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We investigate stochastic entropy production in a two-level quantum system that performs Rabi
oscillations while undergoing quantum measurement brought about by continuous random distur-
bance by an external measuring device or environment. The dynamics produce quantum Zeno and
anti-Zeno effects for certain measurement regimes, and the stochastic entropy production is a mea-
sure of the irreversibility of the behaviour. When the strength of the measurement disturbance is
time-dependent, the stochastic entropy production separates into three components. Two represent
relaxational behaviour, one being specific to systems represented by coordinates that are odd under
time reversal symmetry, and a third characterises the nonequilibrium stationary state arising from
breakage of detailed balance in the dynamics. The study illustrates how the ideas of stochastic
thermodynamics may be applied in similar ways to both quantum and classical systems.

I. INTRODUCTION

Entropy quantifies subjective uncertainty in the con-
figuration of a system and it can be argued that similar
applications of this concept should apply in both clas-
sical and quantum mechanics, where configurations are
described by phase space coordinates and by elements of
a density matrix, respectively. The effective stochastic
dynamics of such variables brought about by coupling
the system to a coarse grained environment will increase
the configurational uncertainty of the world (the system
together with its environment) as time passes. Such a
loss of information is often manifested in the dispersal
of energy and matter or the loss of correlations: conse-
quences of the chaotic nature of the underlying deter-
ministic dynamics but nevertheless captured by stochas-
tic modelling. This is the content of the second law of
thermodynamics [1].

The aim of this paper is to compute the stochas-
tic entropy production and hence loss of information
when a simple quantum system undergoing Rabi oscil-
lations is subjected to continuous measurement of two
non-commuting observables [2]. The system exhibits
Zeno and anti-Zeno effects [3] depending on the relative
strengths of the two measurement processes. It is of par-
ticular interest to consider the division of the stochas-
tic entropy production into three components when the
strength of measurement is time-dependent [4, 5]. Each
component describes an aspect of the nonequilibrium, ir-
reversible behaviour of the system.

In Section II we derive Markovian stochastic differen-
tial equations, or Itô processes, that describe the evo-
lution of the system. We examine Zeno and anti-Zeno
effects where the mean rate of change of a system coor-
dinate is reduced or increased, respectively, when mea-
surement is made more intense. The nature of the three
components of stochastic entropy production for time-
dependent measurement of one of the observables is dis-
cussed in Section III. We give our conclusions in Section
IV.

II. STOCHASTIC DYNAMICS

The reduced density matrix ρ is a specification of the
state of an open quantum system and under certain con-
ditions of coupling to the environment its evolution can
be modelled using a stochastic Lindblad equation:

dρ = −i[H, ρ]dt+
∑
i

(
ciρc

†
i −

1

2
ρc†i ci −

1

2
c†i ciρ

)
dt

+
(
ρc†i + ciρ− Ciρ

)
dWi, (1)

with Ci = Tr
(

(ci + c†i )ρ
)
, where H is the system Hamil-

tonian. The Lindblad operators ci represent the modes
of interaction between the system and the environment,
and the dWi are a set of independent Wiener increments
[6–8]. This framework is a form of quantum state diffu-
sion, where evolution of ρ is continuous, without jumps
[9].

We consider a two-level bosonic system represented
by ρ = 1

2 (I + r · σ), where r is the coherence or Bloch
vector and σk are the Pauli matrices, with H = εσz,
c1 = αxσx and c2 = αyσy. The dynamics describe a sys-
tem that performs Rabi oscillations in the expectation
values rx = Tr(σxρ) and ry = Tr(σyρ) when isolated, but
which departs stochastically from such regular behaviour
when the coupling coefficients αx and αy are non-zero.
The situation is similar to a two-level system undergoing
the measurement of one observable, studied previously
[10].

The Lindblads c1 and c2 tend to drive the system to-
wards eigenstates of σx and σy, respectively, and their
use in Eq. (1) can be regarded as an implementation of
the continuous, simultaneous measurement of these two
system observables [7]. The coefficients αx and αy are
measurement strengths, since increasing αx while αy is
held constant brings about a greater concentration of the
pdf in the vicinity of the eigenstates of σx, and vice versa.

