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The site percolation problem is one of the core topics in statistical physics. Evaluation of the
percolation threshold, which separates two phases (sometimes described as conducting and insulat-
ing), is useful for a range of problems from core condensed matter to interdisciplinary application of
statistical physics in epidemiology or other transportation or connectivity problems. In this paper
with Newman—Ziff fast Monte Carlo algorithm and finite-size scaling theory the random site perco-
lation thresholds p. for a square lattice with complex neighborhoods containing sites from the sixth
coordination zone are computed. Complex neighborhoods are those that contain sites from various
coordination zones (which are not necessarily compact). We also present the source codes of the ap-
propriate procedures (written in C) to be replaced in original Newman—Ziff code. Similar to results
previously found for the honeycomb lattice, the percolation thresholds for complex neighborhoods
on a square lattice follow the power law p.(¢) oc (772 with v2 = 0.5454(60), where ( = >°, zi7; is
the weighted distance of sites in complex neighborhoods (r; and z; are the distance from the central
site and the number of sites in the coordination zone 4, respectively).
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I. INTRODUCTION

Percolation [1, 2] is one of the core problems in statisti-
cal physics with many interdisciplinary applications rang-

ing from materials science [3], through studies of poly-
mer composites [4], forest fires [5], agriculture [6], oil and
gas exploration [7], diseases propagation [3], transporta-

tion networks [9], quantifying urban areas [10], to Bit-
coins transfer [11] (see References 12 and 13 for reviews).
The percolating system undergoes a (purely geometrical)
phase transition (in terms of the conductivity or trans-
portation properties of the system) from the phase cor-
responding to an insulator (for low connectivity p < p.)
to a conductor (for high connectivity p > p.). The criti-
cal connectivity of the system p. (called the percolation
threshold) separates these two phases and depends on the
dimension of the system d, the topology of the lattice, the
number z of sites in the assumed neighborhood, the type
of percolation (that is, the site or bond dilution), etc.
[14, 15].

Percolation thresholds were initially estimated for
nearest-neighbor interactions [16—18] but later also com-
plex neighborhoods (termed also extended for compact
neighborhoods) were studied for various lattices embed-
ded in:

e d = 2 (for a square [19-25], a triangular [19, 20, 26—
28], a honeycomb [19, 29] and other Archimedean

[30, 31] lattices);
e d = 3 (for a simple cubic [25, 32, 33] lattice);
e d =4 (for a simple hypercubic [34, 35] lattice)
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dimensions.

Simultaneously with the estimation of percolation
thresholds for various lattices, some effort went into
searching for an analytical formula allowing for the pre-
diction of the percolation threshold position based on
lattice characteristics. For example, Xun et al. [31] esti-
mated the site and bond percolation thresholds for 11
Archimedean lattices with complex and compact (ex-
tended) neighborhoods containing sites up to the tenth
coordination zone. For the site percolation problem, the
critical site occupation probability p. follows asymptoti-
cally

Pe(z) = a/z (1)

with the total number z of sites in the neighborhood and
a =~ 4.51235. This dependence should be reached exactly
for the percolation of compact neighborhoods with a large
number z of sites that make up the neighborhood (for
example, for discs). To take into account finite-z effect
an additional term b in the denominator of Equation (1)

pe(z) = ¢/(z+0) (2)

has been included [36]. For the two-dimensional lattices
b =3 [31]. The third universal scaling studied in by Xun
et al. [31] was

pe(z;d) =1 — exp(d/z) (3)

proposed by Koza et al. [37, 38].
Much earlier Galam and Mauger [39, 40] proposed a
universal formula for site percolation problem

Po
pe(2;d) = (4)
@—D(=—1)
They recognized two classes of systems (two sets of (pg, a)
parameters) [39]. Their paper [39] was immediately crit-

icized by van der Marck [41] who showed ‘an example of
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FIG. 1: Shapes of basic neighborhoods on square lattice. (a) sQ-1, 72 = 1, (b) sQ-2, 72 = 2, (c) $Q-3, 7% = 4, (d)
sQ-4, r2 =5, (e) sQ-5, 72 = 8, (f) 8Q-6, r? = 9. The number r is the radius of (orange) circle indicating equidistant
sites marked by solid (black) circles to the central one marked with open (red) circle

two networks, where d and z are equal, but the percola-
tion thresholds differ’.

