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Abstract—Group Anomaly Detection (GAD) identifies unusual
pattern in groups where individual members might not be anoma-
lous. This task is of major importance across multiple disciplines,
in which also sequences like trajectories can be considered as
a group. As groups become more diverse in heterogeneity and
size, detecting group anomalies becomes challenging, especially
without supervision. Though Recurrent Neural Networks are
well established deep sequence models, their performance can
decrease with increasing sequence lengths. Hence, this paper
introduces GADformer, a BERT-based model for attention-
driven GAD on trajectories in unsupervised and semi-supervised
settings. We demonstrate how group anomalies can be detected
by attention-based GAD. We also introduce the Block-Attention-
anomaly-Score (BAS) to enhance model transparency by scoring
attention patterns. In addition to that, synthetic trajectory gener-
ation allows various ablation studies. In extensive experiments we
investigate our approach versus related works in their robustness
for trajectory noise and novelties on synthetic data and three real
world datasets.

Index Terms—Group Anomaly Detection, BERT, Model In-
spection, Trajectories, Deep Learning, Artificial Intelligence

I. INTRODUCTION

Group Anomaly Detection (GAD) is an important task
across many disciplines and domains like computational
fluid dynamics and computer vision [1, 2], mobility [3,
4], physics [5, 6], social networks [7] and many more. In
these domains, GAD is suitable for various types of group
anomalies. Since group member instances can be an arbitrary
representation, the GAD paradigm also applies to the detection
of anomalous sequences like trajectories, to which [8] refers
to as collective anomalies. Especially in the spatio-temporal
domain, Trajectory Anomaly Detection is a common task to
reveal abnormal behavior as the authors [9, 10, 3] confirm.

However, although sequential coordinates of a trajectory
obviously represent a group structure, the detection of individ-
ual anomalous trajectories has not been addressed as a group
anomaly detection problem yet and not at all with transparent
multi-head attention.

The current state of the art approaches for anomaly detection
on trajectories are recurrent neural networks (RNNs) like
LSTMs [11] and GRUs [12, 10], but the potential of deep
learning methods for Group Anomaly Detection has rather
been sparsely investigated. So far GAD tasks have more
likely been solved by generative topic models [13, 7, 1]
or SVM-based methods [14, 5, 4]. Despite recent advances,

Fig. 1. GADformer trajectory representations on synthetic trajectory data -
on the left: 72 raw trajectory steps pn (=group members on) as part of gray
normal or red abnormal groups (=individual trajectories Λm); on the right:
trajectory step embeddings en of one individual trajectory (=group G).

deep generative models got only involved in form of Ad-
versarial Autoencoders (AAEs) and Variational Autoencoders
(VAEs) [2] to perform GAD for images. [3] offers different
machine learning based algorithms to detect anomalous groups
of multiple trajectories, but does not identify the detection
of individual anomalous trajectories (a sequence of group
members) as group anomaly detection problem.

However, anomalous behavior is not ensured to just appear
within short trajectory segments. It is challenging for recurrent
neural networks, sometimes even LSTM and GRU, to learn
very long-term dependencies [10].

A further challenge for deep learning based group anomaly
detection on trajectories is, that although trajectory data is
highly available, it is rather weakly labeled or does not
overcome the nonground-truth problem [9] at all.

In order to tackle these challenges we introduce our ap-
proach GADFormer, a BERT[15] based architecture with
transformer[16] encoder blocks for attention-based group
anomaly detection on trajectories. Extending the idea of [16]
to optimize also image, audio or video sequence tasks by their
transformer approach, we identify transformer based models
for a sequence of trajectory points/segments as group member
instances of a group anomaly detection task as similarly bene-
ficial. Our model can be trained in an unsupervised as well as
in a semi-supervised setting so that there is no or only reduced
need for labeled trajectories. Furthermore, we introduce a
Block Attention-anomaly Score (BAS), which allows us to
provide an transparent view to the capability of the transformer
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encoder blocks to distinguish normal from abnormal trajectory
attention matrices. We show with extensive experiments on
synthetic and real world datasets that our approach is on par
with the state of the art methods like GRU or MainTulGAD,
an adapted version of [17] for GAD.

Hence, the contributions of our work can be summarized as
follows:

• Transformer-Encoder-architecture capable to perform
attention-based group anomaly detection in an unsuper-
vised and semi-supervised setting.

