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We extend our previous model, avalanche-burst invasion percolation (AIP) by introducing long-
range correlations between sites described by fractional Brownian statistics. In our previous models
with independent, random site strengths, we reproduced a unique set of power-laws consistent with
some of the b-values observed during induced seismicity. We expand upon this model to produce a
family of critical exponents which could be characterized by the local long-range correlations inherent
to host sediment. Further, in previous correlated invasion percolation studies, fractal behavior was
found in only a subset of the range of Hurst exponent, H. We find fractal behavior persists for
the entire range of Hurst exponent. Additionally, we show how multiple cluster scaling power laws
results from changing the generalized Hurst parameter controlling long-range site correlations, and
gives rise to a multifractal system. This emergent multifractal behavior plays a central role in
allowing us to extend our model to better account for variations in the observed Gutenber-Richter
b-values of induced seismicity.

I. INTRODUCTION

One of the most interesting insights from random per-
colation (RP) is the emergence of long range correlations
from the inherently random process of independently oc-
cupying sites with probability p on a lattice. Much of
percolation’s value comes from providing an extremely
simple framework from which many puzzling features
both can arise and can be understood with emergent
scale invariant connectivity chief among these. In addi-
tion to emergent long-range correlations near the critical
point, researchers became curious about the effects of im-
plicit long-range lattice structure correlations on critical
behavior[1–5]. This question is of interest not only from
a formal perspective, but also, because long-range cor-
relations (LRC) are described by fractal relations, which
now account for a large number and variety of natural
systems [6].

In our previous paper [7], we characterized the pseudo-
critical behavior of our avalanche-burst invasion perco-
lation (AIP) model, which produced a critical distribu-
tion of bursts, ns(T ), as a function of strength thresh-
old, T . AIP’s stochastic growth mechanism reproduces a
distribution of invaded sites consistent with percolation’s
emergent long range order so as to produce a unique burst
distribution characterized by exponents, τ = 1.594±.009,
σ = 0.41 ± .01. These exponents are near but distinct
from mean-field cluster scaling,τMF = 1.5, σ = 0.5, and
coupled with the correlation scaling of sites within bursts,
ξb ∼ ϵ−ν

T (ν = 1.3) serves to define a distinct universality
class of critical behavior, distinct even from RP.

Only a few studies have been done on LRC on IP [8, 9],
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and these studies only looked at the static network type
scaling (Df , Dmin, Db) properties which in this case do
little to provide insight into how the critical properties
change. This is of course largely because the critical de-
scription of IP has been poorly understood, and had not
been placed within the appropriate framework to assign
it various critical properties. This was done with our
AIP model, and now positions us to address the topic of
LRC’s impact on AIP’s pseudo-critical behavior.

In addition to these theoretical considerations, there
are the more phenomenological ones. In particular,
our AIP model is a characteristic self organized critical
(SOC) type system with slowly driven non-equilibrium
dynamics that result in effective power-law behavior. Ro-
bust definitions of SOC remain elusive as is their con-
nection to critical behavior [10], and this effort aims at
establishing the connection between traditional critical
processes (characterized by a single correlation length)
and SOC systems (likely containing multiple correlation
lengths in the system). Special interest is in the seis-
mic applications of SOC and our model specifically aims
at reproducing the Gutenber-Richter scaling consistent
with induced seismicity [11]. Beyond the possibility that
instabilities in stress field can be triggered by small fluc-
tuations to self organizing behavior [12], we model the
infiltration of invading fluid into a defending substrate
as a slowly driven invasion percolation process following
a principle of least resistance through a lattice of sites
with random and isotropic resistance. The invasion path
will naturally select the subset of sites where we can ob-
serve long range correlations between the invaded sites.
The additional burst mechanism allows us to identify the
conditions which yield scale invariant bursts, and thus,
allows us to speculate on the conditions that must exist
to produce the observed scale invariant seismic distribu-
tions.

This application is made more accurate because stud-
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ies of porous media find correlations between pore size in
various sedimentary substrates. These studies indicate
porous media “sites” are not independent and random,
but rather, exhibit long-range correlations. In particu-
lar, fractional-brownian statistics seem to well describe
the porosity logs within many heterogeneous rock for-
mations at large scales[13]. Similar findings for the per-
meability distribution have been found for oil reservoirs
and aquifers [14]. Therefore, in this paper, we show how
the characteristics of our AIP algorithms change in the
presence of implicitly correlated lattice sites rather than
a lattice of independent random sites.

II. LONG RANGE CORRELATIONS

It is common to parameterize long range correlations
using the Hurst exponent, H, where the (auto)correlation
function, C(r) defined as C(r) = ⟨u(r′)u(r + r′)⟩ has the
following behavior:

C(r) ∝ r2H (1)

where H is taken to be in the range [0,1]. Harris pro-
vided a powerful framework for anticipating the effect
that changes in lattice structure could have on subse-
quent behavior. Weinrib [1] extended Harris’ formulation
specifically to the percolation problem. We can largely
adopt much of the existing framework, where we recog-
nize that AIP’s critical behavior is described by a critical
control parameter, burst threshold T , rather than a crit-
ical occupation probability, pc. This means that fluctu-
ations in occupation probabilities correspond to fluctua-
tions in bursts described by T .

We give the derivation in Appendix A which tradi-
tionally considers well behaved correlations of the type
C(r) ∼ r−a, and the condition on a such that the system
preserves the existence of a uniform transition. This is
given by,

aν − 2 > 0 (2)

Thus, we can expect changes to the critical behavior if
a < 2/ν. For our AIP model where ν ≈ 1.30 and near
that of RP (νRP = 4/3), we therefore expect LRC to
become relevant in the vicinity a < 3/2. In terms of
correlations described by Eq.1, where −a = 2H this leads
to the condition −H < 1/ν which we will consider.

Due to its computational efficiency, we use the Fast
Fourier transform(FFT) filter technique and provide de-
tails in Appendix B.

This gives our relationship between the Hurst expo-
nent and the appropriate Fourier power spectrum filter
function exponent.