For complex neighborhoods, the situation is even more
complex, since for a given lattice topology (and thus fixed
d) there are many neighborhoods with exactly the same
total number z of sites in the neighborhood but differ-
ent percolation thresholds p. (see: Table 1 and Figure
4 in Reference 24 for the square lattice; Table 1 in Ref-
erence 27 and Table 1 and Figure 3(a) in Reference
for the triangular lattice; and Table 1 and Figure 4(a) in
Reference 29 for the honeycomb lattice).

To solve the above-mentioned problems of p.(z) degen-
eration the index

E= wnd/i (5)

was proposed by [28]. The z; and r; are the num-
ber of sites and their distance from the central site in the
neighborhood in the i-th coordination zone. The index &
allowed for a successful distinguishing between neighbor-
hoods and cancel p.(z) degeneration for the triangular
lattice with complex neighborhoods containing sites up
to the fifth coordination zone. The dependence of the
percolation threshold

Pe(§) o &7 (6)

was well fitted with the power law with ~;(TR) =

0.710(19). Unfortunately, this dependence does not hold

for the honeycomb lattice (see Figure 4(b) in Reference
). Thus, another index

(= Z ZiTi (7)

was introduced by , to simultaneously resolve the
problem of p.(z) degeneration and to distinguish among
various complex neighborhoods for the honeycomb lattice
[29]. For honeycomb lattice and complex neighborhoods
up to the fifth coordination zone

pe(C) o< (772 (8)

with 2 (HC) ~ 0.4981(90) [29].

In this paper, using the fast Monte Carlo Newman—Ziff
algorithm [42], we calculate the critical occupation prob-
abilities p. (percolation thresholds) for random site per-
colation in a square lattice and neighborhoods combined
with basic neighborhoods presented in Figure 1. The ba-
sic neighborhoods contain sites from the first coordina-
tion zone (sQ-1, Figure 1(a)) up to the sixth coordination
zone (SQ-6, Figure 1(f)). These complex neighborhoods
are presented in Figure 4 in Appendix A. Calculations of
percolation thresholds are based on the finite-size scaling
hypothesis [14, 43, 44].

The second aim of this paper is to check if Equa-
tions (6) and (8) holds for a square lattice with complex
neighborhoods and, if so, which of them performs better.

The rest of the paper is organized as follows. The de-
tails of the calculations are presented in the following
Section II. The results of the calculations are given in
Section III. The article is summarized and concluded in
Section V. The Appendix A contains graphical presenta-
tion of neighborhood shapes. In “Supplementary materi-
als” we present:

e aset of boundaries() functions (written in C, List-
ings 1 to 6) to be replaced in the Newman—Ziff pro-
gram published in Reference 42 to obtain the single
realization of Sp,ax(n; L) for the neighborhoods pre-
sented in Figures 1(a) to 1(f);

e and the dependencies of Ppax - LA/ on the prob-
ability of occupation p for neighborhoods ranging
from sQ-6 to sQ-1,2,3,4,5,6 for various linear sys-
tem sizes L = 128 to 4096.

II. COMPUTATIONS

Our calculations of the percolation thresholds p. are
based on finite-size analyses of the probability Ppa.x that
the randomly selected site belongs to the largest cluster
of occupied sites. According to the finite-size hypothesis
[14, 43, 44], in the vicinity of a phase transition (marked
by a critical point x.), many quantity A characterizing
the system obeys a scaling relation

Ala;L) = L™ F (¢ — o) L2 , (9)



where x measures the level of system disorder (tempera-
ture for the Ising or Potts model, site/bond occupation
probability for percolation problem), L is the linear size
of the system, F is a scaling function (usually analyti-
cally unknown) and e; and e are scaling exponents. In
other words, there exists a function F, that for properly
assumed values of z., €1 and &5 the dependencies of A(x)
collapse into a single curve independently of the (finite)
system size L. This also provides an elegant way to pre-
dict the value of the critical parameter . as

Al L) L™ = F (z — xc)L%), (10)
which for x = z. yields
A(ze; L)L = F(0). (11)

In other words, we expect the curves L=t A(x) plotted for
various sizes of linear systems L to intercept each other
at r = x..

For our purposes, we assume that A = Ppax (the prob-
ability that a randomly selected site belongs to the largest
cluster) and « = p (the probability of occupation of the
sites). For the problem of site percolation, the critical
values of the exponents €1 and &5 are known exactly [14,
p.5dlase; = /5 =2 andey =1/3 = 3.