• Identification of the detection of individual anomalous
trajectories as Group Anomaly Detection problem for
BERT based transformer models.

• Block Attention-anomaly Score for group anomalies
among aggregated attention pattern of multiple attention
heads providing transparency for model inspection.

• Extensive ablation and robustness studies addressing
noise, novelties and standard deviation.

The remainder of this work is structured as follows. Sec-
tion II introduces the a formal description of the addressed
problem before in Section III the architecture, training and
model transparency of GADFormer is proposed. The experi-
ments in Section IV demonstrate relevance and suitability of
our approach across multiple domains and Section V distin-
guishes our approach from related work. A final summary of
the paper as well as an outline to future work is given by
Section VI.

II. PRELIMINARIES AND PROBLEM DEFINITION

This section provides preliminary terminology and defini-
tions used in this work if not referenced otherwise.

A. Preliminaries

Group Anomaly Detection (GAD) aims to identify groups that
deviate from the regular group pattern[2].
Group is a set or sequence of at least two group member
instances.
Group Member Instance is an arbitrary data entity described
by a n-dimensional feature vector as part of a group.
[Group Anomaly or] Collective Anomaly refers to a collection
of data points that belong together and, as a group, deviate
from the rest of the data.[8]

B. Problem Definition

The definitions for GAD align with [2] for deep generative
models, but got partially a different notation to emphasize its
suitability for group anomaly detection on individual trajecto-
ries. The GAD problem is described as follows:

Let xn ∈ X be an instance with X = (x1, x2, x3, ..., xN )
and xn = (a1, a2, a3, ..., aV ) with attribute av ∈ F , the feature
space, with

av =

 continuous, av ∈ R
discrete, av ∈ N
categorical, av ∈ {0, 1}

Be xnm
a group member instance oi of the mth group Gm

with

Gm = (o1, o2, o3, ..., oNm
) (1)

and DGAD a group anomaly detection dataset, which is a
set G of all groups:

DGAD = (G1,G2,G3, ...,GM ) (2)

The objective of the group anomaly detection task is to
distinguish normal in-distribution groups from abnormal out-
of-distribution groups GA with the help of a pseudo group
G(ref) as an approximated reference for normal in-distribution
groups. Therefore, a characterization function f with

fΘ : RNm×V → RD (3)

and an aggregation function g with

gϕ : RD → RD (4)

compose to

G(ref) = gϕ(fΘ(G)) (5)

where fΘ maps the groups Gm to D-dimensional fea-
ture vectors representing the relationship characteristics of
its group members oi and gϕ aggregates them to one D-
dimensional feature vector representing one reference G(ref)

for the distribution of normal groups.
Finally, the abnormality of a group is defined by a group

anomaly score yscore measuring the deviation by a distance
measure d(·, ·) ≥ 0, between Gm and the normal group
reference G(ref). Thus, the abnormality score yscore is defined
as follows:

yscore = d(G(ref),Gm) (6)

whereby the decision between normal and abnormal groups
is defined by a threshold γ with

ylabel =

{
1, yscore ≥ γ
0, otherwise

(7)

Having the group anomaly detection problem described
according to [2], we also elaborate on the task of trajectory
anomaly detection aligning with the notations of [3] with
their slightly different problem of group trajectory anomaly
detection instead of the here described individual trajectory
anomaly detection:

A trajectory point p is defined as

p = (a1, a2, a3, ..., aV ) (8)

A trajectory point embedding e is defined by input embed-
ding h1 (cf. Figure I) for each point p as

e = h1(p) (9)



Since word sentences and trajectories can both be consid-
ered as sequences we create BERT-based embeddings [15]
for trajectories by defining trajectory segments si with e.g.
s1 = (e1, e2), s2 = (e3, e4), ... for S segments of segment
length Ls = 2, which represent local sequences within a
trajectory. In addition to that, each segment si is mapped
to a segment embedding h2, which acts as an offset for
each related trajectory point embedding en. The sum of both,
segment member en and segment embedding h2, is denoted
as trajectory segment part sp with

spi,n = en + h2(si) (10)

A trajectory Λ is defined as

Λm = (sp11, sp12, sp23, sp24, ..., spSNm) (11)

A trajectory dataset DTraj is defined as

DTraj = (Λ1,Λ2,Λ3, ...,ΛM ) (12)

By considering the task of detecting abnormal individual
trajectories as group anomaly detection problem, the following
associations are identified:

A trajectory Λm applies to the semantic of a group Gm

by considering trajectory segments s in form of its segment
parts sp as group members o. They are represented by point
embeddings e adding a shared segment embedding h2 as
offset (cf. Eq. 10). The embeddings e represent trajectory
points p and a trajectory point pi is associated with an
instance xn.

