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ABSTRACT

At kinetic scales in the solar wind, instabilities transfer energy from particles to fluctuations in the electromagnetic fields while restor-
ing plasma conditions towards thermodynamic equilibrium. We investigate the interplay between background turbulent fluctuations
at the small-scale end of the inertial range and kinetic instabilities acting to reduce proton temperature anisotropy. We analyse in-
situ solar wind observations from the Solar Orbiter mission to develop a measure for variability in the magnetic field direction. We
find that non-equilibrium conditions sufficient to cause micro-instabilities in the plasma coincide with elevated levels of variability.
We show that our measure for the fluctuations in the magnetic field is non-ergodic in regions unstable to the growth of temperature
anisotropy-driven instabilities. We conclude that the competition between the action of the turbulence and the instabilities plays a
significant role in the regulation of the proton-scale energetics of the solar wind. This competition depends not only on the variability
of the magnetic field but also on the spatial persistence of the plasma in non-equilibrium conditions.
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1. Introduction

The solar wind is a nearly collisionless plasma and as such ex-
hibits non-equilibrium conditions that lead to the creation of
micro-instabilities (Matteini et al. 2012; Alexandrova et al. 2013;
Klein et al. 2018). Linear and quasilinear Vlasov–Maxwell the-
ory predicts that kinetic-scale instabilities driven by temperature
anisotropy with respect to the magnetic field restore the plasma
towards thermal equilibrium (Hollweg & Völk 1970; Gary et al.
1976; Gary 1993). These theoretical descriptions often assume
a constant background on which the unstable fluctuations are
added as a perturbation. However, the real, turbulent solar wind
does not provide such a constant background, with the presence
of inhomogeneities across the spatial and temporal scales over
which the instabilities are predicted to act (Bruno & Carbone
2013; Matthaeus et al. 2014; Verscharen et al. 2019).

The effective action of proton temperature anisotropy-driven
instabilities in the solar wind is often inferred in the literature
from comparisons of the distribution of observed data and its
constraints in the T⊥/T‖-β‖ parameter space, where

β‖ ≡
8πnkBT‖

B2 , (1)

B is the magnitude of the magnetic field, n is the proton number
density, kB is the Boltzmann constant, T⊥ is the proton tempera-
ture perpendicular to the magnetic field, and T‖ is the proton tem-
perature parallel to the magnetic field (e.g., Marsch et al. 2004;
Hellinger et al. 2006; Bale et al. 2009; Chen et al. 2016; Opie
et al. 2022). The thresholds of the anisotropy-driven instabilities
set limits to the distribution of the data in T⊥/T‖–β‖ parameter
space (Gary 1992; Gary et al. 2001; Kasper et al. 2002).

A common analytical approximation for the thresholds of the
anisotropy-driven instabilities is given in the parametric form

T⊥
T‖

= 1 +
a(

β‖ − c
)b , (2)

where a, b, and c are fit parameters with values specific to each
instability and to a given maximum growth rate γm (Hellinger
et al. 2006). The oblique firehose and the mirror-mode insta-
bilities, which we consider here, approximately provide outer
boundaries to the distribution of stable data both in observations
(Hellinger et al. 2006; Gary 2015) and in simulations (Servidio
et al. 2014; Hellinger et al. 2015; Riquelme et al. 2015).

Solar wind turbulence is mostly non-compressive with a mi-
nor component of compressive fluctuations that contribute a rel-
ative magnetic energy (δ|B|/B0)2 of a few percent to the turbu-
lent cascade (Chen 2016). Turbulent dissipation of energy is a
candidate mechanism to explain the observed anisotropic heat-
ing of the solar wind (Isenberg 1984; Marsch 1991; Cranmer
et al. 2007; Maruca et al. 2011; Howes 2015). In the context of
the expanding solar wind, local heating and the response of the
solar wind to the turbulent fluctuations create non-equilibrium
features that displace the plasma into unstable regions of the
T⊥/T‖–β‖ parameter space, beyond the threshold of the insta-
bilities (Matteini et al. 2006; Schekochihin et al. 2008; Matteini
et al. 2012; Bott et al. 2021). However, it is unclear how insta-
bilities and turbulence interact at kinetic scales.

