
〈
uj′uk′

〉〈
um′

un′
〉
.

In this case, the Fisher matrix becomes

F3(b,b
′) =

1

12

∫
dn̂ dn̂′ 〈Q3[S

−1u,S−1u](n̂;b)[WS−1W ](n̂, n̂′)Q3[U
−1u,U−1u](n̂′;b′)

〉
u

(56)

− 1

12

∫
dn̂ dn̂′ 〈Q3[S

−1u,S−1u](n̂;b)
〉
u
[WS−1W ](n̂, n̂′)

〈
Q3[U

−1u,U−1u](n̂′;b′)
〉
u
,

where we have introduced the map (analogous to (38) for the power spectrum):

Q3[x, y](n̂
i;b) ≡ ∂Bijk

∂b(b)
[Wx]j [Wx]k. (57)

Inserting the bispectrum derivative and converting to harmonic-space, we find

Q3,ℓm[x, y](b) =
1

∆3(b)

∑
ℓ2ℓ3m2m3

Gℓℓ2ℓ3
mm2m3

[Wx]∗ℓ2m2
[Wy]∗ℓ3m3

BℓBℓ2Bℓ3 [Θℓ(b1)Θℓ2(b2)Θℓ3(b3) + 5 perms.] (58)

=
2

∆3(b)
BℓΘℓ(b1)

∫
dn̂Y ∗

ℓm(n̂)H[x](n̂; b2)H[y](n̂; b3) + 2 perms.,

where we inserted the integral form of the Gaunt factor (6) in the second line, and used the H maps defined in (53).
This is straightforwardly evaluated as a harmonic transform.
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Whilst possible to implement (56) is somewhat unwieldy, since it requires the average of a map, Q3(n̂), over a set of
random fields, which is expensive to store (though [54] took this approach). Instead, one may proceed by introducing
two (uncorrelated) sets of random fields {u1} and {u2} with covariance U, as in [40]. These can be combined to form
the following symmetric combination:

α
(〈

uj′

1 u
k′

1 um′

1 un′

1

〉
+
〈
uj′

2 u
k′

2 um′

2 un′

2

〉)
+ β

(〈
uj′

1 u
k′

1 um′

2 un′

2

〉
+
〈
uj′

2 u
k′

2 um′

1 un′

1

〉)
; (59)

this is equal to the combination of U covariances appearing in (55) if α = −β = 1/2.8 Defining

F ab,cd
3 (b,b′) =

1

12

∫
dn̂ dn̂′ 〈Q3[S

−1ua,S
−1ub](n̂;b)[WS−1W ](n̂, n̂′)Q3[U

−1uc,U
−1ud](n̂

′;b′)
〉
ua,ub,uc,ud

, (60)

we can write

F3(b,b
′) =

1

2

(
F 11,11
3 (b,b′) + F 22,22

3 (b,b′)
)
− 1

2

(
F 11,22
3 (b,b′) + F 22,11

3 (b,b′)
)
, (61)

which makes efficient use of the Monte Carlo simulations. Computation requires Nℓ H maps to be computed, which are
combined into Nbin Qℓm maps, involving O(NMCN

2
ℓ ) harmonic transforms. These are then combined via map-space

summation, yielding an estimator for the Fisher matrix that is again linear in Nbin (in the large-memory limit), and
proportional to the number of Fisher simulations, Nfish (which are analyzed independently). Note that there is no
scaling with ℓmax, except for that incurred by the choice of healpix Nside.
In summary, the optimal window-free bispectrum estimator is given by

b̂(b) =
∑
b′

F−1
3 (b,b′)

∆3(b′)

∫
dn̂

[
Hb′1

[a](n̂)Hb′2
[a](n̂)Hb′3

[a](n̂)− (
〈
Hb′1

[α](n̂)Hb′2
[α](n̂)

〉
α
Hb′3

[a](n̂) + 2 perms.)

]
, (62)

with the Fisher matrix defined in (61) subject to the Q definitions of (58). This is straightforward to implement and

optimal in the limit of S−1 → C̃−1 and weak non-Gaussianity.

VI. OPTIMAL TRISPECTRUM ESTIMATION

Finally, let us consider optimal estimation of the full-sky trispectrum. Unlike for lower order statistics, this has
rarely been considered previously (though see [27, 40, 41] for notable examples) and the impact of masks has not been
carefully assessed. Furthermore, as noted in §II, the trispectrum contains both a parity-even and a parity-odd part:
the estimators below are the first to measure the latter part.

As discussed in §III, the general trispectrum estimator takes the form

t̂(b, B) =
1

4!

∑
b′

F−1
4 (b, B;b′, B′)

∂T̃ijkl

∂t(b, B′)

[
hihjhkhl − (hihj ⟨hkhl⟩+ 5 perms.)

+ (⟨hihj⟩ ⟨hkhl⟩+ 2 perms.)

]
F4(b, B;b′, B′) =

1

4!

∂T̃ ijkl

∂t(b, B)
S−1
imS−1

jn S
−1
ko S

−1
lp

∂T̃mnop

∂t(b′, B′)
,

(63)

for h ≡ S−1ã. As noted in §II B, the bins satisfy b1 ≤ b2, b3 ≤ b4, b1 ≤ b3, and, if b1 = b3, b2 ≤ b4, as well as a diagonal
L, binned in some bin B (satisfying triangle conditions on {b1, b2, B} and {b3, b4, B}). Similarly to before, this is

optimal in the limit of vanishing non-Gaussianity and S−1 → C̃−1.
Estimator (63) contains a four-, two-, and a zero-field term; unlike for the bispectrum, all terms are non-trivial, as

they subtract off the mean of the signal. One exception to this is the ideal parity-odd trispectrum: since parity-violation
only appears at fourth-order for scalars, the disconnected terms vanish in the ideal limit, making this contribution
somewhat easier to estimate. In the below, we will consider estimators for both the parity-even and parity-odd
trispectra below, which will be denoted t±(b, L). We caution that the parity-odd components are purely imaginary,
thus their Fisher matrix is negative definite (and equal to the negative of the covariance, if odd- and even-modes are
uncorrelated).

8 For full generality, we could include a third set of terms of the form
〈
uj′

1 uk′
2 um′

1 un′
2

〉
and permutations thereof. The inclusion of these

may lead to a slight reduction in the number of Monte Carlo simulations required, but we neglect them for simplicity here.
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A. Idealized Form

1. Four-Field Term

In the ideal limit, the trispectrum numerator can be written in harmonic space as

t̂±,ideal(b, B) ∝ 1

4!

∑
ℓimi

∂T ℓ1ℓ2ℓ3ℓ4
(−m1)(−m2)(−m3)(−m4)

∂t±(b, B)

[
hℓ1m1hℓ2m2hℓ3m3hℓ4m4 − (hℓ1m1hℓ2m2 ⟨hℓ3m3hℓ4m4⟩+ 5 perms.)

+ (⟨hℓ1m1
hℓ2m2

⟩ ⟨hℓ3m3
hℓ4m4

⟩+ 2 perms.)

]
. (64)

Inserting the explicit definition of the binned trispectra (17), the four-field term can be written

t̂
(4)
±,ideal(b, B) ∝ 1

∆4(b)

∑
ℓimi

(−1)ℓ1234
∑
LM

(−1)Mw
L(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

ΘL(B) (65)

×
[
1± (−1)ℓ1234

2

]
Θℓ1(b1) · · ·Θℓ4(b4)hℓ1m1

· · ·hℓ4m4
,

where we have noted that all 24 permutations are equivalent (due to the symmetry of the four h fields), and explicitly
restricted to even or odd ℓ1234 ≡ ℓ1 + ℓ2 + ℓ3 + ℓ4. By expanding the square bracket, this can be split into two coupled
pieces:

t̂
(4)
±,ideal(b, B) ∝ ± 1

2∆4(b)

∑
LM

(−1)MΘL(B)
[
Aideal

b1b2 (L,−M)Aideal
b3b4 (L,M)±A

ideal

b1b2 (L,−M)A
ideal

b3b4 (L,M)
]
, (66)

subject to the definitions

Aideal
b1b2 (L,M) =

∑
ℓ1ℓ2m1m2

wLM
ℓ1ℓ2m1m2

Θℓ1(b1)Θℓ2(b2)hℓ1m1hℓ2m2 (67)

A
ideal

b1b2 (L,M) =
∑

ℓ1ℓ2m1m2

(−1)ℓ1+ℓ2+LwLM
ℓ1ℓ2m1m2

Θℓ1(b1)Θℓ2(b2)hℓ1m1
hℓ2m2

,

which are symmetric under b1 ↔ b2. The separable form given in (66) is significantly more efficient than a näıve
estimation using (65), with computation scaling as ℓ6max instead of ℓ10max for some global maximum scale ℓmax (given
that each of (L,M) coefficient involves O(ℓ4max) terms, and there are O(N2

ℓ ) = O(ℓ2max) such pieces).

