
Random site percolation thresholds on square lattice for complex neighborhoods
containing sites up to the sixth coordination zone

Krzysztof Malarz∗
AGH University, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków, Poland

(Dated: April 11, 2023)

The site percolation problem is one of the core topics in statistical physics. Evaluation of the per-
colation threshold, which separates two phases (sometimes described as conducting and isolating),
is useful for a lot of problems ranging from core condensed matter to interdisciplinary application
of statistical physics in epidemiology or any other transportation or connectivity problems. In this
paper—with Newman–Ziff fast Monte Carlo algorithm and finite-size scaling theory—we compute
the random site percolation thresholds pc for a square lattice with complex neighborhoods contain-
ing sites from the sixth coordination zone. Complex neighborhoods are those that contain sites from
various coordination zones (which are not necessarily compact ones). We present the source codes
of the appropriate procedures (written in C) and the results of their usage in computations of the
percolation threshold on the square lattice for neighborhoods containing sites up to the sixth coor-
dination zone. We conclude that similarly to the honeycomb lattice, the percolation thresholds for
complex neighborhoods on a square lattice follow the power law pc(ζ) ∝ ζ−γ2 with γ2 = 0.5454(60),
where ζ =

∑
i ziri is the weighted distance of sites in complex neighborhoods (ri and zi are the

distance from the central site and the number of sites in the coordination zone i, respectively).

Keywords: Monte Carlo simulation; finite-size scaling; non-compact neighborhoods; universal formula for
percolation thresholds

I. INTRODUCTION

Percolation [1, 2] is one of the core problems in statisti-
cal physics with many interdisciplinary applications rang-
ing from materials science [3], through studies of polymer
composites [4], forest fires [5], agriculture [6], oil and gas
exploration [7], diseases propagation [8], transportation
networks [9], quantifying urban areas [10], to Bitcoins
transfer [11] (see References 12 and 13 for reviews).

The percolating system undergoes a (purely geomet-
rical) phase transition (in terms of the conductivity or
transportation properties of the system) from the phase
corresponding to an insulator (for low system connectiv-
ity p < pc) to the phase of the conductor (for high system
connectivity p > pc). The critical connectivity of the sys-
tem pc (called the percolation threshold) separates these
two phases and depends on the dimension of the system
d, the topology of the lattice, the number z of sites in the
assumed neighborhood, the type of percolation (that is,
the bond dilution site), etc. [14, 15].

Percolation thresholds were initially estimated for the
nearest-neighbor interactions [16–18] but later also com-
plex neighborhoods (termed also extended for compact
neighborhoods) were studied for various lattices embed-
ded in:

• d = 2 (for a square [19–25], a triangular [19, 20, 26–
28], a honeycomb [19, 29] and other Archimedean
[30, 31] lattices);

• d = 3 (for a simple cubic [25, 32, 33] lattice);
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• d = 4 (for a simple hypercubic [34, 35] lattice)

dimensions.
Simultaneously with the estimation of percolation

thresholds for various lattices, some effort went into
searching an analytical formula allowing for the predic-
tion of the percolation threshold position based on lat-
tice characteristics. For example, Xun et al. [31] esti-
mated the site and bond percolation thresholds for the
11 Archimedean lattices with complex and compact (ex-
tended) neighborhoods containing sites up to the tenth
coordination zone. For the site percolation problem, the
critical site occupation probability pc follows asymptoti-
cally

pc(z) = a/z (1)

with the total number z of sites in the neighborhood and
a ≈ 4.51235. This dependence should be reached ex-
actly for the percolation of compact neighborhoods with
a large number z of sites that make up the neighborhood
(for example, for discs). To take into account the he
finite-z effect an additional term b in the denominator of
Equation (1)

pc(z) = c/(z + b) (2)

should be included [36]. For the two-dimensional lattices
b = 3 [31]. The third universal scaling studied in Refer-
ence 31 was

pc(z; d) = 1− exp(d/z) (3)

proposed by Koza et al. [37, 38].
Much earlier Galam and Mauger [39, 40] proposed a

universal formula for site percolation problem

pc(z; d) =
p0

[(d− 1)(z − 1)]a
, (4)
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FIG. 1: (Color online). Shapes of basic neighborhoods on square lattice. (a) sq-1, r2 = 1, (b) sq-2, r2 = 2, (c) sq-3,
r2 = 4, (d) sq-4, r2 = 5, (e) sq-5, r2 = 8, (f) sq-6, r2 = 9. The number r is the radius of (orange) circle indicating

equidistant sites marked by solid (black) circles to the central one marked with open (red) circle

where z and d are the total number of sites in the neigh-
borhood and the dimension of the system space, respec-
tively. They recognized two classes of systems (two sets
of (p0, a) parameters) [39]. Their paper [39] was imme-
diately criticized by van der Marck [41] who showed ‘an
example of two networks, where d and z are equal, but
the percolation thresholds differ’.

