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Correlated Avalanche Burst Invasion Percolation: Multifractal origins of self
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We extend our previous model, avalanche-burst invasion percolation (AIP)model by introducing
long-range correlations between sites described by fractional Brownian statistics. In our previous
models with independent, random site strengths, we reproduced a unique set of power-laws consis-
tent with some of the b-values observed during induced seismicity. We expand upon these models
to produce a family of critical exponents which would be characterized by the local long-range cor-
relations inherent to host sediment. Further, in previous correlated invasion percolation studies,
fractal behavior was found in only a subset of the range of Hurst exponent, H. We find fractal
behavior persists for the entire range of Hurst exponent. Additionally, we show how multiple cluster
scaling power laws results from changing the generalized Hurst parameter controlling long-range site
correlations, and gives rise to a truly multifractal system. This emergent multifractal behavior plays
a central role in allowing us to extend our model to better account for variations in the observed

Gutenber-Richter b-values of induced seismicity.

I. INTRODUCTION

One of the most interesting insights from random per-
colation(RP) is the emergence of long range correlations
from the inherently random process of independently oc-
cupying sites with probability, p on a lattice. As is char-
acteristic with complex phenomena we observe the emer-
gence of characteristic features, namely, large scale con-
nectivity that dominates behavior on all scales. Much of
percolation’s value comes from providing an extremely
simple framework from which many puzzling features
both can arise and can be understood.

Given the emergent nature of long-range connectiv-
ity, researchers naturally became curious of the effect of
implicit long-range correlations imbedded in the lattice
structure might have on the critical behavior[IH5]. This
question is of interest not only from a formal perspec-
tive, but also, because long-range correlations(LRC) are
described by fractal relations. These same fractal prop-
erties have been one of the most profound discoveries in
the last few decades because of the explosion in number
and diversity of fractal systems, and highlights the vast
pervasiveness of fractal structures in nature. This was
made famous by Mandelbrot[6], and grew into its own
paradigm of inquiry.

In our previous paper [7], we characterized the crit-
ical behavior of our avalanche-burst invasion percola-
tion(AIP) model, which produced a critical distribution
of bursts, ns(T), as a function of strength threshold, T.
These bursts existed on top of the random long range cor-
relations emergent to percolation near the critical point.
We observed a unique burst distribution characterized
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by exponents, 7 = 1.594 £+ .009, ¢ = 0.41 4+ .01. These
exponents are near but distinct from mean-field cluster
scaling, 7y = 1.5,0 = 0.5. This serves to define a dis-
tinct universality class of critical behavior, distinct even
from RP.

Only a few studies have been done on LRC on IP [8}[9],
and these studies only looked at the static network type
scaling(Dy, Dyin, Dp) properties which do little to pro-
vide insight into how the critical properties change. This
is of course largely because the critical description of IP
has been poorly understood, and had not been placed
within the appropriate framework to assign it various
critical properties. This was done with our AIP model,
and now we are well positioned to address the topic of
LRC’s impact on AIP’s critical behavior.

In particular our AIP model lends itself to the de-
scription of induced seismicty as was shown in [10]. In-
vasion percolation simulates the infiltration of invading
fluid into a defending substrate that is modeled as a lat-
tice of sites with random and isotropic resistance. An
invasion path following a principle of least resistance en-
forced at each time step will naturally select the subset
of sites where we can observe long range correlations be-
tween the invaded sites. The additional burst mechanism
allows us to identify the conditions which yield scale in-
variant bursts, and thus, allows us to speculate on the
conditions that must exist to produce the observed scale
invariant seismic distributions.

This study can be more accurate because studies of
porous media find correlations between pore size in var-
ious sedimentary substrates. These studies indicate
porous media “sites” are not independent and random,
but rather, exhibit long-range correlations. In particu-
lar, fractional-brownian statistics seem to well describe
the porosity logs within many heterogeneous rock forma-
tions at large scales[I1]. Similar findings for the perme-
ability distribution have been found for oil reservoirs and
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aquifers [I2]. Therefore, we now investigate how our ATP
algorithms change in the presence of implicitly correlated
lattice sites rather than a random lattice independent
random sites.

II. LONG RANGE CORRELATIONS

Because long range correlations must persist on all
scales, it naturally becomes a point of interest to un-
derstand how the critical properties of AIP change under
these conditions. Naively, one might fail to properly ap-
preciate the unique impact of long-range correlations on
critical behavior since one might well consider any other
kind of change to the site lattice structure and consider
its affects. However, as Harris [I3] found in considering
the affects of random defects on the critical temperature
of the Ising model, the only defects that can have an
affect are those whose correlation length, £y is compa-
rable to the correlation length of the unmodified lattice,
&. Thus, since near the critical point £ is described by
a power-law, only those defects whose statistics similarly
produce long-range correlations could have any affect on
the critical behavior. Any short-range correlations would
fail to meet this criteria. This reiterates the focal fea-
ture of critical behavior, where small scale interactions
can eventually become renormalized, and only those that
persist on all scales can contribute to its behavior.

Harris provided a powerful framework for anticipating
the affect that changes in lattice structure could have
on subsequent behavior. Weinrib [I] extended Harris’
formulation specifically to the percolation problem. We
can largely adopt much of the existing framework, where
we recognize that AIP’s critical behavior is described by
a critical control parameter, burst threshold T, rather
than a critical occupation probability, p.. This means
that fluctuations in occupation probabilities correspond
to fluctuations in bursts described by T

We consider correlations that are sufficiently long-
ranged while also convergent for all distances, and whose
auto-correlation function is given by,

Clr)~r® (1)

where r is the distance between sites, and a is less than
dimension d. Since this is the percolation problem, the
auto-correlation function describes the correlations in site
occupation, that is, the likelihood that two sites a dis-
tance r are occupied. The long-range correlations are
therefore an additional mechanism contributing to the
site occupation probability other than the usual uniform
occupation probability, p.

We can calculate how these kind of site strength cor-
relations affect the fluctuations in the control parameter,
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where again, we can define a correlation length charac-
terizing the average spatial extent of fluctations given by,
—a

If the system is still to have a single uniform critical
transition, then it should be the case that these fluctua-
tions produce a correlation length less than that of un-
modified transition. That is the fluctuations should be
less than critical fluctuations leading to the condition,
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where we made use of the relation, & ~ (T. — 7)™ to
expand the ratio. For the ratio to go to zero near the
critical point we require the exponent to be greater than
zero. This leads to the condition on a for the largest
value of long-range correlations such that it will affect
the critical transition while preserving a existence of a
uniform transition. This is given by,

av—2>0 (4)

Thus, we can expect changes to the critical behavior if
a > 2/v. For our AIP model v & 1.30, we should expect
that the minimum value requires a > 3/2.

III. FOURIER FILTER CORRELATION
METHOD

It is common to parameterize such long range scale
invariant correlations using the Hurst exponent, where
the (auto)correlation function, C(r) defined as C(r) =
(u(r")u(r + ")) has the following behavior:

C(r) oc r*® (5)

The Hurst exponent is given by H = 2« and allowed to
take on values in range [0,1]. Behavior of the correla-
tions are antipersistent for H < 1/2 and persistent for
H > 1/2. For H = 1/2, the statistics follow fractional
Gaussian noise, being neither persistent nor antipersis-
tent.

