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Quantum correlations between distant particles remain enigmatic since the birth of quantum
mechanics. Here we predict a novel kind of bound quantum state in the simplest one-dimensional
setup of two interacting particles in a box. Paradoxically, two entangled particles become localized at
the opposite edges of the box even though their interactions at large distance should seemingly play
no role. Such states could be realized in the waveguide quantum electrodynamics platform, where an
array of superconducting qubits or cold atoms is coupled to a waveguide. We demonstrate how long-
range waveguide-mediated couplings enable interaction-induced quantum states separated by large
distances. Similarly to Majorana fermions in the Kitaev model, such bound state of distant photons
is immune to short-range interactions and could find applications in robust quantum information
processing.

INTRODUCTION

The quantum-mechanical problem of a particle mov-
ing in one spatial dimension and confined in a box is
probably the most paradigmatic model of quantum me-
chanics. A wave function of a single particle of mass m
in a box of size N forms standing waves, ψ(x) ∝ sinKx,
where K = π/N, 2π/N, ... and the energy levels are given
by ~2k2/2m. The situation becomes more interesting in
the many-body case, when several quantum particles are
put in the box and are allowed to interact with each other.
For example, the problem of bosons with strong repul-
sive interaction can be solved exactly and the composite
many-body wavefunction is proportional to a Slater de-
terminant of wavefunctions of non-interacting particles,
e.g.,

Ψ(x1, x2) ∝ sign(x1 − x2)[ψ1(x1)ψ2(x2)− ψ2(x1)ψ1(x2)]

for a pair of particles. The strong repulsion of bosons
thus effectively emulates the Pauli exclusion principle,
leading to a so-called fermionization [1]. Another possi-
bility is offered by bound many-particle states. The two
attracting particles can form a bound pair so that their
joint probability will decay with the characteristic length
a. Such bound pair can propagate as a whole with the
center-of-mass wave vector K and can be quantized in a
finite box,

Ψ(x1, x1) ∝ sin

(
K
x1 + x2

2

)
e−|x1−x2|/a .

One of the instructive examples of such states is pre-
sented by a bound electron-hole pair in a semiconductor,
an exciton, that is confined in a quantum well [2]. If
the well is wider than the exciton Bohr radius, the exci-
ton is quantized as a whole. On the other hand, if the
well width is smaller than the Bohr radius, the exciton
is destroyed and electrons and holes are quantized inde-
pendently, Ψ(x1, x2) ∝ sinK1x1 sinK2x2 where K1,2 are
the wave vectors of the corresponding particles.

In this work we consider a novel kind of quantum state
of two interacting particles in a box, different from those
mentioned above, that we term as “distant bound state”,
where the wave function has the form

Ψ(x1, x2) ∝ e−x1/ae−|N−x2|/a + (x1 ↔ x2) . (1)

Such state can be viewed as an entangled Bell state of
particles, pinned by the interaction to the opposite sides
of the box. The key ingredient, necessary to formation.
of a state Eq. (1), is the strong interaction between the
particles at large distance, that is necessary to repel them
from each other. This requirement may seem very chal-
lenging and even self-contradictory, because the two par-
ticles, exponentially localized at the opposite edges of the
structure should hardly interact. Any significant repul-
sion, pushing them to the opposite edges, does not seem
feasible. However, we will demonstrate that this seem-
ing paradox is resolved in the setup of waveguide quan-
tum electrodynamics (WQED), where an array of natu-
ral or artificial atoms (such as superconducting qubits or
quantum defects) is coupled to the waveguide [3–7]. The
WQED setup has built-in long-ranged interactions be-
tween the atoms, mediated by the photons propagating
in the waveguide. Our goal is to demonstrate that distant
bound states Eq. (1) naturally arise in the WQED setup
and that they are robust against fluctuating short-range
interactions between the atoms. The distant bound state
is a compound boson, but in a certain sense it reminds
Majorana fermions in the Kitaev’s model, that were pre-
dicted to arise at the edges of a nanowire put upon a
superconductor in a magnetic field [8]. A pair of such
Majorana states localized on the opposite edges of the
wire forms a single ordinary fermionic excitation with
zero energy. The latter appears to be partially immune
to dephasing because its two Majorana components can-
not be mixed by a short-range perturbation, such as, e.g.,
Coulomb interaction [9, 10] In our setup, however, dis-
tant bound state emerges solely from atom-photon inter-
actions, without any superconductivity or magnetic field.
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FIG. 1. Bound and edge states. Schematic illustration
of two-photon wavefunctions for superpositions of even (a)
and odd (b) single-particle edge states and their interaction-
induced combinations: edge state of bound pair (c) and dis-
tant bound state (d).