β = 2(H + 1) (3)

Because the Hurst parameterization is typically 1-d
(given by (B1)), but we rely on a 2d fourier transform

parameterized in terms of β, whose value is shifted by 1
in 2-d relative to 1-d, we need to shift the value of the ex-
ponent of H by 1 as is show in (B10). Thus, if H = −1.0
we get no long range correlations, and if α = 0 we get
Brownian long range correlations, which behaves as k−2.
Since we construct the correlated lattice by applying a
Fourier filter characterized by β = 2(H + 1), we use H
in range [−1, 0].
More importantly, for these reasons we adopt a mod-

ified Hurst parameterization which shifts its values by
−1 sharing the convention of [3]. This comes at some
risk since in much of the literature use the standard
range, [0, 1]. We choose our parameterization in order
to make explicit the need for a mapping between 1-d and
2-d Hurst characterizations. Over the shifted range we
preserve the fractal structure of our clusters. We find
compact clusters begin forming for H > 0.5 which cor-
responds to an unshifted value of 3/2. Such a value cer-
tainly would drive clusters to become compact.

III. STATIC NETWORK PROPERTIES

In a previous study we characterized some of the es-
sential network properties of our model [11]. This study
utilized free edge boundary(FEB) conditions along both
axes primarily due to ease of implementation. In a
subsequent study we implemented periodic edge bound-
ary(PEB) conditions in order to better establish the uni-
versality class of the exponents characterizing the model.
We found PEB conditions reliably yielded the infinite lat-
tice limit for the scaling exponents. Finally, AIP’s growth
algorithm with PEB complements the implementation of
site correlations using the Fourier filter technique since
FFT’s also impose PEB condtions. Here, we outline some
of the static network properties and how these change as
a result of the input long range correlations.
The first characteristic exponent is the scaling of occu-

pied cluster sites, M(L), with lattice size L. This scales
with characteristic fractal dimension Df according to:

M(L) = LDf (4)

We can easily extract exponent Df using the well known
box counting technique [15] and perform linear fit using
linear least squares (LLS) on a log-log plot.
Figure 2 shows the extracted Df for different H. For

the random case, H = −1.0, we reproduce the fractal
dimension consistent with RP, Df = 1.895 ± 0.016. We
find that input site correlations do not significantly affect
the fractal dimension measure in the range of our study.
This highlights the macro nature of this measure which
is relatively insensitive to changes.

This is weakly consistent with [3] which looked at
RP with the same long-range correlations and found no
change to Df except for H > −0.3 and where Df → 1.95
as H → 0. The authors of [4] found similar behav-
ior. Other authors report no detectable change in Df [2]
which considered equivalent H correlation in the range
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FIG. 1: Sampling of lattices with increasing correlation. We show how the lattice sites become increasingly correlated as the generalized
Hurst exponent increases from -1 to 0. a) H = −1.0 corresponds to the random case. b) H = −0.67 corresponds to antipersistent
correlations c) H = −0.33 corresponds to persistent correlations d) H = 0.0 corresponds to increasingly large correlations where clustering
of similar strengths is clearly observable

[−1, 0]. That we observe a change in Df for H > −0.9
illustrates a difference between IP and RP growth mech-
anisms.

Perhaps more important is that we observe clear ev-
idence that the site correlations change the density of
the invaded sites, since site density is determined by,
ρ ∼ Ld−Df . As observed in the Ising and percolation
critical transition, changes in the order parameter induce
changes in the density. In our previous characterization
of critical behavior of our model [7], we showed that be-

cause ρ did not change, no suitable notion of an order pa-
rameter existed. However, although the change in density
reflected by Df is small, it motivates that LRC should
affect the critical behavior of the model.

Previous studies on the trapping variant of long-range
correlated IP in 2D found cluster behavior becomes non-
fractal(compact) for H > 0.5 [16], though in this study
they considered 0 ≥ H ≥ 1. In another study the authors
of [9] considered a non trapping variant similar to ours
and found a minima as we did in the range of our study.
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FIG. 2: The fractal dimension, Df for different H. For the random
case, Df = 1.895± 0.016 which is similar to the expected value of
RP. The values all seem to be consistent with one another and
doesn’t suggest much change as the correlation changes over the
range of the study. For H = 0.0, Df = 1.939 ± 0.028, which is
inconsistent at the 1− σ from some of the other values.

FIG. 3: The scaling of distance between sites for different H. For
the random case Dmin ≊ 1.22, this tends to decrease as H tends
to 0. The loopless condition will prevent a cluster from becoming
compact and Dmin from becoming 1.

While Df for RP seems to remain unchanged at least for
H < −0.3, for IP Df decreases to a minima before likely
increasing towards 2 as H increases above zero.

Though the effect of correlations on Df is relatively
small, we can better understand the effect of correlations
on the resulting clusters by looking at the minimum dis-
tance between invaded sites. This distance is charac-
terized by scaling exponent Dmin, and it changes more
significantly for different H. This follows another power
law:

M (l) ∼ lDl (5)

Where M(l) is the number of sites within lattice spac-
ing l and Dl is the chemical dimension[17]. With back-
bone studies one must be more careful with how bound-
ary conditions are imposed (periodic etc.). Thus it is

preferable to use Dl which is largely independent of such
affects. Further, what we are really interested in is char-
acterizing the compactness of a cluster which describes
the types of paths connecting sites. We can relate the
Pythagorean distance r and l as:

l ∼ rDmin (6)

Therefore if d is the path distance from the origin to
the boundary of lattice size L, then L = nl and by Eq. 6
we can write:

d ∼ rDmin (7)

Where Dmin is the fractal dimension of the shortest
path.
We find that as H increases, Dmin tends to decrease.

This behavior is reflected in Figure 3. We understand
this behavior as follows: for the random case, we expect
to find “holes”(trapped regions in IP cluster with loops)
in the cluster which are also scale invariant. Paths and
the distance between sites in the cluster will necessarily
become circuitous. If site strengths are correlated such
that similar strengths group together, and given that IP
grows by breaking the weakest sites, the IP algorithm
will naturally seek out connected regions of weaker sites.
This means that fewer portions of the lattice will need
to be sampled as the path between two connected sites
becomes more direct since it is the result of correlations to
create connected regions of weak site regions. Similarly,
there will be larger regions devoid of any cluster growth
as strong sites will likewise preferentially occupy these
regions. This helps us understand the behavior of Df

which is related to the density exponent according to
Df − 2. The smaller Df corresponds to a less dense
cluster occupying the lattice, although locally in regions
around the cluster, the cluster becomes more dense. This
trend starts to reverse for H > −0.1, as the dense local
cluster regions make up more of the lattice than the large
voids filled with strong sites.