Rather than performing the sum over ℓi,mi explicitly, it is preferred to compute A and A by first rewriting the
weighting function in terms of spin-weighted spherical harmonics, as in (11). Inserting this relation, we find

Aideal
b1b2 (L,M) =

∫
dn̂−2YLM (n̂)

[∑
ℓ1m1

hℓ1m1
Θℓ1(b1)+1Yℓ1m1

(n̂)

][∑
ℓ2m2

hℓ2m2
Θℓ2(b2)+1Yℓ2m2

(n̂)

]
(68)

≡
∫

dn̂−2YLM (n̂)H+
b1,ideal

(n̂)H+
b2,ideal

(n̂),

and similarly

A
ideal

b1b2 (L,M) = (−1)L
∫

dn̂−2YLM (n̂)H
+

b1,ideal(n̂)H
+

b2,ideal(n̂), (69)

defining the spin-weighted fields

H±
b,ideal(n̂) =

∑
ℓm

hℓmΘℓ(b)±1Yℓm(n̂), H
±
b,ideal =

∑
ℓm

(−1)ℓhℓmΘℓ(b)±1Yℓm(n̂). (70)

The H fields satisfy the following identity[
H+

b,ideal(n̂)
]∗

= −
∑
ℓm

hℓmΘℓ(b)−1Yℓm(n̂) ≡ −H−
b,ideal(n̂), (71)
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(using properties of the spin-weighted spherical harmonics and assuming a(n̂) to be real), implying that Aideal,∗
b1b2

(L,M) =

(−1)MA
ideal

b1b2 (L,−M). This has the useful implication that

t̂
(4)
±,ideal(b, B) ∝ ± 1

∆4(b)

∑
LM

ΘL(B)

 Re
[
A

ideal,∗
b1b2 (L,M)Aideal

b3b4
(L,M)

]
i Im

[
A

ideal,∗
b1b2 (L,M)Aideal

b3b4
(L,M)

] , (72)

which makes clear that parity-even (odd) trispectra are purely real (imaginary). Additionally, it can be used to write
the estimator entirely in terms of M ≥ 0 modes (noting that codes such as healpix generally store only these, by
symmetry):

t̂
(4)
±,ideal(b, B) ∝ ± 1

2∆4(b)

∑
L,M≥0

(1 + δKM>0)ΘL(B)

 Re
[
A

ideal,∗
b1b2 (L,M)Aideal

b3b4
(L,M) +Aideal,∗

b1b2
(L,M)A

ideal

b3b4 (L,M)
]

i Im
[
A

ideal,∗
b1b2 (L,M)Aideal

b3b4
(L,M)−Aideal,∗

b1b2
(L,M)A

ideal

b3b4 (L,M)
] ,(73)

where the factor involving a Kronecker delta gives 2 if M > 0 and 1 else.
Utilizing these relations, we can compute the four-point term by first assembling all possible H±

b,ideal(n̂) fields (a total

of Nℓ), then combining to form each of the O(N2
ℓ ) combinations of Aideal

b1b2
(L,M) and performing a pairwise sum over

harmonics, restricting to the relevant bin in L. In practice, H±
ideal can be obtained via spin-weighted harmonic transform,

since ±H±
ideal(n̂) is the map-space spin-±1 conjugate to the harmonic-space spin-±1 fields ±hℓmΘℓ(b). Similarly, A

∗
LM

and A∗
LM are the harmonic-space spin-±2 conjugates of the spin-±2 maps H+(n̂)H+(n̂) and H−(n̂)H−(n̂) respectively.

Thus, the computational cost to form the A fields is O(N2
ℓ ), whilst that of the summation is O(Nbin) = O(N4

ℓ ), but
does not involve harmonic transforms, thus is not likely to be rate limiting.

2. Aside: Spin Definitions

It is interesting to consider why the above decomposition is possible. In the definition of [27], the trispectrum

coefficients, T ℓ1ℓ2
ℓ3ℓ4

(L) are defined via

T ℓ1ℓ2ℓ3ℓ4
m1m2m3m4

=
∑
LM

(−1)M

(
ℓ1 ℓ2 L

m1 m2 −M

)(
ℓ3 ℓ4 L

m3 m4 M

)
T ℓ1ℓ2
ℓ3ℓ4

(L) (74)

as in (8). With this definition, the trispectrum estimator will involve terms of the form

∑
m1m2

(
ℓ1 ℓ2 L

m1 m2 M

)
hℓ1m1

hℓ2m2
=

(
ℓ1 ℓ2 L

−s1 −s2 s12

)−1√
4π

(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)
(75)

×
∫

dn̂−s12YLM (n̂)

[∑
m1

hℓ1m1 s1Yℓ1m1
(n̂)

][∑
m2

hℓ2m2 s2Yℓ2m2
(n̂)

]
.

On the RHS, we have inserted the spin-weighted Gaunt factor definition (11) for a general set of spins {s1, s2, s12}. This
allows the mi summations to be rewritten as an integral (or equivalently, a set of spin-weighted harmonic transforms);
given an appropriate definition for the reduced trispectrum coefficients, it also allows us to separate the ℓi summations.
To perform the above trick, we must carefully choose the spins. In particular, we require the 3j symbol to

be non-zero for all ℓ of interest. Assuming ℓi ≥ 2, |ℓ1 − ℓ2| ≤ L ≤ ℓ1 + ℓ2, and |si| ≤ ℓi, one might consider
{s1, s2, s12} = {0, 0, 0}, {±1,∓1, 0}, {±2,∓2, 0}, {±1,±1,∓2}. Whilst the former choice matches that used in the
bispectrum, it requires even ℓ1 + ℓ2 + L = 0, and thus cannot be used for the parity-odd trispectrum. Similarly, the
second and third vanish upon symmetrization, thus we here utilize the third, fixing s1 = s2 = −1 and s12 = 2.9 To
this end, we absorb the first line on the RHS of (75) into the trispectrum definition, yielding the reduced trispectrum
of (10), and allowing separation of the ℓi summations.

9 Other choices are possible; these will lead to reduced trispectra differing by powers of
√
ℓ.
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3. Two-Field Term

The two-field term can be obtained by first noting that ⟨hℓmhℓ′m′⟩ = (−1)mδKℓℓ′δ
K
m(−m′)Cℓ/S

2
ℓ , assuming uniform

weights Sℓ. As such, the estimator takes the form

t̂
(2)
±,ideal(b, B) ∝ − 1

∆4(b)

∑
ℓimi

(−1)ℓ1234
∑
LM

(−1)Mw
L(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

ΘL(B) (76)

×
[
1± (−1)ℓ1234

2

]
Θℓ1(b1) · · ·Θℓ4(b4)

[
hℓ1m1

hℓ2m2
(−1)m3δKℓ3ℓ4δ

K
m3(−m4)

Cℓ3

S2
ℓ3

+ 5 perms.

]
.

Due to the Kronecker deltas, the first two permutations contain the term∑
m3M

(−1)m3+M

(
ℓ1 ℓ2 L

m1 m2 −M

)(
ℓ3 ℓ3 L

m3 −m3 M

)
∝

(
ℓ1 ℓ2 0

m1 m2 0

)
δKL0δ

K
M0. (77)

using properties of Wigner 3j symbols [68] and separating out part of the wLM weighting matrices. Since we restrict
to L ≥ 2, this term vanishes always. The other four permutations contain contributions of the form∑

m1M

(−1)m2

(
ℓ1 ℓ2 L

m1 m2 −M

)(
ℓ3 ℓ1 L

m3 −m1 M

)
∝ δKℓ2ℓ3δ

K
m2(−m3)

. (78)

In both cases, two pairs of momenta are restricted to be equal, thus ℓ1234 is even, and any parity-odd contribution to
the trispectrum must vanish. For the parity-even part, we find

t̂
(2)
+,ideal(b, B) ∝ − 1

∆4(b)
(δKb1b4δ

K
b2b3 + δKb1b3δ

K
b2b4)

∑
ℓ1ℓ2L

(2ℓ1 + 1)(2L+ 1)

4π

(
ℓ1 ℓ2 L

−1 −1 2

)2

× (−1)ℓ1+ℓ2+LΘL(B)

(
Θℓ1(b1)Θℓ2(b2) + Θℓ2(b1)Θℓ1(b2)

)
Cℓ1

S2
ℓ1

∑
m2

|hℓ2m2 |
2
,

(79)

involving the empirical power spectrum estimate
∑

m2
|hℓ2m2 |2/(2ℓ2 + 1). This scales as O(ℓ3max).

4. Zero-Field Term

The zero-field term may be evaluated using a similar prescription. First, we note that this requires two pairs of ℓi to
be equal: due to the 1± (−1)ℓ1234 term, the odd-piece must vanish. For the even piece, there are only two non-trivial
permutations (due to the above arguments removing the ℓ1 = ℓ2, ℓ3 = ℓ4 term):

t̂
(0)
+,ideal(b, B) ∝ 1

∆4(b)

∑
ℓimi

(−1)ℓ1234
∑
LM

(−1)Mw
L(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

ΘL(B) (80)

×Θℓ1(b1) · · ·Θℓ4(b4)

[
(−1)m1+m2

Cℓ1Cℓ2

S2
ℓ1
S2
ℓ2

(
δKℓ1ℓ3δ

K
ℓ2ℓ4δ

K
m1(−m3)

δKm2(−m4)
+ δKℓ1ℓ4δ

K
ℓ2ℓ3δ

K
m1(−m4)

δKm2(−m3)

)]
.

