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The eigenstate thermalization hypothesis (ETH), which asserts that every eigenstate of a many-
body quantum system is indistinguishable from a thermal ensemble, plays a pivotal role in under-
standing thermalization of isolated quantum systems. Yet, no evidence has been obtained as to
whether the ETH holds for any few-body operators in a chaotic system; such few-body operators
include crucial quantities in statistical mechanics, e.g., the total magnetization, the momentum dis-
tribution, and their low-order thermal and quantum fluctuations. Here, we identify rigorous upper
and lower bounds on m∗ such that all m-body operators with m < m∗ satisfy the ETH in fully
chaotic systems. For arbitrary dimensionalN -particle systems subject to the Haar measure, we prove

that there exist N -independent positive constants α
(L)
∗ and α

(U)
∗ such that α

(L)
∗ ≤ m∗/N ≤ α

(U)
∗

holds. The bounds α
(L)
∗ and α

(U)
∗ depend only on the spin quantum number for spin systems and

the particle-number density for Bose and Fermi systems. Thermalization of typical systems for any
few-body operators is thus rigorously proved.

Recent experiments in cold atoms and ions have
demonstrated that quantum systems thermalize unitar-
ily without heat reservoirs [1–6]. This finding brings
up a striking possibility of incorporating statistical me-
chanics into a single framework of quantum mechanics
– a scenario envisioned by von Neumann about a cen-
tury ago [7]. It has been argued that a single pure
quantum state becomes indistinguishable from a ther-
mal ensemble as far as few-body observables are con-
cerned [8–18] due to the interplay between quantum en-
tanglement and physical constraints on observable quan-
tities such as locality or few-bodiness [8, 9, 14–18]. De-
pending on the choice of operators used to distinguish
between a quantum state and a thermal ensemble, var-
ied notions of quantum-thermal equilibrium, such as
microscopic thermal equilibrium (MITE) and macro-
scopic thermal equilibrium (MATE), have been intro-
duced [8, 9, 13, 17, 19, 20].

The eigenstate thermalization hypothesis (ETH) [7, 21,
22] is considered to be the primary mechanism behind
thermalization in isolated quantum systems. The ETH
for an operator Â means that (i) every energy eigenstate
of a system is in thermal equilibrium regarding the ex-
pectation value of Â and that (ii) off-diagonal elements
of Â in an energy eigenbasis is vanishingly small. The
ETH ensures thermalization of Â for any initial state
with a macroscopically definite energy, given no massive
degeneracy in the energy spectrum [14–18]. The ETH
has been tested numerically for several local or few-body
quantities [23–31]. However, whether the ETH holds for
all few-body operators and whether it breaks down for
many-body operators have yet to be fully addressed.

Von Neumann [7] and Reimann [32] proved the ETH
for almost all Hermitian operators. However, their
results do not imply the ETH for physically realistic

operators because almost all operators considered in
Refs. [7, 32] involve highly nonlocal correlations that are
close to N -body [33] and therefore unphysical. Some
works [17, 34] tested the ETH against several classes
of few-body operators, such as local operators of a sub-
system; however, their method cannot deal with generic
few-body operators that act on an entire system., such
as the total magnetization, the momentum distribution,
and their thermal and quantum fluctuations.

In this Article, we derive upper and lower bounds for
m∗ such that all m-body operators with m < m∗ sat-
isfy the ETH. For fully chaotic N -particle systems in
arbitrary spatial dimensions whose eigenstates are dis-
tributed according to the Haar measure, we prove that

there exist N -independent constants α
(L)
∗ and α

(U)
∗ such

that α
(L)
∗ ≤ m∗/N ≤ α

(U)
∗ holds. Here, α

(L)
∗ and α

(U)
∗

depend only on the spin quantum number for spin sys-
tems or the particle-number density for Bose and Fermi
systems (Figure 1). Our result is directly applicable to
any few-body operators of interest in statistical mechan-
ics and their thermal and quantum fluctuations without
approximations, such as coarse-graining. In particular,
our result implies that the ETH holds true even if we
observe any low-order fluctuations of any few-body op-
erators.

Our method also provides a quantitative criterion for
deciding whether energy eigenstates of a system can be
considered fully chaotic, which is applicable to systems
with non-negligible finite-size effects, including ion and
cold-atom systems, for which the thermodynamic limit
cannot be taken [1–6, 35, 36].

Unified measure for quantum-thermal equilibrium.—
While several measures and criteria of quantum-thermal
equilibrium have been introduced in the literature [13,
17, 19, 20], they cannot be applied to generic few-body
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(a) Spin Table 1: Definitions of the m-body operator space and its dimension.

Spin M =
m∑

j=0

(
N

j

)
[(2S + 1)2 − 1]j , D = (2S + 1)N

A[0,m] := span

{
σ̂
(p1)
x1 · · · σ̂(pj)

xj |
j≤m

1≤x1<···<xm≤N
1≤pj<(2S+1)2

}

Boson M =

(
m+ V − 1

m

)2

, D =

(
N + V − 1

N

)

A[0,m] := span
{
b̂†x1 · · · b̂†xm b̂y1 · · · b̂ym | 1 ≤ xj , yj ≤ V

}

Fermion M =

(
V

min {m,V −N}

)2

, D =

(
V

N

)

A[0,m] := span
{
f̂ †
x1 · · · f̂ †

xm f̂y1 · · · f̂ym | 1≤x1<···<xm≤V
1≤y1<···<ym≤V

}
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FIG. 1. Regions of m/N where the ETH typically holds and breaks down for fully chaotic systems whose
eigenstates are distributed according to the Haar measure. The blue region (marked with “3”) shows where the ETH

typically holds for all operators in the space A[0,m] of m-body operators. This region is delimited by α
(L)
∗ . The red region

(marked with “8”) shows where the ETH typically breaks down for some m-body operators. This region is delimited by α
(U)
∗ .

There is an ETH-breaking operator within O(1/
√
N) around the thick red curve for each S and N/V . The integer m∗ such that

the ETH holds for all m-body operators with m < m∗ lies somewhere in the white region (marked with “?”). The definitions

of the m-body operator space and its dimension are shown in Table 1. For spin systems (a), we have α
(U)
∗ = 1 − (2S + 1)−2,

where S is the spin quantum number. For Bose systems (b) and Fermi systems (c), N and V denote the numbers of particles

and lattice sites, respectively. In1q (b), we have α
(U)
∗ = 1, and the boundary of the blue region α

(L)
∗ is proportional to ρ−1/2

for large ρ. In1q (c), we have α
(U)
∗ = (1− ρ)/ρ, and the boundary of the blue region α

(L)
∗ is proportional to (1− ρ) for ρ ' 1.

operators because they are defined for specific choices of
operators, such as those acting only on a subsystem.

To quantitatively study how the ETH depends on
physical constraints on observables, we introduce the fol-
lowing measure of the closeness to a thermal ensemble,
which is applicable to an arbitrary set A of observable
quantities.

Definition 1 (Unified measure of quantum-thermal
equilibrium). To quantify the distance ‖σ̂ − ρ̂th‖ between
a quantum state σ̂ and a thermal state ρ̂th, we introduce

the following (semi-)norm,

∥∥∥X̂
∥∥∥

(A)

p
:= sup

Â∈A+RÎ

∣∣∣∣∣tr
(

Â

‖Â‖ q
X̂

)∣∣∣∣∣, (1)

where p−1 + q−1 = 1 with p ≥ 1, and ‖Â‖ q is the Schat-

ten q-norm of Â [37, 38], i.e., the standard q-norm of the
singular values of Â. Here, X̂ is an arbitrary operator
which is not necessarily Hermitian. Then, the (pseudo-

)distance ‖σ̂ − ρ̂th‖(A)
1 with ρ̂th being a thermal ensemble

serves as a unified measure of quantum-thermal equilib-
rium.

We say that a quantum state σ̂ is in thermal equilib-
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rium relative to A if ‖σ̂ − ρ̂th‖(A)
1 < ε holds for a suffi-

ciently small ε (> 0). This definition follows Refs. [19, 20];
however, we here concern only the expectation value of
Â ∈ A and not the probability distribution over the
spectrum of Â. Nonetheless, our framework can deal
with the probability distribution by including sufficiently
high powers of Â in A, offering finer control over the
precision in observing the distribution. By appropri-
ately choosing A, our notion of quantum-thermal equilib-
rium unifies previously introduced ones, such as subsys-
tem thermal equilibrium [8, 9, 34], microscopic thermal
equilibrium (MITE), and macroscopic thermal equilib-
rium (MATE) [17, 19, 20] (see Supplemental Informa-
tion I for details).

The normalization constant ‖Â‖ q in the inequality (1)

has been chosen so that the (semi-)norm ‖·‖(A)
p serves as

a generalization of the Schatten p-norm. For example,

‖·‖(A)
1 and ‖·‖(A)

2 generalize the trace norm and Hilbert-
Schmidt norm, respectively. In general, the duality of

the Schatten norm [37, 38] gives ‖X̂‖ p = ‖X̂‖ (L(H))

p (≥
‖X̂‖ (A)

p ), where L(H) is the space of all Hermitian oper-
ators acting on a Hilbert space H of a system.