To compute the probability of belongmg to the largest
cluster

Pmax(p§ L) = Smax(p; L)/N (12)

we first need to calculate the sizes of the largest cluster
Smax and N = L? is the number of all sites available in
the system.

To that end, we use three concepts presented in Refer-
ence

e The first is the fast system construction scheme
(known as the Newman-Ziff algorithm). The ef-
ficiency of this approach is based on the recursive
construction of the system with n occupied sites
with the addition of only one occupied site to the
system containing (n — 1) already occupied sites.

e The second concept is the way of transforming the
A(n; N) dependence on the integer number of oc-

cupied sites n into the dependence A(p; N) on the
probability of the site occupation p
N —
A(p; N) = A(n; N)B(n; N, p), (13)
n=0
where
N —-n
BN = () ) - (19)

are values of the binomial (Bernoulli) probability
distribution.

e The third concept is the efficient construction of
the binomial coefficients (14).

The applied scheme defined in Equation (13) together
with the construction of the binomial distribution coeffi-
cients is presented in Algorithm 1.

Algorithm 1 Conversion A(n) to A(p) [42]

Require: pi, p2, Ap, N, A(n) »>ne{0,1,---,N—-1,N}
Ensure: A(p) > for p from p1 to p2 every Ap
1: p<p1
2: while p < p2 do

3: Nmax = pIN > store B(N,n,p) to B

4: B(nmax) = pN

5: for n = nmax + 1, N dz) )
N—-n+1)p

6: B(n) =B(n—1) nd—p)

7: end for

8: forn:nmax—l,o,—% do N )
n+1)(1—-p

9: B(n)=B(n+1) PN — 1)

10: end for

1: ¢+ B

122 B+« BJe

13: Alp) =0

14: for all n do

15: A(p) + A(p) + B(n)A(n)

16: end for

17: return p, A(p)
18: pp+Ap
19: end while

III. RESULTS

In Figure 2 examples of the results (for neighbor-
hood sQ-1,2,3,4,5,6 and various sizes of linear systems
L = 128, 256, 512, 1024, 2048, and 4096) of the com-
putations obtained with the procedure described in Sec-
tion II are presented. Figure 2(a) shows dependencies of
the largest cluster size Spax (normalized to the system
size L?) vs. the number of occupied sites n (also nor-
malized to the system size L?). With increasing system
linear size L the dependence Syax(n) becomes steeper
and steeper. Figure 2(b) shows L' Ppax(p) for p rang-
ing from 0.134 to 0.152 estimated for every Ap = 1074
Figure 2(c) shows close-up of Figure 2(b) in the vicin-
ity of the percolation threshold (for p from 0.1430 to
0.1435 for every Ap = 107°). The finite-size effects in
L' Pax(p) vanish for p = p., resulting in a common
point of L1 Pyax(p) plotted for various linear sizes L of
the systems. The analogous dependencies for all other
complex neighborhoods—presented in Figure 4 in Ap-
pendix A—containing sites from the sixth coordination
zone are shown in Figure 5. The results are averaged over
the realizations of the R = 10° system. The obtained p,
are gathered in Table I.

In Figure 3 the dependencies of p. on the total num-
ber z = ", z; of sites in the complex neighborhoods con-
taining the sites of the i-th coordination zone and the
indexes £ and ( are presented. Figure 3(a) shows the de-
pendence of the percolation threshold p. on z. The per-
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FIG. 2: An example of results obtained for
$Q-1,2,3,4,5,6 neighborhood and various linear system
sizes L = 128 to 4096. (a) The size of the largest cluster

Smax vs. the number of occupied sites n. Both
quantities are normalized to the system size L2. (b)
Dependence of L1 Py« (p) for p from 0.134 to 0.152
every Ap = 107%. (¢) Close-up on Figure 2(b) in the

vicinity of the percolation threshold p. for p from
0.1430 to 0.1435 every Ap = 107°
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FIG. 3: (a) Degeneracy of p.(z) for a square lattice with
complex neighborhoods ranging from sQ-1 up to
sQ-1,2,3,4,5,6. (b) Dependence p.(&) for various

neighborhoods containing sites up to the sixth
coordination zone. Orange crosses show equivalent
neighborhoods (SQ-1=5Q-2=sQ-3=5Q-5=5Q-6,
$Q-1,3=sQ-2,5, sQ-1,2=5Q-2,3=sQ-3,5 and
sQ-1,2,3=5Q-2,3,5). (c) Dependence p.(¢). Inflated
neighborhoods corresponding to higher indexes (i.e.,
SQ-2, sQ-3, SQ-5, sQ-6, sQ-2,5, $Q-2,3, sQ-3,5 and
SQ-2,3,5) are excluded from the fitting procedure. The
solid (violet) line indicates Equation (8) with
Y2(sQ) = 0.5454(60)