To simplify this, we note that∑
m1m2M

(−1)m1+m2+M

(
ℓ1 ℓ2 L

m1 m2 −M

)(
ℓ1 ℓ2 L

−m1 −m2 M

)
= (−1)ℓ1+ℓ2+L, (81)

thus

t̂
(0)
+,ideal(b, L) ∝

1

∆4(b)
(δKb1b4δ

K
b2b3 + δKb1b3δ

K
b2b4)

∑
ℓ1ℓ2L

(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

(
ℓ1 ℓ2 L

−1 −1 2

)2

ΘL(B)

× (−1)ℓ1+ℓ2+LΘℓ1(b1)Θℓ2(b2)
Cℓ1

S2
ℓ1

Cℓ2

S2
ℓ2

,

(82)

which can be straightforwardly computed in O(ℓ3max) operations.
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5. Normalization

We now turn to the trispectrum Fisher matrix. As we shall find below, this is somewhat more complex than for the
power spectrum or bispectrum, since there are off-diagonal correlations even in the ideal case, i.e. bins with different
b can correlate. This arises due to the degeneracy in the quadrilateral definition: there are two choices of diagonal
momentum L for any given tetrahedron. As such, the off-diagonal terms will contribute only when {b′1, b′2, b′3, b′4} is
some permutation of {b1, b2, b3, b4}.

To compute the normalization, we start from (63) and insert the harmonic-space definitions of the binned trispectrum
(17), noting that we can absorb a symmetry factor of 24 since Tijkl is fully symmetric under index exchange. This
gives:

F ideal
4± (b, B;b′, B′) =

1

∆4(b)∆4(b′)

∑
ℓimi

(−1)ℓ1234
∑

LL′MM ′

(−1)M+M ′
[
1− (−1)ℓ1234

2

]2
S−1
ℓ1

· · ·S−1
ℓ4

(83)

×ΘL(B)ΘL′(B′)Θℓ1(b1) · · ·Θℓ4(b4)w
L(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

×
{[

w
L′(−M ′)
ℓ1ℓ2m1m2

wL′M ′

ℓ3ℓ4m3m4
Θℓ1(b

′
1) · · ·Θℓ4(b

′
4) + 7 perms.

]
+ (2 ↔ 3) + (2 ↔ 4)

}
,

where the (−1)ℓ1234 term comes from switching mi to (−mi) in one of the trispectrum derivatives. As before, the
binning functions satisfy Θℓ(b)Θℓ(b

′) = δKbb′Θℓ(b), for contiguous bins; this restricts which bins contribute to the
coupling matrix. To proceed it is useful to consider the three permutations in the bottom line separately. The first
involves

∑
m1m2

w
L(−M)
ℓ1ℓ2m1m2

w
L′(−M ′)
ℓ1ℓ2m1m2

∝
∑

m1m2

(
ℓ1 ℓ2 L

m1 m2 −M

)(
ℓ1 ℓ2 L′

m1 m2 −M ′

)
=

1

2L+ 1
δKLL′δK(−M)M ′ , (84)

which implies the matrix is diagonal in L. Similarly, the binning functions yield a factor δKbb′∆4(b
′) (noting the

selection rules on b), leading to the final contribution:

F ideal,(a)
4± (b, B;b′, B′) = ±δKbb′δKBB′

∆4(b)

∑
ℓiL

[
1± (−1)ℓ1234

2

]
Θℓ1(b1) · · ·Θℓ4(b4)ΘL(B)

(
ℓ1 ℓ2 L

−1 −1 2

)2(
ℓ3 ℓ4 L

−1 −1 2

)2

× (2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)(2ℓ4 + 1)(2L+ 1)

(4π)2
S−1
ℓ1

· · ·S−1
ℓ4

. (85)

Notably, this factorizes into a piece involving (ℓ1, ℓ2, L) and another involving (ℓ3, ℓ4, L): as such, computation cost is
O(N3

ℓ ).

The other permutations do not require L = L′, and thus source a (small) mixing between modes. The second
involves the following combination of 3j symbols (from the modified Wigner symbols):

∑
m1m2m3m4MM ′

(−1)M+M ′

(
ℓ1 ℓ2 L

m1 m2 −M

)(
ℓ3 ℓ4 L

m3 m4 M

)(
ℓ1 ℓ3 L′

m1 m3 −M ′

)(
ℓ2 ℓ4 L′

m2 m4 M ′

)

= (−1)ℓ2+ℓ3

{
L ℓ1 ℓ2

L′ ℓ4 ℓ3

}
. (86)

simplifying in terms of a 6j symbol in the second line. Similarly, the third has

∑
m1m2m3m4MM ′

(−1)M+M ′

(
ℓ1 ℓ2 L

m1 m2 −M

)(
ℓ3 ℓ4 L

m3 m4 M

)(
ℓ1 ℓ4 L′

m1 m4 −M ′

)(
ℓ3 ℓ2 L′

m3 m2 M ′

)

= (−1)L+L′

{
L ℓ1 ℓ2

L′ ℓ3 ℓ4

}
. (87)
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This leads to the following matrix contributions:

F ideal,(b)
4± (b, B;b′, B′) = ± 1

∆4(b)∆4(b′)

[
δKb1b′1δ

K
b2b′3

δKb3b′2δ
K
b4b′4

+ 7 perms.
] ∑
ℓiLL′

[
1± (−1)ℓ1234

2

]
Θℓ1(b1) · · ·Θℓ4(b4) (88)

×ΘL(B)ΘL′(B′)
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)(2ℓ4 + 1)(2L+ 1)(2L′ + 1)

(4π)2
(−1)ℓ2+ℓ3

{
L ℓ1 ℓ2

L′ ℓ4 ℓ3

}

×S−1
ℓ1

· · ·S−1
ℓ4

(
ℓ1 ℓ2 L

−1 −1 2

)(
ℓ3 ℓ4 L

−1 −1 2

)(
ℓ1 ℓ3 L′

−1 −1 2

)(
ℓ2 ℓ4 L′

−1 −1 2

)
,

and

F ideal,(c)
4± (b, B;b′, B′) = ± 1

∆4(b)∆4(b′)

[
δKb1b′1δ

K
b2b′4

δKb3b′3δ
K
b4b′2

+ 7 perms.
] ∑
ℓiLL′

[
1± (−1)ℓ1234

2

]
Θℓ1(b1) · · ·Θℓ4(b4) (89)

×ΘL(B)ΘL′(B′)
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)(2ℓ4 + 1)(2L+ 1)(2L′ + 1)

(4π)2
(−1)L+L′

{
L ℓ1 ℓ2

L′ ℓ3 ℓ4

}

×S−1
ℓ1

· · ·S−1
ℓ4

(
ℓ1 ℓ2 L

−1 −1 2

)(
ℓ3 ℓ4 L

−1 −1 2

)(
ℓ1 ℓ4 L′

−1 −1 2

)(
ℓ3 ℓ2 L′

−1 −1 2

)
.

Computation of this scales as O(ℓ6max), due to the presence of the Wigner 6j symbol.
Combining results, our ideal trispectrum estimators are given by

t̂+,ideal(b, B) =
∑
b′B′

F ideal,−1
4+ (b, B;b′, B′)

[
t̂
(4)
+,ideal(b

′, B′) + t̂
(2)
+,ideal(b

′, B′) + t̂
(0)
+,ideal(b

′, B′)
]

t̂−,ideal(b, L) =
∑
b′B′

F ideal,−1
4− (b, B;b′, B′)t̂

(4)
−,ideal(b

′, B′),

(90)

for the parity-even and parity-odd contributions respectively, where the numerators are given in (72), (79)& (82) and
the Fisher matrix is a sum of (85), (88)& (89). Note also that there is no correlation between even- and odd-trispectra,
since they require even ℓ1234 and odd ℓ1234 respectively. As before, the Fisher matrix is equal to the estimator variance
if Sℓ = Cℓ in the Gaussian limit (or its negative, for the imaginary parity-odd trispectrum).

B. General Form

At the final level of complexity we have the binned trispectrum of a masked field. The numerator of this takes
a similar form to the ideal case discussed above, and the Fisher matrix can be computed similarly to that of the
bispectrum §VB. However, we note that, in the general case, the two- and zero-field terms in the parity-odd estimator
do not vanish, and, at least in principle, there can be non-trivial mixing between odd- and even-parity trispectra
induced by the window function. We show how to account for such effects below, considering each piece of the estimator
in turn.