Among ‖·‖(A)
p with p ≥ 1, only ‖·‖(A)

1 can be
used to define a measure of quantum-thermal equi-
librium because it is (i) invariant under a linear
transformation: Â 7→ a′Â + b′, (ii) dimensionless, and

(iii) thermodynamically intensive [30]. The others, ‖·‖(A)
p

with p > 1, are not suitable because they are not thermo-
dynamically intensive (see Supplemental Information II).

Many of the previous works that numerically tested the
ETH with respect to several operators Â1, · · · , ÂJ [23,
25, 26, 29] essentially set A = {Â1, · · · , ÂJ} . However,
if one really wants to distinguish an energy eigenstate
from ρ̂th without any exception, one should use not only
a single or a few quantities but all the quantities com-
patible with physical constraints under consideration.

For general A, it is difficult or even impossible to cal-

culate the maximum in ‖·‖(A)
1 with respect to Â ∈ A,

both numerically and analytically. To overcome this dif-

ficulty, we place upper and lower bounds on ‖·‖(A)
1 in

terms of the quantity ‖·‖(A)
2 , which is computable given

an orthonormal basis of A+ RÎ.
Measure of the ETH.— The measure of the ETH,

which requires (i) all energy eigenstates to be in thermal
equilibrium and (ii) all off-diagonal elements of an ob-
servable in an energy eigenbasis is vanishingly small, is
obtained as

Λ
(Ĥ,A)
1 (E) := max

|Eα〉,|Eβ〉∈HE,∆E

∥∥∥ρ̂αβ − ρ̂(mc)
δE (Eα)δαβ

∥∥∥
(A)

1
,

where ρ̂αβ := |Eα〉〈Eβ | with |Eα〉 being an energy eigen-

state belonging to the eigenenergy Eα, and ρ̂
(mc)
δE (Eα)

is the microcanonical ensemble within the energy shell
HEα,δE . The ETH holds for all operators in A if and

only if limN→∞ Λ
(Ĥ,A)
1 = 0. Indeed, if Λ

(Ĥ,A)
1 is suf-

ficiently small, all the operators in A give almost the

same expectation values for ρ̂αα and ρ̂
(mc)
δE (Eα), and their

off-diagonal elements within the energy shell HEα,δE be-

comes sufficiently small. In that sense, Λ
(Ĥ,A)
1 is the

most sensitive ETH measure ever. If Λ
(Ĥ,A)
1 remains fi-

nite in the limit N →∞, there exists an operator Â ∈ A
such that the expectation values of Â for |Eα〉 and ρ̂

(mc)
δE

are different, or some off-diagonal elements of Â within
HEα,δE remain nonnegligible. Therefore, the ETH with
respect to A breaks down in this case.

Distribution of Λ
(Ĥ,A)
1 (E) for fully chaotic systems.—

Having introduced the measure of the ETH and the

bounds for ‖·‖(A)
1 in terms of the computable quantity

‖·‖(A)
2 , we are in a position to discuss the validity of the

ETH relative to a set of observables A.
In fully chaotic systems, whose eigenvectors distribute

according to the unitary Haar measure, we can derive
the following theorem by using the concentration in-
equality for the Haar measure on SU(D) [39–42], which
is a stronger result than the commonly used Levy’s
lemma (see Methods for the outline of the proof).

Theorem 1. Let Ginv be an invariant random matrix
ensemble, the eigenvectors of whose matrices are dis-
tributed according to the unitary Haar measure. We set
D := dimH and M := dimA. Then, for any ε > 0, we
have

M

4D2
≤ (Λ

(Ĥ,A)
1 )2 +O

(
Dε

√
D

)
≤ M

D
(2)

for almost all Ĥ ∈ Ginv. Here, “for almost all Ĥ ∈ Ginv”
means that the ratio of exceptional Hamiltonians Ĥ in
Ginv for which the inequality (2) does not hold is bounded
from above by exp

(
−O

(
D2ε

))
.

With Theorem 1, we can test whether or not the ETH
with respect to A typically holds in Ginv by counting the
dimension of the operator space A. Theorem 1 also pro-
vides a quantitative criterion, applicable to finite-size sys-
tems, for deciding whether a realistic Hamiltonian Ĥ can
be considered to have fully chaotic energy eigenstates.
For example, the existence of an operator Â that violates
the upper bound of the inequality (2) implies that the
eigenstate of Ĥ has a “structure” that can be detected by
Â, suggesting that Ĥ is not fully chaotic. Furthermore,

by comparing the N -dependence of Λ
(Ĥ,A)
1 for a realistic

Hamiltonian Ĥ with that of the upper and lower bounds
in the inequality (2), we can infer the N -dependence of

Λ
(Ĥ,A)
1 for large N that is difficult to access.
Rigorous upper and lower bounds for the ETH.— We

apply Theorem 1 to test the ETH for few- and many-
body observables. For N -site spin-S systems, we de-

fine the m-body operator space A[0,m]
N as the space
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of operators that can be expressed as a linear combi-
nation of operators acting nontrivially on at most m

spins. The m-body operator space A[0,m]
N includes the

set S(m)
few of “few-body” operators [17], which act non-

trivially on at most m spins. For example, we have

M̂z :=
∑N
j=1 σ̂

(z)
j , (M̂z)

2, · · · , (M̂z)
m ∈ A[0,m]

N , but none

of these operators are included in S(m)
few unless m = N .

For Bose and Fermi systems, we define A[0,m]
N to be the

space of operators that can be written as a linear com-
bination of products of m annihilation operators b̂ and

m creation operators b̂†. We also define A[m−,m+]
N to be

the orthogonal complement of A[0,m−−1]
N with respect to

A[0,m+]
N .

By counting the dimension of A[m−,m+]
N and that of the

total Hilbert space, we can apply Theorem 1 to obtain the
following theorem (see Methods for the proof outline).

Theorem 2 (Upper and lower bounds for the ETH). Let
m∗ be the largest number such that the ETH with respect
to A[0,m] typically holds in Ginv for all m < m∗. Then,

there exist N -independent constants α
(L)
∗ ∈ (0, 1/2] and

α
(U)
∗ > 0 that satisfy α

(L)
∗ ≤ m∗/N ≤ α(U)

∗ .
More specifically,

1. for A = A[0,m]
N with m/N < α

(L)
∗ , we have

(
Λ

(Ĥ,A)
1

)2

≤ e−O(N), (3)

for almost all Ĥ ∈ Ginv, and therefore the ETH with

respect to A[0,m]
N typically holds in Ginv;

2. for A = A[m−,m+]
N with m± = α

(U)
∗ N ± c±

√
N ,

where c± are arbitrary positive constants, there ex-
ists a constant C > 0 such that

lim
N→∞

(
Λ

(Ĥ,A)
1

)2

≥ C (4)

holds for almost all Ĥ ∈ Ginv. Therefore, the ETH

with respect to A[m−,m+]
N typically breaks down in

Ginv.

Here, “for almost all Ĥ ∈ Ginv” means that the fraction
of exceptional Hamiltonians Ĥ in Ginv for which the in-
equality (3) or (4) does not hold is double-exponentially
small with respect to N .

For spin systems, we have α
(L)
∗ (S) ≥ 0.1892 · · · and

α
(U)
∗ (S) = 1− (2S + 1)−2. For Bose and Fermi systems

with particle density given by ρ, we have α
(U)
∗ (ρ) = 1 and

α
(U)
∗ (ρ) = (1− ρ)/ρ, respectively (see Figure 1).

The first part (3) of Theorem 2 suggests that for fully
chaotic quantum many-body systems, whose eigenstates
can be considered sufficiently random with respect to

the Haar measure, the ETH can hold even if we ob-
serve O(N)-body operators. Because our result is not
restricted to the operators acting only on subsystems, we
conclude that the decomposition of the total system into
a subsystem and the rest is not essential for the ETH to
hold. For the same reason, our result directly applies to
any operators acting on the whole system, which cannot
exactly be dealt with in previous works [17, 34]. These
operators include extensive sums of local operators (e.g.,
total magnetization), few-body operators (e.g., momen-
tum distributions), and low-order powers of these quanti-
ties. Since the central moments of a few-body operator Â
are polynomials of Â, and their values scale polynomially
in N , the exponential decay of the upper bound (3) for
the ETH measure implies that the ETH typically holds in
Ginv including any low-order fluctuations of any few-body
operators.

Given a probable argument based on the comparison of
the reduced density operators of energy eigenstates and
a thermal ensemble on a subsystem [34], we believe that
the ETH typically breaks down for A[0,N/2], i.e., we ex-
pect m∗/N ≤ 1/2. For high-density Fermi systems with
ρ > 2/3, our upper bound gives a better upper bound

m∗/N ≤ α
(U)
∗ = (1− ρ)/ρ < 1/2. However, for spin and

Bose systems, our method does not provide α
(U)
∗ < 0.5.

Nonetheless, the second part (4) of Theorem 2 is some-
what stronger than the expectation m∗/N ≤ 1/2 in that
it identifies a smaller region of m than [0, N/2] where
ETH-breaking operators exist, namely, [m−,m+] with

m± = α
(U)
∗ N ±O(

√
N).