There are a number of techniques for simulating frac-
tional Brownian statistics [14]. We use the Fast Fourier
transform(FFT) filter technique because of its compu-
tational efficiency. This technique relies on imprinting
the desired correlations in the Fourier wave vector space,
k, and then applying an inverse FFT(IFFT) to create a



FIG. 1: Sampling of lattices with increasing correlation. We show how the lattice sites become increasingly correlated as the generalized
Hurst exponent increases from -1 to 0. a) H = —1.0 corresponds to the random case. b) H = —0.67 corresponds to antipersistent
correlations ¢) H = —0.33 corresponds to persistent correlations d) H = 0.0 corresponds to increasingly large correlations where clustering

of similar strengths is clearly observable

lattice with correlated sites of form Equation . For-
mally, we will be working with 2 dimensional Fourier
transforms, and it is well known that the Fourier trans-
form of the autocorrelation function gives the Fourier
power spectral density. That is, the correlation function,
(w(Z)u(Z + r)) and the power spectral density S(k) are
related according to:

w@u@+r)) = [ Sk)e 2™ qk (6)

We can make use that we are only concerned with the dis-
tance between two points. This leads to a suitable defini-
tion of a radial wave vector defined as k, = /1 + s2 + 2
and with a switch of coordinates allows us to write it as
a one dimensional Fourier Transform.

C(r) = / S(k,)e 2™k onk, dk, (7)

To create correlations of the form Equation , our
power spectral density should be made to follow the fol-



lowing power-law:
S(kr) o< — (8)

To relate the exponents between Equation and Equa-
tion(8)) we can solve Equation@ after substituting Equa-
tion(8)) which gives the following integral to be solved:

C(r)=2r / ky Ptte PR g, (9)

To solve the above integral we first make use of the
following relation:
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The right side is easily Fourier transformed and upon
switching the order of integration, we get:
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Then taking the 2D Fourier transform of both sides and
plugging into Equation gives:
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Setting the exponents equal between the final line of
Equation and Equation ([5)) gives:

20 =f-2 (13)
This gives our final relationship between the Hurst expo-
nent and the appropriate Fourier power spectrum filter
function exponent.

B=2(a+1)

Because the Hurst parameterization is typically 1-d
(given by ), but we rely on a 2d fourier transform
parameterized in terms of 5, whose value is shifted by 1
in 2-d relative to 1-d, we need to shift the value of the
exponent of a by 1 as is show in . Thus, if a = —1.0
we get no long range correlations, and if @« = 0 we get
brownian long range correlations, which goes like k2.
Since we construct the correlated lattice by applying a
fourier filter characterized by 8 = 2(ar + 1), we use « in
range [—1,0].

(14)
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FIG. 2: The fractal dimension, Dy for different H. For the random
case, Dy = 1.895 4 0.016 which is similar to the expected value of
RP. The values all seem to be consistent with one another and
doesn’t suggest much change as the correlation changes over the
range of the study. For H = 0.0, Dy = 1.939 4 0.028, which is
inconsistent at the 1 — o from some of the other values.

More importantly, for these reasons we adopt a modi-
fied Hurst parameterization which shifts its values by —1.
This comes at some risk since in much of the literature

= H, and use the standard range, [0, 1]. We choose our
ﬁarameterization in order to make explicit the need for
a mapping between 1-d and 2-d Hurst characterizations.

—1,—n|r[?/xWe suspect that this oversight may in part explain why

previous authors report compact clusters for H > 0.5.
Over the shifted range we preserve the fractal structure
of our clusters. We find compact clusters begin forming
for H > 0.5 which corresponds to an unshifted value of
3/2. Such a value certainly would drive clusters to be-
come compact. For the generalized Hurst exponent, we
expect antipersistence for H < —1/2 and persistence for
H > 1/2. For H = —1/2 we expect fractional Gaussian
statistics.

IV. STATIC NETWORK PROPERTIES

In a previous study we characterized some of the es-
sential network properties of our model [10]. This study
utilized free edge boundary(FEB) conditions along both
axes primarily due to ease of implementation. In a
subsequent study we implemented periodic edge bound-
ary(PEB) conditions in order to better establish the uni-
versality class of the exponents characterizing the model.
We found PEB conditions reliably yielded the infinite
lattice limit for the scaling exponents. Finally, a growth
algorithm with PEB complements the implementation of
site correlations as the Fourier filter technique described
before also enforces periodic conditions in assigning site
strengths to the lattice. Here, we outline some of the
static network properties and how these change as a re-
sult of the input long range correlations.



The first characteristic exponent is the scaling of occu-
pied cluster sites, M (L), with lattice size L. This scales
with characteristic fractal dimension D according to:

M(L) = LPs (15)

We can easily extract exponent Dy using the well known
box counting technique [I5] and perform linear fit using
linear least squares (LLS) on a log-log plot.

Figure [2| shows the extracted Dy for different H. For
the random case, H = —1.0, we reproduce the fractal
dimension consistent with RP, Dy = 1.895 4 0.016. We
find that input site correlations do not significantly affect
the fractal dimension measure in the range of our study.
This highlights the macro nature of this measure which
is relatively insensitive to changes.

This is somewhat consistent with [3] which looked at
RP with the same long-range correlations and found
no change to Dy except for H > —0.3 and where the
Dy — 1.95 as H — 0. The authors of [4] found simi-
lar behavior. Other authors report no detectable change
in Dy [2] which considered equivalent H correlation in
the range [—1,0]. That we observe a change in Dy for
H > —0.9 illustrates a difference between IP and RP
growth mechanisms.

Perhaps more importantly is that we observe clear ev-
idence that the site correlations change the density of
the invaded sites, since site density is determined by,
p ~ L% Ps  As observed in the Ising and percolation
critical transition, changes in the order parameter induce
changes in the density. In our previous characterization
of critical behavior of our model, we found that because p
did not change, the notion of an order parameter seemed
superfluous. However, now that this is no longer the
case, we should expect the changing density to influence
critical behavior of the model.

Previous studies on the trapping variant of long-range
correlated IP in 2D found cluster behavior becomes non-
fractal(compact) for H > 0.5 [I6], though in this study
they considered 0 > H > 1. In another study the authors
of [9] considered a non trapping variant similar to ours
and found a minima as we did in the range of our study.
While Dy for RP seems to remain unchanged at least for
H < —0.3, for IP Dy decreases to a minima before likely
increasing towards 2 as H increases above zero.

Though the effect of correlations on Dy is relatively
small, we can better understand the effect of correlations
on the resulting clusters by looking at the minimum dis-
tance between invaded sites. This distance is charac-
terized by scaling exponent D,,;,, and it changes more
significantly for different H. This follows another power
law:

M (1) ~ 1P (16)

Where M (1) is the number of sites within lattice spac-
ing [ and D; is the chemical dimension[I7]. With back-
bone studies one must be more careful with how bound-
ary conditions are imposed (periodic etc.). Thus it is
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FIG. 3: The scaling of distance between sites for different H. For
the random case Dy, = 1.22, this tends to decrease as H tends
to 0. The loopless condition will prevent a cluster from becoming
compact and D, i, from becoming 1.

preferable to use D; which is largely independent of such
affects. Further, what we are really interested in is char-
acterizing the compactness of a cluster which describes
the types of paths connecting sites. We can relate the
Pythagorean distance r and [ as:

[~ g Pmin (17)

Therefore if d is the path distance from the origin to
the boundary of lattice size L, then L = nl and by Eq.
7 we can write:

d ~ rPmin (18)

Where D,,;, is the fractal dimension of the shortest
path.