Thus, individual abnormal trajectories can be detected sim-
ilarly to the group anomaly detection problem (cf. Eq. 5 and
Eq. 6) as follows:

Λ(ref) = gϕ(fΘ(Λ)) (13)

ŷscore = d(Λ(ref),Λm) (14)

After revealing the associations between the GAD approach
of [2] and our approach for trajectories, also our proposed
GADFormer approach (cf. Section III) shows the potential to
be trained for each arbitrary group anomaly detection problem
on sequences or non-ordered sets, as far as a group to member
relationship exists.

III. GADFORMER

In this section we propose GADFormer, a deep BERT
based transformer encoder model architecture for attention-
based Group Anomaly Detection (GAD). After we showed in
Section II by the example of [2] theoretically that the GAD
problem can also be applied to trajectory coordinates, we
introduce in this section with GADFormer a new deep GAD
model and demonstrate its performance on trajectory datasets
in Section IV. Figure 2 provides an overview to its model ar-
chitecture in combination with examples of 2D trajectory point
inputs, but also high-dimensional group members (trajectory
points) are possible.

A. Architecture and Loss Objective

Differently to the GAD characterization and aggregation
function (cf. Eq. 3 and Eq. 4) of the deep generative models
of [2] our deep GADFormer Ψ models the characterization
and aggregation functions as follows with

Ψ : gΦ(fθ(Λm)) → p̂m. (15)

The characterization function fθ of GADFormer maps
the bidirectional relationships between group members oi
of a group Gm (representations of segment parts sp of a
trajectory Λm) to a multi-head self-attention-weight feature
map bGm , representing the behavior of an individual group
(an individual trajectory path pattern). This is realized by
a BERT [15] encoder, a composition of layers (h1 and h2)
for input embedding, positional encoding and multi-head self-
attention blocks (cf. Figure 2) using group member embed-
dings pe as input tokens. In order to extend the possible value
range for an improved feature extraction, we replace the ReLU
activation function of the standard FFN of [16] with Tanh.

bΛm
= fθ(Λm) (16)

The aggregation function gΦ of GADFormer approximates
instead of a distribution for normal group representations
G(ref) with distance measure d a probability pm for abnormal
group behavior (abnormal trajectory path pattern). This is
realized by non-linear layer blocks (2 linear projections with
ReLU and a final output layer with linear compression and
Sigmoid non-linearity) as part of the task output block gΦ,
which maps the group behavior characteristics bΛm to a task
specific feature map representation zΛm .

zΛm
= gΦ(bΛm

) (17)

After compression, the sigmoid function maps representa-
tion zΛm

to a probability p̂m for group abnormality, with
p̂m ∈ [0, 0.5] for normal groups and p̂m ∈]0.5, 1] for abnormal
groups (trajectories).

p̂m = σ(zΛm
) (18)

Because of the rare label availability for trajectories, the
loss objective of GADFormer is defined for an unsupervised
and semi-supervised learning setting assuming the majority
of instances to be normal. Therefore, we define the binary
cross entropy loss LBCE as our loss function (cf. Eq. 20). We
consider this loss function as a suitable choice, since entropy
H(p̂m) as a measure of unpredictability is H(p̂m) = 1 when
the model is most uncertain about its abnormality prediction,
and H(p̂m) = 0 when the model is very certain about its
abnormality prediction.

H(p̂m) =

 1, p̂m = 0.5
0, p̂m = 0 ∧ p̂m = 1
]0, 1[, otherwise

(19)
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Fig. 2. GADFormer architecture overview.

Due to the heavily imbalanced learning setting with a
large majority of normal groups (trajectories) one can neglect
the minority of abnormal groups (trajectories) and set a fix
auxiliary target probability pm = 0 for certain normal-
predictions (H(p̂m) = 0) for the majority of normal group
probabilities p̂m. In case the model faces true abnormal
groups, then it is rather uncertain about its decision yielding
a probability close to p̂m = 0.5 resulting in a high entropy
loss, whereas true normal groups, on whose pattern the model
is trained, result in a low entropy loss for p̂m ≈ 0.