Apart from quantum thermalization, the (semi-)norm

‖·‖(A)
1 introduced in the inequality (1) serves as the mea-

sure of the closeness between two quantum states σ̂ and
ρ̂ relative to A. Thus, it can be used in various situa-
tions other than the ETH, such as a comparison between
the state during time evolution and the steady state. In
particular, it can be used to construct the space of macro-
scopic states from that of quantum states by identifying
quantum states that are very close to each other in terms

of ‖·‖(A)
1 . Rigorously formulating the correspondence be-

tween microscopic and macroscopic states in this direc-
tion and deriving the macroscopic dynamics from the mi-
croscopic one are important future problems.
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METHODS

Proof outline of Theorem 1. Theorem 1 follows from

(i) the inequality ‖·‖(A)
2 ≤ ‖·‖(A)

1 ≤
√
D‖·‖(A)

2 resulting

from the inequalityD−1/2‖Â‖ 2 ≤ ‖Â‖∞ ≤ ‖Â‖ 2 [37, 38]
and (ii) the concentration inequality for the Haar mea-
sure on SU(D) [39–42]; for any δ > 0 and any Lipschitz
continuous function f on SU(D) with Lipschitz constant
ηf ,

P
[∣∣∣f(Û)− EÛ [f ]

∣∣∣ ≥ δ
]
≤ 2 exp

[
−δ

2D

4η2
f

]
, (5)

where EÛ denotes the average over the Haar measure for

Û , and a, b are positive constants.

We can show that both (‖δρ̂αβ‖(A)
1 )2, where δρ̂αβ :=

ρ̂αβ− ρ̂(mc)
δE (Eα)δαβ , and (Λ

(Ĥ,A)
1 )2 are Lipschitz continu-

ous concerning Û which diagonalizes the Hamiltonian Ĥ.
Their Lipschitz constants are bounded from above by an
N -independent constant η (see Supplemental Informa-
tion III.C and III.D). Therefore, we can apply the con-

centration inequality (5) to (‖δρ̂αβ‖(A)
1 )2. In addition,

the expectation value of (‖δρ̂αβ‖(A)
2 )2 with respect to

the Haar measure is calculated to be E[(‖δρ̂αβ‖(A)
2 )2] '

M/D2 (see Supplemental Information III.A) which leads

to M/D2 . E[(‖δρ̂αβ‖(A)
1 )2] .M/D.

By applying the inequality (5) to f(Û) = (‖δρ̂αβ‖(A)
1 )2,

we obtain

P
[
(Λ

(Ĥ,A)
1 )2 − EÛ

[
(‖δρ̂αβ‖(A)

1 )2
]
≥ δ
]

≤ d2
E,∆EP

[
(‖δρ̂αβ‖(A)

1 )2 − EÛ
[
(‖δρ̂αβ‖(A)

1 )2
]
≥ δ
]

≤ 2d2
E,∆E exp

[
−δ

2D

4η2

]
, (6)

where the first inequality follows from the definition of

(Λ
(Ĥ,A)
1 )2 = max|Eα〉,|Eβ〉∈HE,∆E (‖δρ̂αβ‖(A)

1 )2. From the
inequality (6), it follows that

EÛ [(Λ
(Ĥ,A)
1 )2] ≤ EÛ

[
(‖δρ̂αβ‖(A)

1 )2
]

+O
(√

log dE,∆E
D

)
.

(7)
(See Supplemental Information III.B.)

Then, we apply the inequality (5) to f(Û) = (Λ
(Ĥ,A)
1 )2

and set δ = D−1/2+ε for an arbitrary ε > 0 to conclude

(Λ
(Ĥ,A)
1 )2 = EÛ [(Λ

(Ĥ,A)
1 )2] +O

(
D−1/2+ε

)
(8)

for almost all Û , where the fraction of exceptional
Û for which Eq. (8) does not hold is no larger than
exp

(
−O

(
D2ε

))
.

Finally, Eqs. (7) and (8) combined with a trivial bound

EÛ [(Λ
(Ĥ,A)
1 )2] ≥ EÛ [(‖δρ̂αβ‖(A)

1 )2] give
∣∣∣(Λ(Ĥ,A)

1 )2 − EÛ
[
(‖δρ̂αβ‖(A)

1 )2
]∣∣∣ ≤ O

(
D−1/2+ε

)
(9)

for almost all Û . This inequality proves Theorem 1.
Proof outline of Theorem 2. For spin-S systems, it is

straightforward to show that

dimA[m−,m+]
N = D2

m+∑

j=m−

Pj , (10)

where D := dimH, and Pj :=
(
N
j

) (d2
loc−1)j

d2N
loc

with dloc :=

2S + 1 is the probability mass for the binomial distri-
bution B(N, p) with p = 1 − (dloc)−2. As a property of
the binomial distribution, we have Pm−1 < Pm for m <

(N + 1)p. Therefore, we have dimA[0,m]
N ≤ (m + 1)Pm

for m/N < p.
To obtain the lower bound (3), we employ Stirling’s

formula, obtaining

dimA[0,m]
N

D
≤ exp

[
NG

(m
N

)
+O(logN)

]
(11)

for m/N < p, where G(x) := H(x) + x log(d2
loc − 1) −

log dloc, andH(x) = −x log x−(1−x) log(1−x). The root

α
(L)
∗ of G(x) lies in (0, 1/2), and G(x) satisfies G(x) < 0

for x < α
(L)
∗ . Therefore, we obtain the inequality (3) from

the upper bound of the inequality (2) in Theorem 1.
The upper bound (4) follows immediately from the

fact that B(N, p) converges to a Gaussian distribution
N (Np,Np(1− p)) for large N in distribution.

For N -particle Bose and Fermi systems on a V -site
lattice, by setting α := m/N and ρ := N/V , we have

dimA[0,m]
N =

(
V +m− 1

m

)2

= exp

[
2V (1 + αρ)H

(
1

1 + αρ

)
+O(log V )

]
,

(12)

for Bose systems and

dimA[0,m]
N =

(
V

min {m,V −N}

)2

=

{
exp [2V H(αρ) +O(log V )] (m < V −N);

D2 (m ≥ V −N),

(13)

for Fermi systems. The dimension of A[m−,m+]
N is given

by dimA[0,m+]
N − dimA[0,m−−1]

N (see Supplemental Infor-

mation IV for details). It follows from D2 = dimA[0,N ]
N

and some straightforward calculations that Theorem 2 is
proved.
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I. ‖·‖(A)
1 AS A UNIFIED MEASURE FOR QUANTUM-THERMAL EQUILIBRIUM

As mentioned in the main text, the seminorm ‖·‖(A)
1 with an apt choice of A serves as a unified

measure for various notions of quantum-thermal equilibrium. In this section, we provide some

examples.

A. Subsystem thermal equilibrium

For any subsystem S and any ÂS ⊗ idSc ∈ L(HS)⊗ idSc , we have ‖ÂS ⊗ idSc‖∞ = ‖ÂS‖∞. By

setting A = L(HS)⊗ idSc , we have

∥∥∥X̂
∥∥∥

(A)

1
= max

Â∈L(HS)⊗idSc

∣∣∣∣∣tr
(

Â

‖Â‖∞
X̂

)∣∣∣∣∣

= max
ÂS∈L(HS)

∣∣∣∣∣tr
(

ÂS
‖ÂS‖∞

trSc(X̂)

)∣∣∣∣∣

=
∥∥∥trSc(X̂)

∥∥∥
1
. (S1)

Thus, the seminorm ‖·‖(A)
1 reduces to the trace norm on a subsystem S for A = L(HS)⊗ idSc , and

the smallness of ‖σ̂ − ρ̂th‖(A)
1 for a thermal ensemble ρ̂th defines those quantum states σ̂ that are

in thermal equilibrium in a subsystem S.
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B. Microscopic thermal equilibrium (MITE) [1–3]

The notion of microscopic thermal equilibrium (MITE) is introduced in Refs. [1, 2] as follows.

Definition I.1: Microscopic thermal equilibrium (MITE) [2]

A state σ̂ is said to be in microscopic thermal equilibrium (MITE) on a length scale l0 if it

satisfies

‖trSc(σ̂)− trSc(ρ̂th)‖1 < ε (S2)

for every subsystem S with Diam(S) ≤ l0, where ε � 1 and the diameter of S is defined by

Diam(S) := supx,y∈S d(x, y) for some distance d.

As mentioned in Ref. [2], MITE can be regarded as the thermal equilibrium relative to

AMITE =
⋃

S : Diam(S)≤l0
L(HS)⊗ idSc . (S3)

Then, we have the following proposition.

Proposition I.1

Let σ̂ be an arbitrary quantum state and ρ̂th be a thermal ensemble. Then,

σ̂ is in MITE ⇐⇒ ‖σ̂ − ρ̂th‖(AMITE)
1 ≤ ε, (S4)

where ε� 1.