For complex neighborhoods, the situation is even
worse, since for a given lattice topology (and thus fixed
d) there are many neighborhoods with exactly the same
total number z of sites in the neighborhood but differ-
ent percolation thresholds pc (see: Table 1 and Figure
4 in Reference 24 for the square lattice; Table 1 in Ref-
erence 27 and Table 1 and Figure 3(a) in Reference 28
for the triangular lattice; and Table 1 and Figure 4(a) in
Reference 29 for the honeycomb lattice).

To solve the above-mentioned problems of pc(z) degen-
eration the index

ξ =
∑
i

zir
2
i /i (5)

was proposed [28]. The zi and ri are the number of
sites and their distance from the central site in the neigh-
borhood in the i-th coordination zone. The index ξ al-
lowed for a successful distinguishing between neighbor-
hoods and cancel pc(z) degeneration for the triangular
lattice with complex neighborhoods containing sites up
to the fifth coordination zone. The percolation thresh-
olds dependence

pc(ξ) ∝ ξ−γ1 (6)

was well fitted with the power law with γ1(tr) ≈
0.710(19). Unfortunately, this dependence does not hold
for the honeycomb lattice (see Figure 4(b) in Reference
29). Thus, another index

ζ =
∑
i

ziri (7)

was introduced to simultaneously resolve the problem
of pc(z) degeneration and to distinguish among various
complex neighborhoods for the honeycomb lattice [29].
For honeycomb lattice and complex neighborhoods up to
the fifth coordination zone

pc(ζ) ∝ ζ−γ2 (8)

with γ2(hc) ≈ 0.4981(90) [29].
In this paper—using the fast Monte Carlo Newman–

Ziff algorithm [42]—we calculate critical occupation
probabilities pc (percolation thresholds) for random site
percolation in a square lattice and neighborhoods com-
bined with basic neighborhoods presented in Figure 1.
The basic neighborhoods contain sites from the first coor-
dination zone (sq-1, Figure 1(a)) up to the sixth coordi-
nation zone (sq-6, Figure 1(f)). These complex neighbor-
hoods are presented in Figure 4 in Appendix B. Calcula-
tions of percolation thresholds are based on the finite-size
scaling hypothesis [14, 43, 44].

The second aim of this paper is to check if Equa-
tions (6) and (8) holds for a square lattice with complex
neighborhoods and, if so, which of them performs better.

The rest of the paper is organized as follows. The de-
tails of the calculations are presented in the following
Section II. The results of the calculations are given in
Section III. The article is summarized and concluded in
Section V. The Appendices contain: written in C bound-
aries procedures (Appendix A), graphical presentation of
neighborhood shapes (Appendix B); and figures present-
ing results of finite-size scaling analysis (Appendix C).

II. COMPUTATIONS

Our calculations of the percolation thresholds pc are
based on finite-size analyses of the probability Pmax that
the randomly selected site belongs to the largest cluster
of occupied sites.

According to the finite-size hypothesis [14, 43, 44], in
the vicinity of a phase transition (marked by a critical
point xc), many quantities A characterizing the system
obey a scaling relation

A(x;L) = L−ε1F ((x− xc)Lε2) , (9)

where x measures the level of system disorder (tempera-
ture for the Ising or Potts model, site/bond occupation
probability for percolation problem), L is the linear size
of the system, F is a scaling function (usually analyti-
cally unknown) and ε1 and ε2 are scaling exponents. In
other words, there exists a function F , that for properly
assumed values of xc, ε1 and ε2 the dependencies of A(x)
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collapse into a single curve independently of the (finite)
system size L. This also provides an elegant way to pre-
dict the value of the critical parameter xc as

A(x;L)Lε1 = F ((x− xc)Lε2) , (10)

which for x = xc yields

A(xc;L)Lε1 = F (0) . (11)

In other words, we expect the curves Lε1A(x) plotted for
various sizes of linear systems L to intercept each other
at x = xc.