Kinetic plasma simulations show that instabilities can reg-
ulate the thermal energetics of the plasma, and that turbulence
in the expanding solar wind can both raise and lower anisotropy
measured with respect to the magnetic field (Matteini et al. 2006;
Hellinger & Trávníček 2008; Kunz et al. 2014; Hellinger et al.
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2015; Riquelme et al. 2015; Hellinger et al. 2017; Markovskii
et al. 2020; Bott et al. 2021; Markovskii & Vasquez 2022). The
oblique firehose instability produces Alfvénic modes with zero
frequency, linear polarisation, and finite compressivity (δn ,
0 and δ|B| , 0), and so creates both compressive and non-
compressive fluctuations at ion scales (Hellinger & Matsumoto
2000; Hellinger & Trávníček 2008). Observations and simula-
tions show that the mirror-mode instability generates compres-
sive fluctuations on kinetic scales (Bale et al. 2009; Hellinger
et al. 2017). Therefore both compressive and non-compressive
kinetic-scale fluctuations can be attributed to the instabilities
themselves or to cascaded background turbulence at these scales
(or, in fact, a combination of both), and consequently caution
must be exercised in their interpretation (Bale et al. 2009; Chan-
dran et al. 2009; Salem et al. 2012; Chen et al. 2013; Gary 2015).

In this work, we examine non-compressive fluctuations in
the magnetic-field direction at scales corresponding to the small-
scale end of the inertial range of the turbulence (Kolmogorov
1941; Tu & Marsch 1995). We assume that these fluctuations
predominantly represent local Alfvénic fluctuations. By combin-
ing magnetic-field measurements with measurements of the pro-
ton parameters, we investigate the action of the oblique firehose
and mirror-mode instabilities in this turbulent background.

2. Data analysis

2.1. The magnetic-field variability measure σB

We develop a measure, σB, for the directional variability of the
magnetic field B using Solar Orbiter data. We use the 8 vectors/s
magnetic-field data from the magnetometer (MAG; Horbury
et al. 2020) in conjunction with ≈ 106 datapoints at a cadence of
4 s from the Proton-Alpha Sensor (PAS) of the Solar Wind Anal-
yser (SWA; Owen et al. 2020). These data are coincident with the
dataset presented by Opie et al. (2022) and represent predomi-
nantly slow solar wind. We do not identify or remove structures
such as shocks, coronal mass ejections, or current sheets in the
dataset which is taken over 8 separate periods totalling 53 days
at an average heliocentric distance of ∼ 0.85 au.

We first derive the magnetic-field unit vector b = B/|B| for
each measurement vector B in RTN coordinates. PAS derives the
proton moments based on a sampling of 1 s duration, every 4 s.
We define the centre of the PAS sampling interval as the time
ti. We associate all b measurements in the interval [ti − 2 s, ti +
2 s] with the PAS interval at time ti. We calculate the standard
deviation of the unit-vector component b j for time interval ti as

σB j (ti) =

√√∑(
b j − 〈b j〉

)2

31
, (3)

where the sum is taken over all 32 magnetic-field measurements
associated with the PAS measurement at ti, 〈·〉 is the average over
this time interval of 4 s duration, and the index j = (R,T,N)
marks the field component in RTN coordinates. We then com-
bine the components to

σB(ti) =

√
σ2

BR
+ σ2

BT
+ σ2

BN
. (4)

The quantity σB is a measure of the variability of the magnetic-
field direction (i.e., excluding changes in magnitude) at the 4 s
scale for each combined interval in our SWA/PAS dataset. The
mean solar wind bulk velocity for our dataset is 427 km s−1.
Therefore, the 4 s temporal scale represents a convected spa-
tial scale of ∼ 1700 km. The mean gyroradius for our dataset
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Fig. 1. Observed data for σB plotted as: (a) Distribution of σB binned
and averaged by bincount in T⊥/T‖–β‖ parameter space. The instability
thresholds for the oblique firehose (OF) and mirror-mode (M) instabili-
ties are shown as labelled. (b) PDFs of σB for oblique firehose unstable
(magenta), mirror-mode unstable (blue), and stable (green) points in our
dataset. The vertical lines denote the ensemble mean [·] of each dataset.

is 51.5 km. Thus, σB represents fluctuations at the small-scale
end of the inertial range, in the transition region approaching ion
scales (Kiyani et al. 2015).