Proof. The proof follows immediately from the following equation:

‖σ̂ − ρ̂th‖(AMITE)
1 = max

Â∈AMITE

∣∣∣∣∣tr
(

Â

‖Â‖∞
(σ̂ − ρ̂th)

)∣∣∣∣∣

= max
S : Diam(S)≤l0

max
ÂS∈L(HS)

∣∣∣∣∣trS
(

ÂS

‖ÂS‖∞

(
trSc(σ̂)− trSc(ρ̂th)

))∣∣∣∣∣

= max
S : Diam(S)≤l0

‖trSc(σ̂)− trSc(ρ̂th)‖1. (S5)

�

Mori et al. [3] extended the notion of MITE by lifting the spatial constraints Diam(S) ≤ l0 to
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a “few-body” constraint as |S| = k with an integer k of O(1), i.e., they consider

A(few)
MITE =

⋃

S : |S|=k
L(HS)⊗ idSc (S6)

in addition to AMITE.

The same proof for Proposition I.1 applies to the MITE with respect to A(few)
MITE, and we have

the following proposition;

Proposition I.2

Let σ̂ be an arbitrary quantum state and ρ̂th be a thermal ensemble. Then,

σ̂ is in MITE with respect to A(few)
MITE ⇐⇒ ‖σ̂ − ρ̂th‖(A

(few)
MITE)

1 ≤ ε, (S7)

where ε� 1.

C. Macroscopic thermal equilibrium (MATE) [1–3]

The notion of macroscopic thermal equilibrium (MATE) is introduced in Refs. [1, 2] as follows.

Definition I.2: Macroscopic thermal equilibrium (MATE) [2]

Consider a collection of macro observables M̂1, · · · , M̂K . By suitably coarse graining the op-

erators M̂1, · · · , M̂K , it is expected that we obtain a set of mutually commuting operators

M̃1, · · · , M̃K with M̃j ≈ M̂j for all j = 1, · · · ,K. We take M̃1 as the coarse-grained Hamilto-

nian, whose eigenspaces are energy shells HE,∆E .

Since M̃1, · · · , M̃K commute with each other, we can simultaneously diagonalize them, and

the energy shell HE,∆E can be decomposed accordingly as HE,∆E =
⊕

ν Hν . Here, Hν is

called macro-spaces, and we denote the projector onto Hν by P̂ν .

In each HE,∆E , it is expected that one macro-space called thermal equilibrium macro-space

Heq covers the most of the dimensions of HE,∆E , i.e.,

dimHeq

dimHE,∆E
= 1− ε̃ (S8)

with ε̃� 1. Without loss of generality, we set Heq = Hν=1.

Under these setups, a state σ̂ ∈ dimHE,δE is said to be in macroscopic thermal equilib-
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rium (MATE) if and only if

tr(σ̂P̂eq) ≥ 1− δ (S9)

for a suitably small tolerance δ > 0.

As mentioned in Ref. [2], MATE can be regarded as the thermal equilibrium relative to the

(coarse-grained) macroscopic observables M̃1, · · · , M̃K . Because we focus on the joint distribution

of the observed values of M̃1, · · · , M̃K in MATE, A for MATE is given by

AMATE = {P̂eq} . (S10)

Then, we have the following proposition.

Proposition I.3

Let σ̂ be an arbitrary quantum state. Then,

σ̂ is in MATE with tolerance δ (≥ 2ε̃) ⇐⇒
∥∥∥σ̂ − ρ̂(mc)

δE

∥∥∥
(AMATE)

1
≤ δ − ε̃. (S11)

Proof. For AMATE = {P̂eq} , we have

∥∥∥σ̂ − ρ̂(mc)
δE

∥∥∥
(AMATE)

1
=

∣∣∣∣tr(σ̂P̂eq)− dimHeq

dimHE,∆E

∣∣∣∣. (S12)

Therefore,
∥∥∥σ̂ − ρ̂(mc)

δE

∥∥∥
(AMATE)

1
≤ ε is equivalent to

1− (ε̃+ ε) ≤ tr(σ̂P̂eq) ≤ 1 + (ε− ε̃). (S13)

By setting ε := δ − ε̃ (≥ ε̃), we obtain

∥∥∥σ̂ − ρ̂(mc)
δE

∥∥∥
(AMATE)

1
≤ δ − ε̃ ⇐⇒ 1− δ ≤ tr(σ̂P̂eq), (S14)

which is the desired result. �
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II. SCALING BEHAVIOR OF THE NORMALIZATION CONSTANT ‖Â‖ q

Here, we demonstrate that the quantity Â/‖Â‖ q in the definition of ‖·‖(A)
1 in Eq. (1) in the main

text is themodynamically intensive only for q =∞. For that purpose, we derive the N -dependence

of the normalization constant ‖Â‖ q for an extensive operator M̂z :=
∑N

j=1 σ̂
(z)
j , where σ̂(z) is the

Pauli z-operator. The eigenstates of M̂z are given by tensor products of those of σ̂(z), and the

eigenvalues are given by −N + 2j (j = 0, · · · , N), where j is the number of spins where the local

state is the eigenstate of σ̂(z) with eigenvalue +1. Therefore, we have

‖M̂z‖
q

q =

N∑

j=0

(
N

j

)
|−N + 2j| q

= N q
N∑

j=0

∣∣∣∣−1 + 2
j

N

∣∣∣∣
q

exp

[
NH

(
j

N

)
+

1

2
log

N

2πj(N − j) +O
(
N−1

)]
, (S15)

where H(x) := −x log x− (1− x) log(1− x) is the binary entropy.

Since we are interested in the N -dependence of ‖M̂z‖ q for large N , we approximate the sum

with the integral, obtaining

‖M̂z‖
q

q ' N q+1

∫ 1

0
dx |−1 + 2x|q exp

[
NH(x)− 1

2
log (x(1− x))− 1

2
log(2πN) +O

(
N−1

)]

' N q+ 1
2√

2π

∫ 1

0
dx |−1 + 2x|q exp

[
NH(x)− 1

2
log (x(1− x)) +O

(
N−1

)]

' N q+ 1
2√

2π

∫ 1
2

− 1
2

dx |2x|q exp

[
NH

(
1

2
+ x

)
− 1

2
log

(
1

4
− x2

)
+O

(
N−1

)]
. (S16)

We then employ the saddle point method, which leads to

‖M̂z‖
q

q '
N q+ 1

2√
2π

∫ 1
2

− 1
2

dx |2x|q exp

[
N log 2− 4Nx2

2
+ log 2 +

x2

2
+O

(
x4, N−1

)]

= 2N
N

q
2√

2π

∫ √N

−
√
N

dx |x|q exp

[
−x

2

2
+O

(
N−1

)]

' 2N
N

q
2√

2π

∫ +∞

−∞
dx |x|q exp

[
−x

2

2

]

= 2NN
q
2

2
q
2√
π

Γ

(
q + 1

2

)
. (S17)

Therefore, for any fixed q and sufficiently large N , the normalization constant ‖M̂z‖ q scales as

∼
√
N D

1
q , where D = 2N is the dimension of the total Hilbert space.
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III. PROOF OF THEOREM 1 IN THE MAIN TEXT

Theorem 1 in the main text is the consequence of the concentration inequality for the Haar mea-

sure on SU(D) [4–7] applied to the quantities (‖δρ̂αβ‖(A)
1 )2, where δρ̂αβ := ρ̂αβ − ρ̂(mc)

δE (Eα)δαβ,

and (Λ
(Ĥ,A)
1 )2 as functions of the unitary matrix Û that diagonalizes the Hamiltonian, i.e.,

Û |E(0)
α 〉 = |Eα〉 for an arbitrarily fixed orthonormal basis { |E(0)

α 〉}
D

α=1 of H. The concentra-

tion inequality for the Haar measure on SU(D) [4–7] implies that, for any δ > 0 and an arbitrary

Lipschitz function f(Û) of Û ∈ SU(D) with Lipschitz constant ηf ,

P
[
f(Û)− E[f ] ≥ δ

]
≤ exp

(
−δ

2D

4η2
f

)
(S18)

and P
[
f(Û)− E[f ] ≤ −δ

]
≤ exp

(
−δ

2D

4η2
f

)
, (S19)

where P denotes the probability with respect to the Haar measure.

To apply the inequalities (S18) and (S19), we need (i) to evaluate the averages of (‖δρ̂αβ‖(A)
1 )2

and (Λ
(Ĥ,A)
1 )2 and (ii) to show the Lipschitz continuity of (‖δρ̂αβ‖(A)

1 )2 and (Λ
(Ĥ,A)
1 )2.

A. Estimation of E
[
(‖δρ̂αβ‖(A)

1 )2
]

As mentioned in the main text, it is in general difficult to calculate the maximum with respect

to Â ∈ A+ RÎ in ‖·‖(A)
1 . Therefore, we employ the inequality ‖·‖(A)

2 ≤ ‖·‖(A)
1 ≤

√
D‖·‖(A)

2 . Here,

we can calculate ‖·‖(A)
2 given an orthonormal basis of A+RÎ as in the following proposition.

Proposition III.1

Let A be a space of Hermitian operators and {Λ̂(s)}Ms=1 be an orthonormal basis of A + RÎ,

where M := dim(A+RÎ). For an arbitrary linear operator X̂ (not necessarily Hermitian), we

introduce a column vector ~X with elements Xs := tr(Λ̂(s)X̂) (s = 1, · · · ,M) and denote its

Euclidean norm by ‖ ~X‖ 2.