TABLE I: Percolation thresholds p. for a square lattice
with complex neighborhoods (and their characteristics
z, ¢, &) containing sites from the sixth coordination zone

lattice z ¢ 13 De
sQ-1,2,3,4,5,6 28 58.8591 35.7333 0.14326*
sQ-2,3,4,5,6 24 54.8591 31.7333 0.14575
sQ-1,3,4,5,6 24 53.2023 31.7333 0.14801
sQ-1,2,4,5,6 24 50.8591 30.4 0.15223
sQ-1,2,3,5,6 20 40.9706 25.7333 0.16661
sQ-1,2,3,4,6 24 47.5454 29.3333 0.16134
$Q-3,4,5,6 20 49.2023 27.7333 0.15221
sQ-2,4,5,6 20 46.8591 26.4 0.15844
$Q-2,3,5,6 16 36.9706 21.7333 0.17601
sQ-2,3,4,6 20 43.5454 25.3333 0.16529
sQ-1,4,5,6 20 45.2023 26.4 0.15815
sQ-1,3,5,6 16 35.3137 21.7333 0.18007
sQ-1,3,4,6 20 41.8885 25.3333 0.16675
sQ-1,2,5,6 16 32.9706 20.4 0.18216
sQ-1,2,4,6 20 39.5454 24 0.17409
sQ-1,2,3,6 16 29.6569 19.3333 0.20134
sQ-4,5,6 16 41.2023 22.4 0.16819
$Q-3,5,6 12 31.3137 17.7333 0.19867
$Q-3,4,6 16 37.8885 21.3333 0.17288
$Q-2,5,6 12 28.9706 16.4 0.20036
sQ-2,4,6 16 35.5454 20 0.18454
sQ-2,3,6 12 25.6569 15.3333 0.21503
sQ-1,5,6 12 27.3137 16.4 0.19936
sQ-1,4,6 16 33.8885 20 0.18143
sQ-1,3,6 12 24 15.3333 0.22577
sQ-1,2,6 12 21.6569 14 0.23076
$Q-5,6 8 23.3137 12.4 0.24422
sQ-4,6 12 29.8885 16 0.19799
sQ-3,6 8 20 11.3333 0.25673
$Q-2,6 8 17.6569 10 0.26600
sQ-1,6 8 16 10 0.27309
sQ-6" 4 12 6 0.59274°
2 0.142 [26], 0.143255 [25]
b equivalent to sqQ-1
€ 0.592746 [14, p. 17], 0.59274621(13) [45], 0.59274(5) [46] for
sQ-1

colation thresholds for neighborhoods containing sites up
to the fifth coordination zone are taken from References

and and those for neighborhoods containing sites
from the sixth coordination zone presented here in Ta-
ble I. It is clear that z cannot differentiate between the
various shapes of the neighborhoods or the percolation
thresholds associated with them.

In Figure 3(b) the dependence (6) on the percolation
threshold p. for complex neighborhoods on the square
lattice on the index £ is presented. Similarly to the ear-
lier observation for the honeycomb lattice [29], some de-
viations from the straight line in Equation (6) are ob-
served. The full circles mark percolation thresholds for
compact neighbourhoods sq-1,2,---,6,7, sQ-1,2,---,7,8,
sQ-1,2,---,8,9 and sQ-1,2,- - - ,9,10) taken from References

and

Figure 3(c) shows the dependence (8) of p. for complex

neighborhoods on the square lattice on the index (. The
percolation thresholds for neighborhoods containing sites
up to the fifth coordination zone are taken from Refer-
ences 22 and 24, those for neighborhoods containing sites
from the sixth coordination zone presented here in Ta-
ble I and those for compact neighborhoods containing
sites from the seventh to the tenth coordination zones
are taken from References 25 and

IV. DISCUSSION

The percolation thresholds p. obtained in simula-
tions range from 0.59275 (for sQ-6) to 0.14325 (for sQ-
1,2,3,4,5,6). The latter agrees in five significant digits
with its earlier estimate p.(sQ-1,2,3,4,5,6) = 0.143255
[25]. The sQ-6 neighborhood is topologically equivalent
to sQ-1 (but for a three-times larger lattice constant),
resulting in identical percolation thresholds p.(sQ-6) =
pe(sQ-1). For the sQ-6 neighborhood we deal with sev-
eral simultaneous independent percolation problems on
several identically shaped lattices. The latter reduces ef-
fective system size, but our results show, that this effect
is perfectly compensated by effective increase of number
of samples.