2.2. Definition of Probability Density Function (PDF)

We define a datapoint as “unstable” if it lies above the threshold
given by Eq. (2) for the given instability. We emphasise that the
presence of data in the regions unstable to the oblique firehose
and mirror-mode instabilities is a rare occurrence in our overall
dataset, representing ∼ 3% and ∼ 0.5%, respectively, of the total
dataset. Consequently, we define the probability density function
(PDF) as the normalised density bin count for each individual
dataset (i.e., separated by oblique firehose unstable (OF), mirror-
mode unstable (M), and stable (S)):

PDF(k) =
ψIk

ψS kWbk
, (5)

where k ∈ [OF,M,S], ψIk is the raw individual bin count of data-
points in dataset k, ψS k is the total bin count of dataset k summed
across all bins, and Wbk is the bin width. In using Eq. (5), the
distributions for each individual dataset are normalised so that∑

(Wbk PDF(k)) = 1 for each k ∈ [OF,M,S].
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Fig. 2. PDF of data in σB–θBV parameter space for (a) oblique firehose
unstable, (b) mirror-mode unstable, and (c) stable, datapoints.

3. Results

3.1. σB and its distribution in T⊥/T‖–β‖ parameter space

In Figure 1(a), we show the binned distribution of datapoints in
the T⊥/T‖–β‖ parameter space. Each bin is colour-coded with its
average value (

∑
σB)/ψI of σB on a logarithmic scale. For the

instability thresholds, we use Eq. (2) with fit parameters for a
maximum growth rate of γm = 10−2Ωp, where Ωp is the proton
gyrofrequency, given by Verscharen et al. (2016). Higher values
of σB occur in the stable data distribution approaching the in-
stability thresholds. In the regions above the thresholds, which
overall constrain the data distribution, we see the highest values
of the averaged σB.
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Fig. 3. PDF of data in σ̄B–∆ρ parameter space for (a) oblique fire-
hose unstable and (b) mirror-mode unstable data distributions. Panel
(c) shows the same PDF for equivalent persistence intervals sampled
from the stable data. The vertical lines shown in (a) and (b) denote the
breakpoints previously identified by Opie et al. (2022).

In Figure 1(b), we show the PDF according to Eq. (5) of
σB for data defined as stable or unstable to either the oblique
firehose or mirror-mode instability. We plot the ensemble mean
values of σB for each of the three distributions as vertical lines.
The lowest observed values ofσB for the unstable data are higher
than for the stable data. The PDFs for the unstable datasets are
biased towards higher values of σB relative to the PDF for the
stable dataset. We find that [σBM] is greater than [σBF], and
[σBF] is greater than [σBS ], where [·] is the ensemble mean.
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3.2. σB and its relation to θBV parameter space

In Figure 2, we show PDFs of our data in σB–θBV parameter
space, where θBV is the angle between the magnetic field B and
the solar wind proton bulk velocity V for each measurement
point, given as a value between 0◦ and 360◦ measured clock-
wise from V in the V−B plane when looking down on the V−B
plane from the north. To obtain θBV , we first calculate the cone
angle between B and V using the complete 3D vectors in RTN
coordinates as

θ′BV = arccos
B · V
BV

, (6)

where V is the bulk velocity of the protons. We define the com-
plex numbers b ≡ BR + iBT and v ≡ VR + iVT . We then cal-
culate the angle φv = arg(v), where arg(·) ∈ [0, 2π) is the po-
lar angle in the complex plane. After rotating b by −φv in the
complex plane, we define the difference angle between b and
v as φbv = 180◦ arg(be−iφv )/π. If 0 < φbv ≤ 180◦, we set
θBV = 360◦ − θ′BV . Otherwise, we set θBV = θ′BV (Opie et al.
2022).

The distribution of data identified as oblique firehose unsta-
ble in Figure 2(a) is clustered around values of θBV ≈ 75◦ and
θBV ≈ 255◦, which represents a quasi-perpendicular alignment
between B and V (which is consistent with the geometry found
by Opie et al. 2022). The distribution of data identified as mirror-
mode unstable in Figure 2(b) exhibits four clusters at θBV ≈

20◦, 160◦, 220◦, and 340◦, which represent a quasi-parallel or
quasi-anti-parallel alignment between B and V (see also Opie
et al. 2022). The distribution of stable data in Figure 2(c) as-
sumes its maximum values in the range 0.001 . σB . 0.1,
largely independent of θBV .