For our purposes, we assume that A ≡ Pmax (the prob-
ability that a randomly selected site belongs to the largest
cluster) and x ≡ p (the probability of occupation of the
sites). For the problem of site percolation, the critical
values of the exponents ε1 and ε2 are known exactly [14,
p. 54] as ε1 = 5

36/
4
3 = 5

48 and ε2 = 1/ 4
3 = 3

4 , respectively.
To compute the probability of belonging to the largest

cluster

Pmax(p;L) = Smax(p;L)/N (12)

we first need to calculate the sizes of the largest cluster
Smax and N = L2 is the number of all sites available in
the system.

To that end, we use three concepts presented in Refer-
ence 42.

• The first is the fast system construction scheme
(known as the Newman–Ziff algorithm). The ef-
ficiency of this approach is based on the recursive
construction of the system with n occupied sites
with the addition of only one occupied site to the
system containing (n− 1) already occupied sites.

• The second concept is the way of transforming the
Ā(n;N) dependence on the integer number of oc-
cupied sites n into the dependence A(p;N) on the
probability of the site occupation p

A(p;N) =

N∑
n=0

Ā(n;N)B(n;N, p), (13)

where

B(n;N, p) =

(
N

n

)
pn(1− p)N−n (14)

are values of the binomial (Bernoulli) probability
distribution.

• The third concept allows us to efficiently construct
the binomial coefficients (14).

The applied scheme defined in Equation (13) together
with the construction of the binomial distribution coeffi-
cients mentioned above is presented in Algorithm 1.

Algorithm 1 Conversion Ā(n) to A(p) [42]

Require: p1, p2, ∆p, N , Ā(n) . n ∈ {0, 1, · · · , N − 1, N}
Ensure: A(p) . for p from p1 to p2 every ∆p
1: p← p1
2: while p ≤ p2 do
3: nmax = pN . store B(N,n, p) to B̂
4: B(nmax) = pN
5: for n = nmax + 1, N do

6: B(n) = B(n− 1) · (N − n+ 1)p

n(1− p)
7: end for
8: for n = nmax − 1, 0,−1 do

9: B(n) = B(n+ 1) · (n+ 1)(1− p)
p(N − n)

10: end for
11: c←

∑
B̂

12: B̂ ← B̂/c
13: A(p) = 0
14: for all n do
15: A(p)← A(p) +B(n)Ā(n)
16: end for
17: return p,A(p)
18: p← p+ ∆p
19: end while

III. RESULTS

In Figure 2 examples of the results (for neighborhood
sq-1,2,3,4,5,6 and various sizes of linear systems L =
128, 256, 512, 1024, 2048, and 4096) of the computations
obtained with the procedure described in Section II are
presented.

Figure 2(a) shows dependencies of the larger cluster
size Smax (normalized to the system size L2) vs. the
number of occupied sites n (also normalized to the sys-
tem size L2). With increasing system linear size L the
dependence Smax(n) becomes stepper and stepper.

Figure 2(b) shows Lε1Pmax(p) for p ranging from 0.134
to 0.152 estimated for every ∆p = 10−4. Figure 2(c)
shows close-up of Figure 2(b) in the vicinity of the per-
colation threshold (for p from 0.1430 to 0.1435 for every
∆p = 10−5). The finite-size effects in Lε1Pmax(p) vanish
at the percolation threshold pc, resulting in a common
point of Lε1Pmax(p) plotted for various linear sizes L of
the systems. The analogous dependencies for all other
complex neighborhoods—presented in Figure 4 in Ap-
pendix B—containing sites from the sixth coordination
zone are shown in Figure 5 in Appendix C. The results
are averaged over the realizations of the R = 105 system.
The obtained percolation thresholds pc are gathered in
Table I.

In Figure 3 the dependencies of the percolation thresh-
old pc on the total number z =

∑
i zi of sites in the

complex neighborhoods containing the sites of the i-th
coordination zone and the indexes ξ and ζ are presented.