This behavior is similarly summarized by looking at
the backbone exponentDBB as the authors of [2] did with
RP. They found that as H increases DBB approaches
Df , meaning that the majority of the cluster exists along
the cluster backbone. This qualitatively has the effect of
causing the cluster to become both more dendritic and
compact as the Hurst exponent increases. This is shown
in Figure 4.

IV. CRITICAL THRESHOLD

One of the most important features of percolation is its
relation to critical phenomena [18]. In the previous sec-
tion we characterized the static network properties of the
entire AIP cluster, however, criticality is characterized by
the structure of fluctuations near the critical point. In
this section, we show how the critical threshold of our
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FIG. 4: Comparison of clusters grown with different correlation exponent, H. As H → 0 the clusters becomes more dendritic and compact.

model, Tc, changes under the application of long-range
correlations to lattice site strengths. Previous studies
with RP on long-range correlated lattices have shown
that the pc changes depending on the Hurst parameter,
H [2]. Other authors used p − pc ∼ L−1/ν relationship
to determine pc, but this becomes problematic since ν
changes as a result of long range correlations in a non-
trivial way [3].

We begin by looking at the distribution of site
strengths of the invaded cluster. In IP all lattice sites
are randomly assigned values from a uniform distribution
in the range [0,1], but when looking at the distribution
of the strengths of invaded sites, we find the selection of
strengths to be a regular subset of assigned strengths.
In particular, in the limit where the number of invaded
sites,N , becomes infinite, the invaded strength distribu-

tion is described by a step function:

lim
N→∞

p(r) =

{
k 0 ≥ r ≥ rmax

0 r > rmax

where a random strength, r, has constant probability
k, of being invaded up to some strength, rmax. These
are related according to 1/k = rmax, and its been shown
that rmax = pc where pc is RP’s critical occupation prob-
ability [19].
A flat uniform distribution of invaded sites is evidence

that regardless of where in the lattice the growth takes
place, the likelihood of a particular strength to be invaded
remains constant. If instead we could sample weaker sites
with more regularity than stronger ones, we would no
longer observe a flat probability, and subsequently, the
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FIG. 5: The changing distribution of invaded strengths for differ-
ent correlation Hurst parameter, H. For the independent random
case(H = −1.0) we recover an approximate step function reflecting
constant probability of invading a particular site up to rmax any-
where in the cluster. As spatial correlations increase it becomes
increasingly likely to sample weaker sites.

FIG. 6: Here we show how the ”bulk to boundary” ratio changes
as a function Hurst correlation exponent H. For random case(H =
−1.0) we see the ratio approach pc = Tc, but for H > −0.5 the
ratio fails to asymptote to a particular value.

threshold would change depending on the local ratio of
weak/strong bonds. This is precisely the scenario intro-
duced when introducing long range correlations into the
assigned strengths. Fig 5 shows how the distribution of
invaded sites changes as a result of changing correlation
exponent, H.

These changes to the strength distribution introduce
the following feature: the local strength environments

produces sufficiently different thresholds such that the
notion of global lattice threshold breaks down. Input
correlations of type in Eq. B10 will produce produce
mean strength fluctuations defined as are described by
described by:

< u(r′)u(r′ + r) >=
〈
δs2

〉
− ⟨δs⟩2 (8)

where δs = ui−x and ui is strength of the ith site and x
is the random non-correlated component of the strength.
We find the mean strength fluctuations are also described
by: 〈

δs2
〉
− ⟨δs⟩2 ∼ r−2H (9)

which we recognize as also describing the second mo-
ment of the strength distribution, which will have well-
defined mean for 2H > 2 and well-defined variance for
2H > 3. Thus, by construction, the variance of aver-
age strengths is poorly defined since the tail events are
not exponentially bounded. This results in infinite vari-
ance. Moreover, even average values for quantities result-
ing from averaging over distinct regions will not be well
behaved. Therefore, any averaged macroscopic quantity
will be poorly behaved.
An alternative notion for a burst could rely instead on

a ”bulk to boundary” ratio, rBB . The authors in [2] used
a similar argument to determine pc with long-range cor-
relations where they determined pc by noting which pocc
produced a ratio of 1 between the perimeter of filled and
unfilled sites. Using a similar strategy authors argued
that using a ”bulk to boundary” ratio is a generalized
way to determine the critical occupation probability [20].
However, determining the ratio analytically using:

lim
N→∞

N

B(N)
= Tc (10)

leads to slightly different results since Tc → pc only in
the random case. In Leath’s original paper [21] the ex-
pression for the probability of finite clusters of size n with
b empty perimeter sites assumed sites with independent
random probabilities. One must instead empirically de-
termine the ratio leading to a scale invariant distribution
of bursts.
We empirically determined the ratio, rBB for our clus-

ters for different H. We found that the behavior of rBB

did not universalize in any way to allow us to preserve
the notion of a collective critical point. Not only do
the values of stable ratios change, but we find that for
H > −0.5, rBB fails to asymptote to a fixed value. These
results are shown in Fig 6.
With random AIP, we established the existence of a

critical threshold, but with long-range correlations, these
relationships no longer hold. In the next section(sect. V),
we discuss how the phase transition is smoothed such
that there is no longer a power-law divergence with the
control parameter as T → Tc. The notion of critical-
ity itself begins to break down, but its worth wondering
whether we have the correct notion of the critical control
parameter such that we observe universal critical behav-
ior in the presence of long-range correlations.
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Df Ds 2− η
H = −1.0 1.897± 0.003 1.860± .002 1.804± .009
H = −0.9 1.894± 0.003 1.857± .002 1.79± .01
H = −0.7 1.888± 0.003 1.863± 0.002 1.79± .01
H = −0.5 1.880± 0.002 1.867± 0.001 1.794± 0.007
H = −0.3 1.872± 0.002 1.855± 0.002 1.78± 0.01
H = −0.1 1.871± 0.002 1.850± 0.002 1.77± 0.01

TABLE I: Static scaling exponents.

FIG. 7: Mean site strength fluctuations. We show the expected scaling of lattice site strength fluctuations, δ⟨h⟩L ∼ L−H .