3.3. σB and its relation to the persistence of unstable
intervals

Figure 3 panels (a) and (b) show PDFs according to Eq. (5) of
data in σ̄B–∆ρ parameter space, where ∆ρ is the spatial persis-
tence of consecutive unstable 4 s intervals in units of the proton
gyroradius. As discussed by Opie et al. (2022), we calculate ∆ρ

using Taylor’s hypothesis (Taylor 1938). We identify an interval,
i, with each unstable datapoint in the dataset for both oblique
firehose and mirror-mode instabilities. We calculate the length-
scale li = Viτ for each unstable interval i, where Vi is the proton
bulk velocity of interval i and τ = 4 s is the PAS sampling ca-
dence. Using the proton gyroradius ρpi for each individual inter-
val i, we then calculate the dimensionless lengthscale δρi = li/ρpi.
We then define

∆
ρ
j =

∑
i

δ
ρ
i (7)

as the normalised persistence interval for each occurrence of the
respective instability as measured at the spacecraft.

We define the average σB over consecutive unstable 4 s in-
tervals as

σ̄B =
1
n

n∑
i=1

σB (ti) , (8)

where n is the number of temporally consecutive 4 s intervals ti
in each unstable persistence interval of size ∆ρ. We then bin the
data in two-dimensional histograms in σ̄B–∆ρ space. We show
plots for both oblique firehose (Figure 3(a)) and mirror-mode
(Figure 3(b)) unstable data.

In Figure 3(c), we show a similar plot for consecutive inter-
vals sampled from the stable dataset. We select all intervals of P
consecutive points where P ∈ [2, 3, 4, . . . , 14, 15] and calculate
σ̄B and ∆ρ for the stable data intervals in the same way as for the
unstable persistence intervals.

Opie et al. (2022) identify the breakpoints ∆
ρ
b of the ∆ρ distri-

bution as the minimum spatial scales required for these instabili-
ties to act. We overplot ∆

ρ
b as vertical dashed lines in Figure 3(a)

and (b). For both unstable modes, the σ̄B value associated with
the maximum of the PDF decreases with increasing ∆ρ. The dis-
tributions exhibit a lower bound at σ̄B ≈ 3× 10−3 for the oblique
firehose and at σ̄B ≈ 4 × 10−3 for the mirror-mode instability.
The maximum of the PDF lies near this lower bound at ∆ρ ≈ ∆

ρ
b

for each of the unstable modes.

4. Discussion and interpretation

4.1. Distributions in parameter space

Figure 1(a) shows a clear dependence of σB on β‖, consistent
with previous results using |δB|/B0 instead of σB, where B0 is
the averaged background magnetic field (Kasper et al. 2002;
Bale et al. 2009; Servidio et al. 2014). Higher values of β‖ often
imply lower values of B0 due to their explicit interdependence
in Eq. (1). This interdependence creates a correlation between
δB/B0 and β‖ even if δB is constant, which is consistent with
the overall β‖ dependence of σB in Figure 1(a). In our analysis,
we take this dependence as an inherent feature of the T⊥/T‖–β‖
parameter space and focus on the observed values of σB relating
to the partition of the space between stable and unstable data.

The joint dependency of the data distributions on σB and
θBV shown in Figure 2 is consistent with our previous work that
shows that the θBV -dependent anisotropy is opposite to the ex-
pectations from adiabatic expansion alone (Opie et al. 2022).
The observed distributions are also consistent with the PDFs in
Figure 1(b) which show that the distributions of σB are skewed
towards higher values for data in the unstable parameter regimes
and have a higher ensemble mean compared with the stable data
distribution. These statistical properties indicate that the relative
level of fluctuations on the 4 s scale, whether from instabilities
or background turbulence, is greater in the regions of parameter
space unstable to the oblique firehose and mirror-mode instabili-
ties than in the stable regime. The conjunction between Figure 2
and our previous work (Opie et al. 2022) points towards a po-
tential role for the fluctuations represented by σB in raising the
tangential and normal temperatures TT and TN relative to the ra-
dial temperature TR. We postpone a more detailed discussion of
this aspect to future work.