Figure 3(a) shows the dependence of the percolation
threshold pc on z. The percolation thresholds for neigh-
borhoods containing sites up to the fifth coordination
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FIG. 2: (Color online). An example of results obtained
for sq-1,2,3,4,5,6 neighborhood and various linear

system sizes L = 128, 256, 512, 1024, 2048, and 4096.
(a) The size of the largest cluster Smax vs. the number
of occupied sites n. Both quantities are normalized to
the system size L2. (b) Dependence of Lε1Pmax(p) for p
from 0.134 to 0.152 every ∆p = 10−4. (c) Close-up on
Figure 2(b) in the vicinity of the percolation threshold

pc for p from 0.1430 to 0.1435 every ∆p = 10−5
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FIG. 3: (Color online). (a) Degeneracy of pc(z) for a
square lattice with complex neighborhoods ranging from

sq-1 up to sq-1,2,3,4,5,6. (b) Dependence pc(ξ) for
various neighborhoods containing sites up to the sixth
coordination zone. Orange crosses show equivalent

neighborhoods (sq-1≡sq-2≡sq-3≡sq-5≡sq-6,
sq-1,3≡sq-2,5, sq-1,2≡sq-2,3≡sq-3,5 and

sq-1,2,3≡sq-2,3,5). (c) Dependence pc(ζ). Inflated
neighborhoods corresponding to higher indexes (i.e.,
sq-2, sq-3, sq-5, sq-6, sq-2,5, sq-2,3, sq-3,5 and

sq-2,3,5) are excluded from the fitting procedure. The
solid (violet) line indicates Equation (8) with

γ2(sq) = 0.5454(60)
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TABLE I: Percolation thresholds pc for a square lattice
with complex neighborhoods (and their characteristics
z, ζ, ξ) containing sites from the sixth coordination zone

lattice z ζ ξ pc

sq-1,2,3,4,5,6 28 58.8591 35.7333 0.14325a

sq-2,3,4,5,6 24 54.8591 31.7333 0.14575
sq-1,3,4,5,6 24 53.2023 31.7333 0.14801
sq-1,2,4,5,6 24 50.8591 30.4 0.15222
sq-1,2,3,5,6 20 40.9706 25.7333 0.16660
sq-1,2,3,4,6 24 47.5454 29.3333 0.16132
sq-3,4,5,6 20 49.2023 27.7333 0.15220
sq-2,4,5,6 20 46.8591 26.4 0.15843
sq-2,3,5,6 16 36.9706 21.7333 0.17600
sq-2,3,4,6 20 43.5454 25.3333 0.16528
sq-1,4,5,6 20 45.2023 26.4 0.15817
sq-1,3,5,6 16 35.3137 21.7333 0.18008
sq-1,3,4,6 20 41.8885 25.3333 0.16675
sq-1,2,5,6 16 32.9706 20.4 0.18216
sq-1,2,4,6 20 39.5454 24 0.17409
sq-1,2,3,6 16 29.6569 19.3333 0.20135
sq-4,5,6 16 41.2023 22.4 0.16819
sq-3,5,6 12 31.3137 17.7333 0.19868
sq-3,4,6 16 37.8885 21.3333 0.17286
sq-2,5,6 12 28.9706 16.4 0.20037
sq-2,4,6 16 35.5454 20 0.18455
sq-2,3,6 12 25.6569 15.3333 0.21502
sq-1,5,6 12 27.3137 16.4 0.19934
sq-1,4,6 16 33.8885 20 0.18144
sq-1,3,6 12 24 15.3333 0.22578
sq-1,2,6 12 21.6569 14 0.23077
sq-5,6 8 23.3137 12.4 0.24420
sq-4,6 12 29.8885 16 0.19799
sq-3,6 8 20 11.3333 0.25674
sq-2,6 8 17.6569 10 0.26600
sq-1,6 8 16 10 0.27309

sq-6b 4 12 6 0.59275c

a 0.142 [26], 0.143255 [25]
b equivalent to sq-1
c 0.592746 [14, p. 17], 0.59274621(13) [45], 0.59274(5) [46] for

sq-1

zone are taken from References 22 and 24 and those for
neighborhoods containing sites from the sixth coordina-
tion zone presented here in Table I. It is clear that the
number z cannot differentiate between the various shapes
of the neighborhoods or the percolation thresholds asso-
ciated with them.