Similarly to the honeycomb lattice [29], the power law
(8) also holds for a square lattice with complex neigh-
borhoods with v5(sQ) = 0.5454(60) given by the least-
squares method. Inflated neighborhoods sQ-2, sQ-3, sQ-
5, 8Q-6, sQ-2,3, sQ-3,5, sQ-2,5 and sQ-2,3,5 (corre-
sponding to sQ-1, sQ-1, sQ-1, sQ-1, sq-1,2, sqQ-1,2, sQ-
1,3 and sQ-1,2,3, respectively) were excluded from the
fitting procedure.

Among the neighborhoods that contain sites up to the
sixth coordination zone, there are seven pairs of various
neighborhoods with exactly the same ( index, namely
€(sQ-2,4,5,6) = ¢(sQ-1,2,3,4,5) ~ 46.86, ((sQ-4,5,6) =
€(sq-1,3,4,5) ~ 41.20, {(sQ-2,5,6) = ((sQ-1,2,3,5) =
28.97, ((sQ-2,4,6) = ¢(sq-1,2,3,4) ~ 35.55, ((sQ-5,6) =
¢(sq-1,3,5) ~ 23.31, ((sq-2,6) = ((sQ-1,2,3) ~ 17.66
and ¢(sQ-6) = ((sq-1,3) = 12.

The differentiate power of a scalar index ( is still bet-
ter than the differentiate power of an index £ and both
are much better than the differentiate power of the total
number of sites in the neighborhood z.

V. CONCLUSION

In this paper with Newman and Ziff effective Monte
Carlo algorithm we calculated percolation thresholds for
32 complex neighbourhoods (containing sites from the
sixth coordination zone) on a square lattice.

As scalar indexes ¢ (5) and ¢ (7) allow simultaneously
to (more or less effective) distinguish between various
neighbourhoods and accordingly fitting p. to the inverse
power-law on £ (6) or ¢ (8) (with various efficiency de-
pending on the underlying lattice shape) searching for



another index remains an open task. The index may in-
volve various powers of z;, r; and 4, where i stands for
the number of coordination zone from which sites consti-
tuting neighbourhood come from and z; and r; are the
number and the distance of sites in this coordination zone
to the central site in the neighbourhood, respectively.

Also calculating p,. for neighbourhoods containing sites
up to the sixth coordination zone on triangular and hon-
eycomb lattices seems to be desired. Simultaneous calcu-
lation of p. for honeycomb and triangular lattices should
allow for identifying inflated and equivalent neighbour-
hoods but among these two underlying regular lattices.
Preliminary inspection of the p.(¢) dependence—but for
neighbourhoods containing sites up to the fifth coordi-
nation zone [28]—reveals 5 close to 1/2. This does not
make factor £ totally useless, as for the bond-percolation
problem very clear dependnce (6) with v; ~ 1 was re-
cently observed [17].

Finally, the further studies may focus on the fractal na-
ture of the giant component at p = p. [48]. The largest
percolating cluster on square lattice at p = p, has fractal
properties for sQ-1 neighbourhoods with fractal dimen-
sion close to 1.9 [14, p. 9]. Does this picture survive
changing neighbourhoods to complex one, also on other
lattice topologies? And if yes, is the fractal dimension
the same as for the nearest-neighbours interactions?

The results obtained in this paper may be helpful in

further searching for the universal formula, in the spirit
of Equation (4) [19], for percolation threshold p., also for
complex neighborhoods, but independently of the under-
lying two-dimensional lattice shape. Also further studies
on the topic presented here may result in finding univer-
sal formula for p. not only for two-dimensional lattices
but in higher dimensions (including nonphysical dimen-
sions, like on four- [34, 35] and five-dimensional simple
hyper-cubic [50, 51] lattices).