1. Four-Field Term

Analogously to §VIA1, the four-field component of the full trispectrum numerator is given by

t̂
(4)
± (b, B) ∝ 1

24

∑
ℓimi

∂T ℓ1···ℓ4
(−m1)···(−m4)

∂t(b, B)
[Wh]ℓ1m1

· · · [Wh]ℓ4m4
(91)

= ± 1

∆4(b)

∑
ℓimi

[
1± (−1)ℓ1234

2

]∑
LM

(−1)Mw
L(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

Bℓ1Bℓ2Bℓ3Bℓ4ΘL(B)Θℓ1(b1) · · ·Θℓ4(b4)

× [Wh]ℓ1m1
· · · [Wh]ℓ4m4

,
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inserting the binned trispectrum definition in the second line. This differs only from the ideal case by the replacement
h → Wh ≡ WS−1ã, and is similar to the even-parity estimator of [40]. Following similar logic to before, the estimator
separates into a more straightforwardly computable form:

t̂
(4)
± (b, B) ∝ ± 1

2∆4(b)

∑
LM

(−1)MΘL(B)
[
Ab1b2(L,−M)Ab3b4(L,M)±Ab1b2(L,−M)Ab3b4(L,M)

]
, (92)

which could be expressed as a real or imaginary part as in (72). This uses the (mask-dependent) definitions

Ab1b2 [x, y](L,M) =

∫
dn̂−2YLM (n̂)H+

b1
[x](n̂)H+

b2
[y](n̂) (93)

Ab1b2 [x, y](L,M) = (−1)L
∫

dn̂−2YLM (n̂)H
+

b1 [x](n̂)H
+

b2 [y](n̂)

H±
b [x](n̂) =

∑
ℓm

[Wx]ℓmBℓΘℓ(b)±1Yℓm(n̂)

H
±
b [x](n̂) =

∑
ℓm

(−1)ℓ[Wx]ℓmBℓΘℓ(b)±1Yℓm(n̂).

These may be computed via weighted spherical harmonic transforms, as discussed in §VIB1, and differ only by the
mask W and the beam Bℓ. As such, the four-field term can be computed as a set of forward and reverse harmonic
transforms, and finally a harmonic space sum in some bin B. As for the ideal case, the computational scaling is O(N2

ℓ )
for the A fields, and O(Nbin) for the overall summation.

2. Two-Field Term

As mentioned above, the two-field term is not guaranteed to vanish in the general parity-odd estimator, nor does it
take a simple form in the general parity-even estimator. This is due to multipole mixing induced by the mask: even
ℓ1234 in the true map does not necessarily correspond to even ℓ1234 in the windowed map.10 For the parity-odd case,
however, the two-field term is likely to be small, assuming a relatively well-behaved window function.

In general, the two-field term is equal to the four-field term but with two of the Monte Carlo fields contracted,
i.e. with the replacement hihj → ⟨hihj⟩. As for the bispectrum (§VB), we will compute this by averaging over a set

of simulations, {α}, with covariance C̃α.
11 In this case, however, the estimator will be biased if C̃α is not equal to

the data covariance C̃, though, the bias is expected to be small in the parity-odd case, given that the term vanishes
in the ideal limit. Furthermore, in the weakly non-Gaussian regime, the disconnected terms are large compared to
the connected ones, thus we may require a substantial number of simulations to compute this contribution, to avoid
additional sources of variance. We can write the two-field term in the following manner:

t̂
(2)
± (b, B) ∝ ∓ 1

2∆4(b)

∑
LM

(−1)MΘL(B)
{
Ab1b2 [h, h](L,−M)

〈
Ab3b4 [S

−1α,S−1α](L,M)
〉
α

±Ab1b2 [h, h](L,−M)
〈
Ab3b4 [S

−1α,S−1α](L,M)
〉
α

}
+ 5 perms.,

(94)

where the permutations are over positions of the α mocks, arising due to the permutations contained within
the binned trispectrum definition. To implement (94), we must compute both

〈
Abb′ [S

−1α,S−1α](L,M)
〉
and〈

Abb′ [h,S
−1α](L,−M)Ab′′b′′′ [h,S

−1α](L,M)
〉
; in practice, computation is dominated by the latter, since we must

combine the data with each of NMC simulations, with each requiring a harmonic transform per bin pair.

10 See [22] for further discussion of this in the context of the parity-odd bispectrum.
11 Note that there is no requirement for the simulations to have accurate statistics beyond C̃: this is discussed in §VIB1.
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3. Zero-Field Term

The general zero-field term may be computed analogously, and takes the form

t̂
(0)
± (b, B) ∝ ± 1

4∆4(b)

∑
LM

(−1)MΘL(B)
{〈

Ab1b2 [S
−1α1,S

−1α2](L,−M)Ab3b4 [S
−1α1,S

−1α2](L,M)
〉
α1,α2

−
〈
Ab1b2 [S

−1α1,S
−1α2](L,−M)Ab3b4 [S

−1α1,S
−1α2](L,M)

〉
α1,α2

+ 5 perms.
}
,

(95)

where {α1} and {α2} are two independent sets of simulations with the same covariance, and we sum over their possible
locations. If the simulations were Gaussian, one could use only a single set and compute the four-point average via〈
α4
〉
∼ C̃αC̃α; here, we allow for non-Gaussianities (for example from lensing), thus use only two-point averages.12

4. Normalization

Mask-induced multipole mixing can lead to non-trivial leakage between even- and odd-parity trispectra. As such,
the general Fisher matrix contains even-even correlations (denoted F4++), odd-odd correlations (F4−−) and even-odd
correlations (F4+− and F4−+). Thanks to the optimal estimator formalism, the full trispectrum estimates obtained
should be free from this mixing, i.e. the measured parity-odd modes should not contain a parity-even contribution. This
is important if one is searching for a signal in the former, and wants to avoid, for example, lensing-based contributions
to the latter.

To compute the Fisher matrix, we start from the general relation given in (63), and denote the two parity states by
λ, λ′ ∈ {±1}:

F4λλ′(b, B;b′, B′) =
1

24

∂T̃ijkl

∂tλ(b, B)
S−1
imS−1

jn S
−1
ko S

−1
lp

∂T̃mnop

∂tλ′(b′, B′)
. (96)

As with the bispectrum, this must be significantly simplified to avoid a heinously expensive sum. Whilst one could
compute F4 as the covariance of the unnormalized t̂ estimator applied to a set of GRFs, this requires a large number of
Monte Carlo simulations to converge and is accurate only in the limit of S−1 → C̃−1. Instead (following the bispectrum
logic, and [36, 40, 54]), we can use the following identity:

S−1
im

[
S−1
jn S

−1
ko S

−1
lp + 5 perms.

]
=

1

6
S−1
imS−1

jj′S
−1
kk′S

−1
ll′ [Uj′n′Uk′o′Ul′p′ + 5 perms.]U−1

n′nU
−1
o′oU

−1
p′p (97)

=
1

6
S−1
imS−1

jj′S
−1
kk′S

−1
ll′ U

−1
n′nU

−1
o′oU

−1
p′p ⟨uj′uk′ul′un′uo′up′⟩fc ,

where we have inserted three copies of the unit matrix, for symmetric invertible matrix U and GRFs u, which satisfy〈
uuT

〉
= U. The correlator has the subscript ‘fc’ corresponding to ‘fully-connected’, i.e. we consider only two-point

contractions when each of {j′, k′, l′} contracted with one of {n′, o′, p′}.
With the decomposition (97), the Fisher matrix can be split into two pieces, connected only by a known matrix,

S−1. Explicitly, each takes the form

∂T̃ijkl

∂tλ(b, B)
xjykzl = W (n̂i)

∑
ℓ1···ℓ4m1···m4

Y ∗
ℓ1m1

(n̂i)
∂T ℓ1···ℓ4

(−m1)···(−m4)

∂t(b, B)
[Wx]ℓ2m2

[Wy]ℓ3m3
[Wz]ℓ4m4

(98)

≡ W (n̂i)Q4λ[x, y, z](n̂
i;b, B)

for some {x, y, z}, converting the trispectrum to harmonic space, and introducing Q4± functions, akin to (57). This
function is just a real-space map for each choice of b and L. Using the above definition, the coupling matrix can be

12 One may also utilize non-Gaussian simulations to remove unwanted trispectra (arising from lensing or noise, for example); this is detailed
in [40].
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written

F4λλ′(b, B;b′, B′) =
1

144

∫
dn̂ dn̂′ 〈Q4λ[S

−1u,S−1u,S−1u](n̂;b, B)
[
WS−1W

]
(n̂, n̂′)

×Q4λ′ [U−1u,U−1u,U−1u](n̂′,b′, B′)
〉
fc
, (99)

which is a Monte Carlo average over realizations of u, akin to (56) for the bispectrum.
To compute the fully-connected correlator, we must subtract off the unwanted correlations. This can be done by

introducing multiple sets of GRFs, denoted, {un}, and computing expressions of the form

F abc,def
4λλ′ ≡ 1

144

∫
dn̂ dn̂′ 〈Q4λ[S

−1ua,S
−1ub,S

−1uc](n̂;b, B)
[
WS−1W

]
(n̂, n̂′)

× Q4λ′ [U−1ud,U
−1ue,U

−1uf ](n̂
′,b′, B′)

〉
ua,ub,uc,ud,ue,uf

, (100)

analogous to those in §VB. Most simply, we could use three such sets, giving F4λλ′(b, B;b′, B′) = 6F 123,123
4λλ′ , such

that only fully-connected terms can contribute. As shown in [40], a more efficient way is to instead use two sets of
GRFs, and compute the Fisher matrix as

F4λλ′(b, B;b′, B′) =
1

8

[(
F 111,111
4λλ′ + F 222,222

4λλ′

)
+ 9

(
F 112,112
4λλ′ + F 122,122

4λλ′

)
− 6

(
F 111,122
4λλ′ + F 222,112

4λλ′

)]
, (101)

with coefficients chosen to minimize the variance of the F4 estimate, i.e. reduce the number of Monte Carlo simulations
required.