V. CORRELATED CRITICAL BEHAVIOR - ξ, ν

For RP in the absence of additional lattice site correla-
tions, the behavior of critical fluctuations in average site
occupation scale according to δ⟨pocc⟩ ∼ L−1/νR(where νR
is the RP correlation length scaling exponent). This is
the emergent structure that allows scale invariant con-
nected burst sequences to form. In the context of AIP,
the set of invaded sites and their associated strengths
will form a subset of strengths in the range [0, Tc](where
Tc = pc) with characteristic length L−1/νI (νI = 1.3
slightly different from RP’s νR = 4/3). Thus, bursts
grown at Tc reproduce RP’s incipient infinite cluster
(IIC), and importantly, do so without producing the as-

sociated distribution of finite clusters. Therefore, with
AIP near Tc, we continually sample IIC’s subject to an
environment of already populated and grown IIC. If we
now input additional correlations that yield fluctuations
in strength according to δ⟨h⟩ ∼ L−H , this alters the
mechanism responsible for long-range structure, and this
also affects the effective correlation length and burst size
distribution, thereby altering the overall critical behav-
ior. We confirm the expected site strength fluctuations
resulting from our long-range correlation scheme and is
shown in Fig 7.

We begin by addressing the question of how site
strength correlations affect the correlation length, ξ. This
choice is motivated by fundamental finite size scaling hy-
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FIG. 8: Here we show how the correlation function for different Hurst correlation values, H. We fix the threshold to be T = 0.25 for all
H, and we observe how the exponential decay constant, ξ varies from ∼ 1 in the random case to ∼ L in the maximally correlated case.

FIG. 9: Here we show how the value of thresholds,T , where
ξ(T,H) ∼ Lsys giving rise to scale invariant burst distribution.

pothesis, the bedrock of criticality. For lattice systems,
the notion of correlation length is generally understood
by the correlation function (pairwise correlation func-
tion) which empirically has been established to behave

according to

C(r) ∼ rd−2+ηe−r/ξ (11)

Therefore, the correlation length ξ characterizes when
random correlations become exponentially suppressed as
a function of distance, r. If ξ ∼ Lsys, then the corre-
lations display long range behavior descried with power
law C(r) ∼ r2−d+η.
Though the characterization of C(r) provides a rather

simple, intuitive understanding, it is seldom used in the
literature since the pairwise correlation function is often
very cumbersome to calculate. Its computations scale
according to O(N2) with N sites/particle. Given an in-
dividual cluster ensemble contains 107 sites, of which we
use 102−103 ensemble elements to obtain reliable statis-
tics, aquiring the requisite statistics quickly becomes
computationally prohibitive. Fortunately, we were able
to rely on a highly optimized and parallelized implemen-
tation to efficiently compute, C(r) [22] which gave good
results.
We find that the effect of long range correlations on

burst formation is to change the required threshold that
is likely to produce a scale invariant burst (when its
ξ ∼ Lsys). This effect of H on the correlation func-
tion, C(r) is shown in Fig 8. In order to establish H
dependence, we fixed ϵT for all curves and vary H. In
the random case, we observe the usual ξ(T ) dependence
that becomes exponentially suppressed for burst sizes
of order 2, but with correlations we observe the addi-
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FIG. 10: Correlation length comparison for different Hurst correlations, H. Generated from the statistics of over 107 bursts grown with
PBC on lattice of size 4096x4096. (left) We plot the correlation ξT vs burst threshold, T . (right) We plot the burst critical scaling with
critical parameter, ϵT . For the random case with H = −1.0, we get correlation length scaling exponent, ν = 1.30, which is nearly similar
to the RP value. Also, we can confirm that for H > −3/4 we get correlation length scaling exponent given approximately by νH ∼ 1/H.

tional H dependence, ξ(T,H) which can greatly extend
the correlation length despite keeping ϵT fixed. In fact,
we can nearly reproduce the C(r) near the critical value
by merely changing H. The expected relation becomes,

ξ(T,H) ∼ ϵ
1/H
T (12)

which agrees with the empirical results of Fig 8. In our
formulation, the random case corresponds to H = −1.0
which yields a correlation length of order 1/ϵT , while
for maximally correlated case, H = 0, yields a strongly
diverging correlation length and becomes limited by the
system lattice size, Lsys.

As Hurst site correlations become increasingly domi-
nant (H → 0), there exists crossover behavior where it
becomes the dominant scaling mechanism. We therefore
define characteristic lengths, ξH and ξb to correspond to
these respective length scales. Briefly, we can anticipate
the behavior following the crossover by recalling the argu-
ments of the extended Harris condition (briefly derived in
Appendix A), where for longest range dependencies the
slowest vanishing mechanism will dominate. But what is
also of interest is the behavior where multiple correlation
mechanisms compete.

We expect from the extended Harris criteria that the
site strength correlations become relevant when their as-

sociated correlation scaling becomes larger than that of
the random case, νH = 1/H > −4/3. While we do
see some minor affects for H = −0.9 on the correlation
length scaling, we generally observe behavior consistent
with the extended Harris criteria, which tells us that for
H > −3/4 the correlation exponent, νH is given by,

νH = 1/H (13)

We confirm this behavior by calculating ξH in the stan-
dard way [7, 23]. The obtained scaling is reported in
Table II and shown in Fig 10.

VI. CORRELATED CRITICAL BEHAVIOR -
ns(τ, σ)

Following what was shown in Section IV where the crit-
ical point becomes increasingly degenerate for H → 0,
the associated critical quantities also smear over an in-
creasing range of thresholds. We can observe this regime
in Fig 11, where we can see similar behavior of the burst
distribution moments (1st and 2nd) up until the vicin-
ity of the critical point where the behavior of the curves
depart. The width of the critical transition region scale
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FIG. 11: Here we show how the cluster distribution moments fail to diverge, except for the random case (H = −1.0). The transition
region becomes increasingly broadened as the Hurst correlation parameter increases. (left) Represents the zeroth moment or naturally
corresponds to the number of bursts as a function of threshold, T . (right) The behavior of the second moment corresponding to the average
burst size as function of threshold, T .