4.2. Instabilities in a turbulent background

Our σB measure captures non-compressive fluctuations at a 4 s
timescale by calculating the full directional variability of the
magnetic field. σB includes fluctuations both from the back-
ground turbulence and from the instabilities, as long as the fluc-
tuations have a directional component (e.g., Alfvénic). Previ-
ous work interprets an enhanced level of small-scale fluctuations
(|δB|/B0) at and beyond the instability thresholds as evidence of
the growing fluctuations of the instabilities (Bale et al. 2009).
Comparing our Figure 1(a) with the second panel of Figure 1 by
Bale et al. (2009), we find that both measures agree quite closely
for the oblique firehose instability. In the case of the mirror-mode
instability, however, our measure identifies a lower level of en-
hanced fluctuations than the measure used by Bale et al. (2009),
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particularly at lower β‖. We attribute this difference to the pre-
dominantly compressive polarisation of the mirror-mode insta-
bility that we intentionally do not capture. We infer that the fluc-
tuations measured by σB include a significant contribution from
background turbulence.

We make the assumption that turbulent fluctuations create
non-equilibrium features (Marsch 1991; Matteini et al. 2006;
Schekochihin et al. 2008; Maruca et al. 2011; Matteini et al.
2012), while instabilities – once triggered and effective – reduce
non-equilibrium features (Gary 1992; Gary et al. 2001; Kasper
et al. 2002; Hellinger et al. 2006; Bale et al. 2009). This assump-
tion suggests that the observed persistence of data in the regions
of unstable T⊥/T‖–β‖ parameter space is evidence that (a) there
is insufficient spatial scale for the instabilities to act effectively
(Opie et al. 2022), or (b) that the instabilities cannot immedi-
ately overcome the turbulent driving of anisotropy (Osman et al.
2013). A combination of both cases is possible.

In the ongoing competition between the turbulent driving
and the instabilities, the relevant timescales for the opposing
processes are important for deciding the outcome. Under sta-
ble solar wind conditions, non-linear processes are effective on
timescales that are shorter than the linear timescales associ-
ated with the instabilities (Matthaeus et al. 2014; Klein et al.
2018). However, in the unstable regions of the T⊥/T‖–β‖ param-
eter space, the plasma assumes conditions in which the linear
timescales associated with the instabilities are equivalent to or
shorter than the non-linear timescales associated with the turbu-
lent driving (Bandyopadhyay et al. 2022). This inversion of the
relevant timescales allows the instabilities to provide an effective
boundary to non-equilibrium conditions in the solar wind.

4.3. The interactions between instabilities and turbulence

If the observed fluctuations measured byσB were ergodic, which
we define as 〈σB〉 = [σB], we would not expect σ̄B to exhibit
dependency on ∆ρ (Matthaeus & Goldstein 1982). The reason for
this expectation is that the time-averaged amplitude of the fluc-
tuations at the 4 s scale, if the fluctuations were ergodic, would
not depend on the persistence length ∆ρ of the intervals over
which σB is averaged1. For the stable dataset, the distribution
of σ̄B does not depend on the averaging length, as shown in Fig-
ure 3(c). We verify that 〈σBP〉 ≈ [σB] ≈ 0.032, where 〈σBP〉 is
the mean value of σB for stable intervals of length P and [σB] is
the ensemble mean for the complete dataset of stable datapoints,
taken as representative of the statistical properties of the stable
solar wind. Subject to our definition, the condition 〈σBP〉 ≈ [σB]
indicates ergodicity. However, in Figure 3 (a) and (b), the dis-
tribution of the data in σ̄B–∆ρ parameter space indicates an in-
terdependency between σ̄B and ∆ρ for both oblique firehose and
mirror-mode unstable data. This interdependency suggests that
σB is not ergodic for the unstable intervals and therefore that
the unstable intervals are statistically disjoint from the stable in-
tervals (Matthaeus & Goldstein 1982; Walters 2000). We infer
that the interdependency is indicative of processes that are only
relevant to the unstable regimes. From our previous assumption,
these processes relate either to the creation of non-equilibrium
features by background turbulence or to the action of instabili-

1 In our definition of ergodicity, we rely on the assumption, common to
other studies, (e.g., Hellinger et al. 2006; Bale et al. 2009), that the size
of our complete dataset is sufficient to be representative of the statisti-
cal properties of solar-wind processes, irrespective of the actual sample
size. At the spatial scales we consider here, this assumption is justified
(Matthaeus & Goldstein 1982).

ties to reduce non-equilibrium features. In both cases, the pro-
cess concerned must disrupt the ergodicity of the turbulent fluc-
tuations measured by σB for the stable regime.