LBCE =
1

M

M∑
m=1

pmlogb(p̂m) + (1− pm)logb(1− p̂m)

pm=0⇐⇒

LBCE =
1

M

M∑
m=1

logb(1− p̂m)

(20)

Since in our setting the model effectively predicts only
abnormality probabilities for the range of normal groups with
p̂m ∈ [0, 0.5], where p̂m = 0 means that a group (trajectory)
is not abnormal at all, the abnormality of a group is defined
by a group anomaly score ŷscore = p̂m for our GADFormer
approach.

B. Training

Anomalous trajectories are rare by definition and labeling by
domain experts tends to be rather expensive. We address this
challenge by two different learning settings which are: 1) Un-
supervised learning, which requires no labels at all under the
assumption that the ratio of anomalous trajectories is low and
has no remarkable influence during model training. 2) Semi-
Supervised Learning, which relies on verified normal samples

only. As proposed in the section before, these learning settings
allow us to set a fix auxiliary target probability pm = 0, so
that no ground truth for abnormal trajectories is needed for
the GADFormer training. In order to let fθ learn expressive
representations for gΦ we start the training with frozen task
layers, which get unfrozen as soon as validation loss stops
decreasing. Furthermore, we use early stopping, learning rate
scheduling ReduceOnPlateau and RAdam for optimization.
Please see our supplementary material1 for further details.

C. Model Transparency

Deep learning models are known to be rather complex and
their training usually requires a deep understanding for its
model architecture, losses, preprocessing and data distributions
to take the right decisions for fine-tuning, but still then
it partially remains a blackbox as more layers, blocks and
parameters exist.

In order to achieve a higher model transparency addressing
CH6, one of the main deep anomaly detection challenges
of [18], we introduce a Block Attention-anomaly Score (BAS)
for our GADFormer model. BAS can be seen as a further
interpretable explanator for Model Inspection, solving a so
called Open-The-Box-Problem[19], which allows to indicate
how each layer of the transformer encoder model contributes
to distinguish inputs of different ground truth classes. Class-
overlapping scores in the final layer are a potential indicator
for false positives and negatives respectively. Hence, BAS
enables for model inspection with the goal of identifying
optimization potential in the model architecture using atten-
tion matrix scores deviating from the attention matrix score
mean without plausible correlation to its ground truth and
neighboring ground truths. BAS follows the assumption that

1https://github.com/lohrera/gadformer

https://github.com/lohrera/gadformer


in case of the aggregated attention of a group of layer heads
is anomalous then also the model input, in our case the group
member instances of a trajectory, is anomalous. Considering
the example of Figure 3 for a good model performance, this
assumption holds for the majority of abnormal inputs across
nearly all layers, especially for the final layer in which the
amount of false positives decreases.

Fig. 3. BAS in case of good model performance.

Fig. 4. BAS in case of bad model performance.

BAS represents in a transformer encoder block layer a multi-
head-attention group anomaly by the ratio between distance
of an aggregated block attention matrix am,b and its normal
block average ab and distance of ab to the average of topN
abnormal aggregated attention matrices atopN,b (cf. line 10 of
Algorithm 1). This allows to show the capability of a trans-
former encoder block layer to 1) generally distinguish pattern
of different groups (trajectories) and 2) to separate between
normal and abnormal groups of attention head weights for
individual trajectories (groups). Therewith BAS is different to
the work of [20], which aims to identify single feature-relevant
attention heads by maximum attention weights and histograms
instead of using average attention distances.

Since the cells of an attention matrix am,h,b contain the
scaled dot product of qm,h and km,h (two projected group
embeddings projected from input tokens pe, cf. Figure 2),
their similarity weights the importance of the bidirectional
relationship of a group member pair in different heads h and

with that, focuses with different views to the behavioral pattern
of a group (trajectory path pattern in the context of the task
of GAD on individual trajectories), whereas its concatenated
projected dot product with the third projected group member
embeddings vm,h provides the overall-importance-weighted
attention output matrix Om,b emphasizing task relevant pattern
of a concrete group m (task relevant trajectory path segments
of an individual trajectory Λm).