Then, we have

∥∥∥X̂
∥∥∥

(A)

2
:= max

Â∈A+RÎ

∣∣∣∣∣tr
(

Â

‖Â‖ 2

X̂

)∣∣∣∣∣ =

√
‖ ~X‖ 2

2 + | ~XT · ~X|
2

. (S20)
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In particular, we have

1√
2
‖ ~X‖ 2 ≤

∥∥∥X̂
∥∥∥

(A)

2
≤ ‖ ~X‖ 2. (S21)

Proof. For an arbitrary operator Â ∈ A+ RÎ, we expand it as

Â =

M∑

s=1

csΛ̂
(s), cs := tr

(
Λ̂(s)Â

)
∈ R. (S22)

Then, we have

∥∥∥X̂
∥∥∥

(A)

2
= max

Â∈A+RÎ

∣∣∣∣∣tr
(

Â

‖Â‖ 2

X̂

)∣∣∣∣∣

= max
Â∈A+RÎ

∣∣∣
∑M

s=1 cs tr
(

Λ̂(s)X̂
)∣∣∣

‖~c‖ 2

= max
~c : ‖~c‖2=1

∣∣∣~c ·
(

Re ~X + i Im ~X
)∣∣∣

= max
~c : ‖~c‖2=1

√
~cT ·

[
(Re ~X)(Re ~X)T + (Im ~X)(Im ~X)T

]
· ~c , (S23)

where we introduced the column vectors ~c := (c1, c2, · · · )T and ~X :=

(tr(Λ̂(1)X̂), tr(Λ̂(2)X̂), · · · )T .

If Im ~X ∝ Re ~X, the maximum in Eq. (S23) is attained when ~c ∝ Re ~X, and we obtain

∥∥∥X̂
∥∥∥

(A)

2
=

√
‖Re ~X‖ 2

2 + ‖Im ~X‖ 2

2 =

√√√√
M∑

s=1

∣∣∣tr
(

Λ̂(s)X̂
)∣∣∣

2
. (S24)

When Im ~X 6∝ Re ~X, we define cos θ := (Re ~XT · Im ~X)/‖Re ~X‖ 2‖Im ~X‖ 2, and introduce

the following orthonormal vectors:

~e1 :=
Re ~X

‖Re ~X‖ 2

, ~e2 :=
1

sin θ

(
Im ~X

‖Im ~X‖ 2

− ~e1 cos θ

)
. (S25)

We then obtain an orthonormal basis of RM by extending the orthonormal set {~e1, ~e2} . The

matrix [(Re ~X)(Re ~X)T + (Im ~X)(Im ~X)T ] in this basis is given by

(Re ~X)(Re ~X)T + (Im ~X)(Im ~X)T

=




‖Re ~X‖ 2

2 + ‖Im ~X‖ 2

2 cos2 θ ‖Im ~X‖ 2

2 cos θ sin θ

‖Im ~X‖ 2

2 cos θ sin θ ‖Im ~X‖ 2

2 sin2 θ
02,M−2

0M−2,2 0M−2,M−2


. (S26)
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where 0m,n denotes the m × n zero matrix. The nontrivial eigenvalues of the matrix (S26)

are

λ± =
‖ ~X‖ 2

2 ± | ~XT · ~X|
2

, (S27)

where

~XT · ~X =

M∑

s=1

[
tr
(

Λ̂(s)X̂
)]2

= ‖Re ~X‖ 2

2 − ‖Im ~X‖ 2

2 + 2i‖Re ~X‖ 2‖Im ~X‖ 2 cos θ. (S28)

The maximum in Eq. (S23) is attained when ~c is an eigenvector belonging to the eigenvalue

λ+. Therefore, we obtain

∥∥∥X̂
∥∥∥

(A)

2
=

√
‖ ~X‖ 2

2 + | ~XT · ~X|
2

. (S29)

The equation (S29) reduces to Eq. (S24) when Im ~X ∝ Re ~X. �

In our application, we set

X̂ = δρ̂αβ

(
:= ρ̂αβ − ρ̂(mc)

δE (Eα)δαβ

)
. (S30)

Recall that Û is the unitary operator that diagonalizes the Hamiltonian, i.e., Û |E(0)
γ 〉 = |Eγ〉.

Therefore, X̂0 := Û †X̂Û is independent of Û . Then, our task is to estimate the Haar average of

the quantity ‖ ~X‖ 2

2 =
∑M

s=1

∣∣∣tr
(

Λ̂(s)ÛX̂0Û
†
)∣∣∣

2
.

By explicitly calculating the fourth moments of the unitary Haar measure, we obtain

E
[
‖ ~X‖ 2

2

]
=
M − 1

D2 − 1
‖X̂0‖

2

2. (S31)

It is also straightforward to show

‖X̂0‖
2

2 = 1− 1

dimHEα,δE
δαβ, (S32)

which implies 1
2 ≤ ‖X̂0‖

2

2 ≤ 1 except for the trivial case of dimHEα,δE = 1. We do not consider

this trivial case. Then, Proposition III.1 gives

1

4

M

D2
≤ E

[
(‖δρ̂αβ‖(A)

2 )2
]

+O
(

1

D2

)
≤ M

D2
, (S33)

as claimed in the Methods section of the main text. Combining Proposition III.1 and the bound

‖·‖(A)
2 ≤ ‖·‖(A)

1 ≤
√
D‖·‖(A)

2 , we obtain

1

4

M

D2
≤ E

[
(‖δρ̂αβ‖(A)

1 )2
]

+O
(

1

D2

)
≤ M

D
. (S34)
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B. Estimation of E[(Λ
(Ĥ,A)
1 )2]

The remaining part of the proof of Theorem 1 in the main text applies to (‖δρ̂αβ‖(A)
p )n for

arbitrary p > 0 and n > 0 without any change, so we consider the general case (‖δρ̂αβ‖(A)
p )n,

including (‖δρ̂αβ‖(A)
1 )2. Accordingly, we introduce Λ

(Ĥ,A)
p := max

|Eα〉,|Eβ〉∈HE,∆E
‖δρ̂αβ‖(A)

p .

To estimate E[(Λ
(Ĥ,A)
1 )2], we need the Lipchitz continuity of (‖δρ̂αβ‖(A)

p )n, which we prove in

the next subsection. In this subsection, we assume that (‖δρ̂αβ‖(A)
p )n as a function of Û is Lipschitz

continuous and that its Lipschitz constant is bounded from above by a constant ηn independent of

D. Then, the concentration inequality (S18) for (‖δρ̂αβ‖(A)
p )n gives

P
[
(Λ(Ĥ,A)

p )n − E
[
(‖δρ̂αβ‖(A)

p )n
]
≥ δ
]
≤ d2

E,δEP
[
(‖δρ̂αβ‖(A)

p )n − E
[
(‖δρ̂αβ‖(A)

p )n
]
≥ δ
]

≤ exp

(
−δ

2D

4η2
n

+ 2 log dE,∆E

)
, (S35)

where dE,∆E := dimHE,∆E . We introduce

δ0 :=

√
8η2
n

log dE,∆E
D

,

(
=⇒ −δ

2
0D

4η2
n

+ 2 log dE,∆E = 0

)
, (S36)

and obtain

E[(Λ(Ĥ,A)
p )n] =

∫ ∞

0
x

d

dx

(
−P[(Λ(Ĥ,A)

p )n ≥ x]
)

dx

=

∫ ∞

0
P[(Λ(Ĥ,A)

p )n ≥ x] dx

≤
∫ E[(‖δρ̂αβ‖(A)

p
)n]+δ0

0
dx+

∫ ∞

δ0

exp

(
−x

2D

4η2
n

+ 2 log dE,∆E

)
dx

= E
[(
‖δρ̂αβ‖(A)

p

)n]
+ δ0 +

∫ ∞

δ0

exp

(
−(x2 − δ2

0)D

4η2
n

)
dx

≤ E
[(
‖δρ̂αβ‖(A)

p

)n]
+ δ0 +

∫ ∞

0
exp

(
−x

2D

4η2
n

)
dx

≤ E
[(
‖δρ̂αβ‖(A)

p

)n]
+ δ0 +

√
πη2

n

D

= E
[(
‖δρ̂αβ‖(A)

p

)n]
+O

(√
log dE,∆E

D

)
. (S37)

This result together with a trivial inequality E[(‖δρ̂αβ‖(A)
p )n] ≤ E[(Λ

(Ĥ,A)
1 )n] leads to

E[(Λ(Ĥ,A)
p )n] = E

[(
‖δρ̂αβ‖(A)

p

)n]
+O

(√
log dE,∆E

D

)
. (S38)
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C. Lipschitz continuity of
(
‖δρ̂αβ‖(A)

p

)n

To apply the concentration inequality to (‖δρ̂αβ‖(A)
p )n, we need to show its Lipschitz continuity

as a function of a unitary operator Û ∈ SU(D). We also derive a D-independent upper bound for

its Lipschitz constant ηn.