We find that as H increases, D,,;, tends to decrease.
This behavior is reflected in Figure We understand
this behavior as follows: for the random case, we expect
to find “holes” (trapped regions in IP cluster with loops)
in the cluster which are also scale invariant. Paths and
the distance between sites in the cluster will necessarily
become circuitous. If site strengths are correlated such
that similar strengths group together, and given that IP
grows by breaking the weakest sites, the IP algorithm
will naturally seek out connected regions of weaker sites.
This means that fewer portions of the lattice will need
to be sampled as the path between two connected sites
becomes more direct since it is the result of correlations to
create connected regions of weak site regions. Similarly,
there will be larger regions devoid of any cluster growth
as strong sites will likewise preferentially occupy these
regions. This helps us understand the behavior of Dy
which is related to the density exponent according to
Dy — 2. The smaller Dy corresponds to a less dense
cluster occupying the lattice, although locally in regions
around the cluster, the cluster becomes more dense. This
trend starts to reverse for H > —0.1, as the dense local



cluster regions make up more of the lattice than the large
voids filled with strong sites. Once again, the loopless
condition will prevent D,,;, from becoming 1 because
some paths will not be allowed in order to maintain the
existence of only 1 path joining sites in the cluster.

This behavior is similarly summarized by looking at
the backbone exponent Dgp as the authors of [2] did with
RP. They found that as H increases Dpp approaches
Dy, meaning that th majority of the cluster exists along
the cluster backbone. This qualitatively has the effect of
causing the cluster to become both more dendritic and
compact as the Hurst exponent increases.

V. CRITICAL THRESHOLD

One of the most important features of percolation is
its relation to critical phenomena [I8]. In the previous
section we looked at the static network properties of a
percolation cluster, however, criticality is characterized
by the structure of fluctuations near the critical point
which grow to dominate all scales of the system. This
then becomes much more a question of how the cluster
grew to occupy its final form.

In RP the site occupation probability, p, serves as the
control parameter for RP’s second order phase transi-
tion. This phase transition is described by the emergence
of global connectedness where the many isolated clusters
existing in regime p < p. conglomerate into a single lat-
tice spanning cluster for p ~ p.. To better elicit the con-
nection between RP and IP, its instructive to understand
how RP’s critical point manifests itself in IP.

We begin by looking at the distribution of site
strengths of the invaded cluster. In IP all lattice sites
are randomly assigned values from a uniform distribution
in the range [0,1], but when looking at the distribution
of the strengths of invaded sites, we find the selection of
strengths to be a regular subset of assigned strengths.
In particular, in the limit where the number of invaded
sites,N, becomes infinite, the invaded strength distribu-
tion is described by a step function:

lim p(r) =

N—oc0

0 > mas

where a random strength, r, has constant probability
k, of being invaded up to some strength, 7,4, These
are related according to 1/k = 7,44, and its been shown
that 7,4 = pe where p. is RP’s critical occupation prob-
ability [19].

Without a threshold, a cluster grown by IP(random)
will grow indefinitely, and reproduce many of the charac-
teristic exponents of RP’s incipient infinite clusters(IIC),
which is why IP is believed to reproduce the emergent
incipient infinite cluster which defines RP’s connected
state [20]. A threshold in IP effectively acts in the same
way as the occupation probability for RP. This can be
understood heuristically as follows: we assign lattice site

strengths from a uniform distribution in the range [0,1]
as is usual, but then only invade sites if its strength is
below some predetermined threshold. A cluster will ter-
minate its growth once it exhausts all perimeter sites
with strength less than the threshold. However, if the
threshold is 7,42 > pe then it becomes possible to grow
a cluster infinitely. Thus growing a cluster with thresh-
old equal to p. will grow an independent realization of
RP’s emergent I1C.

However, to better understand the critical aspects of
IP we need to understand the structure of fluctuations,
and here is where the threshold seems to control the type
of fluctuations which occur and will be discussed in detail
in the next section. (This is the idea behind the notion
of our burst mechanism presented in [I0], and indeed we
find that at the critical threshold the cluster size distri-
bution is scale invariant.)

Here we aim to understand how the critical thresh-
old, which is 7,4, in the random case, changes under
the application of long-range correlations to lattice site
strengths.

A flat uniform distribution of invaded sites is evidence
that regardless of where in the lattice the growth takes
place, the likelihood of a particular strength to be invaded
remains constant. If instead we could sample weaker sites
with more regularity than stronger ones, we would no
longer observe a flat probability, and subsequently, the
threshold would change depending on the local ratio of
weak /strong bonds. This is precisely the scenario intro-
duced when introducing long range correlations into the
assigned strengths. Fig [5] shows how the distribution of
invaded sites changes as a result of changing correlation
exponent, H.

Previous studies with RP on long-range correlated lat-
tices have shown that the p. changes depending on the
Hurst parameter, H [2]. Other authors used p — p. ~
L=1/" relationship to determine p., but this becomes
problematic since v changes as a result of long range
correlations in a non-trivial way [3], and as is shown in
section [l For our purposes we would like to generalize
our AIP model which requires us to establish a burst
threshold which serves to define distinct bursts grown
from within a cluster. An important feature arises with
the introduction of long-range correlations: this feature
being that the local strength environments produces suffi-
ciently different thresholds such that the notion of global
lattice threshold breaks down. Input correlations of type
in Eq. will produce produce mean strength fluctua-
tions defined as are described by described by:

<u(rNu(r’ +7r) >= <582> — <53>2 (19)

where ds = u; —x and u; is strength of the ith site and x

is the random non-correlated component of the strength.
We find the mean strength fluctuations are also described

by:

(5s*) — (6s)% ~ p2H (20)



H=-1.00

Path Length: 719

Path Length: 876 H=-0.67

Path Length: 852 H=-0.33

Path Length: 872 H=0.00

FIG. 4: Comparison of clusters grown with different correlation exponent, H. As H — 0 the clusters becomes more dendritic and compact.

Dy D, 1-n
H=-10 1.897 £ 0.003 1.860 £ .002 1.804 £ .009
H=-09 1.894 £ 0.003 1.857 £+ .002 1.79+ .01
H=-07 1.888 £ 0.003 1.863 £ 0.002 1.79+ .01
H=-05 1.880 £ 0.002 1.867 £ 0.001 1.794 £ 0.007
H=-03 1.872 £ 0.002 1.855 £ 0.002 1.78 £ 0.01
H=-0.1 1.871 £ 0.002 1.850 £ 0.002 1.77+0.01

TABLE I: Static scaling exponents.

which we recognize as also describing the second mo-
ment of the strength distribution, which will have well-
defined mean for 2H > 2 and well-defined variance for
2H > 3. Thus, by construction, the variance of aver-
age strengths is poorly defined since the tail events are

not exponentially bounded. This results in infinite vari-
ance. Moreover, even average values for quantities result-
ing from averaging over distinct regions will not be well
behaved. Therefore, any averaged macroscopic quantity
will be poorly behaved.
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FIG. 5: The changing distribution of invaded strengths for differ-
ent correlation Hurst parameter, H. For the independent random
case(H = —1.0) we recover an approximate step function reflecting
constant probability of invading a particular site up to rmae any-
where in the cluster. As spatial correlations increase it becomes
increasingly likely to sample weaker sites.
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FIG. 6: Here we show how the ”bulk to boundary” ratio changes
as a function Hurst correlation exponent H. For random case(H =
—1.0) we see the ratio approach p. = T, but for H > —0.5 the
ratio fails to asymptote to a particular value.

An alternative notion for a burst could rely instead on
a ”bulk to boundary” ratio, rgp. The authors in [2] used
a similar argument to determine p. with long-range cor-
relations where they determined p. by noting which pecc
produced a ratio of 1 between the perimeter of filled and
unfilled sites. Using a similar strategy authors argued
that using a ”bulk to boundary” ratio is a generalized
way to determine the critical occupation probability [21].