After emphasizing the role of the attention mechanism,
we describe in Algorithm 1 how to calculate BAS in detail.
The inputs of this algorithm are the attention matrices a of
the transformer encoder blocks and the euclidean distance
measure. Further parameters are the ratio for the top N
abnormal groups, block index b and the amount of groups M.

Algorithm 1 BAS Algorithm Pseudo Code
Input: group attention matrices a, distance measure d
Parameters: ratiotopN = 0.05, block b, groups M
Output: block attention-anomaly scores bas

1: am,b = µ(am,h,b)
2: if training then
3: tmp ab = µ(am,b)
4: topN = ⌈ratiotopN ∗M⌉.
5: idx ab = rank(d(am,b, tmp ab), topN, dsc)
6: idx nb = idx all \ idx ab
7: global atopN,b = µ(am,b[idx ab, :, :])
8: global ab = µ(am,b[idx nb, :, :])
9: end if

10: basm,b = min(1.,
d(am,b,ab)

d(atopN,b,ab)
)

11: return bas

The average attention matrix am,b for a group m in heads h
is calculated for all attention matrices am,h,b (line 1). During
training also their temporary average tmp ab over all groups is
calculated (line 3) to obtain their topN most distant abnormal
group indices idx ab (line 5), whose difference to all indices
result in the remaining normal group indices idx nb (line 6).
Based on these indices a global average attention heads mean
for normal (ab) and abnormal (atopN,b) head attention averages
is calculated (line 7-8) during training in order to have a solid
normal and abnormal representation for distance calculation.
Next, the distance between a group attention matrix am,b to
the normal group attention matrix average ab as well as the
distance between the normal group attention matrix average
ab and the abnormal group attention matrix average atopN,b

is used to request the ratio between both which represents the
Block Attention-anomaly Score basm,b (line 10-11). Figure 3
shows, that the first encoder block layers (0-2) are not able to
distinguish between normal and abnormal trajectories whereas
in the last layer the amount of potential false positive scores
gets less indicating a better capability of the model to attend
to features of abnormal trajectories. The BAS within the
layers of Figure 4 indicate that the model is over all layers
not really able to distinguish between normal and abnormal
trajectory scores, not even between the characteristics of single
trajectories within the class of normal trajectories.



In summary, the BAS provides us a view to the transformer
encoder block layers for model inspection and allows us to
reason reasonable changes to hyperparameters and model ar-
chitecture to improve the performance of the model. Providing
a further answer to ”Do Transformer Attention Heads Provide
Transparency in Abstractive Summarization?”[20], we are able
to provide attention block transparency in terms of which
degree the averaged attention of a group of self-attention-heads
within one layer is normal or abnormal.

IV. EXPERIMENTS

In this section we evaluate the performance of our GAD-
Former approach on synthetic and real-world datasets and
compare it against related works like GRU and MainTulGAD,
whose approaches are state of the art methods for individual
trajectory anomaly detection. For details related to datasets,
architectures, hyperparameters, results and code see our sup-
plementary material1.

A. Experimental Setup and Datasets

For our experiments we tested our approach on synthetic
data1 and three real-world datasets, i.e., amazon driving
routes2, Deutsche Bahn cargo container routes3 and brightkite
checkin routes 4 (cf. Table I). The synthetically generated
trajectory dataset consists of trajectory steps, one per row,
where each has an id, sequence step, xcoord, ycoord, and
a label whether its trajectory (=group) is anomalous (1) or
normal (0).

All hyperparameters are empirically selected by grid search
based on validation loss convergence and additionally vali-
dated by model inspection with our proposed block attention
anomaly score (cf. BAS Algorithm 1) in order to find ideal
training parameters and a model architecture avoiding overfit-
ting or insufficient model complexity.

The code for GADFormer is implemented in Python utiliz-
ing PyTorch. For best possible comparison, the architecture
for GRU is identical to GADFormer except using GRU-
layers instead of encoder block attention layers and only
input embedding (cf. Eq. 9) instead of BERT segmentation.
Our MainTul [17] version (MTGAD) uses kNN-trajectory-
augmentations and a student-teacher-architecture for feature

2https://github.com/amazon-science/goal-gps-ordered-activity-labels
3https://data.deutschebahn.com/dataset/data-sensordaten-schenker-

seefrachtcontainer.html
4https://snap.stanford.edu/data/loc-brightkite.html

TABLE I
DATASET OVERVIEW.

dataset setting all normal abnormal trajLen

synthetic1 unsup 3400 3083 317 72
synthetic1 semi 3400 3271 129 72
amazon2 unsup 805 760 45 72
amazon2 semi 776 760 16 72
dbcargo3 unsup 272 229 43 72
dbcargo3 semi 245 229 16 72
brightkite4 unsup 2241 2033 208 500
brightkite4 semi 2108 2033 75 500

extraction like the original, but adapts to sequential trajectory
coordinates instead of time-dependent categorical checkins.
These approaches represent the technically most related work
for a fair comparison. Extended results with less related
traditional methods can be found in supplementary material1.