We introduce the function

f (A)
p (Û) := tr

(
Â

‖Â‖ q
ÛX̂0Û

†
)
, (S39)

where X̂0 := Û †δρ̂αβÛ does not depend on Û . We omit the indices α and β in the definition of X̂0

because they play no role in the following argument. The Hölder inequality and the well-known

inequality ‖Â‖∞ ≤ ‖Â‖ q for any q ≥ 1 give

|f (A)
p (Û)| ≤ ‖Â‖∞

‖Â‖ q
‖ÛX̂0Û

†‖ 1 ≤ ‖X̂0‖ 1. (S40)

The quantity ‖δρ̂αβ‖(A)
p can be rewritten in terms of f

(A)
p (Û) as

‖δρ̂αβ‖(A)
p = max

Â∈A+RÎ
max
σ=±

(−1)σf (A)
p (Û) =: F (A)

p (Û). (S41)

The Lipschitz continuity of (‖δρ̂αβ‖(A)
p )n will be established if we can show that the Lipschitz

constant of [f
(A)
p (Û)]n are bounded from above by a constant independent of Â. To see this, we

consider the following inequality:

∣∣∣[F (A)
p (Û1)]n − [F (A)

p (Û2)]n
∣∣∣ =

∣∣∣∣ max
Â∈A+RÎ

max
σ=±

(−1)σ[f (A)
p (Û1)]n − max

Â∈A+RÎ
max
σ=±

(−1)σ[f (A)
p (Û2)]n

∣∣∣∣

≤ max
Â∈A+RÎ

max
σ=±

∣∣∣[f (A)
p (Û1)]n − [f (A)

p (Û2)]n
∣∣∣

= max
Â∈A+RÎ

∣∣∣∣
∫

U1→2

n[f (A)
p (Û)]n−1

(
∇Uf (A)

p (Û) · dÛ
)∣∣∣∣, (S42)

where U1→2 is a straight path connecting Û1 and Û2 defined by

Û1→2(t) := tÛ1 + (1− t)Û2, t ∈ [0, 1], (S43)

and

∇Uf (A)
p (Û) · dÛ =

∑

ij

(
∂f

(A)
p

∂Uij
dUij +

∂f
(A)
p

∂U∗ij
dU∗ij

)
(S44)
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with Uij being a matrix element of Û with respect to an orthonormal basis { |j〉}Dj=1. Here, we

have ‖Û1→2(t)‖∞ ≤ t‖Û1‖∞ + (1− t)‖Û2‖∞ = 1. We then obtain
∣∣∣[F (A)

p (Û1)]n − [F (A)
p (Û2)]n

∣∣∣

≤ max
Â∈A+RÎ

max
t∈[0,1]

(
n
∣∣∣f (A)
p (Û1→2(t))

∣∣∣
n−1∥∥∥∇Uf (A)

p (Û1→2(t))
∥∥∥

2

)∫

U1→2

‖dÛ‖ 2

= max
Â∈A+RÎ

max
t∈[0,1]

(
n
∣∣∣f (A)
p (Û1→2(t))

∣∣∣
n−1∥∥∥∇Uf (A)

p (Û1→2(t))
∥∥∥

2

)
‖Û1 − Û2‖ 2. (S45)

The derivative of f
(A)
p (Û) with respect to the matrix elements of Û is given by

∂f
(A)
p

∂Uij
=

1

‖Â‖ q
〈j|X̂0Û

†Â|i〉 , ∂f
(A)
p

∂U∗ij
=

1

‖Â‖ q
〈i|ÂÛX̂0|j〉 , (S46)

and therefore

sup
Û : ‖Û‖∞≤1

∥∥∥∇f (A)
p (Û)

∥∥∥
2

= sup
Û : ‖Û‖∞≤1

√√√√√
∑

ij



∣∣∣∣∣
∂f

(A)
p

∂Uij

∣∣∣∣∣

2

+

∣∣∣∣∣
∂f

(A)
p

∂U∗ij

∣∣∣∣∣

2



= sup
Û : ‖Û‖∞≤1

√√√√ 1

‖Â‖ 2

q

∑

ij

(∣∣∣ 〈j|X̂0Û
†Â|i〉

∣∣∣
2

+
∣∣∣ 〈i|ÂÛX̂0|j〉

∣∣∣
2
)

= sup
Û : ‖Û‖∞≤1

√
1

‖Â‖ 2

q

(
‖X̂0Û

†Â‖ 2

2 + ‖ÂÛX̂0‖
2

2

)
. (S47)

By applying the Hölder inequality ‖X̂0Û
†Â‖ 2 ≤ ‖X̂0‖ 2‖Û †Â‖∞(= ‖X̂0‖ 2‖Â‖∞) and the well-

known inequality ‖Â‖∞ ≤ ‖Â‖ q for any q ≥ 1, we obtain

sup
Û : ‖Û‖∞≤1

∥∥∥∇f (A)
p (Û)

∥∥∥
2

=
√

2‖X̂0‖ 2. (S48)

Finally, by combining Eqs. (S45), (S48) and ‖X̂0‖ 2 ≤ ‖X̂0‖ 1 ≤ 2, we obtain
∣∣∣[F (A)

p (Û1)]n − [F (A)
p (Û2)]n

∣∣∣ ≤ n2n+ 1
2 ‖Û1 − Û2‖ 2, (S49)

which gives a D-independent upper bound n2n+ 1
2 for the Lipschitz constant ηn of (‖δρ̂αβ‖(A)

p )n.

D. Lipschitz continuity of
(

Λ
(Ĥ,A)
1

)n

The Lipschitz continuity of
(

Λ
(Ĥ,A)
1

)n
follows from that of (‖δρ̂αβ‖(A)

p )n in the same way as in

the inequality in Eq. (S42):
∣∣∣
(

Λ
(Ĥ1,A)
1

)n
−
(

Λ
(Ĥ2,A)
1

)n∣∣∣ =

∣∣∣∣ max
|Eα〉,|Eβ〉∈HE,∆E

[F (A)
p (Û1)]n − max

|Eα〉,|Eβ〉∈HE,∆E
[F (A)
p (Û2)]n

∣∣∣∣

≤ max
|Eα〉,|Eβ〉∈HE,∆E

∣∣∣[F (A)
p (Û1)]n − [F (A)

p (Û2)]n
∣∣∣

≤ ηn‖Û1 − Û2‖ 2, (S50)
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where in the last inequality, we used the Lipschitz continuity of [F
(A)
p (Û1)]n which is proved in

the previous subsection. Therefore,
(

Λ
(Ĥ1,A)
1

)n
is Lipschitz continuous with Lipschitz constant no

larger than ηn.

E. Derivation of the bounds for (Λ
(Ĥ,A)
p )n in terms of E

[
(‖δρ̂αβ‖(A)

1 )n
]

By applying the concentration inequalities (S18) and (S19) to (Λ
(Ĥ,A)
p )n, we obtain

P
[∣∣∣(Λ(Ĥ,A)

p )n − E[(Λ(Ĥ,A)
p )n]

∣∣∣ ≥ δ
]
≤ exp

(
−O

(
δ2D

))
. (S51)

By substituting Eq. (S38) into Eq. (S51) and suitably setting δ = Dε√
D

+O
(√

log dE,∆E
D

)
, we obtain

P
[∣∣∣(Λ(Ĥ,A)

p )n − E
[(
‖δρ̂αβ‖(A)

1

)n]∣∣∣ ≥ Dε

√
D

]
≤ exp

(
−O

(
D2ε

))
. (S52)

Finally, Eq. (S52) for n = 2 and p = 1 combined with Eq. (S34) yields

P
[
(Λ(Ĥ,A)

p )n − M

D
≥ Dε

√
D

]
≤ exp

(
−O

(
D2ε

))

and P
[
(Λ(Ĥ,A)

p )n − M

4D2
≤ Dε

√
D

]
≤ exp

(
−O

(
D2ε

))
, (S53)

which is the precise meaning of the statement “ M
4D2 ≤ (Λ

(Ĥ,A)
p )n + O

(
Dε√
D

)
≤ M

D for almost all

Ĥ ∈ Ginv” of Theorem 1 in the main text, where we introduced Ginv as an invariant random matrix

ensemble 1. However, our proof shows that Theorem 1 applies to any random matrix ensemble

whose probability measure is invariant under any unitary transformation Ĥ 7→ V̂ ĤV̂ † with V̂

being a unitary operator.

1 The random matrix ensemble Ginv is called an invariant random matrix ensemble if the probability measure of Ginv

is proportional to exp
(
− trV (Ĥ)

)
(Ĥ ∈ Ginv) for a real function V .
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IV. PROOF OF THEOREM 2 IN THE MAIN TEXT

A. Definition of the m-body operator space

and proof of Theorem 2 in the main text for spin systems

1. Definition of the m-body operator space

ForN -site spin-S systems, the total Hilbert space is given byHN = (Hloc)
⊗N withHloc being the

local Hilbert space of each spin. We denote dloc := dimHloc = 2S−1 and DN := dimHN = (dloc)
N .

We define the exactly m-body operator space A(m)
N to be the space of operators that can be

expressed as a linear combination of operators acting nontrivially on exactly m spins, i.e,

A(m)
N := spanR

{
σ̂(p1)
x1
· · · σ̂(pm)

xm | 1≤x1<···<xm≤N
1≤pj<dloc

}
, (S54)

where {σ̂(p)} dloc−1

p=0 with dloc := 2S + 1 is an orthonormal basis of L(HN ) with σ̂(0) ∝ Î, and σ̂
(p)
x is

the operator σ̂(p) acting on the site x.