FIG. 12: Burst scaling for correlated case, H = −0.10. Each curve
represents the burst statistics for different burst thresholds, T . Also
shown are the linear fits to each curve represented by LLS and by
MLE methods. The threshold becomes degenerate as a wide range
of threshold lead to similar burst scaling statistics. We see a family
power-laws for thresholds in the range [0.329, 0.534] which produce
scaling exponents τ in the range [1.88, 1.92]

with ξ−H
H , and the fluctuations become dominated by the

Hurst correlation statistics. Further, we can notice that
the curves of Fig 11 representing different H do not lie on
top of each other, indicating that the burst distribution

scaling exponents (τ, σ) ought to be different.
Even in the regime where Hurst correlations dominate

(ξb < ξH), we observe the existence of scale free burst dis-
tributions for all ranges of H we considered. This means
that for each H we get unique critical scaling behavior.
As was done previously [7], the critical behavior is largely
characterizing by the burst distribution ns(τ, σ). Thus,
we define the usual control parameter ϵT = (Tc − T )/Tc

where because the minimum threshold required to grow
an IIC changes with H (shown in Fig 9), we need to
account for the dependence of Tc(H). Also, we need to
insure condition l < ξb which is imposed by requiring

ϵT > ξ
−1/νH

b .
Of course one of the nice features of working with the

burst distribution is that we can directly calculate the
expected behavior of the average burst size scaling. This
is done with the usual moment calculation,

Mk = ϵ
1+k−τ

σ

T

∫ 1

0

dz zk−τf [z] (14)

where here k = 2, z = (Tc − T )sσ, and in the upper
limit, we observe the relation s ≫ (Tc − T )−1/σ. Thus,
sξ(T ) = (Tc − T )−1/σ behaves as the exponential cutoff
cluster size for the cluster size distribution. Since, the
integrand evaluates to a constant, we once again get the
familiar γ exponent relationship,

γ =
2− τ

σ
(15)

However, we must characterize the burst cutoff size sξ,
where we observe length burst size relation, sξ = ξDs
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from Eq.4 and leads to the exponent relation,

1

σ
= Dsν (16)

There is a slight distinction between Ds ≈ 1.865 and
Df ≈ 1.896 in the random case, which does not signif-
icantly affect the critical behavior, and these differences
decrease for increasing Hurst correlations sinceDs ∼ DF .
As was discussed previously and found in Section III, fun-
damental mass-length scaling exponents DF , Ds change
very little for changing Hurst correlations, therefore, this
leads to the important behavior of ν which we introduced
in the previous section and found that it was heavily de-
pendent on H.
Therefore, in light of Eq. 16 and since the measure of ν

is more reliable (than that of σ shown in [7]), we combine
Eq.16 into Eq.15 and establish the following relation,

γ = (2− τ)Dsν (17)

which will allow us to determine how the average burst
size ought to behave as a function of exponents τ, ν. The
results are shown in Table II. This forms the basis for
a family of interdependent critical exponents and most
importantly the existence of a scale invariant burst dis-
tributions characterized by exponents, τ , σ(ν). Some
exponents change very little (Df , Ds, 2−η), while others
change quite noticeably (τ, ν). These family of exponents
potentially give rise to a whole host of distinct univer-
sality classes if these properties are extrapolated to the
entirety of a system, but we are careful to note that these
relations only hold up to a certain length scale, namely,
for l < ξH .

VII. FLUCTUATION DISSIPATION THEOREM
AND τ(H)?

One might expect a precise relationship governing
τ(H), since from Table II we can see an increasing mag-
nitude of τ as H increases. This would be a neat way
to summarize the effects of Hurst correlations on critical
behavior, given the central role of τ and ns(τ). However,
the situation is not quite so simple as solving Eq. 17 for τ
leaves non trivial H dependence in both γ an ν. A com-
plementary technique for calculating the average burst
size comes from the fundamental, fluctuation dissipation
theorem [24] which relates the susceptibility to average
site strength correlations. This provides another rela-
tion for γ(H) which in conjunction with Eq. 17 ought to
allow one to determine the relation for τ(H). The fluctu-
ation dissipation theorem in the language of percolation
becomes a relation between the pairwise correlation func-
tion mentioned previously, C(r), and the average burst
size, ⟨s⟩ [23, 25]. The relationship is given by,

⟨s⟩ = 1/V

∫
dV C(r) (18)

where V is typically taken to be the correlation volume
given by, ξd. Again, we compute C(r) using [22] with
good results. With C(r) given by Eq.11 we can rewrite
Eq.18 as,

⟨s⟩ = ξ−2

∫
dr r2−η exp−r/ξ

= ξ−2ξ3−η

∫ ∞

0

dz z3−η exp−z

∼ ξ1−η

∼ ϵ
ν(1−η)
T

(19)

where z = r/ξ and the integrand yields a constant. The
last line also makes use of the usual critical scaling rela-
tion ξ ∼ ϵ−ν

T which we know is valid on smaller length
scales. This gives another relation,

1− η = (2− τ)Ds (20)

by plugging into Eq. 17.

Since 1 − η and Ds are nearly constant for changing
H, we would similarly expect τ to be nearly constant,
but this of course is not true as is shown in Table II.
Solving the above equation for τ gives τ ≈ 1.59, which
is the burst distribution scaling for the random case and
for γ ∼ 1.

The failure of the fluctuation dissipation theorem as
originally defined provides further evidence that behavior
departs from the usual critical fluctuation scaling domi-
nating percolation transitions. Again, the primary com-
plication is the existence of multiple competing correla-
tion lengths, which 1) are not properly accounted for in
integration given by Eq. 19 and 2) the failure of a global,
uniform lattice transition. The effect of Hurst correla-
tions is to produce distinct regions of site strengths which
alter the threshold required to grow scale invariant bursts
within these pockets. This range of thresholds is given

by ξ
−1/H
H and therefore quickly increase as H → 0. This

fundamentally alters the mechanism generating the crit-
ical Fisher distribution from the avalanche burst type to
Hurst correlations, and importantly admits mechanisms
that are non critical in origin (at least not governed by
ξ ∼ ϵ−ν

T ) to produce a scale invariant burst distribution.
This last point is particularly important since the pres-
ence and characterization of the Fisher distribution has
largely been adequate in motivating and confirming crit-
ical behavior. Here, we have an example of such a distri-
butions absent the usual mechanisms that drive a critical
transition; one where the ϵ characterization fails to de-
scribe scaling behavior. Still, the correlation length of
the system is a power law, but it does not diverge as a
function of the proximity to the critical point, and there-
fore fails to satisfy the requirements of second order phase
transition mechanics.
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Tc τ ν γobs γth
H = −1.0 0.5926(5) 1.594(2) 1.301(2) 0.971(5) 0.9825
H = −0.9 0.590(1) 1.597(2) 1.359(2) 1.025(3) 1.017
H = −0.7 0.580(5) 1.635(2) 1.47(2) 1.041(5) 1.00
H = −0.5 0.570(5) 1.711(2) 1.95(2) 1.066(3) 1.052
H = −0.3 0.54(1) 1.810(2) 3.1(1) 1.10(2) 1.09
H = −0.1 0.48(9) 1.90(5) 7.6(5) 1.18(1) 1.4