However, determining the ratio analytically using:

) N

I 5o =T @)
leads to slightly different results since T, — p. only in
the random case. In Leath’s original paper [22] the ex-
pression for the probability of finite clusters of size n with
b empty perimeter sites assumed sites with independent
random probabilities. One must instead empirically de-
termine the ratio leading to a scale invariant distribution
of bursts.

We empirically determined the ratio, gp for our clus-
ters for different H. We found that the behavior of rgp
did not universalize in any way to allow us to preserve
the notion of a collective critical point. Not only do
the values of stable ratios change, but we find that for
H > —0.5, rpp fails to asymptote to a fixed value. These
results are shown in Fig6]

With random AIP, we established the existence of a
critical threshold, but with long-range correlations, these
relationships no longer hold. In the next section(sect.
, we discuss how the phase transition is smoothed
such that there is no longer a power-law divergence with
the control parameter as T'— T,.. The notion of critical-
ity itself begins to break down, but its worth wondering
whether we have the correct notion of the critical control
parameter such that we observe universal critical behav-
ior in the presence of long-range correlations.

VI. CORRELATED CRITICAL BEHAVIOR

In this section we explore how the Hurst long range
correlations affect AIP’s growth mechanism, and in par-
ticular, we would like to establish how site correlations
impact the system’s critical behavior. Of course, since
criticality is inherently scale free, its is most sensible to
extend AIP’s behavior subject to PBC. In the previous
study[7], we characterized AIP’s critical fisher type burst
distribution, ns(7, o), subject to PBC. This distribution,
in conjunction with the correlation length scaling expo-
nent, vy, produces a distinct universality class, though,
only as a psuedo-critical system due to the absence of a
natural order parameter(and perhaps suggests the suit-
able way of categorizing all SOC systems). AIP’s under-
lying growth mechanism utilizes the emergent long range
correlations of RP near the critical occupation probabil-
ity. This property is derived from the behavior of fluctu-
ations in average site occupation which scale according to
(Poce) ~ L~Yvr (where vg is the RP correlation length
scaling exponent). This is the emergent structure that
allows scale invariant connected burst sequences to form.
However, this inherited behavior from RP is altered in
ATP because we switch from RP to IP growth dynam-
ics by instead assigning strengths between [0,1] sampled
from a uniform random distribution. AIP then follows a
simple path of least resistance algorithm to form a con-
nected self-avoiding sequence of the weakest sites. The
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FIG. 7: Mean site strength fluctuations. We show the expected scaling of lattice site strength fluctuations, §(h)y, ~ L.

set of invaded sites and their associated strengths will
form a subset of strengths in the range [0, T¢](where
T. = p.) with characteristic length L=Y/vr (vr 1.3
slightly different from RP’s vg = 4/3). Bursts grown
at T, reproduce RP’s incipient infinite cluster(IIC), and
importantly, do so without producing the adjoining dis-
tribution of finite clusters. This is the primary reason
the two models differ. In AIP grown near 7., we contin-
ually sample IIC’s subject to an environment of already
populated and grown IIC. If we now input additional cor-
relations that yield fluctuations in strength according to
§(h) ~ L~ this alters the mechanism responsible for
the emergent structure, and we expect these to affect the
effective correlation length and burst size distribution. If
these quantities are altered then the overall critical be-
havior of the system must necessarily change.

To that end, we begin with a discussion of the corre-
lation length scaling where we hearken back to the fun-
damental finite size scaling hypothesis, the bedrock of
criticality. We begin by addressing the question of how
site strength correlations affect the correlation length, &.

For lattice systems, the notion of correlation length is
generally understood by the correlation function (pair-
wise correlation function) which empirically has been es-

tablished to behave according to

C(r) ~ rd=2tne=r/¢ (22)
Therefore, the correlation length, £, characterizes when
random correlations become exponentially suppressed as
a function of distance, r. If & ~ L.y, then the corre-
lations display long range behavior descried with power
law C(r) ~ r2=d+n,

As before, the correlation length defines the statis-
tical spatial extent of bursts. That is, the likelihood
two sites a distance r apart are to belong to the same
burst. Despite the effect of increasingly dominant Hurst
correlations, burst characteristics still greatly depend on
the burst threshold, and thus, we expect the correlation
length to similarly depend on the burst threshold.

Though the characterization of C(r) provides a rather
simple, intuitive understanding, it is seldom used in the
literature since the pairwise correlation function is often
very cumbersome to calculate. Its computations scale ac-
cording O(N?) with N sites/particle. Given an individ-
ual cluster ensemble contains 107 sites, of which we use
102 — 103 ensemble elements to obtain reliable statistics,
aquiring the requisite statistics quickly becomes compu-
tationally prohibitive. Fortunately, we were able to rely
on a highly optimized and parallelized implementation to
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FIG. 8: Here we show how the correlation function for different Hurst correlation values, H. We fix the threshold to be T = 0.25 for all
H, and we observe how the exponential decay constant, £ varies from ~ 1 in the random case to ~ L in the maximally correlated case.

efficiently compute, C(r) [23] which gave good results.
We find that the affect of long range correlations on
burst formation is to change the required threshold that
is likely to produce an infinite sized burst(when Ry, ~
€). The affect of H on correlation function, C(r) is shown
in Fig8 In order to isolate the H dependence, we keep
er fixed for all curves and vary H. In the random case,
we observe the usual £(7') that becomes exponentially
suppressed for burst of order 2, but with correlations we
observe the additional H dependence, (T, H) which can
greatly extend the correlation length despite keeping ep
fixed. In fact, we can nearly reproduce the C(r) near the

critical value by merely changing H. One can work out
that the expected relation is,

§(T,H) ~ e/ ?

~ € (23)
which agrees with the empirical results of Fig] In our
formulation, the random case corresponds to H = —1.0

which yields a correlation length of order 1/er, while
for maximally correlated case, H = 0, yields a strongly
diverging correlation length and becomes strongly limited
by the system lattice size, Lsys.

This effect shows how Hurst site correlations become
increasingly dominant as correlations increase (H — 0).
We even find that the correlation length can be more de-
pendent on Hurst correlations parameter, H, than the
burst threshold used to define, e. This leads us to con-
sider different regimes where the burst behavior is better
described by Hurst site correlations and those regimes

better described by typical critical parameter. As is com-
mon practice we define a characteristic lengths, £ and
&1 to correspond to these respective length scales.

For length scales much smaller than the system lat-
tice size, | < Lgys we recover the typical description of
critical behavior characterized by the scaling of the criti-
cal parameter, and in the random AIP we found suitable
scaling behavior for ey = (T, —T')/T,. This characteriza-
tion describes how the correlation length scales according
to &1 ~ e;”". This scaling is preserved for all length scales
subject to the condition, ! < &;. For larger length scales

we observe crossover phenomena driven by the affects of
Hurst correlations on scales, {5 <1 < &g.

Briefly, we can anticipate this crossover behavior by
recalling the arguments of the extended Harris condition
which led to Eqd] These results ought to describe the
changes in correlation scaling under the condition that
the global lattice correlation length uniformly diverges.
As we will show, the divergences become increasingly
smeared as Hurst correlations become increasingly dom-
inant. This follows what was shown in the previous sec-
tion which shows the critical point itself being spread
out over a range. Also, Figll0] shows the burst threshold
likely to produce scale invariant bursts as a function of
H. Not only does the required threshold drop, suggest-

ing fewer range of strengths need to be sampled to grow
arbitrarily large bursts, but also, the typical character-

ization relying on ep breaks down as the critical burst
threshold becomes degenerate.
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FIG. 9: Here we show how the cluster distribution moments fail to diverge, except for the random case (H = —1.0). The transition

region becomes increasingly broadened as the Hurst correlation parameter increases. (left) Represents the zeroth moment or naturally
corresponds to the number of bursts as a function of threshold, T'. (right) The behavior of the second moment corresponding to the average

burst size as function of threshold, T'.