B. Evaluation

For the evaluation of our model, we follow the goals of
having a low miss rate (false negatives) as well as achieve
as less false alerts (false positives) as possible. In addition to
that, the quality of the model scores needs to be evaluated.
Therefore and to be comparable to related approaches, we
evaluate the model performance by AUROC and AUPRC.

• TPR = TP
P ;FPR = FP

N ;FNR = 1− TPR
• Precision = TP

TP+FP ; Recall = TP
TP+FN

• AUPRC = AP = Precision vs. Recall
• AUROC = TPR vs. FPR

C. Results and Discussion

Fig. 5. Robustness results for synthetic and real world datasets of Table II.
Span shows the stddev of 10 seeds; cross is the used mean performance.

Our approach GADFormer (GADF) outperforms related
works GRU and MainTulGAD (MTGAD) on all synthetic
and real world datasets in terms of AUROC and AUPRC
except for AUPRC on dbcargo for which an approach like
GRU could achieve a better performance for both un- and

TABLE II
RESULTS ON SYNTHETIC AND REAL WORLD DATASETS FOR

(U)NSUPERVISED- AND S(E)MI-SUPERVISED SETTING (CF. FIGURE 5).

dataset amazon brightkite dbcargo synthetic
auroc auprc auroc auprc auroc auprc auroc auprc

U GRU 0.642 0.539 0.786 0.552 0.718 0.664 0.775 0.431
MTGAD 0.956 0.872 0.907 0.656 0.779 0.577 0.87 0.371
GADF 0.997 0.955 0.948 0.672 0.797 0.478 0.982 0.887

E GRU 0.545 0.394 0.711 0.396 0.701 0.64 0.799 0.52
MTGAD 0.445 0.325 0.887 0.604 0.678 0.526 0.889 0.549
GADF 0.998 0.976 0.933 0.612 0.801 0.507 0.997 0.982

https://github.com/amazon-science/goal-gps-ordered-activity-labels
https://data.deutschebahn.com/dataset/data-sensordaten-schenker-seefrachtcontainer.html
https://data.deutschebahn.com/dataset/data-sensordaten-schenker-seefrachtcontainer.html
https://snap.stanford.edu/data/loc-brightkite.html


TABLE III
RESULTS ON SYNTHETIC DATASET WITH NOISE ABLATIONS FOR

(U)NSUPERVISED AND S(E)MI-SUPERVISED SETTING

exp noise .0 noise .2 noise .5
auroc auprc auroc auprc auroc auprc

U GRU 0.766 0.514 0.731 0.383 0.626 0.165
MTGAD 0.869 0.376 0.822 0.256 0.717 0.149
GADF 0.97 0.892 0.949 0.831 0.863 0.537

E GRU 0.788 0.585 0.759 0.479 0.665 0.223
MTGAD 0.952 0.766 0.89 0.547 0.792 0.316
GADF 0.989 0.95 0.98 0.919 0.944 0.803

TABLE IV
RESULTS ON SYNTHETIC DATASET WITH NOVELTY ABLATIONS FOR

(U)NSUPERVISED AND S(E)MI-SUPERVISED SETTING.

exp novelty .0 novelty .01 novelty .05
auroc auprc auroc auprc auroc auprc

U GRU 0.766 0.514 0.832 0.585 0.818 0.496
MTGAD 0.882 0.42 0.935 0.588 0.923 0.504
GADF 0.97 0.892 0.978 0.865 0.969 0.726