RESULTS

Qualitative origin of distant bound states

The main idea behind the origin of distant bound
states is illustrated in Fig. 1. Suppose that in the semi-
infinite arrays there exist single-particle edge states, |L〉
and |R〉, localized at the left and right edges, respec-
tively. Due to the mirror symmetry, the eigenstates of
the finite array will be the even and odd combinations
|ψ±〉 = (|L〉 ± |R〉)/

√
2. Now we proceed to the double-

excited states. Figures 1a and 1b illustrate the product
states with both particles either in the state |ψ+〉 or |ψ−〉,
namely |Ψ±〉 = |ψ(1)

± 〉|ψ
(2)
± 〉. In case of large structure,

and when the interaction between the two particles is ne-
glected, the states |Ψ±〉 are degenerate. However, strong
interaction between the particles can mix these product
states leading to the formation of new even and odd com-
binations |χ±〉 = (Ψ+〉±|Ψ−〉)/

√
2, shown in Figs. 1b,1d.

The even combination can also be interpreted as an edge
state of the bound photon pair,

|χ+〉 =
1√
2

(|L1〉|L2〉+ |R1〉|R2〉) (2)

where both particles are simultaneously localized either
at the left or at the right edge of the structure (here the
subscripts 1, 2 denote the particle numbers). In this work

we focus on the odd combination

|χ−〉 =
1√
2

(|L1〉|R2〉+ |R1〉|L2〉) , (3)

which is an entangled Bell state of photons at the left
and right edges of the array [Fig. 1(d)] and is equivalent
to the distant bound state Eq. (1).

Numerical modeling

We consider an array of equidistant atoms coupled to
a waveguide, schematically illustrated in the top inset in
Fig. 2b. The system is described by the following effec-
tive Hamiltonian, written in the Markovian approxima-
tion [11],

H = −iγ1D
∑
n,m

σ†nσmeiϕ|m−n| , (4)

where the energy is counted from the atomic resonance
ω0 (we assume ~ = 1), σ†n are the atomic raising oper-
ators, σ2

n ≡ 0, ϕ = ω0d/c is the phase gained by light
travelling the distance d between two neighboring atoms.
The parameter γ1D ≡ Γ1D/2 is the radiative decay rate
of single atom into the waveguide. The key feature of
the Hamiltonian Eq. (4) is the long-ranged waveguide-
mediated coupling between the distant atoms. We diag-
onalize the Hamiltonian Eq. (4) numerically in the do-

main of double-excited states
∑N
n,m=1 Ψnmσ

†
nσ
†
m|0〉 for

finite N -atom arrays by solving the Schrödinger equa-
tion H|Ψ〉 = 2ε|Ψ〉, see Ref. [5] for the derivation details.

Figure 2 presents our results obtained numerically for
a finite array with N = 200 atoms. The complex two-
excitation energy spectrum is shown in Fig. 2a. Imag-
inary part of the eigenenergy ε describes the radiative
losses into the waveguide. The points are colored accord-
ing to the average photon-photon distance

ρ =

N∑
n,m=1

|n−m||Ψnm|2 (5)

and we also show the histogram of the photon-photon
distances distribution in Fig. 2c. This distribution has
a broad peak at ρ ≈ 70 ≈ N/3, corresponding to a pair
of quasi-independent delocalized excitations. The tails
of the distribution correspond to the bound photon pairs
(small ρ) and distant bound states we focus on (large
ρ). In order to provide more insight in the two-photon
spectrum, we plot in Fig. 2b the wavefunctions of four
characteristic two-photon states of different types. For
example, the state #1 is a so-called scattering state, be-
ing a direct product of two symmetric combinations of
left- and right-edge states, as shown in Fig. 1a. The
state #3 corresponds to both photons localized either
close to the left- or to the right-edge of the array at the
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FIG. 2. Complex energy spectrum. (a). Complex two-polariton energy spectrum of the array of N = 200 atoms.
Color indicates the mean photon-photon distance ρ calculated according to Eq. (5). Cyan stars show single-polariton energy
spectrum. (b). Color maps show probability distribution |ψnm|2 for four characteristic two-polariton states with the energies
(ε−ω0)/γ1D ≈ 3.5− 45.6i,−7.0− 26.1i, 11.1− 19.9i,−1.6− 0.1i, respectively, indicated with the corresponding numbers in (a).
Top inset shows schematics of the array of atoms coupled to the waveguide with two interacting excitations. (c) Histogram
showing the distribution of the photon-photon distances ρ. Calculation has been performed for N = 200 and ϕ ≡ ω0d/c = 1.