Despite the Hurst correlations becoming dominant on
the largest of scales and near the critical point, we can
still see evidence of more traditional critical behavior de-
scribed by burst threshold parameter, e7, away from the
critical point. By looking at the zeroth and first mo-
ments(number of bursts and average burst size) of the
burst distribution, we can observe qualitative differences
associated with changing H. One way to quantify the on-
set of crossover behavior is by recognizing that the width
of the critical transition region scale with E;IH . That is,
the fluctuations become dominated by the Hurst correla-
tions. However, so long as er > f;IH the scaling should
be dominated by the usual scaling dependent on ep.

We can observe this regime in Figd] where we can see
similar behavior of the moments up until the vicinity of
the critical point where the behavior radically departs.
This is evidence for crossover phenomena where for [ <
&r we get behavior largely characterized by er, and a
departure from this behavior for I > &;. Further, we
can notice that the curves of different H do not lie on
top of each other, indicating that the scaling exponents
ought to be different. In this case, the zeroth and second
moments are given by «,y and we do find changes with
these scaling exponents as H changes.

The essential bit of evidence for critical behavior is
the existence of fisher type burst distributions, and we
observe the existence of scale free burst distributions for
all ranges of H we considered. As we showed previously,
we were largely able to define the critical behavior by
characterizing the burst distribution, namely, ng(7, o).
This strongly suggests that a similar description should
be appropriate here where we begin with the description

of a critical threshold, T.
As was insinuated by FidI0] there exist distinct critical
thresholds which give rise to distinct cluster/burst distri-

butions for different H. So long as ep > 51_1/ "M we ex-
pect there to exist a scale invariant distribution of bursts
up to some scale ;. Our task is to understand precisely
how the critical behavior changes with H in this regime.
To that end, we might expect a precise relationship gov-
erning 7(H), since from Fi Wwe can see an increasing
magnitude of 7 as H increases. An increase in the mag-
nitude of 7 translates to the general trend that prefers
cluster growth by smaller bursts rather than larger ones.
However, Fidd| shows average burst size decreasing only
very near the critical point and above. Below the transi-
tion value, the tendency is for cluster growth to occur via
larger average burst sizes as Hurst correlations increase.
This is further evidence of a crossover type of phenomena
near the transition regime. Still, we will want to be able
to account for this somewhat contradictory behavior in
our description.

Of course one of the nice features of working with the
burst distribution is that we can directly calculate the
expected behavior of the average burst size scaling. This
is done with the usual moment calculation,

1tk—T

1
My=c¢€p° / dz 277 f[2] (24)
0

where here k = 2, z = (T, — T)s?, and in the upper
limit, we observe the relation s > (T. — T)~*/?. Thus,
s¢(T) = (T. — T)~'/7 behaves as the exponential cutoff
cluster size for the cluster size distribution. Since, the
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FIG. 10: Here we show how the value of thresholds,T’, where
&(T,H) ~ Lsys giving rise to scale invariant burst distribution.

integrand evaluates to a constant, we once again get the
familiar v exponent relationship,

_2—T

¥ . (25)

However, we must characterize the burst cutoff size sg,
where we observe length burst size relation, s¢ = ¢Ps
from Eq[T5] and leads to the exponent relation,
L _ D 26
P sV (26)
There is a slight distinction between Dy ~ 1.865 and
Dy =~ 1.896 in the random case, which does not signif-
icantly affect the critical behavior, and these differences
decrease for increasing Hurst correlations since Dy ~ Dp.
As was discussed previously and found in section[V] these
fundamental mass-length scalings change very little for
changing Hurst correlations, therefore, this leads to the
important behavior of v which we introduced in sectionl}
By plugging Eq[26] into Eq[25 we establish the follow-
ing relation,

v=(2-71)Dgv (27)

which will allow us to determine how the average burst
size ought to behave as a function of exponents 7,v. We
expect from the extended Harris criteria that the site
strength correlations become relevant when their associ-
ated correlation scaling becomes larger than that of the
random case, vy = 1/H > —4/3. While we do see some
minor affects for H = —0.9 on the correlation length scal-
ing, we generally observe behavior consistent with the ex-
tended Harris criteria, which tells us that for H > —3/4
the correlation exponent, vy is given by,

vy =1/H (28)
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FIG. 11: The burst size frequency-magnitude scaling for different
Hurst correlations, H. We observe a spectrum of 7 exponents [1.59,
1.90] characterizing the burst size distribution as H changes. As
Hurst correlations increase 7 — 2 which indicates a preference for
smaller burst sizes.

We confirm this behavior by calculating £z in the stan-
dard way [7, 24]. The obtained scaling is reported in
TabldIll

As we observed previously, it is somewhat unexpected
that the average burst size should increase with decreas-
ing, 7. Eq[27] neatly provides an explanation for why the
average burst size increases despite the burst distribu-
tion preferring smaller clusters. The necessary condition
is for vy to increase more drastically with H than the de-
crease of 7. Since vy largely follows the extended Harris
relation, we can see that this condition is satisfied, and
the result is increasing magnitude of the v exponent. We
verify Eq[27|by numerical average burst size calculations.

We summarize the behavior of the system for length
scales, | < &, as being primarily critical in nature since
we observe a correlation length governed by & ~ e;."".
This correlation length scaling forms the basis for a fam-
ily of interdependent critical exponents and most impor-
tantly the existence of a scale invariant burst distribu-
tions characterized by exponents, 7, o(v). Some ex-
ponents change very little(Ds, Ds,1 — 1), while others
change quite noticeably (7,v). These family of exponents
potentially give rise to a whole host of distinct univer-
sality classes if these properties are extrapolated to the
entirety of a system, but we are careful to note that these
relations only hold up to a certain length scale, namely,
for £ < £g. In fact, our system more importantly dis-
plays crossover phenomena where the critical point gives
way to new behavior governed by the Hurst correlations.

The reason for crossover phenomena stems from the
requirement of the extended Harris criteria which relied
on the existence of a global, uniform lattice transition.
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T T v Yobs Vin
H=-10  05926(5)  1594(2)  1.301(2)  00971(5)  0.9825
H=-09  0.590(1) 1.597(2)  1.359(2)  1.025(3) 1.017
H=-07 0.580(5) 1.635(2) 1.47(2) 1.041(5) 1.00
H=-05  0.570(5) 1.711(2) 1.95(2) 1.066(3) 1.052
H=-03 0.54(1) 1.810(2) 3.1(1) 1.10(2) 1.09
H=-01 0.48(9) 1.90(5) 7.6(5) 1.18(1) 1.4

TABLE II: Critical scaling exponents. comparison of scaling exponents for AIP model with different Hurst correlations H,
= 0 in the usual formulation)and Hurst correlations increase with increasing H. We

where H = —1.0 is the random case(H
used a 4096x4096 lattice with PBC to generate statistics. In order to account for any remaining finite size affects, we set the

burst size threshold to be 10°. We used at least 10° — 10° bursts for all statistics, depending on the proximity to the critical
point. The error represented in parenthesis of the final digit is the error in LLS fit. We find that critical relations start breaking

down as H — 0, indicating critical processes no longer govern behavior.