E GRU 0.788 0.585 0.849 0.652 0.841 0.574
MTGAD 0.964 0.802 0.977 0.867 0.97 0.797
GADF 0.989 0.95 0.986 0.921 0.986 0.841

semisupervised settings. Considering Figure 5 and Table II,
GADFormer demonstrates its stability across all datasets with
lowest standard deviations over 10 seeds. For datasets ama-
zon, brightkite and synthetic its AUROC standard deviation
is close to zero. AUROC performances over 0.8 on real-
world datasets in semisupervised settings highlight its rele-
vance for real-world-domains, especially for amazon routes
for which it achieved performances over 0.95 for all metrics.
Also on brightkite (a dataset with long sequences of 500
steps) showed our transformer-based approach still the best
performance, demonstrating its superiority against GRU and
MTGAD which both are at least partially based on recurrent
neural networks. MTGAD with its self-supervised augmented
kNN-trajectories and its combined student-teacher-approach
of LSTM and multi-head attention shows performances close
to but slightly weaker than GADFormer except for AUPRC
of dbcargo. In ablation studies for detecting noise-distorted
and novel anomalies shows GADFormer a comparable strong
performance even for high noise and novelty ratios from 0 up
to 0.5 or 0.05 respectively (cf. Table III and Table IV). Summa-
rizing, compared to related work, GADFormer (GADF) can be
considered as a robust approach, but despite its strong false
and miss alert rates (evaluated via AUROC and AUPRC) it
depends on the domains if these performances are sufficient.

V. RELATED WORK

Reviewing the literature for most related approaches, we
could identify the following related work, which gets dis-
tinguished from our approach within this section. Instead of
considering the detection of individual trajectory anomalies as
a Group Anomaly Detection problem as our approach does,
the vision in the works of [21, 22] is to observe trajectories as
a NLP problem. They map trajectory coordinates to hexagon-
based hexadecimal-words as input for pretrained BERT mod-

els for several tasks, but do not provide a concrete model
architecture for group anomaly detection based on projected
trajectory segments as BERT-based embeddings. Another work
of [17] uses for the task of Trajectory-User-Linking (TUL),
instead of GAD, a combination out of RNN and transformer
network with cross entropy loss but compared to our approach,
they do not take trajectory coordinates and segments into
account and the model lacks in layer transparency. Addressing
long-range trajectory anomaly detection as well the work
of [23] proposes an unsupervised normalizing flow (NF)
model. They utilize trajectory segments and negative log-
likelihood as well but use it in combination with NF-based
density estimation. The work of [24] introduced the problem
of group trajectory outlier detection (GTOD), which is also
addressed by [3], and provide the approach CDkNN, which
creates DBSCAN-based microclusters, pruned by kNN and
scored with a specific pattern mining algorithm. However, both
works perform anomaly detection while considering complete
individual trajectories as group members, whereas we address
the slightly different problem of considering single trajectory
points as group members for the problem group anomaly
detection. The work of [25] proposes a model for content-
aware anomaly detection on event log messages instead of
anomalous trajectories as our approach. Their approach takes
additionally the content of the messages into account and
allows to run it, as our approach, by the task-specific encoder-
part or, differently as ours, by the typical BERT[15] encoder-
decoder architecture. Summarizing the identified related work,
there is best to our knowledge no transparent attention-based
transformer-encoder-approach for group anomaly detection on
coordinates-based trajectories.

VI. CONCLUSION

In this work we proposed GADFormer, a transformer-
encoder-architecture, capable to perform attention-based group
anomaly detection in an unsupervised and semi-supervised set-
ting. We emphasized, how the detection of individual anoma-
lous trajectories can be solved as a Group Anomaly Detection
(GAD) problem for BERT based transformer models. Further-
more, we introduced BAS, a Block Attention-anomaly Score to
allow model inspection for transformer encoder blocks for the
task of GAD and improve with that its transparency in terms of
answering to which degree the attention of the group of self-
attention-heads is normal or abnormal. Extensive ablation and
robustness studies addressing trajectory noise and novelties
on synthetic and real world datasets demonstrated, that our
approach is on par with related attention-based approaches like
GRU. Further potential for improvement could be to approx-
imate a normal-group-distribution instead of abnormal-group-
probabilities by the output-block of our model, combining the
attention-based group pattern extraction of our approach and
the group anomaly scoring and loss objectives of [2]. Vice
versa, with appropriate preprocessing, the performance of the
GADFormer model architecture could also be evaluated on
image data, audio or text data. Moreover, the reliability of
the probabilities of our approach could be further investigated



according to the work of [26] as well as the relevance of single
group member instances for a specific model prediction.
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