TABLE II: Critical scaling exponents. comparison of scaling exponents for AIP model with different Hurst correlations H,
where H = −1.0 is the random case(H = 0 in the usual formulation)and Hurst correlations increase with increasing H. We
used a 4096x4096 lattice with PBC to generate statistics. In order to account for any remaining finite size affects, we set the
burst size threshold to be 106. We used at least 109 − 106 bursts for all statistics, depending on the proximity to the critical
point. The error represented in parenthesis of the final digit is the error in LLS fit. We find that critical relations start breaking
down as H → 0, indicating critical processes no longer govern behavior.

FIG. 13: We show the crossover behavior inherent to AIP subject
to different, H. We find that average burst epicenter density follows

correlation length determined by ξb ∼ ϵ
−1/2
T for small scales and

ξ−H
H at the crossover.

VIII. SCALING CROSSOVER BEHAVIOR AND
MULTIFRACTALITY

In our previous work [7], we found the burst epicenter
scaling was different from the general site mass scaling,
Df . This result is significant because it suggests the ex-
istence of multiple correlation lengths. One correlation
length is associated with the likelihood of sites to occupy
different burst clusters, and the other length character-
izes the likely distance between burst centers. The aver-
age burst epicenters density ⟨ρb⟩ as a function of length
scale exhibited expected crossover behavior for lengths
greater than ξb, where ⟨ρb⟩ scaling becomes nearly uni-
form, and for lengths less than ξb we observe scale invari-
ant ⟨ρb⟩ consistent with site density scalingDf . The scal-

ing of ξb as function of burst threshold also was found to

behave with mean-field correlation exponent, ξb ∼ ϵ
−1/2
T ,

suggesting that burst epicenters were distributed as a
random walk about the lattice and is consistent with uni-
form scaling, D = 2.

With the addition of Hurst correlations, there is yet
another correlation length to factor, and again we find
scale invariant ⟨ρb⟩ on length scales less than ξb. How-
ever, since the correlation length for different H follow
ξ−H
H dependence, the crossover length scale changes for
different H. Fig 13 shows how the crossover length of
⟨ρb⟩ changes for different H, becoming mean-field and
uniform above the crossover. Namely, we find that this
length follows ξ−H

H and gets shorter as H → 0.

The behavior of ⟨ρb⟩ provides an instructive way to
understand why the burst distribution ns(τ, σ) changes.
The crossover length above which ⟨ρb⟩ becomes uniform,
indicates that burst with characteristic length above this
must uniformly spaced. Because the burst densities fol-
low random walk statistics with a denser distribution
of burst epicenters (than occupied site densities), large
bursts will necessarily become limited favoring smaller
bursts. Since this happens at a smaller length scale
for larger correlations, we expect to see a preference for
smaller bursts which is what we find since τ → 2 for
H → 0.

In nature, complex systems may posses multiple corre-
lation lengths dominating behavior within their respec-
tive regimes. We have shown that depending on the
growth dynamics, long-range order can subsequently be
modified through the competition of correlation mecha-
nisms and alter the scale invariant behavior in non-trivial
ways. Contrary to finite size scaling requirement, we find
the existence of multiple correlation lengths to be consis-
tent with power-law behavior. Namely, we observe the
ability of a stochastic process to manifest itself across
a wide range of scales, and in some cases destroying
fractal scaling behavior, and in other cases preserving
it. Thus, understood across all length scales, the correct
approach is perhaps a multifractal one where the char-
acteristic distributions behave with moment description,
Mk(L) ∼ Ly(k), with the key additional understanding
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being that for many of the scales of interest scale invari-
ance is essentially preserved.

The multifractal framework [26] understood through
the lens of the heirarchy of correlation lengths would have
a set of fractal scalings describing the dominant singular
behavior associated with each length scale. Briefly, in the
case of a single length scale, which in addition gives rise
to hyperscaling, yields moment distributions in terms of
correlation lengths according to,

Mk(l, ξ) ∼ ξ(1+k+τ)Df f(l/ξ) (21)

where k represents the k-th moment,Df the character-
istic mass scaling, and f(l/ξ) → 1 for l ≪ ξ. The es-
sential behavior is that exponents of successive moments
are equally spaced according kDf , since k is an inte-
ger. Should there exist multiple scaling regimes, ξb, ξH
such that the burst distribution behaves differently for
respectlively length scales, then we expect the moment

behavior to follow Mk ∼ ξ
(1+k+τ)Df

b (L/ξb)
(1+k+τH)DH .

In terms of the two length scales this becomes Mk ∼
ξ
yb(k)
b ξ

yH(k)
H . In principle the behavior of yb(k), yH(k)

can be determined from the system and therefore of our
model provides an excellent case study for developing
and better understanding current multifractal analysis
techniques. Since multifractality is generally understood
to arise in the presence of a novel or unknown relation
between a spectrum of scaling exponents and successive
moments, the approach informed by a correlation length
analysis would be to identify the relevant correlation
lengths in the system and establish whether multifractal-
ity necessarily emerges from a multiplicity of correlation
lengths.

IX. DISCUSSION

In our previous study [27], we found that the AIP
model was a pseudo-critical model possessing multiple
correlation lengths. In this study, we include the ad-
dition of long-range order emerging from site strength
Hurst correlations. This modification significantly al-
ters the clustering behavior of sites into bursts, conse-
quently affecting the critical Fisher distribution. We ob-
serve a clearer distinction in scaling behavior across dif-
ferent scaling regimes. Specifically, for length scales up
to l < ξb, we observe different classes of meta-stable spin-
odal type growth governed by Hurst parameter H. More
importantly, we establish that the existence of critical
Fisher distribution ns(τ, σ) remains, even when the un-
derlying burst mechanism is not intrinsically critical (i.e.,
is not dictated by the critical parameter, ϵT ). In this
regime, the Hurst long-range order is found to maintain
scale-invariant bursts across a wide spectrum of length
scales, irrespective of critical control parameter ϵT .
With these additions, we have been able to distance

the behavior of correlated AIP from traditional critical
mechanisms. This offers some interesting possibilities.