The dynamics of the components of r can be expressed
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as Itô processes:

drx=−2
(
εry + α2

yrx
)
dt+ 2αx

(
1− r2x

)
dWx−2αyrxrydWy

dry=2
(
εrx − α2

xry
)
dt− 2αxrxrydWx + 2αy

(
1− r2y

)
dWy

drz=−2rz
(
α2
x + α2

y

)
dt− 2rz (αxrxdWx + αyrydWy) ,

(2)

where dWx and dWy are Wiener increments.
We consider a (pure) state denoted by rz = 0, rx =

sinφ and ry = cosφ. The coherence vector lies in the
equatorial plane of the Bloch sphere and its rotation
about the rz axis is specified by an azimuthal angle
φ = tan−1(rx/ry). The stochastic evolution of φ can
be derived from Eq. (2) using Itô’s lemma:

dφ =
(
2ε−

(
α2
x − α2

y

)
sin 2φ

)
dt

− 2αx sinφdWx + 2αy cosφdWy

=
(
2ε−

(
α2
x − α2

y

)
sin 2φ

)
dt

− 2
(
α2
x sin2 φ+ α2

y cos2 φ
)1/2

dW, (3)

where dW is also a Wiener increment. The dynamics
produce a linear increase in φ with time when the sys-
tem is isolated (αx = αy = 0). This drift is distorted
by random disturbances when the system is coupled to
the environment, here regarded as a measuring device.
The associated Fokker-Planck equation for the probabil-
ity density function (pdf) p(φ, t) is

∂p(φ, t)

∂t
= −∂J

∂φ
, (4)

where the probability current is

J =
(
2ε−

(
α2
x − α2

y

)
sin 2φ

)
p(φ, t)

− 2
∂

∂φ

(
α2
x sin2 φ+ α2

y cos2 φ
)
p(φ, t). (5)

The situation with equal non-zero measurement
strengths αx = αy = α 6= 0 is described by dφ =
2εdt − 2αdW . The system then evolves towards a sta-
tionary state with pst(φ) = (2π)−1 and J = ε/π. When
αx 6= αy, there is also a stationary state with constant
J but characterised by a nonuniform pdf. These are
nonequilibrium situations with consequent stochastic en-
tropy production, which we investigate in the next sec-
tion.

We consider the dependence of the mean rate of change
of φ on the measurement strengths αx and αy. The mean
of φ evolves according to

d〈φ〉
dt

= 2ε−
(
α2
x − α2

y

)
〈sin 2φ〉, (6)

where the angled brackets represent an average over the
stochasticity. Results from numerical simulations of Eq.
(3) are given in Figure 1 for ε = 1/2, αx = 1 and a range
of values of αy. The Zeno effect operates for αy > αx;
a slowing of the average evolution of the system as the
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Figure 1. Zeno and anti-Zeno effects are apparent in the mean
rate of Rabi oscillations, arising from changing the measure-
ment strength αy for αx = 1 and ε = 1/2. The average is
obtained over a time interval ∆t = 105 for each value of αy

and the error in the mean is estimated to be less than 0.01.

strength of measurement αy is increased at a constant αx
[10]. There is also an anti-Zeno effect for αy < αx, where
the mean evolution is speeded up when αy is increased.
For αx = αy and pst(φ) = (2π)−1 the average of sin 2φ
vanishes, and d〈φ〉/dt = 2ε: the effects of the two mea-
surement processes on the mean rate of Rabi oscillation
then cancel each other out, somewhat counter-intuitively.

III. STOCHASTIC ENTROPY PRODUCTION

We now consider the stochastic thermodynamics asso-
ciated with the dynamics

dφ =
(
Arev(φ) +Airr(φ)

)
dt+B(φ, t)dW, (7)

where the terms involving Arev and Airr represent deter-
ministic rates of change of φ that satisfy and violate time
reversal symmetry, respectively. The stochastic entropy
production is given by [5]

d∆stot = −d ln p(φ, t) +
Airr

D
dφ− ArevAirr

D
dt+

dAirr

dφ
dt

−dA
rev

dφ
dt− 1

D

∂D

∂φ
dφ+

(Arev −Airr)

D

∂D

∂φ
dt

−∂
2D

∂φ2
dt+

1

D

(
∂D

∂φ

)2

dt, (8)

where D(φ, t) = 1
2B(φ, t)2. For dynamics that possess

an equilibrium state (a stationary state with vanish-
ing probability current J) characterised by a pdf pst(φ),
Eq. (8) reduces to the simpler expression d∆stot =
−d ln (p(φ, t)/pst(φ)), showing explicitly how stochastic
entropy production can arise from a statistical deviation
from equilibrium. The system under consideration here,
however, does not possess an equilibrium state in gen-
eral, but instead a nonequilibrium stationary state with
non-zero J .
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For bosonic systems, the time reversal operation cor-
responds to taking a complex conjugate of the den-
sity matrix. Thus the components rx and rz of the
coherence vector are even and the component ry is
odd under time reversal symmetry. This means that
φ is also odd and we deduce that Arev = 2ε and
Airr = −