Then, we define the m-body operator space A[0,m] and A[m−,m+]
N by

A[0,m]
N :=

m⊕

m̃=0

A(m̃), A[m−,m+]
N :=

m+⊕

m̃=m−

A(m̃). (S55)

With these definitions, it is clear that A[m−,m+]
N is the orthogonal complement of A[0,m−−1]

N with

respect to A[0,m+]
N . The dimension of A(m)

N is given by

dimA(m)
N :=

(
N

m

)
(d2

loc − 1)m = D2
NPm, (S56)

where

Pm :=

(
N

m

)(
1− 1

d2
loc

)m( 1

d2
loc

)N−m
(S57)

is the probability mass function for the binomial distribution B(N, p) with p := 1− (dloc)
−2.
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2. Proof of the first part (3) of Theorem 2 in the main text for spin systems

As a property of the binomial distribution, we have Pm−1 < Pm for m ≤ (N + 1)p. Therefore,

for 0 < α ≤ p, we have

dimA[0,αN ]
N

DN
=

αN∑

m=0

dimA(m)
N

DN

≤ (αN + 1)DNPαN

= αNDN exp
[
N
(
H(α) + α log(d2

loc − 1)− 2 log dloc

)
+O(logN)

]

= exp
[
N
(
H(α) + α log(d2

loc − 1)− log dloc

)
+O(logN)

]

= exp
[
NG

(L)
dloc

(α) +O(logN)
]
, (S58)

where we employed Stirling’s formula in deriving the first equality, G
(L)
dloc

(α) := H(α) +α log(d2
loc−

1)− log dloc, and H(α) := −α logα− (1− α) log(1− α) is the binary entropy. Here, we have

G
(L)
dloc

(
1

2

)
= log 2 +

1

2
log(d2

loc − 1)− log dloc =
1

2
log 4

(
1− 1

d2
loc

)
, (S59)

which is non-negative for dloc ≥ 2. We also have G
(L)
dloc

(0) = − log dloc < 0. Therefore, the root

α
(L)
∗ of G

(L)
dloc

lies in the range (0, 1/2). Moreover, we have G
(L)
dloc

(α) < 0 for α < α
(L)
∗ . Thus, the

upper bound in Eq. (S58) vanishes in the limit N → ∞ when α < α
(L)
∗ . Then the upper bound

of Thereom 1 in the main text implies that the ETH typically holds for all operators in A[0,αN ]
N

when α < α
(L)
∗ . Therefore, we obtain the lower bound α

(L)
∗ ≤ m∗/N for m∗, and the first part (3)

of Theorem 2 in the main text for spin systems is thus proved. Here, α
(L)
∗ is a monotonically

increasing function of dloc, and we have α
(L)
∗ = 0.1892 · · · for dloc and α

(L)
∗ → 1/2 as dloc →∞.

3. Proof of the second part (4) of Theorem 2 in the main text for spin systems

The binomial distribution B(N, p) with p = 1− (dloc)
−2 converges to the Gaussian distribution

N (Np,Np(1− p)) for a sufficiently large N . Therefore, if we set m± = Np± c±
√
N with positive

constants c±, we have

dimA[m−,m+]
N

D2
N

' 1√
2π

∫ c+/
√
p(1−p)

−c−/
√
p(1−p)

e−
x2

2 dx ≥ 1√
2π

∫ c+

−c−
e−

x2

2 dx , (S60)

for sufficiently large N . Here, we have used p(1 − p) < 1. Then, the lower bound of Theorem 1

in the main text gives the upper bound m∗/N ≤ α
(U)
∗ for m∗ and proves the second part (4) of

Theorem 2 in the main text with α
(U)
∗ = p = 1− (dloc)

−2.
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B. Definition of the m-body operator space

and proof of Theorem 2 in the main text for Bose systems

For N -particle Bose systems on a lattice with V sites, the total Hilbert space is given by

HN,V := spanC

{
b̂†x1
· · · b̂†xN |0〉 | 1 ≤ x1 ≤ · · · ≤ xN ≤ V

}
. (S61)

Its dimension is given by

DN,V := dimHN,V =

(
N + V − 1

N

)
. (S62)

We define A[0,m]
N,V to be the space of operators that can be expressed as a linear combination of

products of m annihilation operators b̂ and m creation operators b̂†, i.e.,

A[0,m]
N,V :=

{
Â+ Â†, i(Â− Â†) | Â ∈ Ã[0,m]

N,V

}
, (S63)

where Ã[0,m]
N,V := spanC

{
P̂N (b̂†x1

· · · b̂†xm b̂y1 · · · b̂ym)P̂N | 1 ≤ xj ≤ V, 1 ≤ yj ≤ V
}
. (S64)

Here, P̂N is the projection operator ontoHN,V , which is introduced to explicitly indicate that we are

working within the sectorHN,V with a definite particle number. The spaceA[0,m]
N,V contains the space

A[0,m−1]
N,V , i.e., A[0,m−1]

N,V ⊂ A[0,m]
N,V . This is because the particle number operator N̂ :=

∑V
x=1 b̂

†
xb̂x is

essentially equal to the identity operator due to the particle-number conservation. Indeed, for an

arbitrary basis operator P̂N (b̂†x1 · · · b̂†xm−1 b̂y1 · · · b̂ym−1)P̂N of Ã[0,m−1]
N,V , we have

P̂N (b̂†x1
· · · b̂†xm−1

b̂y1 · · · b̂ym−1)P̂N =
1

N −m+ 1
P̂N (b̂†x1

· · · b̂†xm−1
N̂ b̂y1 · · · b̂ym−1)P̂N

=
1

N −m+ 1

V∑

xm=1

P̂N (b̂†x1
· · · b̂†xm−1

b̂†xm b̂xm b̂y1 · · · b̂ym−1)P̂N ,

(S65)

where we used m ≤ N in deriving the first equality. The last equation in Eq. (S65) shows that

P̂N (b̂†x1 · · · b̂†xm−1 b̂y1 · · · b̂ym−1)P̂N ∈ Ã[0,m]
N,V , which proves A[0,m−1]

N,V ⊂ A[0,m]
N,V . This fact also justifies

the definition in Eq. (S64) as the m-body operator space A[0,m]
N,V rather than the exactly m-body

operator space A(m)
N,V .

Since [b̂x, b̂y] = 0, we can assume x1 ≤ x2 ≤ · · · ≤ xm and y1 ≤ y2 ≤ · · · ≤ ym in Eq. (S64).

Therefore, the dimension of the m-body operator space A[0,m]
N,V is given by

dimA[0,m]
N,V =

(
m+ V − 1

m

)2

. (S66)

We introduce the particle density ρ := N/V , and α := m/N . Then, Stirling’s formula gives

dimA[0,m]
N,V = exp

[
2V (1 + αρ)H

(
1

1 + αρ

)
− 1

2
log V +O(1)

]
. (S67)

Here, the function xH(1/x) is a monotonically increasing function of x.
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1. Proof of the first part (3) of Theorem 2 in the main text for Bose systems

From Eq. (S67), the upper bound of Theorem 1 in the main text is calculated to be

dimA[0,m]
N,V

DN,V
= exp

[
V G(L)

ρ (α) +O(log V )
]
, (S68)

where

G(L)
ρ (α) := 2(1 + αρ)H

(
1

1 + αρ

)
− (1 + ρ)H

(
1

1 + ρ

)
. (S69)

Here, G
(L)
ρ is a monotonically increasing function of α and G

(L)
ρ (0) < 0 < G

(L)
ρ (1/2) for ρ > 0.

Indeed, we have

d

dx

[
xH

(
1

x

)]
=

d

dx

[
log x− (x− 1) log

(
1− 1

x

)]

=
1

x
− log

(
1− 1

x

)
− 1

x

= − log

(
1− 1

x

)

> 0, (S70)

and

G(L)
ρ

(
1

2

)
= 2 log

(
1 +

ρ

2

)
− ρ log

(
ρ

2 + ρ

)
− log(1 + ρ) + ρ log

ρ

1 + ρ

= log

(
1 + ρ

2

)2

1 + ρ
+ ρ log

2 + ρ

1 + ρ

> 0. (S71)

Hence, there is a root α
(L)
∗ of G

(L)
ρ in the range (0, 1/2), and we have G

(L)
ρ (α) < 0 for α < α

(L)
∗ .

Therefore, we obtain the lower bound α
(L)
∗ ≤ m∗/N for m∗ and conclude the first part (3) of

Theorem 2 in the main text for Bose systems.

2. Proof of the second part (4) of Theorem 2 in the main text for Bose systems

As mentioned in the main text, we defineA[m−,m+]
N to be the orthogonal complement ofA[0,m−−1]

N

with respect to A[0,m+]
N so that we have A[0,m+]

N = A[m−,m+]
N ⊕ A[0,m−−1]

N
2. The dimension of

A[m−,m+]
N is given by

dimA[m−,m+]
N,V = dimA[0,m+]

N,V − dimA[0,m−−1]
N,V , (S72)

2 This definition of A[m−,m+]

N depends on the choice of the inner product. However, dimA[m−,m+]

N is independent

of its choice. Therefore, for our purpose, the existence of the space A[m−,m+]

N is sufficient, and we do not need to

worry about it.
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where α+ := m+/N .