The distributions in Figure 3(a) and (b) show that unstable
intervals are more likely to be larger in units of ∆ρ when σ̄B is
lower. The highest probability densities of the distribution of un-
stable data are observed and maintained for values of ∆ρ < ∆

ρ
b,

which we identify as the persistence intervals in which instabil-
ities do not act effectively (Opie et al. 2022). In these intervals,
higher σ̄B implies shorter residence time for the plasma in any
particular unstable regime of T⊥/T‖–β‖ parameter space, largely
independently of the action of instabilities.

The interdependency continues when ∆ρ > ∆
ρ
b, which we

identify as the persistence intervals in which instabilities do act
effectively (Opie et al. 2022). For these intervals, Figure 3 shows
that longer unstable intervals (in terms of ∆ρ) are more likely to
have a lower value of σ̄B than shorter unstable intervals.

We interpret the value of σ̄B as a measure for turbulent “ac-
tivity”. Likewise, we interpret a lower PDF value for unstable
intervals as an indication of the more efficient action of the in-
stabilities. In this interpretation, the observed likelihood trend
suggests that the efficiency of instabilities to reduce temperature
anisotropy is greater in larger and more active intervals than in
shorter and less active intervals. Therefore, the competition be-
tween the linear relaxation time and the nonlinear time not only
depends on σ̄B (i.e., a measure for the nonlinear time) but also
on ∆ρ.

4.4. Limitations of our analysis

In our analysis, we do not include the roles of the paral-
lel firehose or ion-cyclotron instabilities. In general, the non-
propagating oblique firehose and mirror-mode instabilities are
more effective in constraining temperature anisotropy (Gary
1993; Gary et al. 1997; Kunz et al. 2014; Gary 2015; Rincon
et al. 2015). The thresholds for these instabilities are calculated
from linear theory under the assumption of conditions that do
not exactly apply to the turbulent solar wind (Matthaeus et al.
2014). Nonetheless, observational studies have shown that these
thresholds usefully define the boundaries of the stability of the
plasma (Hellinger et al. 2006; Bale et al. 2009; Gary 2015; Chen
et al. 2016). It remains an open question as to why the non-
propagating thresholds provide better constraints to the data dis-
tribution in T⊥/T‖–β‖ parameter space even when the propagat-
ing instabilities have lower theoretical thresholds (Gary 2015;
Markovskii et al. 2019; Verscharen et al. 2019).

The directional variations measured by σB have an impact
on the measurement of T⊥ and T‖. The relevant timescale for
this measurement is the 1 s SWA/PAS sampling interval. The
typical directional variation in B over one second is ∼ 3.4◦ for
our dataset and thus small compared to the angular resolution of
PAS. However, at large σB & 0.5, the deflections are potentially
significant. Therefore caution must be exercised when defining
the instability of intervals at large σB & 0.5.

5. Conclusions

We show that non-compressive magnetic field variability, σB,
is a useful measure for evaluating the interplay between turbu-
lence and instabilities in the solar wind. Background magnetic
field fluctuations cascade to the small-scale end of the inertial
range where they have the ability to increase the temperature
anisotropy. If the anisotropy is sufficiently large, the plasma be-
comes unstable.
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The distribution of the data in σ̄B–∆ρ parameter space shows
that σ̄B and ∆ρ are interdependent only for the unstable plasma
intervals. The competition between the action of the turbulence
and the instabilities in these unstable intervals depends on both
the level of turbulent activity and the spatial persistence of con-
ditions that define the oblique firehose and mirror-mode instabil-
ities. Our analysis suggests that the turbulent solar wind does not
provide a simple homogeneous background as assumed by clas-
sical linear theory. In fact, a complex interaction between turbu-
lent fluctuations and kinetic instabilities ultimately regulates the
proton-scale energetics of the solar wind.
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Hellinger, P. & Trávníček, P. M. 2008, Journal of
Geophysical Research: Space Physics, 113, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008JA013416

Hollweg, J. V. & Völk, H. J. 1970, Journal of Geo-
physical Research (1896-1977), 75, 5297, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA075i028p05297

Horbury, T. S., O’Brien, H., Carrasco Blazquez, I., et al. 2020, Astronomy &
Astrophysics, 642, A9

Howes, G. G. 2015, Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 373, 20140145

Isenberg, P. A. 1984, Journal of Geophysical Research: Space Physics, 89, 6613,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA089iA08p06613

Kasper, J. C., Lazarus, A. J., & Gary, S. P. 2002, Geophysical Research Letters,
29, 20

Kiyani, K. H., Osman, K. T., & Chapman, S. C. 2015, Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences,
373, 20140155