First, correlated AIP rather uniquely address concerns
with both SOC and traditional critical approaches. One
of the criticisms of invoking critical behavior is the re-
quirement of a finely tuned balance between small-scale
order and large-scale disorder by mandating the system
be near the critical point. This raises the question of
whether traditional critical theory can fully encompass
all forms of emergent long-range order–a scenario that
could be infrequent, given its reliance on a singular point
in phase space. Conversely, SOC systems are said to
have offered the advantage that they do not require sys-
tems to be finely tuned to a particular value of phase
space. Rather, a small external driving mechanism al-
lowed the system to form meta-stable growth dynamics
which results in the system innately growing in the crit-
ical regime. However, authors have questioned whether
SOC systems need not be fine tuned [28]. For example,
[29] shows how in SOC singularities arise not from order
parameters, but instead, from control parameters which
have a critical value. Also, [30] argues for the existence of
characteristic ratio driving the behavior of SOC systems.

While our findings support these claims (in random
AIP, the system needs to be near the critical thresh-
old/driving ratio), here, we also show how scale invariant
behavior resulting from the competition of correlation
mechanisms uniquely alleviates many of these concerns.
Ever since Fisher showed that much of critical behavior
could be characterized by critical distribution, ns(τ, σ)
[31], it has been widely assumed that the existence of
Fisher type of distribution demonstrated critical behav-
ior. In this study, we find this to strictly not be the
case. We find a Fisher distribution even when the driv-
ing mechanism is not near its critical value. That is, the
Fisher distribution exists largely independent of its prox-
imity to the critical value (in our case the critical value
is the burst threshold that becomes increasingly degen-
erate as H → 0). Therefore, our correlated AIP model
avoids the necessity of applying artificial phase transi-
tion mechanics or arguing for self-organization around
a general critical point. Thus, in systems with implicit
long-range correlations, the emergent long range order
of small scale stochastic dynamics can be strongly influ-
enced by implicit long range correlations, and in such
a way that preserves dynamic scale invariant properties
(ie burst/cluster formation) without requiring any fine
tuning or control parameters.

The generality of this result applies directly to broad
extrema SOC type systems(of which AIP and CAIP be-
long), and can naturally be applied to stochastic en-
ergy minimization systems like interface motion in dis-
ordered media leading to domain walls [32], minimum
spanning trees describing strongly disordered spin-glass
models [33], abrupt species morphology changes through
gradual changes in biologic fitness [34], and optimal neu-
ral topologies [35].

However, as much of our work is focused on the
features of the IP process, which is best known as a
drainage process of fluid infiltration [36–39], we focus on
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CAIP’s application to fracture mechanics and induced
seismicity[11, 27, 40, 41].

In [42], the authors argued for SOC description of tec-
tonic seismicity producing rupture events with b ∼ 0.4.
This follows the work of [43, 44] among others, that the
comparison of model event scalings should be made inde-
pendent of the 3/2 energy scaling factor implicit in G-R
scaling values. Without this factor, tectonic seimicity is
described by b ∼ 2/3, which is closer to many mean-field
models b = 1/2 and our random AIP model, b ∼ 0.6.
However, with correlations, we can obtain b-values in the
range [0.6, 1.0] depending on the H. This can in part
account for the larger b-values associated with induced
seismicity, [0.8, 1.3].

However, given the wide range of observed induced
seimic event scalings, it is likely necessary to account for
the inherently 3-d injection activity that only in some
cases can be constrained to be 2-d. [45] shows how
even within the same shale, the ”effective” dimension
of the injection activity can greatly differ. A previous
study [46] attempted to parameterize 1d and 2d growth
through an anisotropic preference for growth along one
of the axes. In the limit where growth was strongly di-
rected and along 1 axes, the burst scaling changed from
τ(2D) = 1.483 → τ(1D) = 1.451. This represents a
change far too small to account for the diversity of b-
values associated with induced seismicity if only the di-
mension is allowed to change. Merely increasing the di-
mension of our random AIP model is unlikely to have
the requisite impact on the burst scaling. This likely
occurs because, with the introduction of a new degree
of freedom, all burst sizes have an almost equal prob-
ability of increasing in size for scale invariant systems.
Also, for scalings larger than mean-field, a higher dimen-
sion generally results in a lower ’b-value’, which means
larger clusters are favored. Beyond the critical dimen-
sion (d=6), we anticipate that all scaling will conform to
mean-field theory suggesting that as the dimensionality

increase τ → 3/2, and whose scaling is certainly incon-
sistent with observed induced seismicity.

This problem is potentially side-stepped if we extend
Hurst site correlations to 3d as well. Since burst epicen-
ters are primarily distributed according to typical per-
colation process on small length scales, However, they
exhibit crossover behavior for length scales greater than
ξb, where the distribution of burst centers resembles that
of a random walk. As a result, clusters larger than ξb do
not adhere to the scaling typical of percolation. Instead,
they tend towards a uniform density. This inherent limi-
tation naturally reduces the probability of forming larger
clusters

In 2d we have already found that larger Hurst correla-
tions prefer growth by smaller bursts, and when we allow
this preference to be amplified by an additional degree of
freedom, its likely that we will observe an even more dra-
matic change in burst scaling. We know that the random
walk nature of bursting behavior is essentially preserved
with the introduction of H, and permits a higher den-
sity of bursts then would be allowed if it were entirely
a percolation system. This can account for burst den-
sities which are essentially uniform on large scales, and
have mass scaling that is given by the usual non-fractal
dimension scaling, d. Thus, we propose that a future
study extending both the AIP model and Hurst corre-
lations into 3d should better be able to account for the
range and magnitude of b-values associated with induced
seismicity.
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Appendix A: LRC and extended Harris Criteria

Naively, one might fail to properly appreciate the
unique impact of long-range correlations on critical be-
havior, since one might well consider any other kind of
change to the site lattice structure and consider its ef-
fects. However, as Harris [47] found in considering the
effects of random defects on the critical temperature of
the Ising model, the only defects that can have an effect
are those whose correlation length, ξH , is comparable to
the correlation length of the unmodified lattice, ξ. Thus,
since near the critical point ξ is described by a power-
law, only those defects whose statistics similarly produce
long-range correlations could have any effect on the crit-
ical behavior. Any short-range correlations would fail
to meet this criterion. This reiterates the focal feature of
critical behavior, where small-scale interactions can even-
tually become renormalized, and only those that persist
on all scales contribute to its behavior.
We consider correlations that are sufficiently long-

ranged while also convergent for all distances, and whose
auto-correlation function is given by,