We now turn to the computation of Q4± maps. First, we insert the explicit trispectrum of (17) into (98), finding

Q4±[x, y, z](n̂
i;b, B) = ± 1

∆4(b)

∑
ℓimi

Y ∗
ℓ1m1

(n̂i)
∑
LM

(−1)Mw
L(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

Bℓ1Bℓ2Bℓ3Bℓ4 (102)

× [Wx]ℓ2m2 [Wy]ℓ3m3 [Wz]ℓ4m4ΘL(B)

[
1± (−1)ℓ1234

2

]
[Θℓ1(b1) · · ·Θℓ4(b4) + 7 perms.]

+ (2 ↔ 3) + (2 ↔ 4).

Näıve computation of this expression is highly expensive, due to the large number of coupled ℓ summations. To simplify,
we insert the definitions of A and Ā given in (93) and expand the first weighting matrix in terms of spin-weighted
spherical harmonics. For the first permutation, this gives

Q
(a)
4± [x, y, z](n̂

i;b, B) = ± 1

2∆4(b)

∑
ℓ1ℓ2m1m2

Y ∗
ℓ1m1

(n̂i)
∑
LM

Bℓ1Bℓ2ΘL(B)Θℓ1(b1)Θℓ2(b2)[Wx]ℓ2m2
(−1)M (103)

×
∫

dn̂−2YLM (n̂)+1Yℓ1m1
(n̂)+1Yℓ2m2

(n̂)

[
Ab3b4 [y, z](L,−M)± (−1)ℓ1+ℓ2+LAb3b4 [y, z](L,−M)

]
.

Next, the ℓ1 and L summations can be written as spin-weighted spherical harmonic transforms. Denoting

s[X]b(n̂) =
∑
ℓm

sYℓm(n̂)Θℓ(b)Xℓm, (104)

and using the relation (−1)ℓsYℓm(n̂) = −sYℓm(−n̂), we can write the harmonic-space Q4± as

Q
(a)
4±,ℓ1m1

[x, y, z](b, B) = ∓Bℓ1Θℓ1(b1)

2∆4(b)

[∫
dn̂−1Y

∗
ℓ1m1

(n̂)H+
b2
[x](n̂)−2[A

∗
b3b4 [y, z]]

B(n̂)

±
∫

dn̂+1Y
∗
ℓ1m1

(n̂)H−
b2
[x](n̂)+2[A

∗
b3b4 [y, z]]

B(n̂)

]
, (105)

recalling that sY
∗
ℓm = (−1)s+m

−sYℓ(−m). Here, the n̂ integral can be evaluated as a further spin-1 spherical harmonic
transform. Summing over permutations, we find the final form:

Q4±,ℓm[x, y, z](b, B) =
[
Q

(a)
4±,ℓm[x, y, z]({b1, b2, b3, b4}, B) + 7 perms.

]
(106)

+ (x ↔ y) + (x ↔ z),
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where the permutations preserve the {b1, b2} and {b3, b4} pairs. This involves O(N4
ℓ ) harmonic transforms (since only

Θℓ(b) can be separated from the above expression), giving a slightly more favorable scaling than O(Nbin) = O(N5
ℓ ).

Given Q4±,ℓm we can compute Q4±(n̂), and thus compute the coupling via (99), multiplying by the filter WS−1W ,
which requires straightforward transformations between real and harmonic space, with a computational cost of O(Nbin).
Computing the above factors is likely the most labor-intensive section of optimal trispectrum estimator, but, thanks to
the above simplifications, still scales favorably with the number of Monte Carlo simulations (linearly, and much faster
than simply using them to numerically estimate the covariance of the unnormalized estimator [36]), and the number of
bins (technically quadratically, but with the rate-limiting pieces (computation of WS−1Q4±) scaling linearly).

To summarize, our estimator of the full-sky binned trispectrum is given by

t̂λ(b, B) =
∑

b′B′λ′

F−1
4λλ′(b, B;b′, B′)

{
τλ′ [h, h, h, h](b′, B′)− 6

〈
τλ′ [h, h,S−1α,S−1α](b′, B′)

〉
α

+3
〈
τλ′ [S−1α1,S

−1α1,S
−1α2,S

−1α2](b
′, B′)

〉
α1,α2

}
,

(107)

where the unnormalized estimator can be written explicitly as

τ±[α, β, γ, δ](b, B) = ± 1

48∆4(b′)

∑
LM

(−1)MΘL(B) {Ab1b2 [α, β](L,−M)Ab3b4 [γ, δ](L,M) (108)

±Ab1b2 [α, β](L,−M)Ab3b4 [γ, δ](L,M)
}
+ 23 perms.

where the permutations are over the positions of {α, β, γ, δ}, and α are random fields satisfying
〈
ααT

〉
= C̃. The A

and Ā fields are defined in (93) and the general Fisher matrix is given in (99). If one wishes to ignore the even-odd
coupling in the estimator, one just evaluates the above expression fixing λ′ = λ.

VII. VALIDATION

In the above sections, we have derived optimal and ideal estimators for the full-sky power spectrum, bispectrum, and
(parity-even and odd) trispectrum. To demonstrate their efficacy, we will now consider a variety of tests on synthetic
data, both for Gaussian and non-Gaussian maps, optionally including a non-trivial mask. This section makes extensive
use of the public PolyBin code,13 which implements the above estimators in python, with harmonic manipulations
performed using healpix [69]. Spectra can be computed using arbitrary binning schemes, with the option of different
binning for squeezed and collapsed configurations. For this purpose, we will specialize to CMB applications, though we
note that the tools developed above apply much more generally.

A. Practicalities

To test our estimators, we will primarily use synthetic Gaussian random fields (GRFs) created using healpix. These
are constructed using the following (statistically isotropic) correlator:

⟨aℓmaℓ′m′⟩ = (−1)mδKℓℓ′δ
K
m(−m′)

[
B2

ℓC
TT
ℓ +Nℓ

]
, (109)

where CTT
ℓ is the CMB temperature power spectrum predicted by class with the Planck best-fit parameters [70], and

we set the beam, Bℓ, to unity. Since we generate and analyze simulations with the same HealPix Nside we do not
include a pixel beam. The noise model is given by

Nℓ = ∆2
T exp

(
ℓ(ℓ+ 1)θ2FWHM

8 log 2

)
, (110)

where we fix ∆T = 1µK-arcmin and θFWHM = 5arcmin. Though we will usually work with Gaussian fields, we also
consider simulations with a synthetic bispectrum injected. These can be obtained following [36], via the transformation
on a GRF aℓm

aℓm → aℓm +
1

6
Gℓℓ2ℓ3
mm2m3

btheoryℓℓ2ℓ3
h∗
ℓ2m2

h∗
ℓ3m3

, (111)

13 GitHub.com/oliverphilcox/PolyBin

https://github.com/oliverphilcox/PolyBin
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FIG. 1. Examples of Gaussian full-sky maps used to test the polyspectrum estimators. The left panel shows a dataset constructed
with the Planck power spectrum and noise parameters and an apodized sky mask. In the right panel, we show the map after
application of the quasi-optimal S−1 weighting.

where btheoryℓ1ℓ2ℓ3
is the desired bispectrum (see also [37, Eq. 1.3]) and hℓm ≡ [C−1a]ℓm. Here, we will use the factorized form

bℓ1ℓ2ℓ3 =
∏3

i=1 βℓi , where, for definitiveness, we set βℓ = 2 exp [(ℓ− 2)/40] (in µK3 units). Due to the factorization,
this can be written

aℓm → aℓm +
1

6
βℓ

∫
dn̂Y ∗

ℓm(n̂)[βh]∗(n̂)[βh]∗(n̂), (112)

using (6) and writing [βh](n̂) =
∑

ℓm βℓhℓmYℓm(n̂), which can be evaluated as a harmonic transform.14 Finally, we
will often consider windowed fields: for this, we utilize a Planck 40% Galactic sky mask, with 2◦ Gaussian apodization,
denoted W ;15 this is akin to a (highly anisotropic) window that would be used in a realistic Planck analysis, though
we pick a somewhat severe example for the sake of demonstration. The full field is given by d(n̂) = W (n̂)a(n̂), an
example of which is shown in Fig. 1.

To form the window-free estimators we require the random fields u and their covariance, U. As noted in §IVC, the
estimator is unbiased for any U, however, the Monte Carlo variance can be reduced if U−1 is close to the weighting
matrix S−1. Here, we will assume a diagonal weighting, such that

⟨uℓmuℓ′m′⟩ = (−1)mδKℓℓ′δ
K
m(−m′)

[
B2

ℓC
TT
ℓ +Nℓ

]
≡ (−1)mδKℓℓ′δ

K
m(−m′)Uℓ, (113)

as in (109): if the synthetic data is unwindowed, this matches the true covariance C. With the definition, the action of
the U−1 weighting on a map β is given by

U−1
ij βj =

∑
ℓm

βℓm

Uℓ
Yℓm(n̂i), (114)

which is straightforwardly computed as a harmonic transform. In practice, one does not deal with continuous maps on
the two-sphere, but discrete healpix pixels: this affects things only by introducing a factor Apix = 4π/Npix whenever
a summation over pixels is involved.16 Finally, we must choose a form for the S−1 optimality weighting. Here, we use a
diagonal approximation (neglecting the window function, except for some rescaling, which cancels), fixing S−1 = U−1,
which we expect to be close to optimal on the scales considered herein. An example of the S−1-filtered data is shown
in Fig. 1. As noted in §IVC, an alternative approach would be to omit the window from ã (and its correlators), and
instead include it as a projection in S−1 (i.e. treating the true map as the input, and zero-weighting bad regions).17

This may be more appropriate for real analyses with complex window functions and inpainted maps, and will be the
approach used in [59].