—— H=-1.0
2000} ....... H=-0.9
---- H=-0.7 103t
—— H=-05 |
-~- H=-0.3 :
----- H=-0.1 ; i
1500 ||
i
'rl I] : 102}
T .
! I 1
Pl _
M 1000t P e
1 . M
Pl
: | 1
N : H 1
[ H 10°¢
: P
* o
500 ; Do
I J ll
;o
: A
! H E
. ' HE
. AT
______ . - _// ! 3 100 F
.......... Ry L
N —— cox
00 01 02z 03 04 05 06 103 102 101 10°
T

FIG. 12: Correlation length comparison for different Hurst correlations, H. Generated from the statistics of over 107 bursts grown with
PBC on lattice of size 4096x4096. (left) We plot the correlation {7 vs burst threshold, T'. (right) We plot the burst critical scaling with
critical parameter, er. For the random case with H = —1.0, we get correlation length scaling exponent, v = 1.30, which is nearly similar
to the RP value. Also, we can confirm that for H > —3/4 we get correlation length scaling exponent given approximately by vg ~ 1/H.

which is what effectively permits a range of threshold

Should this condition exist, we would fail to observe
to produce the same scale invariant bursts. We can see

crossover phenomena, but this condition fails precisely
because the transition is smeared over a range of thresh-
olds. The affect of Hurst correlations is to produce dis-
tinct regions of site strengths which alter the threshold
required to grow scale invariant bursts within these pock-
ets. This range of thresholds is given by 5;11/ H and there-
fore quickly increase as H — 0. Further, these correlated
regions themselves are scale invariant by construction

primary evidence of this for £ > &y by looking at the
Fisher burst distributions, ng(T) for different 7. FiglI3]
gives an example of the degeneracy of burst distributions
for different thresholds for H = —0.1. We observe a
wide range of thresholds produce nearly the same scaling.
This suggests that the burst distribution scaling is gov-
erned primarily by the correlated scale invariant pockets
of site strengths rather than the avalanche burst thresh-
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FIG. 13: Burst scaling for correlated case, H = —0.10. Each curve
represents the burst statistics for different burst thresholds, T'. Also
shown are the linear fits to each curve represented by LLS and by
MLE methods. The threshold becomes degenerate as a wide range
of threshold lead to similar burst scaling statistics. We see a family
power-laws for thresholds in the range [0.329,0.534] which produce
scaling exponents 7 in the range [1.88,1.92]

old mechanism. This fundamentally alters the mecha-
nism generating the critical fisher distribution from the
avalanche burst type to Hurst correlations, and impor-
tantly admits mechanisms that are non critical in origin
(at least not governed by & ~ e1.”) to produce a scale in-
variant burst distribution. This last point is particularly
important since the presence and characterization of the
fisher distribution has largely been adequate in motivat-
ing and confirming critical behavior. Here, we have an
example of such a distributions absent the usual mech-
anisms that drive a critical transition; one where the €
characterization fails to describe scaling behavior. Still,
the correlation length of the system is a power law, but
it does not diverge as a function of the proximity to the
critical point, and therefore fails to satisfy the require-
ments of second order phase transition mechanics.

For behavior with length scales, [ > &; we observe
crossover behavior where the dominant length scale be-
comes the Hurst correlation length scale, €. On this
length scale we expect fluctuations to be governed by

51_{1/ A and general property scaling of a function to be
given by f(1,&) = &5 f(1/€n).

We can find an interesting way this crossover behavior
manifests itself within the general framework character-
izing our system. Returning to the correlation function,
if {(T,H) — oo, then we get power-law scaling of the
correlation function given by C(r) ~ r2~" since the ex-
ponential term goes to 1. Of course, since we simulate
finite sized clusters, the condition of an infinite correla-
tion length is when § > L,,s. This insures that there is
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very little deviation from power-law over the calculable
range of r. In practice, this is done by choosing a burst
threshold suitably large(T > T.) so as to observe power-
law behavior for r up to Lgys. In this limit we find very
little difference between the 7 exponent for different H
and are very near the random uncorrelated case.

A complementary technique for calculating the aver-
age burst size comes from the fundamental, fluctuation
dissipation theorem [25] which relates the susceptibility
to average site strength correlations. In the language of
percolation this becomes a relation between the pairwise
correlation function mentioned previously, C(r), and the
average burst size, (s) [24], 26]. The relationship is given
by,

(s) = 1)V / Ve (29

where V' is typically taken to be the correlation volume
given by, ¢4, Again, we compute C(r) using [23] with
good results. With C(r) given by Eq we can rewrite
Eq[29) as,

(s) = 572/dr P2 M exp /¢

= 5_2§3_"/0 dz 25 Mexp™? (30)
~

v(1—m)

where z = r/¢ and the integrand yields a constant. The
last line also makes use of the usual critical scaling rela-
tion £ ~ e;” which we know is valid on smaller length
scales. This gives another relation,

1—n=(2-71)D; (31)

by plugging into Eq[27 Since 1 — 5 and Dy are nearly
constant for changing H, we would similarly expect 7 to
be nearly constant, but this of course is not true as is
shown in Fidl1] Solving the above equation for T gives
a value near 1.59, which is the burst distribution scaling
for the random case and for v ~ 1.

This contradictory result indicates the dominant fluc-
tuations and average cluster size no longer scale in the
same way. Knowing that there exist multiple correlation
lengths in the system, it is problematic to integrate over
all length scales without distinguishing length regimes. If
we consider the scaling of larger bursts, then we find an
average burst size that scales according (1 —n)/H, where
this relation predicts a much more dramatic increase in
cluster sizes as H increases. For example, for H = —0.3
we expect v ~ 2.5, in contrast to the 1.1 we observe for
scales up to ;. The failure of the fluctuation dissipation
theorem as originally defined provides further evidence
that behavior departs from the usual critical fluctuation
scaling dominating percolation transitions, which is en-
tirely interrupted by Hurst correlation effects.
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FIG. 14: We show the crossover behavior inherent to AIP subject

to different, H. We find that average burst epicenter density follows
/

correlation length determined by &; ~ 6;1 2 for small scales and

E;IH at the crossover.

Finally, in our previous work [7], we found the burst
epicenter scaling differed from the general site mass scal-
ing. This result is significant because it suggests the ex-
istence of multiple correlation lengths. One correlation
length is associated with the likelihood of sites to occupy
different burst clusters, and the other correlation length
is associated with the likely distance between burst cen-
ters. By looking at the scaling of average burst epicenters
density, (py) as a function of length scale, we found the
expected crossover behavior where for lengths less than
&1 we get scale invariant (p,) and nearly homogenous {p;)
for length scales greater. The scaling of £ as function of
burst threshold also was found to behave with mean-field
correlation exponent, &5 ~ e}l 2, suggesting that burst
epicenters were distributed as a random walk about the
lattice.

With the addition of Hurst correlations, there is yet
another correlation length to factor, and we find scale in-
variant (pp) on smaller length scales, but the crossover
length scales for different H follow §I}H dependence.
However, the threshold dependence still follows a random
walk characterization. Figl4] shows how the crossover
length of {py) changes for different H. Namely, we can see
that this length follows §I}H as it gets shorter as H — 0.

The behavior of (p,) provides an instructive way to un-
derstand why the generalized burst scaling breaks down.
The crossover length above which (p;) becomes uniform,
indicates that burst with characteristic length above this
must uniformly spaced. A burst with a much larger char-
acteristic length would necessarily cause a great void, and
thus because burst centers are distributed according a
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random walk, this will necessarily limit the maximum
size a burst can grow. Since this happens at a smaller
length scale for larger correlations, we expect to see a
preference for smaller bursts which is what we find since
7 — 2 for H— 0.