In Figure 3(b) the dependence (6) on the percolation
threshold pc for complex neighborhoods on the square
lattice on the index ξ is presented. Similarly to the ear-
lier observation for the honeycomb lattice [29], some de-
viations from the straight line in Equation (6) are ob-
served. The full circles mark percolation threshold for
compact neighbourhoods sq-1,2,· · · ,6,7, sq-1,2,· · · ,7,8,
sq-1,2,· · · ,8,9 and sq-1,2,· · · ,9,10) taken from References
25 and 26.

Figure 3(c) shows the dependence (8) of the perco-
lation threshold pc for complex neighborhoods on the

square lattice on the index ζ. The percolation thresh-
olds for neighborhoods containing sites up to the fifth
coordination zone are taken from References 22 and 24,
those for neighborhoods containing sites from the sixth
coordination zone presented here in Table I and those for
compact neighborhoods containing sites from the seventh
to the tenth coordination zones are taken from References
25 and 26.

IV. DISCUSSION

The percolation thresholds pc obtained in simula-
tions range from 0.59275 (for sq-6) to 0.14325 (for sq-
1,2,3,4,5,6). The latter agrees in five significant digits
with its earlier estimate pc(sq-1,2,3,4,5,6) = 0.143255
[25]. The sq-6 neighborhood is topologically equivalent
to sq-1 (but for a three-times larger lattice constant),
resulting in identical percolation thresholds pc(sq-6) =
pc(sq-1). For the sq-6 neighborhood we deal with sev-
eral simultaneous independent percolation problems on
several identically shaped lattices. The latter reduces ef-
fective system size, but our results show, that this effect
is perfectly compensated by effective increase of number
of samples.

Similarly to the honeycomb lattice [29], the power law
(8) also holds for a square lattice with complex neigh-
borhoods with γ2(sq) = 0.5454(60) given by the least-
squares method. Inflated neighborhoods sq-2, sq-3, sq-
5, sq-6, sq-2,3, sq-3,5, sq-2,5 and sq-2,3,5 (corre-
sponding to sq-1, sq-1, sq-1, sq-1, sq-1,2, sq-1,2, sq-
1,3 and sq-1,2,3, respectively) were excluded from the
fitting procedure.

Among the neighborhoods that contain sites up to the
sixth coordination zone, there are seven pairs of various
neighborhoods with exactly the same ζ index, namely
ζ(sq-2,4,5,6) = ζ(sq-1,2,3,4,5) ≈ 46.86, ζ(sq-4,5,6) =
ζ(sq-1,3,4,5) ≈ 41.20, ζ(sq-2,5,6) = ζ(sq-1,2,3,5) ≈
28.97, ζ(sq-2,4,6) = ζ(sq-1,2,3,4) ≈ 35.55, ζ(sq-5,6) =
ζ(sq-1,3,5) ≈ 23.31, ζ(sq-2,6) = ζ(sq-1,2,3) ≈ 17.66
and ζ(sq-6) = ζ(sq-1,3) = 12.

The differentiate power of a scalar index ζ is still bet-
ter than the differentiate power of an index ξ and both
are much better than the differentiate power of the total
number of sites in the neighborhood z.

V. CONCLUSION

In this paper with Newman and Ziff effective Monte
Carlo algorithm we calculated 32 percolation thresholds
for complex neighbourhoods (containing sites from the
sixth coordination zone) on a square lattice.

As scalar indexes ξ (5) and ζ (7) allow simultaneously
for (more or less effective) distinguishing between various
neighbourhoods and accordingly fitting pc to the inverse
power-low on ξ (6) or ζ (8) (with various efficiency de-
pending on the underlying lattice shape) searching for
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another index seems to be still an open task. The in-
dex may involve various powers of zi, ri and i, where i
stands for the number of coordination zone from which
sites constituting neighbourhood come from and zi and
ri are the number and the distance of sites in this coor-
dination zone to the central site in the neighbourhood,
respectively.

The results obtained in this paper may be helpful in
further searching for the universal formula, in the spirit
of Equation (4) [47], for percolation threshold pc, also for
complex neighborhoods, but independently of the under-
lying two-dimensional lattice shape. Also further studies

on the topic presented here may result in finding univer-
sal formula for pc not only for two-dimensional lattices
but in higher dimensions (including nonphysical dimen-
sions, like on four- [34, 35] and five-dimensional simple
hyper-cubic [48] lattices).
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Appendix A: Boundaries procedures

Below, we present a set of boundaries() functions
(written in C) to be replaced in the Newman–Ziff pro-
gram published in Reference 42 to obtain the single real-
ization of Smax(n;L) for the neighborhoods presented in
Figures 1(a) to 1(f).