same time, and can be qualitatively understood as an
edge state of bound photon pair [Fig. 1b]. Our key ob-
servation in Figs. 2a is the existence of a large number
of states, where the photon-photon distance ρ is compa-
rable with the system size (yellow-colored points). The
two-photon wave function for the most distant state #2,
with the largest value of ρ, is shown in Fig. 2b. This
state looks very similar to the Bell state of left- and right-
edge photons, schematically illustrated in Fig. 1d. An-
other kind of distant bound state with a slightly different
wavefunction is the state #4.

We now analyse the two-photon spectrum in more
detail. Our goal is to understand the origin of single-
particle edge states, and then to examine how their in-
teraction leads to formation of two-particle bound states
and finally demonstrate the robustness of the distant
bound state against the disorder. We start with the sin-
gular value decomposition of the distant bound state #2
from Fig. 2b,

Ψmn =

N∑
ν=1

λνψ
ν
nψ

ν
m , (6)

where due to the bosonic symmetry Ψnm = Ψmn left
and right singular vectors coincide and can be cho-
sen to satisfy the unconjugated orthogonality condition∑m
n=1 ψ

ν
nψ

µ
n = δµν . The distribution of the 20 largest

eigenvalues λν is presented in Fig. 3a. Due to the mir-
ror symmetry, the singular vectors ψµn are either odd or
even and we denote the corresponding singular values by
blue and red color, respectively. Figure 2b shows the ap-
proximation to the wavefunction, calculated leaving only
four largest singular values corresponding to two odd and
two even singular vectors in the expansion Eq. (6). Such
two-term expansion well approximates the exact wave-
function #2 from Fig. 2b. The localization of the distant
bound state at the edges of the array can be explained by
the fact that the single-particle eigenstates are also local-
ized, compare two corresponding wavefunctions, shown in
Fig. 2c. These findings fully confirm our interpretation
of the formation mechanism of the distant bound state
illustrated in Fig. 1: it is formed due to the interaction-
induced interference of the even and odd single-particle
states localized at the opposite edges of the array.

It is also instructive to analyze the single-particle en-
ergy spectrum, obtained by solving the Schrödinger equa-
tion H|ψ〉 = ε|ψ with the ansatz |ψ〉 =

∑N
n=1 ψnσ

†|0〉
and shown in Fig. 2a by cyan stars. Eigenmodes of the
finite array can be presented as a superposition of two
polaritonic Bloch waves [12]:

ψn ∝ ρeiKn + e−iKn, (7)

where K is the polariton wave vector determined from
the dispersion equation cosK = cosϕ − γ1D sinϕ/ε and
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FIG. 3. Origin of distant bound states. (a) Largest singu-
lar values λ entering the SVD expansion Eq. (6) of the distant
bound state #2 from Fig. 2. Red and blue dots correspond
to even and odd singular vectors, respectively. (b) Approxi-
mated wavefunction of the distant bound state #2 calculated
including only four largest singular values in Eq. (6), indicated
by the yellow rectangle in panel (a). (c) Distribution of the
wave function corresponding to the largest odd SVD term
and the single-particle wavefunction of the brightest state.
(d) Color map of the two-dimensional Fourier transform of
the wavefunction of the distant bound state #2.