ACKNOWLEDGMENTS

I am grateful to Malgorzata J. Krawczyk for a fruit-
ful discussion on boundary conditions for neighborhoods
containing sites up-to the sixth coordination zone on the
square lattice. I gratefully acknowledge Poland’s high-
performance computing infrastructure PLGrid (HPC
Centers: ACK Cyfronet AGH) for providing com-
puter facilities and support within computational grant
no. PLG/2023,/016295.

Appendix A: Neighborhoods shapes

In Figure 4 the shapes of all complex neighborhoods
containing sites from the sixth coordination zone are pre-
sented.
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FIG. 4: Shapes of neighborhoods on square lattice combined with basics neighborhoods presented in Figure 1 and
containing sites from the sixth coordination zone (Figure 1(f)). (a) sQ-1,6, (b) sQ-2,6, (c) sQ-3,6, (d) sQ-4,6, (e)
SQ_5767 (f) SQ_1a2767 (g) SQ_17376a (h) SQ_17476a (1) SQ_175a67 (]) SQ_27376a (k) SQ_274767 (1) SQ_27576a (Hl) SQ_3,4767
(n) sQ-3,5,6, (0) sQ-4,5,6, (p) sQ-1,2,3,6, (q) sQ-1,2,4,6, (r) sQ-1,2,5,6, (s) sQ-1,3,4,6, (t) sQ-1,3,5,6, (u)
sQ-1,4,5,6, (v) sQ-2,3,4,6, (w) sQ-2,3,5,6, (x) sQ-2,4,5,6, (v) sQ-3,4,5,6, (z) sQ-1,2,3,4,6, (aa) sqQ-1,2,3,5,6, (bb)
sQ-1,2,4,5.6, (cc) sQ-1,3,4,5,6, (dd) sQ-2,3,4,5,6, (ee) sQ-1,2,3,4,5,6
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Appendix A: Boundaries procedures

Below, we present a set of boundaries() functions
(written in C) to be replaced in the Newman-Ziff pro-
gram published in Reference 42 to obtain the single real-
ization of Spax(n; L) for the neighborhoods presented in
Figures 1(a) to 1(f).

1. SQ-1

boundaries() function for the sQ-1 neighborhood
(originally presented in Reference 42).

void boundaries ()

5 }

{
int i,j;
for (i=0; i<N; i++) {
5 // 1lnn core:
nn[i][0] = (N+i +1)%N;
nn[il[1] = (N+i -1)%N;
nn[i][2] = (N+i +L)%N;
nn[il[3] = (N+i -L)%N;
// 1nn left border:
if (i%L==0) nn[i][1] = (N+i+L -1)%N;
// 1nn right border:
if ((i+1)%L==0) nn[i][0] = (N+i-L +1)%N;
}
2. SQ-2

N

boundaries() function for the sqQ-2 neighborhood.

void boundaries ()
{
int i,j;

for (i=0; i<N; i++) {

5 // 2nn core:

-

nn[i] [0]
nn[i] [1]
nn[i] [2]
nn[i] [3]

(N+i
(N+i
(N+i
(N+i

+L+1) %N
+L-1)%N;
-L+1)%N;
-L-1)%N;

) // 2nn left border:

if (i%L==0) {
nn[i] [1] = (N+i+L
nn[i] [3] = (N+i+L
// 2nn right border:
if ((i+1)%L==0) {
nn[i] [0] = (N+i-L
nn[i] [2] = (N+i-L

+L-1)%N;
-L-1)%N;

+L+1) %N,
-L+1)%N; }

3. SQ-3

boundaries() function for the sqQ-3 neighborhood.

void boundaries ()

{

4

int i,j;

for (i=0; i<N; i++) {
5 // 3nn core:
nn[i] [0] = (N+i +2x*L)Y%N;
nn[i] [1] = (N+i -2*xL)%N;
nn[i] [2] = (N+i +2)%N;
nn[i][3] = (N+i -2)%N;
// 3nn left border:
if (i%L==0 || i%L==1)
nn[i][3] = (N+i+L -2)%N;

// 3nn right border:
if ((i+1)%L==0 || (i+2)%L==0)
nn[i][2] = (N+i-L +2)%N;

4. SQ-4

boundaries() function for the neighborhood sQ-4.
The preprocesor directive #define Z 4 in source code
in Reference 42 requires replacing to #define Z 8.

void boundaries ()