(
α2
x − α2

y

)
sin 2φ. The diffusion coefficient

is D = 2
(
α2
x sin2 φ+ α2

y cos2 φ
)
. We take the coef-

ficients αx and αy to be time-independent (for now)
and write dAirr/dφ = −2

(
α2
x − α2

y

)
cos 2φ, dD/dφ =

2
(
α2
x − α2

y

)
sin 2φ, d2D/dφ2 = 4

(
α2
x − α2

y

)
cos 2φ, and

obtain

d∆stot = −d ln p+
9
(
α2
x − α2

y

)2
sin2 2φ

2
(
α2
x sin2 φ+ α2

y cos2 φ
)dt

−6
(
α2
x − α2

y

)
cos 2φdt+

3
(
α2
x − α2

y

)
sin 2φ(

α2
x sin2 φ+ α2

y cos2 φ
)1/2 dW.

(9)

For αy = 0, and hence measurement of σx alone, this
reduces to

d∆stot = −d ln p+ 6α2
x

(
1 + cos2 φ

)
dt+ 6αx cosφdW,

(10)
and we conclude that in a stationary state, for a given
value of αx, the stochastic entropy production increases
on average at a constant rate given by

d〈∆stot〉
dt

= 6α2
x

(
1 + 〈cos2 φ〉

)
, (11)

since 〈−d ln p〉 = dSG = 0 in these circumstances, where
SG = −

∫
p ln p dφ is the Gibbs entropy. For larger α2

x,
the pdf becomes more concentrated in the region of φ = 0
and π, corresponding to the eigenstates of σx [10], such
that 〈cos2 φ〉 increases with α2

x towards an upper limit of
unity. Thus a increase in measurement strength brings
about a higher mean rate of production of stochastic en-
tropy, which can be associated intuitively with the in-
creased Zeno slowing down, on average, of the Rabi os-
cillations.

We now consider a situation where the measurement
strength αx is time-dependent. In such circumstances
the stochastic entropy production separates into three
identifiable components [5], written

d∆stot = d∆s1 + d∆s2 + d∆s3. (12)

The rate of change of the mean value of the first compo-
nent may be written in the form

d〈∆s1〉
dt

= −
∫
∂p

∂t
ln
p(φ, t)

pαx
st (φ)

dφ. (13)

Evidently, this is a relaxational entropy production that
vanishes when the system is in a stationary state char-
acterised by the pdf pαx

st (φ) associated with a specified

Figure 2. Probability density function for φ against time (side
and top views) brought about by competition between a time-
dependent measurement strength αx = 2+sin 20πt that draws
the system towards eigenstates of σx at φ = 0 and π, and Rabi
oscillations characterised by ε = 10 that favour a positive drift
for φ.

value of αx. Esposito and Van den Broeck denoted this
component the nonadiabatic entropy production [11]. Its
mean rate of change can never be negative.

We solve the Fokker-Planck equation for ε = 10 and
a range of values of αx (with αy = 0) to obtain station-
ary pdfs pαx

st (φ). We then introduce a time-dependent
measurement strength αx = 2 + sin 20πt to obtain a
time-dependent pdf p(φ, t) that settles into a periodic
stationary state, as shown in Figure 2. The principal
feature to notice is that the system is periodically at-
tracted, statistically speaking, towards the eigenstates of
the σx observable at φ = 0 and π, though displaced to
higher values by the Rabi rotation.

We have calculated the average of ∆s1 as a function
of time for ε = 10 and αx = 2 + sin 20πt using meth-
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Figure 3. The average of ∆s1, the nonadiabatic compo-
nent of stochastic entropy production, evolving with time,
for αx = 2 + sin 20πt, αy = 0 and ε = 10, adopting a periodic
stationary state to accompany the Zeno slowing down of the
Rabi oscillations and reflecting the time-dependence of the
measurement strength αx.

ods described in [5] and the results are given in Figure 3.
Since the system is prevented from reaching a stationary
state through the time-dependence of the measurement
strength, the mean rate of change of this component of
stochastic entropy production never falls to zero, but in-
stead continues to evolve periodically.