1. SQ-1

boundaries() function for the sq-1 neighborhood
(originally presented in Reference 42).

1 void boundaries ()
2 {
3 int i,j;
4 for (i=0; i<N; i++) {
5 // 1nn core:
6 nn[i][0] = (N+i +1)%N;
7 nn[i][1] = (N+i -1)%N;
8 nn[i][2] = (N+i +L)%N;
9 nn[i][3] = (N+i -L)%N;

10 // 1nn left border:
11 if (i%L==0) nn[i][1] = (N+i+L -1)%N;
12 // 1nn right border:
13 if ((i+1)%L==0) nn[i][0] = (N+i-L +1)%N;
14 }
15 }

2. SQ-2

boundaries() function for the sq-2 neighborhood.

1 void boundaries ()
2 {
3 int i,j;
4 for (i=0; i<N; i++) {
5 // 2nn core:
6 nn[i][0] = (N+i +L+1)%N;
7 nn[i][1] = (N+i +L-1)%N;
8 nn[i][2] = (N+i -L+1)%N;
9 nn[i][3] = (N+i -L-1)%N;

10 // 2nn left border:
11 if(i%L==0) {
12 nn[i][1] = (N+i+L +L-1)%N;
13 nn[i][3] = (N+i+L -L-1)%N; }
14 // 2nn right border:
15 if((i+1)%L==0) {
16 nn[i][0] = (N+i-L +L+1)%N;
17 nn[i][2] = (N+i-L -L+1)%N; }
18 }
19 }
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3. SQ-3

boundaries() function for the sq-3 neighborhood.
1 void boundaries ()
2 {
3 int i,j;
4 for (i=0; i<N; i++) {
5 // 3nn core:
6 nn[i][0] = (N+i +2*L)%N;
7 nn[i][1] = (N+i -2*L)%N;
8 nn[i][2] = (N+i +2)%N;
9 nn[i][3] = (N+i -2)%N;

10 // 3nn left border:
11 if(i%L==0 || i%L==1)
12 nn[i][3] = (N+i+L -2)%N;
13 // 3nn right border:
14 if((i+1)%L==0 || (i+2)%L==0)
15 nn[i][2] = (N+i-L +2)%N;
16 }
17 }

4. SQ-4

boundaries() function for the neighborhood sq-4.
The preprocesor directive #define Z 4 in source code
in Reference 42 requires replacing to #define Z 8.

1 void boundaries ()
2 {
3 int i,j;
4 for (i=0; i<N; i++) {
5 // 4nn core:
6 nn[i][0] = (N+i +L+2)%N;
7 nn[i][1] = (N+i +L-2)%N;
8 nn[i][2] = (N+i -L+2)%N;
9 nn[i][3] = (N+i -L-2)%N;

10 nn[i][4] = (N+i +2*L+1)%N;
11 nn[i][5] = (N+i +2*L-1)%N;
12 nn[i][6] = (N+i -2*L+1)%N;
13 nn[i][7] = (N+i -2*L-1)%N;
14 // 4nn left border:
15 if(i%L==0 || i%L==1 ) {
16 nn[i][1] = (N+i+L +L-2)%N;
17 nn[i][3] = (N+i+L -L-2)%N;
18 nn[i][5] = (N+i+L +2*L-1)%N;
19 nn[i][7] = (N+i+L -2*L-1)%N; }
20 // 4nn right border:
21 if((i+1)%L==0 || (i+2)%L==0) {
22 nn[i][0] = (N+i-L +L+2)%N;
23 nn[i][2] = (N+i-L -L+2)%N;
24 nn[i][4] = (N+i-L +2*L+1)%N;
25 nn[i][6] = (N+i-L -2*L+1)%N; }
26 }
27 }

5. SQ-5

boundaries() function for the sq-5 neighborhood.