ρ = −(1 − ei(ϕ−K))/(1 − ei(ϕ+K)) is the internal reflec-
tion coefficient of polaritons from the edge of the ar-
ray . Due to the radiative losses, the polariton eigen-
frequencies ε in the finite array and the correspond-
ing wave vector K are complex. The states with the
largest radiative decay rate have the real part of the
wave vector ReK(ε) close to ±ϕ, which can be under-
stood as a kind of phase synchronism condition facilitat-
ing photon emission [13]. The phase synchronism is also
evident from the Fourier transform of the two-photon
wavefunction ψkx,ky =

∑N
m,n=1 e−ikxm−ikynψmn, shown

in Fig. 3d that is concentrated near the points where
kx, ky = ±ϕ. The eigenfrequencies of even eigenmodes
satisfy the analytical Fabry-Perot-like equation [13, 14]
ρ(ε)eiK(ε)(N+1) = 1. Looking for the solution of this
equation with K ≈ ϕ+ i ImK, we obtaine the following
approximate analytical equation for the decay rate of the
brightest state,

− Im ε

γ1D
≈ N

W (2N sinϕ)
, (8)

where W (x) is the Lambert W -function defined by the
equation W eW = x. For large N we use the approxima-
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FIG. 4. Scaling of single-particle eigenstates. (a) De-
pendence of the radiative decay rate of the brightest state on
the number of atoms N calculated numerically and analyti-
cally following Eqs. (8),(9). (b) Wave function of the brightest
state depending on the length of the array. Other calculation
parameters are the same as in Fig. 2.

tion for the Lambert function, which yields

− Im ε

γ1D
≈ N

log(2N sinϕ)− log log(2N sinϕ)
. (9)

The dependence of the radiative decay on the array
length, calculated numerically and analytically following
Eqs. (8),(9) is shown in Fig. 4a. The decay rate increases
with the number of atoms almost linearly due to the weak
logarithmic growth of the Lambert-function and the cor-
responding eigenstate can be considered as a superradi-
ant one. Due to the radiative decay, the superradiant
states have large imaginary part of the polariton wave
vector ImK(ε) > 0, and, according to Eq. (7), this leads
to the decay of the wavefunction from the edges towards
the structure center, that is caused solely by the radia-
tive losses. The wavefunction of the brightest state cal-
culated for arrays of different lengths is shown in Fig. 4b
and indeed falls exponentially from the edges to the cen-
ter. An important observation from Fig. 4b is that the
slope of the dependence ln |ψn| becomes smaller with the
increase of the array length. The probability to find po-
lariton in the center is ∼ N times smaller than in the
bulk, |ψN/2/ψ1|2 ∝ 1/N . This is in stark contrast to
the conventional edge state where the ratio |ψN/2/ψ1|2
decays exponentially with the array length. Mathemati-
cally, such scaling happens because the eigenfrequency of
the superradiant state found from Eq. (8) approximately
satisfies the equation e−(N−1) ImK(ε) ≈ 1/(N sinϕ). Such
universal scaling is a direct manifestation of the non-
Hermitian nature of the considered problem. For larger
N the radiative decay due to the photon escape through
the edges becomes relatively less important and the lo-
calization length increases.

Robustness against the disorder

In order to investigate the stability of the distant
bound states against the short-range disorder we add the



5

50 100 150

0

1

2

3

4

5

2 4 6 8 10 12

10 20

10

20

0

0.005

0.01

10 20

10

20

0

0.01

0.02

10 20

10

20

0

0.02

0.04

10 20

10

20

0

0.005

0.01

0.015

0 10 20
-10

0

10

FIG. 5. Effect of disorder. (a,d) Wavefunctions of four characteristic two-photon states. (b) Dependence of the photon-
photon distances on the disorder strength χ. Each horizontal line in the calculated 2D map corresponds to a single disorder
realization. All the N(N − 1)/2 eigenstates have been sorted according to the average photon-photon distance p defined by
Eq. (5). (c) Distribution of the disorder amplitudes χn for the largest disorder strength χ = 5. Calculation has been performed
for N = 200 and ω0d/c = 1.

following interaction term to the Hamiltonian Eq. (4):

V = γ1D

N−1∑
n=1

χn(σ†nσn)(σ†n+1σn+1) . (10)