Klein, K., Alterman, B., Stevens, M., Vech, D., & Kasper, J. 2018, Physical Re-
view Letters, 120, 205102

Kolmogorov, A. N. 1941, Akademiia Nauk SSSR Doklady, 32, 16
Kunz, M. W., Schekochihin, A. A., & Stone, J. M. 2014, Physical Review Letters,

112, 205003, arXiv: 1402.0010
Markovskii, S. A. & Vasquez, B. J. 2022, The Astrophysical Journal, 924, 111,

publisher: The American Astronomical Society
Markovskii, S. A., Vasquez, B. J., & Chandran, B. D. G. 2019, The Astrophysical

Journal, 875, 125, publisher: The American Astronomical Society
Markovskii, S. A., Vasquez, B. J., & Chandran, B. D. G. 2020, The Astrophysical

Journal, 889, 7, publisher: The American Astronomical Society
Marsch, E. 1991, in Reviews in Modern Astronomy, ed. G. Klare, Reviews in

Modern Astronomy (Berlin, Heidelberg: Springer), 145–156
Marsch, E., Ao, X.-Z., & Tu, C.-Y. 2004, Journal of Geophysical Research, 109,

A04102
Maruca, B. A., Kasper, J. C., & Bale, S. D. 2011, Physical Review Letters, 107,

201101, publisher: American Physical Society
Matteini, L., Hellinger, P., Landi, S., Trávníček, P. M., & Velli, M. 2012, Space

Science Reviews, 172, 373
Matteini, L., Landi, S., Hellinger, P., & Velli, M. 2006, Jour-

nal of Geophysical Research: Space Physics, 111, _eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JA011667

Matthaeus, W. H. & Goldstein, M. L. 1982, Journal of Geophysical Research,
87, 10347

Matthaeus, W. H., Oughton, S., Osman, K. T., et al. 2014, The Astrophysical
Journal, 790, 155, arXiv: 1404.6569

Opie, S., Verscharen, D., Chen, C. H. K., Owen, C. J., & Isenberg, P. A. 2022,
The Astrophysical Journal, 941, 176, publisher: The American Astronomical
Society

Osman, K. T., Matthaeus, W. H., Kiyani, K. H., Hnat, B., & Chapman, S. C.
2013, Physical Review Letters, 111, 201101

Owen, C. J., Bruno, R., Livi, S., et al. 2020, Astronomy & Astrophysics, 642,
A16

Rincon, F., Schekochihin, A. A., & Cowley, S. C. 2015, Monthly Notices of the
Royal Astronomical Society: Letters, 447, L45

Riquelme, M. A., Quataert, E., & Verscharen, D. 2015, The Astrophysical Jour-
nal, 800, 27, publisher: The American Astronomical Society

Salem, C. S., Howes, G. G., Sundkvist, D., et al. 2012, The Astrophysical Jour-
nal, 745, L9

Schekochihin, A. A., Cowley, S. C., Kulsrud, R. M., Rosin, M. S., & Heinemann,
T. 2008, Physical Review Letters, 100, 081301, publisher: American Physical
Society

Servidio, S., Osman, K. T., Valentini, F., et al. 2014, The Astrophysical Journal,
781, L27, publisher: American Astronomical Society

Taylor, G. I. 1938, Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 164, 476

Tu, C.-Y. & Marsch, E. 1995, Space Science Reviews, 73, 1, publisher: Springer
Verscharen, D., Chandran, B. D. G., Klein, K. G., & Quataert, E. 2016, The

Astrophysical Journal, 831, 128
Verscharen, D., Klein, K. G., & Maruca, B. A. 2019, Living Reviews in Solar

Physics, 16
Walters, P. 2000, An introduction to ergodic theory, Graduate texts in mathemat-

ics No. 79 (New York Heidelberg Berlin: Springer)

Article number, page 6 of 6


	1 Introduction
	2 Data analysis
	2.1 The magnetic-field variability measure B
	2.2 Definition of Probability Density Function (PDF)

	3 Results
	3.1 B and its distribution in T/T– parameter space
	3.2 B and its relation to BV parameter space
	3.3 B and its relation to the persistence of unstable intervals

	4 Discussion and interpretation
	4.1 Distributions in parameter space
	4.2 Instabilities in a turbulent background
	4.3 The interactions between instabilities and turbulence
	4.4 Limitations of our analysis

	5 Conclusions