1 void boundaries ()
2 {
3 int i,j;
4 for (i=0; i<N; i++) {
5 // 5nn core:
6 nn[i][0] = (N+i +2*L+2)%N;
7 nn[i][1] = (N+i +2*L-2)%N;
8 nn[i][2] = (N+i -2*L+2)%N;
9 nn[i][3] = (N+i -2*L-2)%N;

10 // 5nn left border:
11 if(i%L==0 || i%L==1) {
12 nn[i][1] = (N+i+L +2*L-2)%N;
13 nn[i][3] = (N+i+L -2*L-2)%N; }
14 // 5nn right border:
15 if((i+1)%L==0 || (i+2)%L==0) {
16 nn[i][0] = (N+i-L +2*L+2)%N;
17 nn[i][2] = (N+i-L -2*L+2)%N; }
18 }
19 }

6. SQ-6

boundaries() function for the sq-6 neighborhood.

1 void boundaries ()
2 {
3 int i,j;
4 for (i=0; i<N; i++) {
5 // 6nn core:
6 nn[i][0] = (N+i +3*L)%N;
7 nn[i][1] = (N+i -3*L)%N;
8 nn[i][2] = (N+i +3)%N;
9 nn[i][3] = (N+i -3)%N;

10 // 6nn left border:
11 if(i%L==0 || i%L==1 || i%L==2)
12 nn[i][3] = (N+i+L -3)%N;
13 // 6nn right border:
14 if((i+1)%L==0 || (i+2)%L==0 || (i+3)%L==0)
15 nn[i][2] = (N+i-L +3)%N;
16 }
17 }

Appendix B: Neighborhoods shapes

In Figure 4 the shapes of all complex neighborhoods
containing sites from the sixth coordination zone are pre-
sented.

Appendix C: Results

Figure 5 presents the dependencies of Pmax · Lβ/ν on
the probability of occupation p for neighborhoods rang-
ing from sq-6 to sq-1,2,3,4,5,6 for various linear system
sizes L = 128, 256, 512, 1024, 2048, and 4096.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

(y) (z) (aa) (bb) (cc) (dd)

(ee)

FIG. 4: (Color online). Shapes of neighborhoods on square lattice combined with basics neighborhoods presented in
Figure 1 and containing sites from the sixth coordination zone (Figure 1(f)). (a) sq-1,6, (b) sq-2,6, (c) sq-3,6, (d)
sq-4,6, (e) sq-5,6, (f) sq-1,2,6, (g) sq-1,3,6, (h) sq-1,4,6, (i) sq-1,5,6, (j) sq-2,3,6, (k) sq-2,4,6, (l) sq-2,5,6,

(m) sq-3,4,6, (n) sq-3,5,6, (o) sq-4,5,6, (p) sq-1,2,3,6, (q) sq-1,2,4,6, (r) sq-1,2,5,6, (s) sq-1,3,4,6, (t)
sq-1,3,5,6, (u) sq-1,4,5,6, (v) sq-2,3,4,6, (w) sq-2,3,5,6, (x) sq-2,4,5,6, (y) sq-3,4,5,6, (z) sq-1,2,3,4,6, (aa)

sq-1,2,3,5,6, (bb) sq-1,2,4,5,6, (cc) sq-1,3,4,5,6, (dd) sq-2,3,4,5,6, (ee) sq-1,2,3,4,5,6
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FIG. 5: (Color online). Lε1Pmax vs. p for various complex neighborhoods and various values of L indicated in the
title of the figures. The results are averaged over the realizations of the R = 105 system. The probability of

occupation p is scanned with ∆p = 10−5 separation step. (a) sq-6, (b) sq-1,6, (c) sq-2,6, (d) sq-3,6, (e) sq-4,6, (f)
sq-5,6, (g) sq-1,2,6, (h) sq-1,3,6, (i) sq-1,4,6, (j) sq-1,5,6, (k) sq-2,3,6, (l) sq-2,4,6, (m) sq-2,5,6, (n) sq-3,4,6,

(o) sq-3,5,6, (p) sq-4,5,6, (q) sq-1,2,3,6, (r) sq-1,2,4,6, (s) sq-1,2,5,6, (t) sq-1,3,4,6, (u) sq-1,3,5,6, (v)
sq-1,4,5,6, (w) sq-2,3,4,6, (x) sq-2,3,5,6, (y) sq-2,4,5,6, (z) sq-3,4,5,6, (aa) sq-1,2,3,4,6, (bb) sq-1,2,3,5,6, (cc)

sq-1,2,4,5,6, (dd) sq-1,3,4,5,6, (ee) sq-2,3,4,5,6, (ff) sq-1,2,3,4,5,6
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