Physically, such short-range interactions occur, e.g., due
to van-der-Waals couplings between the atoms and they
can be also implemented for superconducting qubits [15].
Here, the coefficients χn, characterizing the disorder
strength, are independent random variables with zero
mean value and the dispersion 〈χ2

n〉 ≡ χ2, see Fig. 5c
for a particular realization. The calculated dependence
of the average photon-photon distance on the disorder
strength is shown in Fig. 5. For vanishing disorder one
can clearly distinguish the bound two-photon states with
the small distance p (state #3 in Fig. 5a) and the distant
bound states (state #4 in Fig. 5b), see also the histogram
Fig. 2c. For bound states two photons propagate together
and their center-of-mass wave function forms a standing
wave in the structure. These bound photon pairs are
rather sensitive to the short-range disorder Eq. (10). In-
crease of the disorder strength leads to the localization
of the bound pairs, see the state #1 in Fig. 5a. On the
other hand, the distant bound states that we focus on
are significantly less sensitive to the short-range interac-
tions due to the increased photon-photon distance. This
is evident from the persistence of the red-colored states
with the large distance in the right edge of the diagram
Fig. 5b. The most distant state is weakly affected by the
disorder as can be seen by comparing the wavefunctions

#2 and #4 in Fig. 5b.

DISCUSSION

In this section we try to present a bird-eye view on the
two-photon quantum states in the finite array of atoms
coupled to a waveguide. Spatial false-color maps of two-
photon joint probabilities |Ψ(x1, x2)|2 are presented in
the schematic diagram Fig. 6. They are grouped depend-
ing on relative distance between the two photons (larger
distance corresponds to the upper panels) and depend-
ing on whether the photons are located mostly at the
structure edges (right panels) or in the bulk (left pan-
els). The bulk states are most simple to understand.
They are limited to the scattering states, where two pho-
tons are quasi-independent (Fig. 6b), fermionized states
with increased radiative lifetime (Fig. 6a) [16], where the
average photon-photon distance is increased and bound
photon pairs (Fig. 6c) [17, 18]. To the best of our knowl-
edge, neither fermionized states nor bound states have
not been directly observed in experiments yet. How-
ever, the bound states are well known in other setups.
They have been observed for cold atoms in optical lat-
tices [19], correlated two-photon quantum walks have re-
cently been experimentally studied for superconducting
quantum processors [20] and even three- photon bound
states were seen for light interacting with Rydberg atomic
states [21, 22]. Moreover, tunable photon bunching and
antibunching, recently realized in the WQED setup with
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cold atoms coupled to the nanofiber, is in fact medi-
ated by the two-photon bound states [23]. Thus, di-
rect experimental observation of the two-photon bound
states does not seem to be in the realm of impossible for
state-of-the art setups. The most advantageous platform
should probably be based on superconducting qubits,
since it allows access (excitation and probing) of indi-
vidual qubits [24]. As demonstrated by the calculation
in Fig. 5, the array of 20 qubits should already be suffi-
cient to observe the bound states as well as other quan-
tum states discussed below. Figures 6d, 6e present un-
usual types of two-photon quantum states, predicted in
our previous works [25–27]. They manifest interaction-
induced localization when one of the two indistinguish-
able photons forms a standing wave that induces a trap-
ping potential for the other photon. This second photon
can be localized either in the center (Fig. 6d) or at the
edge (Fig. 6e) of the array. Since standing wave is delo-
calized, such states can be considered as lying in between
bulk and edge states, for example for the state in Fig. 6e
one of the photons is always in the bulk while another one
is always at the edge. The two photons can be both corre-
lated and anticorrelated in space depending on whether
the trapping is in the anti-node or in the node of the
standing wave. Thus, while being quite interesting from
the fundamental side, the states in Figs. 6d, 6e do not
seem optimal to enhance or suppress the photon-photon
spatial correlations. Finally, we proceed to the states in
Figs. 6f,g,h, where both photons are at the edges of the
array. Depending on the specifics of two-photon interac-
tions, the photon pair can be quasi-independent (Fig. 6g),
correlated (Fig. 6h) or anti-correlated (Fig. 6f). As dis-
cussed above, the latter state, put forward in this work, is
the most robust against short-range interactions between
the photons.

To summarize, waveguide quantum electrodynamics,
that has become a separate research field only relatively
recently, is a very promising platform to control two-
photon correlations [23]. Even the simplest two-body
problem in WQED manifests a number of quite unusual
two-photon states. It is not clear whether our classifica-
tion in Fig. 6 is complete and how it can be extended for
larger number of particles [28] or even in the many-body
regime [29] but we can expect beautiful fundamental phe-
nomena that will be also hopefully soon complemented
by experimental demonstrations and even practical ap-
plications for the emerging quantum industry.
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