The lower bound of Theorem 1 in the main text applied to A[m−,m+]
N,V is calculated to be

dimA[m−,m+]
N,V

(DN,V )2
=

dimA[0,m+]
N,V

dimA[0,N ]
N,V


1−

dimA[0,m−−1]
N,V

dimA[0,m+]
N,V


, (S73)

where we used dimA[0,N ]
N,V = (DN,V )2. Since the function xH(1/x) is a monotinically increasing

function of x, the first factor (dimA[0,m+]
N,V /dimA[0,N ]

N,V ) in Eq. (S73) vanishes in the limit N → ∞
unless α+ = 1 − o(1/V ). The second factor 1 − dimA[0,m−−1]

N,V / dimA[0,m+]
N,V remains finite when

m+ − m− ≥ c for a suitably chosen constant c. In particular, choosing m+ = N and m− =

m+ − c−
√
N for an positive constant c− is sufficient to ensure that the left-hand side of Eq. (S73)

remains finite. This fact proves the second part (4) of Theorem 2 in the main text with α
(U)
∗ = 1

for Bose systems.

C. Definition of the m-body operator space

and proof of Theorem 2 in the main text for Fermi systems

For N -particle Fermi systems on a lattice with V sites, the total Hilbert space is given by

HN,V := spanC

{
f̂ †x1
· · · f̂ †xN |0〉 | 1 ≤ x1 < · · · < xN ≤ V

}
, (S74)

where f̂ is the annihilation operator. The dimension of HN,V is given by

DN,V := dimHN,V =

(
V

N

)
. (S75)

We define A[0,m]
N,V to be the space of operators that can be expressed as a linear combination of

products of m annihilation operators f̂ and m creation operators f̂ †, i.e.,

A[0,m]
N,V :=

{
Â+ Â†, i(Â− Â†) | Â ∈ Ã[0,m]

N,V

}
(S76)

where Ã[0,m]
N,V := spanC

{
P̂N (f̂ †x1

· · · f̂ †xm f̂y1 · · · f̂ym)P̂N | 1≤x1<···<xm≤V,
1≤y1<···<ym≤V

}
. (S77)

Here, P̂N is the projection operator onto HN,V . For the same reason as for Bose systems, the space

A[0,m]
N,V includes the space A[0,m−1]

N,V , i.e., A[0,m−1]
N,V ⊂ A[0,m]

N,V . In addition, we have A[0,m]
N,V ⊆ L(HN,V ),

and the dimension of L(HN,V ) is D2
N,V .

By considering the particle-hole transformation Ĉ defined by Ĉf̂ Ĉ† = f̂ † (equivalently Ĉf̂ †Ĉ† =

f̂) and Ĉ |0〉 = f̂ †1 · · · f̂ †V |0〉, we have

ĈÃ[0,m]
N,V Ĉ

† = spanC

{
ĈP̂N Ĉ

†Ĉ(f̂ †x1
· · · f̂ †xm f̂y1 · · · f̂ym)Ĉ†ĈP̂N Ĉ† | 1≤x1<···<xm≤V,

1≤y1<···<ym≤V
}

= spanC

{
P̂V−N (f̂x1 · · · f̂xm f̂ †y1

· · · f̂ †ym)P̂V−N | 1≤x1<···<xm≤V,
1≤y1<···<ym≤V

}
. (S78)
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Here, for any x1, · · · , xm and y1, · · · , ym, we have

f̂x1 · · · f̂xm f̂ †y1
· · · f̂ †ym = (−1)m

2
f̂ †y1
· · · f̂ †ym f̂x1 · · · f̂xm +

(
(m− 1)-body terms

)
. (S79)

Therefore, Eq. (S65) implies ĈA[0,m]
N,V Ĉ

† ⊂ A[0,m]
V−N,V for m ≤ V − N , and we obtain dimA[0,m]

N,V ≤
dimA[0,m]

V−N,V (m ≤ V −N). By exchanging the roles of A[0,m]
N,V and A[0,m]

V−N,V in the above discussion,

we obtain another inequality dimA[0,m]
V−N,V ≤ dimA[0,m]

N,V (m ≤ N). Combining these results, we

obtain

dimA[0,m]
N,V = dimA[0,m]

V−N,V , (m ≤ min {N,V −N}). (S80)

The equation (S80) together with the inclusion relation A[0,m−1]
N,V ⊂ A[0,m]

N,V implies

dimA[0,m]
N,V = D2

N,V , (m ≥ min {N,V −N}), (S81)

where we used dimA[0,N ]
N,V = D2

N,V and dimA[0,V−N ]
V−N,V = D2

V−N,V = D2
N,V .

For m < min {N,V −N}, it suffices to compute dimA[0,m]
N,V for N ≤ V/2 because of Eq. (S80).

There are
(
V
m

)
choices for both {x1, · · · , xm} and {y1, · · · , ym} , and different choices give inde-

pendent basis operators P̂N (f̂ †x1 · · · f̂ †xm f̂y1 · · · f̂ym)P̂N when N ≤ V/2 3. Therefore, we obtain

dimA[0,m]
N,V =

(
V
m

)2
for m ≤ min {N,V −N}. Combining this result with Eq. (S81) and m ≤ N , we

finally obtain

dimA[0,m]
N,V =

(
V

min {m,V −N}

)2

. (S82)

We introduce the particle density ρ := N/V , and α := m/N and obtain

dimA[0,m]
N,V =





exp
[
2V H(αρ)− 1

2 log V +O(1)
] (

α < min
{

1, 1−ρ
ρ

})
;

D2
N,V

(
α ≥ min

{
1, 1−ρ

ρ

})
.

(S83)

1. Proof of the first part (3) of Theorem 2 in the main text for Fermi systems

From Eq. (S83), the upper bound of Theorem 1 in the main text is calculated to be

dimA[0,m]
N,V

DN,V
= exp

[
V G(L)

ρ (α) +O(log V )
]
, (S84)

3 This can be confirmed by considering the kernel and image of P̂N (f̂†x1
· · · f̂†xm f̂y1 · · · f̂ym)P̂N .
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where

G(L)
ρ (α) :=





2H(αρ)−H(ρ)
(
α < min

{
1, 1−ρ

ρ

})
;

H(ρ)
(
α ≥ min

{
1, 1−ρ

ρ

})
.

(S85)

It is straightforward to confirm that G
(L)
ρ (0) < 0 < G

(L)
ρ (1/2) for ρ > 0. Indeed, for ρ ≤ 1/2, we

have

G(L)
ρ

(
1

2

)
= −ρ log

ρ

2
− (2− ρ) log

(
1− ρ

2

)
+ ρ log ρ+ (1− ρ) log(1− ρ)

= ρ log 2− log
(

1− ρ

2

)
+ (1− ρ) log

1− ρ
1− ρ

2

> 0. (S86)

For ρ > 1/2, we have G
(L)
ρ (1/2) = H(ρ) > 0. Because G

(L)
ρ is a monotonically increasing function

of α, there is a root α
(L)
∗ of G

(L)
ρ in the range (0, 1/2), and we have G

(L)
ρ (α) < 0 for α < α

(L)
∗ .

Therefore, we obtain the lower bound α
(L)
∗ ≤ m∗/N for m∗, and the first part (3) of Theorem 2 in

the main text for Fermi systems is thus proved.

2. Proof of the second part (4) of Theorem 2 in the main text for Fermi systems

As in the case of Bose systems discussed in Sect. IV B 2, we define A[m−,m+]
N to be the orthogonal

complement of A[0,m−−1]
N with respect to A[0,m+]

N so that we have A[0,m+]
N = A[m−,m+]

N ⊕A[0,m−−1]
N .

The dimension of A[m−,m+]
N,V (m− ≤ m+) is given by

dimA[m−,m+]
N,V = dimA[0,m+]

N,V − dimA[0,m−−1]
N,V , (S87)

where α+ := m+/N .

The lower bound of Theorem 1 in the main text applied to A[m−,m+]
N,V is calculated to be

dimA[m−,m+]
N,V

(DN,V )2
=

dimA[0,m+]
N,V

dimA[0,N ]
N,V


1−

dimA[0,m−−1]
N,V

dimA[0,m+]
N,V


, (S88)

where we used dimA[0,N ]
N,V = (DN,V )2. Since the function H(x) is a monotinically increasing function

of x, the first factor (dimA[0,m+]
N,V /dimA[0,N ]

N,V ) in Eq. (S88) vanishes in the limit N → ∞ unless

α+ = min
{

1, 1−ρ
ρ

}
− o(1/V ). The second factor (1 − dimA[0,m−−1]

N,V / dimA[0,m+]
N,V ) remains finite

when m+ −m− ≥ c for a suitably chosen constant c. In particular, choosing m+ = α
(U)
∗ N with

α
(U)
∗ := min

{
1, 1−ρ

ρ

}
and m− = m+− c−

√
N for a positive constant c− is sufficient to ensure that
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the left-hand side of Eq. (S88) remains finite. This fact proves the second part (4) of Theorem 2

in the main text with α
(U)
∗ := min

{
1, 1−ρ

ρ

}
for Fermi systems.
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