C(r) ∼ r−a (A1)

where r is the distance between sites, and a is less than
dimension d. Since this is the percolation problem, the
auto-correlation function describes the correlations in site
occupation, that is, the likelihood that two sites a dis-
tance r are occupied. The long-range correlations are
therefore an additional mechanism contributing to the
site occupation probability other than the usual uniform
occupation probability, p.
We can calculate how these kinds of site strength cor-

relations affect the fluctuations in the control parameter,
⟨δT 2⟩, according to

⟨δT 2⟩ ∼ ξ−d

∫ ξ

0

dr C(r)rd−1

= ξ−d

∫ ξ

0

dr r−a+d−1

∼ ξ−a

(A2)

where again, we can define a correlation length charac-
terizing the average spatial extent of fluctations given by,
ξ−a.
If the system is still to have a single uniform critical

transition, then it should be the case that these fluctua-
tions produce a correlation length less than that of un-
modified transition. That is the fluctuations should be
less than critical fluctuations, leading to the condition,

⟨δT 2⟩
(Tc − T )2

∼ (Tc − T )aν−2

→ 0

(A3)

where we made use of the relation, ξ ∼ (Tc − T )−ν to
expand the ratio. For the ratio to go to zero near the
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critical point we require the exponent to be greater than
zero. This leads to the condition on a for the largest
value of long-range correlations such that it will affect
the critical transition while preserving the existence of a
uniform transition. This is given by,

aν − 2 > 0 (A4)

Thus, we can expect changes to the critical behavior if
a < 2/ν. For our AIP model ν ≈ 1.30, we should expect
that the minimum value requires a < 3/2.

Appendix B: Fourier Filter Correlation Method

It is common to parameterize such long range scale
invariant correlations using the Hurst exponent, where
the (auto)correlation function, C(r) defined as C(r) =
⟨u(r′)u(r + r′)⟩ has the following behavior:

C(r) ∝ r2α (B1)

The Hurst exponent is given by H = 2α and allowed to
take on values in range [0,1]. Behavior of the correla-
tions are antipersistent for H < 1/2 and persistent for
H > 1/2. For H = 1/2, the statistics follow fractional
Gaussian noise, being neither persistent nor antipersis-
tent.

There are a number of techniques for simulating frac-
tional Brownian statistics [48]. We use the Fast Fourier
transform(FFT) filter technique because of its compu-
tational efficiency. This technique relies on imprinting
the desired correlations in the Fourier wave vector space,

k⃗, and then applying an inverse FFT(IFFT) to create
a lattice with correlated sites of form Equation (B1).
Formally, we will be working with 2 dimensional Fourier
transforms, and it is well known that the Fourier trans-
form of the autocorrelation function gives the Fourier
power spectral density. That is, the correlation function,

⟨u(x⃗)u(x⃗ + r)⟩ and the power spectral density S(k⃗) are
related according to:

⟨u(x⃗)u(x⃗+ r)⟩ =
∫
Rn

S(k⃗)e−i2πk⃗·x⃗dk⃗ (B2)

We can make use that we are only concerned with the dis-
tance between two points. This leads to a suitable defini-
tion of a radial wave vector defined as kr =

√
1 + s2 + t2

and with a switch of coordinates allows us to write it as
a one dimensional Fourier Transform.

C(r) =

∫
S(kr)e

−i2πkrr2πkrdkr (B3)

To create correlations of the form Equation (B1), our
power spectral density should be made to follow the fol-
lowing power-law:

S(kr) ∝
1

kβr
(B4)

To relate the exponents between Equation(B1) and
Equation(B4) we can solve Equation(B2) after substitut-
ing Equation(B4) which gives the following integral to be
solved:

C(r) = 2π

∫
k−β+1
r e−2πikrrdkr (B5)

To solve the above integral we first make use of the
following relation:

1

kβ
=

2πβ/2

Γ(β/2)

∫ ∞

0

λβ−1e−πλ2k2

dλ (B6)

The right side is easily Fourier transformed and upon
switching the order of integration, we get:

∫
R
e−πλ2|k|2e−2πikrdk = λ−1e−π|r|2/λ2

(B7)

Then taking the 2D Fourier transform of both sides and
plugging into Equation(B6) gives:∫
R
k−β+1e−i2πkrrdkr =

2πβ−1/2

Γ(β − 1/2)

∫ ∞

0

dλλβ−2
[
λe−π|r|2/λ2

]
=

2πβ−1/2

Γ(β − 1/2)

∫ ∞

0

dλλ(β−2)−1e−π|r|2/λ2

=
2πβ−1/2

Γ(β − 1/2)

Γ((β − 2)/2)

2π1/2−β+1/2

1

|r|1−β+1

∝ rβ−2

(B8)

Setting the exponents equal between the final line of
Equation (B8) and Equation (B1) gives:

2α = β − 2 (B9)

This gives our final relationship between the Hurst expo-
nent and the appropriate Fourier power spectrum filter
function exponent.

β = 2(α+ 1) (B10)

Appendix C: Correlation Algorithm

We execute this Fourier filter technique using an FFT
on a NxN dimensional array with complex coefficients
[15]. The algorithm is outlined as follows:

1. We generate a NxN array with each value,hnm, as-
signed a random value from a Guassian probability
distribution.

2. We execute a 2D Fast Fourier Transform(FFT) giv-
ing an array of complex coefficients, Hst.



17

3. We define radial wave number kr, which is non-zero
for s = t = 0, as follows:

kr =
√
1 + s2 + t2 (C1)

4. Since S(kst) ∝ |Hst|2 we define a new set of com-
plex coefficients, Hst, multiplied by the appropriate
filter function:

H ′
st = Hst/k

β/2
r (C2)

5. Apply an inverse FFT(IFFT) on H ′
st to produce

a new NxN array with coefficients, h′
st with the

desired correlations.

6. Apply the error function, erf(h′
st), to return a uni-

form correlated distribution with values in range
[0,1].

We illustrate an example of the types of correlations
produced by our algorithm in Figure 1.
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