VII. DISCUSSION

In our previous study [27], we found that the AIP
model was not the pedagogical critical system. Rather,
it was built upon the inherent scale invariance of RP and
ATP’s growth mechanism, which largely preserved scale
invariance while altering the generalized critical scaling
behavior in non-trivial ways. Absent an order parame-
ter, it is not appropriately described as the transition of
the system from one phase to another, rather, it seems to
describe the growth mechanism of the meta-stable spin-
odal state, since it still produced a characteristic critical
fisher type distribution. In this study, we include the ad-
dition of long-range order input from site-strength Hurst
correlations. The result is that the clustering behavior
of sites into bursts is changed, and therefore alters the
resulting critical fisher distribution. Up to length scale,
I < &7, we get descriptions of different classes of meta-
stable spinodal type growth governed by H, but more
importantly, we find that the existence of ns(7, o) is pre-
served even when the underlying burst mechanism was
not critical in nature(ie is not governed by critical pa-
rameter, er). In this regime, the long-range order of the
background correlated lattice of site strengths could pre-
serve scale invariant bursts over a wide range of length
scales regardless of burst threshold.

With these additions, we’ve been able to distance the
behavior of correlated AIP from traditional critical mech-
anisms. This offers some interesting possibilities. First,
because the existence of critical systems required the sys-
tem to be at a rather finely tuned point between small
scale order and large scale disorder, namely near the crit-
ical point, it is fair to wonder whether traditional criti-
cal theory can appropriately describe all forms of emer-
gent long-range order(a potentially rare event, since we
would necessarily have to rely on a single point in all
of phase space). SOC systems offered the advantage in
that they do not require systems to be finely tuned to
a particular value of phase space, rather, a small exter-
nal driving mechanism allowed the system to form meta-
stable growth dynamics which results in the system in-
nately growing in the critical regime. In many ways SOC
growth dynamics seem to describe the potentially long-
lived meta-stable states describing droplet nucleation and
spinodal states. Authors have noted the similarity be-
tween SOC variants of tradition critical systems. For
example, [28] shows how in SOC singularities arise not
from order parameters, but instead, from control param-
eters which have a critical value. Also, [29] argues for
the existence of characteristic ratio driving the behavior
of SOC systems.



While our findings support these claims, here, we also
show how scale invariant behavior resulting from the
competition of correlation mechanisms allows us to con-
sider an even wider range of possibilities. Ever since
Fisher showed that much of critical behavior could be
characterized from characterization of a critical distribu-
tion, ng(7, o) [30], its been widely assumed that the exis-
tence of Fisher type of distribution demonstrated critical
behavior. In this study, we find this not to be true. We
find a Fisher distribution even when the driving mech-
anism is not near its critical value. That is, the fisher
distribution exists largely independent of its proximity
to the critical value (in our case the critical value is the
burst threshold). Thus, not only do we escape needing to
apply artificial phase transition mechanics, but also the
need to argue for a self-organization about some general
critical point. Thus, in systems with implicit long-range
correlations, the correlation length of the dynamics is
strongly determined by the long-range correlations, and
done in such a way that preserves dynamic scale invariant
properties(ie burst/cluster formation).

The generality of this result applies directly to broad
extrema SOC type systems(of which AIP and CAIP be-
long), and can naturally be applied to stochastic en-
ergy minimization systems like interface motion in dis-
ordered media leading to domain walls [3I], minimum
spanning trees describing strongly disordered spin-glass
models [32], abrupt species morphology changes through
gradual changes in biologic fitness [33], and optimal neu-
ral topologies [34].

However, as much of our work is focused on the
features of the IP process, which is best known as a
drainage process of fluid infiltration [35H38], we focus on
CAIP’s application to fracture mechanics and induced
seismicity [10, 27, 39 [40].

In [41], the authors argued for SOC description of tec-
tonic seismicity producing rupture events with b ~ 0.4.
This follows the work of [42], [43] among others, that the
comparison of model event scalings should be made inde-
pendent of the 3/2 energy scaling factor implicit in G-R
scaling values. Without this factor, tectonic seimicity is
described by b ~ 2/3, which is closer to many mean-field
models b = 1/2 and our random AIP model, b ~ 0.6.
However, with correlations, we can obtain b-values in the
range [0.6,1.0] depending on the H. This can in part
account for the larger b-values associated with induced
seismicity, [0.8,1.3].

However, given the wide range of observed induced
seimic event scalings, it is likely necessary to account for
the inherently 3-d injection activity that only in some
cases can be constrained to be 2-d. [44] shows how even
within the same shale, the dimension of the injection ac-
tivity can greatly differ. A previous study[45] attempted
to parameterize 1d and 2d growth through an anisotropic
preference for growth along one of the axes. In the limit
where growth was strongly directed and along 1 axes, the
burst scaling changed from 7(2D) = 1.52 — 7(1D) =
1.45. This represents a change far too small to account
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for the diversity of b-values associated with induced seis-
micity if only the dimension is allowed to change. An
instructive way to understand why increasing the dimen-
sion only has a small affect on burst scaling, is to un-
derstand that all burst sizes are nearly equally likely to
increase in size as a result of a new degree of freedom.
Further, above the critical dimension(d=6) we expect all
scaling to be mean field making this notion exact.

This problem is potentially side-stepped if we extend
Hurst site correlations to 3d as well. We find the exis-
tence of a burst epicenters to exhibit interesting behav-
ior, being primarily distributed according to typical per-
colation process on small length scales, but experiences
crossover behavior for length scales greater than &, where
the burst centers are distributed according to a random
walk. This means that clusters larger than &, will not fol-
low percolation type scaling, but tend to uniform density.
This necessarily limits the probability of larger clusters.

In 2d we have already found that larger Hurst correla-
tions prefer growth by smaller bursts, and when we allow
this preference to be amplified by an additional degree of
freedom, its likely that we will observe an even more dra-
matic change in burst scaling. We know that the random
walk nature of bursting behavior is essentially preserved
with the introduction of H, and permits a higher den-
sity of bursts then would be allowed if it were entirely a
percolation system. This can account for event densities
which are essentially uniform on large scales, and have
mass scaling that is given by the usual non-fractal di-
mension scaling, d. Thus, by extending our model along
with Hurst correlations into 3d we expect to reproduce a
greater range of b-values.

Finally, the primary feature inherited by traditional
critical(2nd order phase transition) phenomena is a sin-
gle correlation length diverging with power-law behavior.
In many real physical complex system, there may exist
multiple correlation lengths dominating behavior within
their respective regimes. We have shown that depend-
ing on the growth dynamics, long-range order can sub-
sequently be modified through the competition of corre-
lation mechanisms and alter the scale invariant behavior
in non-trivial ways. Contrary to criticality requirements,
we find the existence of multiple correlation lengths to
be consistent with power-law behavior, and is indicative
of SOC type processes where the critical nature is fun-
damentally changed. We still preserve many essential
features, namely, the ability of a stochastic process to
manifest itself across a wide range of scales, but the in-
terference of competing correlation mechanisms alters the
resulting behavior. Understood across all length scales,
the correct approach is perhaps a multifractal one where
the characteristic distributions behave with moment de-
scription, My(L) ~ LY with the key additional un-
derstanding that for many of the scales of interest scale
invariance is essentially preserved.