14 We also subtract off the mean of the signal, to ensure that ⟨aℓm⟩ = 0.
15 Available at pla.esac.esa.int/pla.
16 Here, we neglect discrete pixel weights, which could be included to ensure that U is the exact covariance of u. Assuming that the ℓ range

in question is sufficiently small compared to ℓmax, this approximation is justified.
17 See [67] for an alternative approach that allows for invertible covariances.

http://pla.esac.esa.int/pla
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B. Power Spectrum

We begin by validating the power spectrum estimators of §IV. For this, we apply both the ideal (§IVA) and optimal
(§IVB) estimators to a suite of GRF simulations created as described above, optionally including a Planck mask. For
this test, we focus on comparatively large scales (where the impact of the mask is largest), considering the binned power
spectrum in nℓ = 100 linearly spaced bins of width ∆ℓ = 4 from ℓmin = 2 to ℓmax = 402, though we drop the last bin
in all cases to mitigate correlations of the extremal bins with their neighbors. Data are constructed using a healpix
grid of Nside = 256, giving ℓHEALPIX

max = 767, far above the scales of interest here. To construct the Fisher matrices
required in the optimal estimator, we use Nfish = 100 simulations. Computation required ≈ 30 CPU-seconds per Fisher
realization, and ≈ 0.4 CPU-seconds for each estimator numerator (both for the ideal and optimal approaches); the
optimal estimator thus required ≈ 1 CPU-hour of additional time to compute, though we note that this is independent
of the number of simulations analyzed.

To compare theory and data, we require some procedure for estimating the binned models from the unbinned spectra
Cth

ℓ . An appropriate choice is the following:

Cth(b) =

[∑
ℓ

Θℓ(b)(2ℓ+ 1)
Cth

ℓ

S2
ℓ

]
/

[∑
ℓ

Θℓ(b)(2ℓ+ 1)
1

S2
ℓ

]
, (115)

derived from considering the expectation of the ideal estimator. This matches the approach of [24] for the bispectrum,
but includes our custom weighting Sℓ (or the diagonal part thereof).
Fig. 2 shows the measured binned power spectrum from the unmasked and masked simulations alongside the true

injected power spectrum, averaging over 1000 simulations. In both cases, we find excellent agreement between data
and theory, as expected. When the synthetic data does not include a window, the two estimators agree precisely; when
a mask is included, the means are consistent, but the variance properties differ. In the latter case, the variance is

significantly increased (by a factor of approximately
〈
W 4
〉
/
〈
W 2
〉2
, due to the reduced area observed), and the ideal

estimator seems to considerably outperform the optimal one. This appears paradoxical: however, it occurs since the
various bins are correlated in the ideal estimator, but anti-correlated in the optimal approach (with both estimators
yielding similar signal-to-noise).

In Fig. 3, we plot the correlation matrices for the two estimators applied to the windowed data-set (noting that the
unwindowed case is trivially diagonal). If the optimal estimator is, as the name would suggest, optimal, its covariance
should be equal to the inverse of the Fisher matrix, F2. From Fig. 3 and the lower part of Fig. 2, this is exactly what
is observed on all scales, implying that our choice of weighting, S−1, is appropriate.18 As noted above, we observe
different correlation properties for the optimal and ideal estimators, with a positive correlation between neighboring
bins seen in the latter case. One feature of the optimal prescription is that we can naturally form a quantity of

unit variance, with no cross-correlations:
∑

b′ F
1/2
2 (b, b′)Ĉ(b′) [e.g., 51]; we have verified that the optimal estimator

correlation matrix of this object shows no obvious departures from the identity matrix beyond that expected from noise
fluctuations. Finally, we consider the dependence on the number of Monte Carlo simulations used to define the Fisher
matrix (the limiting step in the estimator). Reducing to just ten realizations (Nfish = 10) changes the power spectrum
predictions by at most 0.25σ, thus we conclude that the above choice of Nfish = 100 is both sufficient and conservative.

C. Bispectrum

Next, we turn to the three-point function. Here, we will consider two scenarios: (1) pure GRFs without a window
function (to test optimality), and (2) simulations with an injected bispectrum and a mask (to test bias). Due to
the higher dimensionality of the three point function, we consider broader (linear) bins, using ℓmin = 2, ∆ℓ = 10,
and nℓ = 15.19 To avoid edge effects, we will drop any bin containing the largest ℓ values: this reduces the total
number of elements in the data-vector from 372 to 308. Given the lower ℓmax used in this test, we fix Nside = 128,
which significantly reduces run-time. Here, we require 240 CPU-seconds to compute the Fisher matrix using a single
pair of GRF realizations, and 50 CPU-seconds to compute the estimator numerators. The runtime is dominated by
the 100 Monte Carlo simulations (used to compute the one-field term, cf. §VB), but greatly reduced if one analyzes
multiple datasets in series (since maps relating to the Monte Carlo simulations do not need to be recomputed). The
ideal estimator (which does not include a one-field term) requires only 0.2 CPU-seconds, though with another 35

18 In practice, we find little dependence of the power spectrum measurements on the choice of weighting scheme, which occurs since the
data is mostly uncorrelated and the ℓ-bins are narrow [cf. 55].

19 In practice, it may be preferable to use non-linearly spaced bins, such that the signal-to-noise is more evenly distributed across bins.
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FIG. 2. Comparison of binned power spectrum estimators for unwindowed (left) and windowed (right) data. In each case, we plot
the binned power spectrum obtained from the ideal (§IVA, blue) and maximum-likelihood (§IVB, green) estimators, alongside
the true theory model obtained from class. The top panels show the raw measurements, in bins of width ∆ℓ = 4 (normalized
by ℓ(ℓ+ 1)/(2π)), whilst the bottom panels show the errors. Data is obtained from 1000 Gaussian random field simulations,
with the Fisher matrix of the optimal estimators constructed using 100 Monte Carlo realizations, using quasi-optimal weights
(cf. §VIIA). In all cases the estimators appear unbiased, and the unwindowed variances are almost identical to the inverse Fisher
matrix (red lines). For the windowed data, the ideal estimator appears to have lower variance than the optimal estimator: this
is due to significant correlations between neighbouring bins, as seen in Fig. 3.
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FIG. 3. Correlation matrices for the ideal and unwindowed power spectrum measurements plotted in Fig. 2 (right panel). In all
cases, the underlying data contains a Planck sky mask, which, for the conventional (ideal) estimator, gives a clear correlation
between neighbouring bins. In the optimal estimator, we see an anticorrelation, which is closely matched by the inverse Fisher
matrix, as expected. The correlation matrix is defined by Cij/

√
CiiCjj for covariance Cij , and we subtract off the leading diagonal

for clarity.
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FIG. 4. Comparison of binned bispectrum estimators for unwindowed zero-signal (left) and windowed non-zero-signal (right)
data. The measurements are akin to those in Fig. 2, but use broader bins with ∆ℓ = 10 and ℓ ∈ [2, 142], and we weight the
data by ℓ1ℓ2ℓ3, averaging over 1000 simulations. Here, we plot all bispectrum bins {b1, b2, b3}, which satisfying the triangle
conditions (at the bin centers) and b1 ≤ b2 ≤ b3. These are collapsed into one dimension for visualization, starting from the
lowest ℓ bins on the LHS, and sequentially updating b3, b2, then b1. We see that the estimator is unbiased in both cases, and
that the variance of the optimal estimator matches its theoretical prediction (red lines), implying that it is close to minimum
variance. The corresponding correlation matrix is shown in Fig. 5.

CPU-seconds to compute the (diagonal) normalization. In this case, one should bin the theory model in the following
manner [cf., 24]:

bth(b) ∝
∑
ℓ123

Θℓ1(b1)Θℓ2(b2)Θℓ3(b3)
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

0 0 0

)2
bthℓ1ℓ2ℓ3

Sℓ1Sℓ2Sℓ3

, (116)

where the normalization factor takes the same form but without bthℓ1ℓ2ℓ3 .
Fig. 4 shows our measurements of the reduced bispectrum. In the absence of a signal, we recover null detections

(as expected), and find a similar (though not identical) variance between the optimal and ideal estimators, with the
optimal estimator performing somewhat better on large scales. When a signal is included, we find unbiased results from
both estimators, and, as before, note that the variance of the optimal estimator lies very close to the inverse Fisher
matrix (and somewhat higher than the ideal estimator variance, due to bin anticorrelations). This again indicates that
the optimal estimator is close to minimum variance.20

The correlation matrices shown in Fig. 5 confirm the above results. Here, the mask induces non-trivial correlations
between the various bins (the size of which depend on the ratio of the bin width and the characteristic scale of the
mask), particularly those with b′ = b± {1, 0, 0}, or some permutation thereof, extending up to high ℓ (large scales).
This structure is well captured by the Fisher matrix, and differs significantly from the (generally positive) correlations
of the ideal estimator. In particular, the low-ℓ region shows strong correlations between a variety of bins, up to ∼ 20%.
These may be difficult to model, and are not found in the optimal estimator, due to its particular choice of weighting
scheme. As before, we find that the Fisher matrix is well-converged: reducing to Nfish = 10 biases the bispectrum
measurements by at most 0.2σ.