The average of the second component of stochastic en-
tropy production evolves according to [4]

d〈∆s2〉
dt

=

∫
p

D

(
J irr
st (φT)

pαx
st (φT)

)2

dφ, (14)

where φT is the transform of φ under time reversal: since
φ is odd, φT = −φ. ∆s2 is a contribution to stochastic
entropy production arising from the breakage of detailed
balance, which permits the emergence of a non-zero ir-
reversible probability current in a stationary state, given
by

J irr
st (φ) = Airrpαx

st (φ)− ∂

∂φ
D(φ, αx)pαx

st (φ), (15)

where the diffusion coefficient is specified by the current
value of αx. Esposito and Van den Broeck referred to
∆s2 as the adiabatic entropy production [11] and Spin-
ney and Ford, who included a consideration of dynamical
variables that are odd as well as even under time rever-
sal symmetry, denoted it the generalised housekeeping
entropy production [4]. Like the nonadiabatic entropy
production, its mean rate of change is never negative.
The evolution of 〈∆s2〉 for ε = 10 and αx = 2 + sin 20πt
is illustrated in Figure 4.

The average rate of change of the third contribution to

Figure 4. Average of ∆s2, the adiabatic component of stochas-
tic entropy production, against time, for αx = 2 + sin 20πt,
αy = 0 and ε = 10.

the stochastic entropy production may be written

d〈∆s3〉
dt

= −
∫
∂p

∂t
ln

pαx
st (φ)

pαx
st (φT)

dφ. (16)

∆s3 is a contribution associated with relaxation towards
a stationary state and in this respect is similar to ∆s1.
It explicitly vanishes when there are no odd variables in
the dynamics, but here it does not vanish. It was desig-
nated the transient housekeeping entropy production by
Spinney and Ford [4]. The evolution of 〈∆s3〉 for ε = 10
and αx = 2 + sin 20πt is illustrated in Figure 5. Notice
that a negative mean rate of production is permitted, in
contrast to the other two contributions. The mean rate
of change of ∆stot is, of course, positive for all times, in
accordance with the second law [12].

If we were to re-introduce the measurement of σy, and
hence create conditions for an anti-Zeno effect in the dy-
namics, the stochastic entropy production would simi-
larly divide into three components and quantify the rel-
ative contributions of different sources of irreversibility.

IV. CONCLUSIONS

Employing the framework of quantum state diffusion
as a model of the evolution of an open quantum sys-
tem allows us to investigate the effect of measurement
on the intrinsic dynamics of a quantum system. We
have previously investigated a Zeno effect in a multi-
level bosonic system: a slowing down of Rabi oscillations,
on average, when measurements are performed to deter-
mine the level currently occupied [10]. Here we extend
that study to demonstrate that simultaneous measure-
ment of a second, non-commuting observable can produce
a counter-intuitive anti-Zeno effect, specifically that the
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Figure 5. Average of ∆s3, the transient housekeeping stochas-
tic entropy production, against time, for αx = 2 + sin 20πt,
αy = 0 and ε = 10.

slowed down evolution can be speeded up when measure-
ment of the second observable is introduced.

The principal aim of the study, however, has been
to compute the stochastic entropy production associated
with the evolution of a two-level system when a Zeno
effect is operating as a result of the continuous measure-
ment of one observable. Our investigation of the division
of the stochastic entropy production into its three com-
ponents is motivated by a wish to demonstrate that the
ideas underpinning stochastic thermodynamics can apply

with equal validity to classical and quantum mechanics.
Stochastic entropy production measures the irreversibil-
ity of the evolution of a system when subjected to un-
predictable external disturbance. This is the extent to
which two sequences of events, one the reverse of the
other, occur with different probabilities in such circum-
stances. We take the trajectory followed by the reduced
density matrix of an open quantum system, when it is
subjected to continuous measurement, to be analogous
to the Brownian path of a classical particle under the in-
fluence of an unpredictable environment. Irreversibility
occurs in both situations and can be quantified.

The division of stochastic entropy production into com-
ponents demonstrates how irreversibility can be associ-
ated with the relaxation of a system towards stationarity
(components ∆s1 and ∆s3) and with the breakage of de-
tailed balance and the consequent existence of a nonequi-
librium stationary state (component ∆s2). These three
contributions emerge in the two-level quantum system
when we make the strength of measurement a periodic
function of time, such that the reduced density matrix
and the mean stochastic entropy production also evolve
periodically. We conclude that stochastic entropy pro-
duction associated with nonequilibrium behaviour, re-
flecting a continuing loss of information concerning the
configuration of the world, can be demonstrated in open
quantum systems as well as in classical situations.
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