The multifractal framework [46] understood through
the lens of the heirarchy of correlation lengths would have
a set of fractal scalings describing the dominant singular



behavior associated with each length scale. Briefly, in the
case of a single length scale, which in addition gives rise
to hyperscaling, yields moment distributions in terms of
correlation lengths according to,

M;(1,€) ~ €77FP1 F(1/€) (32)

where k represents the k-th moment,D¢ the character-
istic mass scaling, and f(I/§) — 1 for | <« £ The es-
sential behavior is that exponents of successive moments
are equally spaced according KDy, since k is an integer.
Should we have & > & where £1,&; are the respective
characteristic length scaling regimes, with scaling expo-
nents, Di, Dy then we would expect, for lengths [ > &
to behave according to 47702 ~ (14-kDP1)d=kD2 f(] /¢,
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This suggest that the moment dependence would be
quadratic with k rather than linear, and thus, for its
successive moments to depend on y(k?). The inherently
multifractal behavior of our model provides an excellent
case study for developing and better understanding cur-
rent multifractal analysis techniques.

VIII. ACKNOWLEDGEMENTS

The research of RAO and JBR has been supported
by a grant from the US Department of Energy to the
University of California, Davis.

[1] A. Weinrib, Physical Review B 29, 387 (1984).

[2] S. Prakash, S. Havlin, M. Schwartz, and H. E. Stanley,
Physical Review A 46, R1724 (1992).

[3] K. Schrenk, N. Posé, J. Kranz, L. Van Kessenich,
N. Araijo, and H. Herrmann, Physical Review E 88,
052102 (2013).

[4] M. Sahimi and S. Mukhopadhyay, Physical Review E 54,
3870 (1996).

[5] H. A. Makse, S. Havlin, M. Schwartz, and H. E. Stanley,
Physical Review E 53, 5445 (1996).

[6] B. B. Mandelbrot and B. B. Mandelbrot, The fractal ge-
ometry of nature, vol. 1 (WH freeman New York, 1982).

[7] R. Ortez and J. B. Rundle (2022).

[8] M. A. Knackstedt, M. Sahimi, and A. P. Sheppard, Phys-
ical Review E 61, 4920 (2000).

[9] A. M. Vidales, E. Miranda, M. Nazzarro, V. Mayagoitia,
F. Rojas, and G. Zgrablich, Europhysics Letters (EPL)
36, 259 (1996), URL https://doi.org/10.1209/epl/
11996-00219-7.

[10] R. Ortez, J. B. Rundle, and D. L. Turcotte, Physical
Review E 103, 012310 (2021).

[11] M. A. Knackstedt, A. P. Sheppard, and W. Pinczewski,
Physical review E 58, R6923 (1998).

[12] P. Leary and F. Al-Kindy, Geophysical Journal Interna-
tional 148, 426 (2002).

[13] A. B. Harris, Journal of Physics C: Solid State Physics
7, 1671 (1974).

[14] Y. Fisher, M. McGuire, R. F. Voss, M. F. Barnsley, R. L.
Devaney, and B. B. Mandelbrot, The science of fractal
images (Springer Science & Business Media, 2012).

[15] D.  Turcotte,  Fractals and Chaos in  Geol-
ogy and Geophysics, Fractals and Chaos in
Geology and  Geophysics  (Cambridge  Univer-
sity Press, 1997), ISBN 0780521567336, URL
https://books.google.com/books?id=t_z-VeGAjngC.

[16] M. A. Knackstedt, M. Sahimi, and A. P. Sheppard, Phys-
ical Review E 65, 035101 (2002).

[17] S. Havlin and R. Nossal, Journal of Physics A: Mathe-
matical and General 17, L427 (1984).

[18] M. Stephen, Physics Letters A 56, 149 (1976).

[19] J. T. Chayes, L. Chayes, and C. M. Newman, Communi-
cations in mathematical physics 101, 383 (1985).

[20] A. A. Jérai, Communications in mathematical physics

236, 311 (2003).

[21] S. Mertens and C. Moore, Physical Review E 96, 042116
(2017).

[22] P. Leath, Physical Review Letters 36, 921 (1976).

[23] M. Sinha and L. H. Garrison, mnras 491, 3022 (2020).

[24] D. Stauffer and A. Aharony, Introduction to Percolation
Theory. (2nd edn), 1992 (London, Taylor and Francis.,
1994).

[25] S.-K. Ma, Modern theory of critical phenomena (Rout-
ledge, 2018).

[26] A. Coniglio, Journal of Physics A: Mathematical and
General 12, 545 (1979).

[27] R. Ortez and J. B. Rundle, Physical Review E (To Be
Published).

[28] P. Grassberger and Y.-C. Zhang, Physica A: Statistical
Mechanics and its Applications 224, 169 (1996).

[29] A. Gabrielli, G. Caldarelli, and L. Pietronero, Physical
Review E 62, 7638 (2000).

[30] M. E. Fisher, Physics Physique Fizika 3, 255 (1967).

[31] M. Cieplak, A. Maritan, and J. R. Banavar, Physical
review letters 72, 2320 (1994).

[32] T. Jackson and N. Read, Physical Review E 81, 021130
(2010).

[33] K. Sneppen, P. Bak, H. Flyvbjerg, and M. H. Jensen,
Proceedings of the National Academy of Sciences 92,
5209 (1995).

[34] S. Bornholdt and T. Rohlf, Physical Review Letters 84,
6114 (2000).

[35] C. P. Stark, Nature 352, 423 (1991).

[36] D. Sornette, Critical phenomena in natural sciences:
chaos, fractals, selforganization and disorder: concepts
and tools (Springer Science & Business Media, 2006).

[37] M. Knackstedt and L. Paterson, Complex Media and Per-
colation Theory pp. 175-190 (2021).

[38] W. Klein, H. Gould, N. Gulbahce, J. Rundle, and
K. Tiampo, Physical Review E 75, 031114 (2007).

[39] J. Q. Norris, D. L. Turcotte, and J. B. Rundle, Physical
Review E 89, 022119 (2014).

[40] J. B. Rundle, R. Ortez, J. Kgnigslieb, and D. L. Turcotte,
Physical Review Letters 124, 068501 (2020).

[41] K. Chen, P. Bak, and S. Obukhov, Physical Review A
43, 625 (1991).

[42] D. Vere-Jones, pure and applied geophysics 114, 711


https://doi.org/10.1209/epl/i1996-00219-7
https://doi.org/10.1209/epl/i1996-00219-7
https://books.google.com/books?id=t_z-VeGAjngC

(1976).

[43] M. Bebbington, D. Vere-Jones, and X. Zheng, Geophys-

ical Journal International 100, 215 (1990).

[44] S. Maxwell, The Leading Edge 30, 340 (2011).
[45] J. Q. Norris, D. L. Turcotte, and J. B. Rundle, Pure and

Applied Geophysics 172, 7 (2015).

[46] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia,

and B. I. Shraiman, Physical review A 33, 1141 (1986).

Appendix A: Correlation Algorithm

We execute this Fourier filter technique using an FFT
on a NxN dimensional array with complex coefficients

[15].

1.

The algorithm is outlined as follows:

We generate a NxN array with each value,hy,,, as-
signed a random value from a Guassian probability
distribution.

. We execute a 2D Fast Fourier Transform(FFT) giv-

ing an array of complex coeflicients, Hg;.

. We define radial wave number k,., which is non-zero

for s =t =0, as follows:

kr = V142 +¢2 (A1)

. Since S(kg) o |Hy|” we define a new set of com-

plex coefficients, Hg;, multiplied by the appropriate
filter function:

Hy = Ht /K] (A2)

. Apply an inverse FFT(IFFT) on H., to produce

a new NxN array with coefficients, h}, with the
desired correlations.

. Apply the error function, er f(h’,), to return a uni-

form correlated distribution with values in range
[0,1].

We illustrate an example of the types of correlations
produced by our algorithm in Figure [I]
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