Finally, it is interesting to consider the impact of the linear term in the bispectrum estimator, i.e. that proportional
to ⟨αα⟩ a. As noted above, this term does not contribute to the mean of the signal, but can have non-trivial impacts

20 Note that this is not guaranteed in this case even if S−1 = C̃−1, since the field is non-Gaussian, thus the covariance strictly contains a
piece proportional to B2.
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FIG. 5. As Fig. 3, but showing the correlation of the reduced bispectrum measurements displayed in Fig. 4. As before, the
covariance of the optimal estimator matches the inverse Fisher matrix to high accuracy; in this case, the correlation structure is
more complex due to window-function induced mode coupling. The ideal estimator shows strong correlations between bins,
particularly at the top left, corresponding to the lowest bins. These would need to be modeled in any analysis.
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FIG. 6. Impact of the linear term in the bispectrum estimators. We plot the ratio of the errorbars between bispectra estimated
including and excluding the one-field term (cf. 62), for realizations with (blue) and without (orange) a mask. Significant
differences are observed for the first few bins of the windowed data; these correspond to configurations including modes in the
lowest ℓ bin.

on its covariance. In Fig. 6 we compare the estimator variance both with and without the one-field term. For the first
fifteen or so bins, we find a notable reduction in the errorbar from including the linear term for windowed data, up to
≈ 25%, but essentially no change for the other bispectrum components, nor for unwindowed data. Noting that the
affected bins are the only ones to contain the lowest ℓ modes (here with ℓ1 ∈ [2, 12] and free ℓ2, ℓ3), we conclude that
the linear term significantly reduces the measurement uncertainty on large scales if a window is present. This matches
previous results [e.g., 30, 36] (noting that many non-ideal estimators include such a term) and is important if one
wishes to constrain large-scale signals, such as those of primordial non-Gaussianity.

D. Trispectrum

Finally, we validate the trispectrum estimator. As discussed in §VI the trispectrum contains two contributions
(of even- and odd-parity); here we will measure both simultaneously, and, for the sake of plotting, work with the
imaginary part of t−. Generating realizations with injected non-Gaussianity is non-trivial, especially for the parity-odd
terms (though see [40]), though for the parity-even terms, one may consider using lensed simulations, which include
a known four-point function. However, to verify the estimators it is sufficient to check that (a) before subtraction
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FIG. 7. Comparison of binned trispectrum estimators applied to 1000 unwindowed (left) and windowed (right) Gaussian
simulations. The measurements are similar to those of Fig. 4, except with the binning ∆ℓ = 20, ℓ ∈ [2, 102] and weighting
the data by ℓ1ℓ2ℓ3ℓ4. Both parity-even and parity-odd measurements are plotted, demarcated by the vertical dotted lines,
condensing all allowed trispectra in bins {b1, b2, b3, b4, B} into a single dimension for visualization. As before, the characteristic
ℓ values in the bin gradually increase in size from the left to the right. The mean of both the ideal and optimal estimators
appears consistent with zero, and, for the optimal case, the variance matches the inverse Fisher matrix (red lines), as expected.
Correlation matrices for the windowed field are shown in Fig. 8.

of the disconnected terms, the parity-even estimator recovers the Gaussian expectation (i.e. that of the form C2
ℓ ),

(b) after subtraction, the estimator is consistent with zero when applied to Gaussian realizations, (c) the estimator
variance matches the Fisher prediction. For the parity-odd case, it is usually sufficient to restrict to comparatively
large scales, since (if the underlying theory is statistically isotropic), any parity-violating trispectrum must vanish in
the small-scale regime.21

As for the bispectrum, the trispectrum is a high-dimensional object, containing O(n5
ℓ) elements (for nℓ ℓ-bins). To

keep the computation tractable, we will consider the following binning parameters (using linear bins for simplicity,
noting that other choices may be more efficient): ℓmin = 2, ∆ℓ = 20, nℓ = 6, and drop the largest ℓ-bin to avoid
edge effects. We again work at Nside = 128, which is appropriate for these large-scale modes. In total, we estimate
455 even-parity and 386 odd-parity configurations, which reduces to 249 and 222 when removing the final ℓ bin.22

Here, we apply our estimator to the 1000 GRF simulations described above, with the Fisher matrix computed using
Nfish = 100 realizations. We also utilize 100 GRFs to compute the disconnected two- and zero-field terms in the optimal
estimator. Each Fisher realization requires 40 CPU-minutes to analyze, with the data piece taking ≈ 10 CPU-minutes
per simulation, again dominated by the Monte Carlo computations. The ideal numerator is significantly faster, since it
does not involve Monte Carlo simulations, and requires only ≈ 1 CPU-second per iteration. We caution however, that
the ideal normalization is non-trivial for trispectra, due to its off-diagonal correlators and 6j symbols. For the binning
parameters discussed above, the ideal Fisher matrix required 24 CPU-hours to compute (after removing the largest ℓ
bin); this scales as O(ℓ6max), which is prohibitive for large ℓmax (unlike the optimal schemes).

To compare theory and observations for the trispectrum, we should bin the underlying reduced trispectrum tℓ1ℓ2,thℓ3ℓ4
(L)

21 This occurs since, at high-ℓ, the trispectrum is approximately plane-parallel. On R2, a parity flip is equivalent to a rotation in R3, and
thus trivial if the theory is invariant under rotations. This strictly requires all the ℓ modes to be small: in practice, one may wish to
include parity-odd modes in the squeezed configuration (depending on the physical models of interest). These can be included by allowing
for larger ℓ2, ℓ4 and (by the triangle conditions) L.

22 We recall that the parity-odd estimator vanishes if b1 = b3 and b2 = b4, unlike the parity-even case.
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FIG. 8. As Fig. 5, but showing the correlation of the reduced trispectrum measurements displayed in Fig. 7. We utilize the
same binning strategy as before, with the parity-even modes shown in the top left and the parity-odd in the bottom right of
each matrix. We show results both for unwindowed (top) and windowed (bottom) data, noting that the correlation structure
is non-trivial in both cases, due to degeneracies within the trispectrum definition. Regardless of the mask, the inverse Fisher
matrix closely matches the optimal estimator covariance, indicating that the estimator is approaching the maximum likelihood
solution. The mask is seen to induce non-negligible correlations on small scales, though we do not find significant mixing
between the parity-even and parity-odd trispectra.

in the following manner:

tth(b, B) ∝
∑

ℓ1234L

Θℓ1(b1)Θℓ2(b2)Θℓ3(b3)Θℓ4(b4)
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)(2ℓ4 + 1)(2L+ 1)

(4π)2
(117)

×

(
ℓ1 ℓ2 L

−1 −1 2

)2(
ℓ3 ℓ4 L

−1 −1 2

)2
tℓ1ℓ2,thℓ3ℓ4

(L)

Sℓ1Sℓ2Sℓ3Sℓ4

,

with an appropriate normalization factor. This is again derived from the expectation of the idealized estimator, but we
drop a 6j term (which mixes different L and L′ modes), which is subdominant, and prevents efficient factorization in
{ℓ1, ℓ2, L} and {ℓ3, ℓ4, L}.

In Fig. 7 we show the trispectrum measurements extracted from the GRF realizations. Though detailed interpretation
of this plot is hampered by the statistic’s high dimensionality, it is clear that both estimators return amplitudes
consistent with zero (though there may be some outliers in the ideal windowed scenario, due mask-induced effects).
This indicates that the subtraction of the disconnected terms is working as expected. Furthermore, the variances of
the optimal estimator are consistent with those predicted by the inverse Fisher matrix, for both the parity-even and
parity-odd components (with a ratio of 1.021 ± 0.003). This is shown further in Fig. 8, where we observe that the
complex correlation structure of the Fisher matrix matches the covariance of the simulated realizations, implying that
the estimator is close to optimal, and that we have used sufficient number of simulations to compute the disconnected
terms. When the mask is included, the variance of the estimator increases significantly (roughly by a factor of
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FIG. 9. Comparison of the optimal trispectrum estimators, specializing to the bins with a non-trivial contribution to the
disconnected (two- and zero-field) terms. The left and right panels show results for unwindowed and windowed data respectively,
with colors discriminating the various terms. In each case, we plot the relevant term in the trispectrum numerator, normalized
by the unwindowed Fisher matrix for visualization. For the left panel, we plot also the theoretical prediction, as given in (118).
The disconnected terms closely match their expectations and, as expected, cancel when combined to yield a zero detection of
the connected trispectrum. In most cases, the errorbars are too small to discern.