{
int i,j;
for (i=0; i<N; i++) {
// 4nn core:
nn[i] [0] = (N+i +L+2)%N;
nn[i][1] = (N+i +L-2)%N;
nn[i] [2] = (N+i -L+2)%N;
nn[i][3] = (N+i -L-2)%N;
nn[il[4] = (N+i +2*%L+1)%N;
nn[i] [6] = (N+i +2*xL-1)%N;
nn[i] [6] = (N+i -2%L+1)%N;
nn[i] [7] = (N+i -2%L-1)%N;
// 4nn left border:
if (i%L==0 || i%L==1 ) {
nn[i][1] = (N+i+L +L-2)%N;
nn[i][3] = (N+i+L -L-2)%N;
nn[i] [6] = (N+i+L +2*L-1)%N;
nn[i] [7] = (N+i+L -2*L-1)%N; }

// 4nn right border:

if ((i+1)%L==0 || (i+2)%L==0) {

nn[i] [0] = (N+i-L +L+2)%N;
nn[i] [2] = (N+i-L -L+2)%N;
nn[i] [4] = (N+i-L +2xL+1)%N;
nn[i][6] = (N+i-L -2xL+1)%N; }

5. SQ-5

boundaries () function for the sQ-5 neighborhood.

void boundaries ()

{
int i,j;
for (i=0; i<N; i++) {
// 5nn core:
nn[i]1[0] = (N+i +2*L+2)%N;
nn[i] [1] = (N+i +2*%L-2)%N;
nn[i] [2] = (N+i -2xL+2)%N;
nn[i] [3] = (N+i -2xL-2)%N;
// 5nn left border:
if (i%L==0 || i%L==1) {
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nn[i] [1]
nn[i] [3]

(N+i+L +2%L-2)%N;
(N+i+L -2*%L-2)%N; }

// 5nn right border:

if ((i+1)%L==0 || (i+2)%L==0) {
nn[i] [0] (N+i-L +2*%L+2)%N;
nn[i] [2] (N+i-L -2%L+2)%N; }

6. SQ-6

boundaries () function for the sQ-6 neighborhood.

void boundaries ()

{

int i,j;
for (i=0; i<N; i++) {

// 6nn core:

nn [i] [0]
nn[i][1]

(N+i +3*L)%N;
(N+i -3*L)%N;

8 nn[i][2] = (N+i +3)%N;

9 nn[i] [3] = (N+i -3)%N;

10 // 6nn left border:

11 if (i%L==0 || i%L==1 || i%L==2)

12 nn[i][3] = (N+i+L -3)%N;

13 // 6nn right border:

14 if ((i+1)%L==0 || (i+2)%L==0 || (i+3)%L==0)
15 nn[i] [2] = (N+i-L +3)%N;

16 }

17}

Appendix B: Dependencies of Ppax - L°/* on the

probability of occupation p

Figure 5 presents the dependencies of Ppax - LAY on

10

the probability of occupation p for neighborhoods rang-
ing from sQ-6 to sQ-1,2,3,4,5,6 for various linear system

sizes L = 128, 256, 512, 1024, 2048, and 4096.
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FIG. 5: L®*Pp.x vs. p for various complex neighborhoods and various values of L indicated in the title of the
figures. The results are averaged over the realizations of the R = 10° system. The probability of occupation p is
scanned with Ap = 1075 separation step. (a) $Q-6, (b) sQ-1,6, (c) $Q-2,6, (d) sQ-3,6, (e) $Q-4,6, (f) sQ-5,6, (g)

sQ-1,2,6, (h) sqQ-1,3,6, (i) sQ-1,4,6, (j) sqQ-1,5,6, (k) sQ-2,3,6, (1) sQ-2,4,6, (m) sQ-2,5,6, (n) sQ-3,4,6, (o)
sQ-3,5,6, (p) sQ-4,5,6, (q) sQ-1,2,3,6, (r) sqQ-1,2,4,6, (s) sQ-1,2,5,6, (t) sq-1,3,4,6, (u) sQ-1,3,5,6, (v) sQ-1,4,5,6,
(w) sQ-2,3,4,6, (x) sQ-2,3,5,6, (v) sQ-2,4,5,6, (z) $Q-3,4,5,6, (aa) sQ-1,2,3,4,6, (bb) sq-1,2,3,5,6, (cc)
sQ-1,2,4,5,6, (dd) sQ-1,3,4,5,6, (ee) $Q-2,3,4,5,6, (ff) sQ-1,2,3,4,5,6
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