〈
W 8
〉
/
〈
W 2
〉4
), and the correlation structure changes, seen particularly in the low-ℓ modes. Unlike the power spectrum

and bispectrum estimators, the covariance of the unmasked fields is non-diagonal: this is in accordance with the
discussion of §VI, and is due to the labelling degeneracy, where the diagonal of the quadrilateral ABCD can be placed
between sides A and C or B and D. Finally, we note that Nfish = 100 is sufficient for Fisher matrix convergence, as
before; reducing to Nfish gives a (stochastic) bias of at most 0.04σ.
To check the parity-even estimator in more detail it is useful to examine the disconnected terms. In the ideal

Gaussian limit, E[t4] = −(1/2)E[t2] = E[t0], and the unnormalized estimators satisfy

E[t0(b, L)] ∝
1

∆4(b)

∑
ℓ1ℓ2

(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

(
ℓ1 ℓ2 L

−1 −1 2

)2
(−1)ℓ1+ℓ2+L

Cℓ1Cℓ2

(
δKb1b3δ

K
b2b4 + δKb1b4δ

K
b2b3

)
(118)

In Fig. 9, we plot the various terms entering the trispectrum numerators, for both the unwindowed and windowed
estimators. In the former case, we observe excellent agreement between the disconnected pieces and (118), whilst for
the latter (for which theoretical predictions are non-trivial), we see similar behavior as a function of scale. Crucially,
whilst the disconnected terms themselves are large, their sum is negligible; this indicates that the estimators are
performing as expected, and do not yield a false detection.

Our final consistency check is shown in Fig. 10. Here, we consider the quantity t̂uncorr ≡ F−T/2
4 t̂, which, as noted

in [51], follows a unit Gaussian distribution if the estimator is optimal. In this limit, its covariance would be simply
be equal to the identity matrix. From the figure, we find that, using the Fisher matrix obtained from the optimal
estimator, the covariance of t̂uncorr (on the masked dataset) is indistinguishable from a unit normal, and thus the
estimator is close to optimal. If one instead uses the ‘ideal’ Fisher matrix F4 (which can be obtained without Monte
Carlo methods, albeit with large computational costs), we find clear structure to the correlation matrix, due to the
impact of the window functions on the Fisher matrix. This decomposition also provides a useful projection scheme; for
realistic scenarios (including non-Gaussian effects such as CMB lensing), the various bins of t̂uncorr are expected to
remain almost uncorrelated.

VIII. CONCLUSIONS

Through the measurement and interpretation of random processes, we can understand the physics of a wide variety
of phenomena. Correlation functions, or polyspectra, are a key tool with which to do this, allowing for the rich
statistics of a stochastic field to be expressed in terms of low-dimensional functions. In this work, we consider the
measurement of such quantities for fields on the two-sphere, relevant to a range of disciplines including cosmology and
geophysics. In particular, we derive estimators for the two-, three- and four-point correlators (power spectra, bispectra,
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FIG. 10. Correlation matrix of the windowed trispectrum dataset, weighted by the Cholesky factorization of F4. The left and
right panels show the results using F4 matrices obtained from optimal and ideal estimators, subtracting the leading diagonal in
each case. If the estimator is ideal, this matrix should be consistent with unity. Here, we find good results for the optimal
estimators (with a variance of 0.98± 0.04) but clear structure in the ideal case (with a variance of 5.8± 1.4). This again indicates
that the optimal estimators are close to minimum variance, and sources a useful projection of the data.

and trispectra, respectively), and discuss how they may be efficiently applied to isotropic data. We consider two classes
of estimators: ‘ideal’ and ‘optimal’. The first match standard definitions in the literature, and are derived under ideal
assumptions, i.e. assuming isotropic noise without masks. In contrast, our optimal estimators defined by maximizing
the theoretical likelihood for the masked data (including beams), which yields a number of useful properties. These
include:

• Optimality: Assuming that field is close to Gaussian, the variance of the optimal estimators takes its minimum
value. Strictly, this is true only if the data is optimally weighted: we have additionally considered close-to-optimal
weighting schemes that come close to saturating this bound in realistic scenarios.

• Bias: The optimal estimators are unbiased, such that their expectation is equal to the true underlying statistic,
regardless of the survey mask and (isotropic) beam. This allows the measurements to be directly compared to
data, unlike for the ideal estimators, for which the window should be included in the theory model, requiring a
complex convolution.

• Separability: Since we specialize to binned polyspectra, the estimators can be efficiently computed through a
set of spherical harmonic transforms. The accompanying Fisher matrices may be estimated via Monte Carlo
methods, which are shown to converge quickly.

• Computational Efficiency: Computation of the estimator numerators involves sets of harmonic transforms
scaling as Nℓ (for the power spectrum and bispectrum) and N2

ℓ (for the trispectrum), as well as a summation
scaling as Nbin, for Nℓ ℓ-bins and Nbin total bins. Similarly, the rate limiting step of the optimal Fisher matrix
estimator has the scaling O(NbinNfish), unlike näıve O(N2

bin) expectations, utilizing Nfish ∼ 10− 100 simulations.

To facilitate general use, we have implemented the above estimators in a publicly available Python package, which
has been extensively tested in §VII. These could be used for a number of applications, including general (model-
independent) non-Gaussian analyses of the cosmic microwave background (CMB) or cosmic shear. A particularly
exciting prospect concerns the parity-odd trispectrum. Utilizing these estimators, we robustly measure the statistic,
taking into account subtleties such as the leakage of disconnected terms and parity-even modes, and thus place the first
CMB-derived constraints on scalar parity-violation in the Universe. This will be discussed in [59]. Naturally, many
other applications are possible.
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[69] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelman, Astrophys. J. 622,

759 (2005), arXiv:astro-ph/0409513.
[70] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday,

R. B. Barreiro, N. Bartolo, et al., A&A 641, A6 (2020), arXiv:1807.06209 [astro-ph.CO].

https://doi.org/10.1088/1475-7516/2022/08/015
http://arxiv.org/abs/2205.14408
https://doi.org/ 10.1103/PhysRevD.81.123007
http://arxiv.org/abs/1004.1409
http://arxiv.org/abs/1004.1409
https://doi.org/10.1103/PhysRevD.83.023007
http://arxiv.org/abs/1010.0251
https://doi.org/10.1088/1475-7516/2010/10/002
http://arxiv.org/abs/1007.1462
https://doi.org/10.1103/PhysRevD.86.063009
http://arxiv.org/abs/1203.6654
https://doi.org/ 10.1017/S1743921314010813
http://arxiv.org/abs/1407.0624
https://doi.org/10.3847/1538-4365/ac18c9
http://arxiv.org/abs/2104.07408
https://doi.org/10.1103/PhysRevD.57.2117
http://arxiv.org/abs/astro-ph/9708203
https://doi.org/10.1086/306629
http://arxiv.org/abs/astro-ph/9805339
https://doi.org/ 10.1046/j.1365-8711.2000.03074.x
http://arxiv.org/abs/astro-ph/9905192
http://arxiv.org/abs/astro-ph/0503603
http://arxiv.org/abs/astro-ph/0503604
https://doi.org/10.1103/PhysRevD.104.123529
http://arxiv.org/abs/2107.06287
https://doi.org/10.1103/PhysRevD.103.103504
http://arxiv.org/abs/2012.09389
https://doi.org/10.1086/305663
http://arxiv.org/abs/astro-ph/9708020
http://arxiv.org/abs/astro-ph/9708020
https://doi.org/10.1073/pnas.2111366119
http://arxiv.org/abs/2106.10278
https://doi.org/10.1088/1475-7516/2021/11/031
http://arxiv.org/abs/2106.06324
http://arxiv.org/abs/2303.12106
https://doi.org/10.1103/PhysRevD.106.063501
http://arxiv.org/abs/2206.04227
http://arxiv.org/abs/2206.03625
https://doi.org/10.1103/PhysRevD.107.023523
http://arxiv.org/abs/2210.16320
http://arxiv.org/abs/2110.12004
https://doi.org/ 10.1103/PhysRevD.106.023525
http://arxiv.org/abs/2109.13911
http://arxiv.org/abs/1709.03452
https://doi.org/10.1103/PhysRevD.59.027302
http://arxiv.org/abs/astro-ph/9712121
https://doi.org/10.3847/1538-4357/ac02bb
http://arxiv.org/abs/2012.01709
http://dlmf.nist.gov/
https://doi.org/ 10.1086/427976
https://doi.org/ 10.1086/427976
http://arxiv.org/abs/astro-ph/0409513
https://doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/1807.06209

	Optimal Estimation of the Binned Mask-Free Power Spectrum, Bispectrum, and Trispectrum on the Full Sky: Scalar Edition
	Abstract
	Introduction
	Ideal Binned Polyspectra
	Ideal Correlators
	Binning

	Masked Data & Minimum-Variance Estimators
	Non-Ideal Correlators
	Optimal Estimators

	Optimal Power Spectrum Estimation
	Idealized Form
	General Form
	Choice of S-1 and U

	Optimal Bispectrum Estimation
	Idealized Form
	General Form
	Numerator
	Fisher Matrix


	Optimal Trispectrum Estimation
	Idealized Form
	Four-Field Term
	Aside: Spin Definitions
	Two-Field Term
	Zero-Field Term
	Normalization

	General Form
	Four-Field Term
	Two-Field Term
	Zero-Field Term
	Normalization


	Validation
	Practicalities
	Power Spectrum
	Bispectrum
	Trispectrum

	Conclusions
	Acknowledgments
	References


